JP2015056262A - 質量分析装置、質量分析方法、およびプログラム - Google Patents

質量分析装置、質量分析方法、およびプログラム Download PDF

Info

Publication number
JP2015056262A
JP2015056262A JP2013188298A JP2013188298A JP2015056262A JP 2015056262 A JP2015056262 A JP 2015056262A JP 2013188298 A JP2013188298 A JP 2013188298A JP 2013188298 A JP2013188298 A JP 2013188298A JP 2015056262 A JP2015056262 A JP 2015056262A
Authority
JP
Japan
Prior art keywords
ion
mass
ions
time
flight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013188298A
Other languages
English (en)
Inventor
歩 久保
Ayumi Kubo
歩 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2013188298A priority Critical patent/JP2015056262A/ja
Publication of JP2015056262A publication Critical patent/JP2015056262A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

【課題】周回軌道でのイオンの追い越しが生じた場合でも、飛行時間スペクトルから質量電荷比を正確に求めることができる質量分析装置を提供する。
【解決手段】質量分析装置100は、飛行時間スペクトルから第1イオン、および前記第1イオンと異なる飛行時間の第2イオンを選択するイオン選択部442と、前記第1イオンと前記第2イオンの飛行時間の差、および前記イオン源でイオンが排出されてから前記周回軌道からイオンの取り出しを開始するまでの時間に基づいて、前記第1イオンの質量電荷比を算出する質量電荷比算出部444と、質量電荷比算出部444で算出された前記第1イオンの質量電荷比が適切な値か否かを判定する判定部446と、判定部446が適切な値と判定した場合に、前記第1イオンの飛行時間を算出された前記第1イオンの質量電荷比に変換する変換部448と、を含む。
【選択図】図1

Description

本発明は、質量分析装置、質量分析方法、およびプログラムに関する。
飛行時間質量分析法(Time−of−flight mass spectrometry)の原理について説明する。イオン源でイオン化したイオン群をある時間始点から電圧Vで加速する。するとイオンは自由空間に速度vを持って飛び出す。イオンの質量をm、価数をz、電気素量をeとするとエネルギー保存則からイオンの持つ運動エネルギーについて次の式が成り立つ。
Figure 2015056262
式(1)から速度vを求めると次のようになる。
Figure 2015056262
速度vを持ったイオンは、電場の影響がない距離Lの自由空間を飛行する。その間の飛行時間tは、次のように表される。
Figure 2015056262
式(2)および式(3)から質量電荷比m/zは次のように表される。
Figure 2015056262
距離Lおよび電圧Vを一定にすることで、飛行時間tからイオンの質量電荷比m/zを求めることが可能となる。
次に、多重周回飛行時間型質量分析法の原理について説明する。
多重周回飛行時間型質量分析法では、電場を用いてイオンをある閉じた経路で周回させる。閉じた経路の飛行距離をLとし、それ以外の経路の飛行距離をLとし、周回数をαとすると飛行時間tは次の式で表される。
Figure 2015056262
周回数を多くすることにより飛行時間を長くでき、装置を大型化することなく、分解能を向上させることが可能となる。
しかしながら、多重周回飛行時間型質量分析法では、幅広い質量範囲のイオンを一度に高分解能で分析しようとすると、同一周回軌道を周回させているため、イオンの追い越しが起こり、同じスペクトルであるのに周回数すなわち飛行距離が異なるイオンに由来するピークが存在することになる。
図9は、イオンの追い越しが生じた場合の飛行時間スペクトルの一例を示す図である。図9に示すように、例えば、質量電荷比m/zが小さいイオンの周回数が質量電荷比m/zが大きいイオンの周回数よりも多くなることにより、質量電荷比m/zが小さいイオンの飛行時間が質量電荷比m/zが大きいイオンの飛行時間よりも長くなってしまっている。
このようなイオンの追い越しが起こる結果として、飛行時間と質量電荷比m/zの関係が、上記式(4)ではなく以下の式(6)で表される。
Figure 2015056262
右辺の周回数α以外については標準物質による質量較正及び測定結果から同定できる値であるが、周回数αについては同定できない値である。そのため、一般的に、イオンの追い越しが起こらない程度に閉経路に導入するイオンの質量範囲を制限して測定を行う(例えば特許文献1参照)。そうすることにより、式(6)の周回数αが定数となり単一の式で質量較正を行うことが可能となる。しかし、この方法では幅広い質量範囲を測定するためには、数回に分けて測定を行う必要が有り、効率が悪くなってしまう。
特開2006−59739号公報
上記のように、イオンの追い越しが生じた場合でも、飛行時間スペクトルから各イオンの質量電荷比を正確に算出できれば、質量範囲の制限を行うことなく、一度に質量の異なる多くのイオンを周回させて測定を行うことが可能となる。
本発明のいくつかの態様に係る目的の1つは、周回軌道でイオンの追い越しが生じた場合でも、飛行時間スペクトルからイオンの質量電荷比を正確に求めることができる質量分析装置、質量分析方法、およびプログラムを提供することにある。
(1)本発明に係る質量分析装置は、
イオンを供給するイオン源と、
前記イオン源から供給されたイオンを周回軌道に沿って周回させて質量分離する質量分離部と、
前記周回軌道から取り出されたイオンを検出する検出部と、
前記検出部の検出結果に基づいて、イオンの検出強度と飛行時間の関係を表す飛行時間スペクトルを生成する飛行時間スペクトル生成部と、
前記飛行時間スペクトルから第1イオン、および前記第1イオンと異なる飛行時間の第2イオンを選択するイオン選択部と、
前記第1イオンと前記第2イオンの飛行時間の差、および前記イオン源でイオンが排出されてから前記周回軌道からイオンの取り出しを開始するまでの時間に基づいて、前記第1イオンの質量電荷比を算出する質量電荷比算出部と、
前記質量電荷比算出部で算出された前記第1イオンの質量電荷比が適切な値か否かを判定する判定部と、
前記判定部が適切な値と判定した場合に、前記第1イオンの飛行時間を算出された前記第1イオンの質量電荷比に変換する変換部と、
を含む。
このような質量分析装置では、質量電荷比算出部が、周回軌道におけるイオンの周回数を決定して、当該周回数から質量電荷比m/zを算出することができる。そのため、イオンの追い越しによって飛行時間スペクトルに異なる飛行時間(周回数)のイオンのピークが存在しても、飛行時間スペクトルから質量電荷比m/zを正確に算出することができる。これにより、例えば、質量範囲の制限を行うことなく、一度に質量の異なる多くのイオンを周回させて測定を行うことができる。
(2)本発明に係る質量分析装置において、
前記判定部は、前記質量電荷比算出部で算出された前記第1イオンの質量電荷比から、前記第1イオンの同位体イオンピークを求め、当該同位体イオンピークと前記飛行時間スペクトルとを照合して、算出された前記第1イオンの質量電荷比が適切な値か否かを判定してもよい。
このような質量分析装置によれば、容易、かつ正確に、算出された第1イオンの質量電荷比が適切な値か否かを判定することができる。
(3)本発明に係る質量分析装置において、
前記質量電荷比算出部は、下記式に基づいて前記第1イオンの周回数を算出し、当該周回数から前記第1イオンの質量電荷比を算出してもよい。
Figure 2015056262
ただし、kは、前記イオン源から前記周回軌道までの質量較正の比例定数であり、kは前記周回軌道のイオンの取り出し位置から前記検出部まで質量較正の比例定数であり、kは、前記周回軌道の1周回分の質量較正の比例定数であり、Sは、前記イオン源でイオンが排出されてから前記周回軌道からイオンの取り出しを開始するまでの時間であり、ΔTは前記第1イオンと前記第2イオンの飛行時間の差であり、Tはイオンの質量に
依らない飛行時間である。
このような質量分析装置では、質量電荷比算出部は、上記式に基づいて第1イオンの周回数nを算出し、当該周回数nから第1イオンの質量電荷比m/zを算出するため、イオンの追い越しによって飛行時間スペクトルに異なる飛行時間(周回数)のイオンのピークが存在しても、質量電荷比m/zを正確に算出することができる。
(4)本発明に係る質量分析方法は、
イオンを供給するイオン源と、前記イオン源から供給されたイオンを周回軌道に沿って周回させて質量分離する質量分離部と、前記周回軌道から取り出されたイオンを検出する検出部と、を含む質量分析装置の前記検出部の検出結果に基づいて生成された飛行時間スペクトルをマススペクトルに変換する質量分析方法であって、
前記飛行時間スペクトルから第1イオン、および前記第1イオンと異なる飛行時間の第2イオンを選択するイオン選択工程と、
前記第1イオンと前記第2イオンの飛行時間の差、および前記イオン源でイオンが排出されてから前記周回軌道からイオンの取り出しを開始するまでの時間に基づいて、前記第1イオンの質量電荷比を算出する質量電荷比算出工程と、
前記質量電荷比算出工程で算出された前記第1イオンの質量電荷比が適切な値か否かを判定する判定工程と、
前記判定工程で適切な値と判定された場合に、前記第1イオンの飛行時間を算出された前記第1イオンの質量電荷比に変換する変換工程と、
を含む。
このような質量分析方法によれば、周回軌道におけるイオンの周回数を決定して、当該周回数から質量電荷比m/zを算出することができる。そのため、イオンの追い越しによって飛行時間スペクトルに異なる飛行時間(周回数)のイオンのピークが存在しても、飛行時間スペクトルから質量電荷比m/zを正確に算出することができる。これにより、例えば、質量範囲の制限を行うことなく、一度に質量の異なる多くのイオンを周回させて測定を行うことができる。
(5)本発明に係る質量分析方法において、
前記判定工程では、前記質量電荷比算出工程で算出された前記第1イオンの質量電荷比から、前記第1イオンの同位体イオンピークを求め、当該同位体イオンピークと前記飛行時間スペクトルとを照合して、算出された前記第1イオンの質量電荷比が適切な値か否かを判定してもよい。
(6)本発明に係る質量分析方法において、
前記質量電荷比算出工程では、下記式に基づいて前記第1イオンの周回数を算出し、当該周回数から前記第1イオンの質量電荷比を算出してもよい。
Figure 2015056262
ただし、kは、前記イオン源から前記周回軌道までの質量較正の比例定数であり、kは前記周回軌道のイオンの取り出し位置から前記検出部まで質量較正の比例定数であり、kは、前記周回軌道の1周回分の質量較正の比例定数であり、Sは、前記イオン源でイオンが排出されてから前記周回軌道からイオンの取り出しを開始するまでの時間であり
、ΔTは前記第1イオンと前記第2イオンの飛行時間の差であり、Tはイオンの質量に依らない飛行時間である。
(7)本発明に係るプログラムは、
イオンを供給するイオン源と、前記イオン源から供給されたイオンを周回軌道に沿って周回させて質量分離する質量分離部と、前記周回軌道から取り出されたイオンを検出する検出部と、を含む質量分析装置の前記検出部の検出結果に基づいて生成された飛行時間スペクトルをマススペクトルに変換するプログラムであって、
前記飛行時間スペクトルから第1イオン、および前記第1イオンと異なる飛行時間の第2イオンを選択するイオン選択部と、
前記第1イオンと前記第2イオンの飛行時間の差、および前記イオン源でイオンが排出されてから前記周回軌道からイオンの取り出しを開始するまでの時間に基づいて、前記第1イオンの質量電荷比を算出する質量電荷比算出部と、
前記質量電荷比算出部で算出された前記第1イオンの質量電荷比が適切な値か否かを判定する判定部と、
前記判定部が適切な値と判定した場合に、前記第1イオンの飛行時間を算出された前記第1イオンの質量電荷比に変換する変換部として、コンピューターを機能させる。
このようなプログラムによれば、周回軌道におけるイオンの周回数を決定して、当該周回数から質量電荷比m/zを算出することができる。そのため、イオンの追い越しによって飛行時間スペクトルに異なる飛行時間(周回数)のイオンのピークが存在しても、飛行時間スペクトルから質量電荷比m/zを正確に算出することができる。これにより、例えば、質量範囲の制限を行うことなく、一度に質量の異なる多くのイオンを周回させて測定を行うことができる。
(8)本発明に係るプログラムにおいて、
前記判定部では、前記質量電荷比算出部で算出された前記第1イオンの質量電荷比から、前記第1イオンの同位体イオンピークを求め、当該同位体イオンピークと前記飛行時間スペクトルとを照合して、算出された前記第1イオンの質量電荷比が適切な値か否かを判定してもよい。
(9)本発明に係るプログラムにおいて、
前記質量電荷比算出部では、下記式に基づいて前記第1イオンの周回数を算出し、当該周回数から前記第1イオンの質量電荷比を算出してもよい。
Figure 2015056262
ただし、kは、前記イオン源から前記周回軌道までの質量較正の比例定数であり、kは前記周回軌道のイオンの取り出し位置から前記検出部まで質量較正の比例定数であり、kは、前記周回軌道の1周回分の質量較正の比例定数であり、Sは、前記イオン源でイオンが排出されてから前記周回軌道からイオンの取り出しを開始するまでの時間であり、ΔTは前記第1イオンと前記第2イオンの飛行時間の差であり、Tはイオンの質量に依らない飛行時間である。
本実施形態に係る質量分析装置の構成の一例を示す図。 飛行時間スペクトルの一例を示す図。 設定された組成比から計算された同位体イオンピークの一例を示す図。 判定部での同位体イオンピークと飛行時間スペクトルとの照合処理について説明するための図。 イオン選択部でのイオンの選択処理について説明するための図。 飛行時間スペクトル生成部で生成された飛行時間スペクトルの一例を示す図。 マススペクトル生成部が、図6に示す飛行時間スペクトルをマススペクトルに変換した結果の一例を示す図。 本実施形態に係る質量分析方法の一例を示すフローチャート。 イオンの追い越しが生じた場合の飛行時間スペクトルの一例を示す図。
以下、本発明の好適な実施形態について図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また、以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
1. 質量分析装置
まず、本実施形態に係る質量分析装置について、図面を参照しながら説明する。図1は、本実施形態に係る質量分析装置100の構成の一例を示す図である。
質量分析装置100は、図1に示すように、イオン源10と、質量分離部20と、検出部30と、PC(パーソナルコンピューター)4と、を含んで構成されている。
質量分析装置100では、イオン源10から供給されたイオンを質量分離部20で周回軌道2に沿って繰り返し飛行させることで質量電荷比m/zに応じて分離して、検出部30で検出する。すなわち、質量分析装置100は、多重周回飛行時間型質量分析装置である。
イオン源10は、イオンを供給する。イオン源10では、試料がイオン化され、生成された各種イオンが所定のエネルギー(電圧)を付与されて飛行を開始する。なお、イオン源10は、外部で生成された各種イオンを一時的に捕獲するイオントラップを備え、捕獲されたイオンに所定のタイミングでエネルギーを付与して飛行を開始させるものでもよい。イオン源10から排出された各種イオンは、質量分離部20の周回軌道2に導入される。
質量分離部20は、イオン源10から供給されたイオンを周回軌道2に沿って周回させて質量分離、すなわち、質量電荷比に応じて分離する。質量分離部20は、図示の例では、扇形電場を発生させる複数(図示の例では4個)のセクター電極22a,22b,22c,22dを有している。この複数のセクター電極22a,22b,22c,22dがつくる電場によって、8の字形状の周回軌道2が形成される。なお、周回軌道2は、円形状、楕円形状等であってもよい。また、周回軌道2は、直線状や曲線状の軌道をイオンが往復する往復軌道であってもよい。周回軌道2が往復軌道である場合、周回数は、往復数(往復軌道を往復した回数)をいう。質量分離部20は、周回軌道2をつくることで、イオンを閉じた経路で周回させることができる。
質量分離部20では、周回軌道2からイオンを取り出して(離脱させて)、検出部30に入射させることができる。図示の例では、セクター電極22a(検出部30に向かって進行するイオンを偏向させる電極)への電圧の印加を停止することで、位置Aに到達したイオンを直進させて検出部30に入射させることができる。ここで、位置Aは、セクター
電極22aの入口の位置であり、周回軌道2からイオンを取り出す取出位置である。
なお、図示はしないが、質量分離部20は、周回軌道2からイオンを取り出すための偏向電極を有していてもよい。質量分離部20は、当該偏向電極に電圧を印加することにより偏向電場を発生させて、周回軌道2を周回しているイオンを周回軌道2から取り出して(離脱させて)検出部30に向けて進行させてもよい。
検出部30は、周回軌道2から取り出されたイオンを検出する。すなわち、検出部30は、質量分離部20で質量分離されたイオンを検出する。検出部30は、例えば、イオンを電子増倍管やマイクロチャネルプレート等で増感して検出する。検出部30が出力する検出信号は、処理部40に入力される。
質量分析装置100では、イオン源10からパルス的に出射された一群のイオンは、入射軌道であるセクター電極22dに入る。このとき、セクター電極22dの電位はオフ(ゼロポジション)の状態であり、イオンは、セクター電極22dの外側電極に開けられた入射孔などの入射路を通って、周回軌道2に入射される。この直後、セクター電極22dの電位はオンの状態になり、入射されたイオンは、セクター電極22a、セクター電極22b、セクター電極22c、およびセクター電極22dで構成された周回軌道2を8の字状に周回し始める。そして、周回軌道2に同時導入された一群のイオンが、必要な回数だけ周回を終え、十分にイオン間の質量分離がなされると、一番軽い先頭のイオンがセクター電極22aに入る直前のタイミングで、セクター電極22aの電位がオフ(ゼロポジション)にされ、セクター電極22aに開けられた、出射孔などの出射路を通って、一番軽いイオンを先頭に一群のイオンが周回軌道2から順次取り出され、検出部30に入射する。
PC(パーソナルコンピューター)4は、処理部40、操作部50、表示部52、記憶部54、および情報記憶媒体56を含んで構成されている。
操作部50は、ユーザーによる操作に応じた操作信号を取得し、処理部40に送る処理を行う。操作部50は、例えば、ボタン、キー、タッチパネル型ディスプレイ、マイクなどである。
表示部52は、処理部40によって生成された画像を表示するものであり、その機能は、LCD、CRTなどにより実現できる。表示部52は、例えば、処理部40で生成された飛行時間スペクトルや、マススペクトルを表示する。ここで、飛行時間スペクトルとは、検出部30で検出されたイオンの検出強度と、当該イオンの飛行時間の関係を表すスペクトルである。また、マススペクトルとは、検出部30で検出されたイオンの検出強度と、当該イオンの質量電荷比m/zの関係を表すスペクトルである。
記憶部54は、処理部40のワーク領域となるもので、その機能はRAMなどにより実現できる。記憶部54は、処理部40が各種の計算処理や制御処理を行うためのプログラムやデータ等を記憶している。また、記憶部54は、処理部40の作業領域として用いられ、処理部40が各種プログラムに従って実行した算出結果等を一時的に記憶するためにも使用される。
情報記憶媒体56(コンピューターにより読み取り可能な媒体)は、プログラムやデータなどを格納するものであり、その機能は、光ディスク(CD、DVD)、光磁気ディスク(MO)、磁気ディスク、ハードディスク、磁気テープ、或いはメモリ(ROM)などにより実現できる。処理部40は、情報記憶媒体56に格納されるプログラム(データ)に基づいて本実施形態の種々の処理を行う。情報記憶媒体56には、処理部40の各部と
してコンピューターを機能させるためのプログラムを記憶することができる。なお、当該プログラムは、ホスト装置(サーバー)が有する情報記憶媒体からネットワーク等を介して情報記憶媒体56(記憶部54)に配信されてもよい。
処理部40は、記憶部54に記憶されているプログラムに従って、各種の計算処理を行う。処理部40は、記憶部54に記憶されているプログラムを実行することで、以下に説明する、飛行時間スペクトル生成部42、マススペクトル生成部44(イオン選択部442、質量電荷比算出部444、判定部446、変換部448)として機能する。処理部40の機能は、各種プロセッサ(CPU、DSP等)、ASIC(ゲートアレイ等)などのハードウェアや、プログラムにより実現できる。なお、処理部40の少なくとも一部をハードウェア(専用回路)で実現してもよい。
飛行時間スペクトル生成部42は、検出部30の検出結果に基づいて、イオンの検出強度と飛行時間の関係を表す飛行時間スペクトルを生成する。飛行時間スペクトル生成部42は、検出部30から出力される検出信号からイオンの検出強度を取得し、当該イオンがイオン源10から排出されてから検出部30に到達するまでの飛行時間を計測する。このイオンの検出強度および飛行時間から飛行時間スペクトルが生成される。
マススペクトル生成部44は、飛行時間スペクトル生成部42で生成された飛行時間スペクトルをイオンの検出強度と質量電荷比の関係を表すマススペクトルに変換する。
ここで、飛行時間スペクトルをマススペクトルに変換する方法について説明する。
質量分析装置100におけるイオンの飛行時間T、すなわちイオン源10から排出されて検出部30に到達するまでの飛行時間は、以下の式で与えられる。
Figure 2015056262
ただし、kはイオン源10から周回軌道2(位置A)までの質量較正の比例定数であり、kは周回軌道2のイオンの取り出し位置Aから検出部30まで質量較正の比例定数であり、kは周回軌道2の1周回分の質量較正の比例定数であり、mはイオンの質量であり、zはイオンの価数であり、Tはイオンの質量に依らない飛行時間である。
そして、イオンが生成されてから(イオン源10からイオンが排出されてから)、セクター電極22aをオフにする時間、すなわち、イオン源10でイオンが排出されてから周回軌道2からイオンの取り出しを開始するまでの時間をSとし、そのときのイオンの周回数をnとすると、以下の関係式が成り立つ。
Figure 2015056262
次に、対象としているイオンの同位体イオンを考える。同位体イオンの質量をm+1とすると、2つのイオンのn周回後の飛行時間の差ΔTは、以下のようになる。
Figure 2015056262
式(9)を近似すると以下のようになる。
Figure 2015056262
式(10)を式(8)に代入し、整理すると以下の式が成り立つ。
Figure 2015056262
上記式(11)からnの条件を求めると以下のようになる。
Figure 2015056262
この条件に当てはまる整数nが周回数となる。
2つのイオンの飛行時間の差ΔTは、飛行時間スペクトルから対象としているイオンの飛行時間およびその同位体イオンの飛行時間の差を計算することにより得られる。周回軌道2の1周回分の質量較正の比例定数kとイオンの質量に依らない飛行時間Tは、既知の質量のイオンについて、その周回数を測りながら測定することで得ることができる。また、イオン源10から周回軌道2(位置A)までの質量較正の比例定数kおよび周回軌道2のイオンの取り出し位置Aから検出部30まで質量較正の比例定数kは、kとkの和k+kについては、既知の質量のイオンを周回軌道2で周回させないで測定することにより得られる。また、この和k+kを飛行距離(イオン源10と位置Aとの間の距離と、位置Aと検出部30との間の距離と)で配分することにより、比例定数kおよび比例定数kが得られる。
上記式(12)により周回数nを求め、以下の式に代入することで、対象となるイオンの質量電荷比が得られる。
Figure 2015056262
式(12)を飛行時間スペクトルの各ピーク(イオン)について実施し、それぞれのイオンの周回数を導出する。そして、式(13)により、質量電荷比を求めることで、マス
スペクトルを作成することができる。
マススペクトル生成部44は、図1に示すように、イオン選択部442と、質量電荷比算出部444と、判定部446と、変換部448と、を含んで構成されている。
イオン選択部442は、飛行時間スペクトルから処理の対象となるイオン(以下「第1イオン」という)を選択する。また、イオン選択部442は、第1イオンと異なる飛行時間のイオン(以下「第2イオン」という)を選択する。
図2は、飛行時間スペクトルの一例を示す図である。イオン選択部442は、例えば、飛行時間スペクトルのなかから、最も強度の大きいピークP1を第1イオンとして選択する。また、イオン選択部442は、例えば、飛行時間スペクトルのなかから、第1イオンよりも正方向(飛行時間が長くなる方向)で最も近接するピークP2を第2イオンとして選択する。
なお、イオン選択部442での第1イオンおよび第2イオンの選択方法は、これに限定されない。例えば、飛行時間スペクトルのなかに既知の同位体イオンピークがある場合には、この同位体イオンピークに含まれる2つのピークをそれぞれ第1イオンおよび第2イオンとして選択してもよい。
質量電荷比算出部444は、選択された第1イオンおよび第2イオンの飛行時間の差ΔT、およびイオン源10でイオンが排出されてから周回軌道2からイオンの取り出しを開始するまでの時間Sに基づいて、第1イオンの質量電荷比m/zを算出する。
具体的には、質量電荷比算出部444は、飛行時間スペクトルから第1イオンの飛行時間、および第2イオンの飛行時間の差ΔTを算出する。飛行時間の差ΔTは、図2に示すように、ピークP1とピークP2の間隔に相当する。また、質量電荷比算出部444は、イオン源10でイオンが排出されてから周回軌道2からイオンの取り出しを開始するまでの時間Sを計測する。例えば、質量電荷比算出部444は、イオン源10からイオンを排出するための信号(電圧)が入力されてからセクター電極22aへの電圧の印加をオフにするための信号が入力されるまでの時間を計測して時間Sの情報を得てもよい。
質量電荷比算出部444は、このようにして得られた飛行時間の差ΔTおよび時間Sを式(12)に代入して、第1イオンの周回数nを算出し、この周回数nを式(13)に代入して第1イオンの質量電荷比m/zを求める。
判定部446は、質量電荷比算出部444で算出された第1イオンの質量電荷比m/zが適切な値か否かを判定する。
具体的には、判定部446は、例えば、算出された第1イオンの質量電荷比m/zから想定される第1イオンの組成比を設定する。次に、判定部446は、組成比が設定されたイオンの同位体イオンピークを理論的に計算する。例えば、判定部446は、同位体比から同位体イオンピークの強度比(相対強度)を算出する。
図3は、設定された組成比(C2n)から計算された同位体イオンピークの一例を示す図である。図3に示すピークの強度比は、同位体比に対応している。
そして、判定部446は、算出した同位体イオンピーク(理論値)と、飛行時間スペクトル(実測値)と、を照合する(各ピークの飛行時間および強度比を照合する)。判定部446は、照合した結果、算出した同位体イオンピークと飛行時間スペクトルの第1イオ
ンおよび第2イオンのピークを含むピーク群が一致した場合(誤差が所定の範囲内である場合)には、質量電荷比算出部444で算出された第1イオンの質量電荷比m/zが適切な値であると判定する。
また、判定部446は、照合した結果、算出した同位体イオンピークと飛行時間スペクトルの第1イオンおよび第2イオンのピークを含むピーク群が一致しなかった場合(誤差が所定の範囲以上である場合)には、質量電荷比算出部444で算出された第1イオンの質量電荷比m/zが適切な値でないと判定する。
図4は、判定部446での同位体イオンピークと飛行時間スペクトルとの照合処理について説明するための図である。図4の例では、算出した同位体イオンピーク(図3参照)の質量mのピークおよび質量m+1のピークは、それぞれ飛行時間スペクトルのピークP1およびP2と一致したが、質量m+2のピークは、飛行時間スペクトルに該当するピークが存在しなかった。そのため、図4の例では、判定部446は、算出された第1イオンの質量電荷比m/zが適切な値でないと判定する。
変換部448は、判定部446が算出された第1イオンの質量電荷比m/zが適切な値と判定した場合に、飛行時間スペクトルの第1イオンの飛行時間を算出された質量電荷比m/zに変換する。このとき、変換部448は、第1イオンの同位体イオンピークに対応する飛行時間スペクトルの各ピークについても、同様に飛行時間を質量電荷比m/zに変換してもよい。
また、判定部446が算出された第1イオンの質量電荷比m/zが適切な値と判定した場合に、変換部448は、飛行時間スペクトルから当該第1イオンのピークおよび第1イオンの同位体イオンピークを除外してもよい(差し引いてもよい)。これにより、次に選択された第1イオンに対する処理(例えば判定部446の処理)を容易化できる。
このようにして、第1イオンの飛行時間が質量電荷比m/zに変換されると、イオン選択部442は、例えば、飛行時間スペクトルのなかから2番目に強度の大きいピークを第1イオンとして選択する。そして、マススペクトル生成部44の各部442,444,446,448は、この選択された第1イオンについて上述した処理と同様の処理を行う。イオン選択部442は、例えば、飛行時間スペクトルのなかから強度の大きい順にピークを選択して第1イオンとする。
また、判定部446が算出された第1イオンの質量電荷比m/zが適切な値でないと判定した場合は、イオン選択部442が新たに第2イオンを選択する。このとき、イオン選択部442は、飛行時間スペクトルのなかから、第1イオンのピークP1よりも正方向(飛行時間が長くなる方向)で2番目に近接するピークP3(図5参照)を第2イオンとして選択する。このように、イオン選択部442は、飛行時間スペクトルのなかから第1イオンのピークP1から正方向に近い順にピークを選択して第2イオンとする。
そして、新たに選択された第2イオンを用いて、質量電荷比算出部444で第1イオンの質量電荷比が算出され、同様に、判定部446における判定処理、変換部448における変換処理が行われる。
マススペクトル生成部44では、イオン選択部442、質量電荷比算出部444、判定部446、および変換部448が上述した処理を繰り返し行うことにより、飛行時間スペクトルをマススペクトルに変換する。
図6は、飛行時間スペクトル生成部42で生成された飛行時間スペクトルの一例を示す
図である。図7は、マススペクトル生成部44が、図6に示す飛行時間スペクトルをマススペクトルに変換した結果の一例を示す図である。
図6に示すように、飛行時間スペクトルにおいて、飛行時間は、ピーク群P20のイオン、ピーク群P30のイオン、ピーク群P10のイオンの順に短い。しかしながら、マススペクトル生成部44で飛行時間を質量電荷比m/zに変換することで、図7に示すように、質量電荷比m/zは、ピーク群P10のイオン、ピーク群P20のイオン、ピーク群P30のイオンの順に小さいことがわかる。このように、マススペクトル生成部44で飛行時間を質量電荷比m/zに変換することで、周回軌道2でイオンの追い越しが生じた場合でも、正確に飛行時間を質量電荷比m/zに変換することができる。
2. 質量分析方法
次に、本実施形態に係る質量分析方法について図面を参照しながら説明する。図8は、本実施形態に係る質量分析方法の一例を示すフローチャートである。ここでは、本実施形態に係る質量分析方法を質量分析装置100に適用した例について説明する。具体的には、質量分析装置100において、飛行時間スペクトルを取得し、取得した飛行時間スペクトルをマススペクトルに変換する例について説明する。
まず、質量分析装置100では、イオン源10から供給されたイオンを質量分離部20で周回軌道2に沿って繰り返し周回させることで質量電荷比m/zに応じて分離し、周回軌道2から取り出されたイオンを検出部30で検出する。イオン源10でイオンが排出されてから時間S後に周回軌道2からイオンの取り出しを開始する。このとき、目的のイオン(ピーク)の同位体イオン(同位体イオンピーク)が分離されるまで周回させることが望ましい。
飛行時間スペクトル生成部42は、検出部30の検出結果に基づいて、イオンの検出強度と飛行時間の関係を表す飛行時間スペクトルを生成する(ステップS10)。
次に、イオン選択部442は、飛行時間スペクトルから処理の対象となる第1イオンを選択する。また、イオン選択部442は、第1イオンと異なる飛行時間の第2イオンを選択する(ステップS12)。
次に、質量電荷比算出部444は、イオン選択部442で選択された第1イオンおよび第2イオンの飛行時間の差ΔT、およびイオン源10でイオンが排出されてから周回軌道2からイオンの取り出しを開始するまでの時間Sに基づいて、第1イオンの質量電荷比m/zを算出する(ステップS14)。質量電荷比算出部444は、飛行時間の差ΔTおよび時間Sを上記式(12)に代入して第1イオンの周回数nを算出し、得られた周回数nを上記式(13)に代入して第1イオンの質量電荷比m/zを求める。
次に、判定部446は、質量電荷比算出部444で算出された第1イオンの質量電荷比m/zが適切な値か否かを判定する(ステップS16)。
判定部446は、算出した同位体イオンピーク(理論値)と、飛行時間スペクトル(実測値)とを照合して、質量電荷比算出部444で算出された第1イオンの質量電荷比m/zが適切な値か否かを判定する。
判定部446が算出された第1イオンの質量電荷比m/zが適切な値でないと判定した場合(ステップS18でNOの場合)、イオン選択部442が新たに第2イオンを選択する(ステップS20)。そして、マススペクトル生成部44の各部442,444,446は、再び、ステップS14,S16,S18の処理を行う。マススペクトル生成部44
の各部442,444,446は、第1イオンの質量電荷比m/zが適切な値と判定されるまで(ステップS18でYESとなるまで)、ステップS14,S16,S18,S20の処理を繰り返す。
なお、図示はしないが、同じ第1イオンについて、ステップS14,S16,S18,S20の処理を所定回数繰り返した場合には、ステップS12に戻って、イオン選択部442が、新たに第1イオンおよび第2イオンを選択しなおしてもよい。
一方、判定部446が算出された第1イオンの質量電荷比m/zが適切な値と判定した場合(ステップS18でYESの場合)、変換部448は、飛行時間スペクトルの第1イオンの飛行時間を算出された質量電荷比m/zに変換する(ステップS22)。
そして、処理部40は、飛行時間スペクトルのすべてのイオン(ピーク)に対して飛行時間から質量電荷比への変換がなされたか否かの判定を行う(ステップS24)。
なお、例えば、ステップS24では、処理部40は、飛行時間スペクトルのイオン(ピーク)のうち、あらかじめユーザーによって指定されたイオン(ピーク)に対して飛行時間から質量電荷比への変換がなされたか否かの判定を行ってもよい。すなわち、この場合、飛行時間スペクトルの一部のイオン(ピーク)が質量電荷比に変換される。
飛行時間スペクトルのすべてのイオン(ピーク)に対して飛行時間から質量電荷比への変換がなされていない場合(ステップS24でNOの場合)、イオン選択部442が、新たに第1イオンおよび第2イオンを選択する(ステップS12)。そして、マススペクトル生成部44の各部442,444,446,448がステップS12〜ステップS24の処理を、飛行時間スペクトルのすべてのイオン(ピーク)に対して飛行時間から質量電荷比への変換がなされるまで(ステップS24でYESとなるまで)、繰り返し行う。
そして、飛行時間スペクトルのすべてのイオンに対して飛行時間から質量電荷比への変換がなされたと判定された場合(ステップS24でYESの場合)、処理部40は処理を終了する。
以上の処理により、飛行時間スペクトルをマススペクトルに変換することができる。
3. 比例定数k,k,k、および飛行時間Tの取得方法
次に、比例定数k,k,k、および飛行時間Tの取得方法について説明する。
まず、周回軌道2の1周回分の質量較正の比例定数kの導出方法について説明する。質量電荷比m/zが既知のイオンの周回数を数えながら周回軌道2を周回させ、周回数αおよび周回数αで測定を行う。このときの当該イオンの周回数αでの飛行時間T、および周回数αでの飛行時間Tから、以下の式を用いて比例定数kを導出する。
Figure 2015056262
次に、イオン源10から周回軌道2(位置A)までの質量較正の比例定数k、周回軌道2のイオンの取り出し位置Aから検出部30まで質量較正の比例定数k、およびイオンの質量に依らない飛行時間Tの導出方法について説明する。
質量が既知の2つのイオン(m,m)を同じ周回数で測定する。そして、以下の式から比例定数kと比例定数kの和、および飛行時間Tを導出する。なお、質量mのイオンの飛行時間をT、質量mのイオンの飛行時間をTとする。
Figure 2015056262
ここで、上記式で算出されたkとkの和、およびイオン源10から位置A(図1参照)までの飛行距離と位置Aから検出部30までの飛行距離の比から、比例定数kおよび比例定数kを導出する。
4. プログラム
次に、本実施形態に係るプログラムについて説明する。本実施形態に係るプログラムは、図1に示すように、飛行時間スペクトルから第1イオン、および第1イオンと異なる飛行時間の第2イオンを選択するイオン選択部442と、第1イオンと第2イオンの飛行時間の差ΔT、およびイオン源10でイオンが排出されてから周回軌道2からイオンの取り出しを開始するまでの時間Sに基づいて、第1イオンの質量電荷比m/zを算出する質量電荷比算出部444と、質量電荷比算出部444で算出された第1イオンの質量電荷比m/zが適切な値か否かを判定する判定部446と、判定部446が適切な値と判定した場合に、第1イオンの飛行時間を算出された第1イオンの質量電荷比m/zに変換する変換部448として、コンピューターを機能させる。また、本実施形態に係るプログラムは、飛行時間スペクトル生成部42を含んでいてもよい。
5. 特徴
本実施形態に係る質量分析装置100では、質量電荷比算出部444は、飛行時間スペクトルから選択された第1イオンと第2イオンの飛行時間の差ΔT、およびイオン源10でイオンが排出されてから周回軌道2からイオンの取り出しを開始するまでの時間Sに基づいて、第1イオンの質量電荷比m/zを算出する。すなわち、質量電荷比算出部444は、周回軌道2におけるイオンの周回数を決定して、当該周回数から質量電荷比m/zを算出することができる。そのため、イオンの追い越しによって飛行時間スペクトルに異なる飛行時間(周回数)のイオンのピークが存在しても、飛行時間スペクトルから質量電荷比m/zを正確に算出することができる。これにより、質量分析装置100では、例えば、質量範囲の制限を行うことなく、一度に質量の異なる多くのイオンを周回させて測定を行うことができる。
質量分析装置100では、判定部446は、質量電荷比算出部444で算出された第1イオンの質量電荷比m/zから、第1イオンの同位体イオンピークを求め、当該同位体イオンピークと飛行時間スペクトルとを照合して、算出された第1イオンの質量電荷比m/zが適切な値か否かを判定する。これにより、容易、かつ正確に、算出された第1イオンの質量電荷比が適切な値か否かを判定することができる。
質量分析装置100では、質量電荷比算出部444は、上記式(12)に基づいて第1イオンの周回数nを算出し、当該周回数nを上記式(13)に代入して第1イオンの質量電荷比m/zを算出する。したがって、イオンの追い越しにより飛行時間スペクトルに異なる飛行時間(周回数)のイオンのピークが存在しても、質量電荷比m/zを正確に算出することができる。
また、本実施形態に係る質量分析方法では、飛行時間スペクトルから第1イオン、および第1イオンと異なる飛行時間の第2イオンを選択するイオン選択工程(ステップS12)と、第1イオンと第2イオンの飛行時間の差、およびイオン源10でイオンが排出されてから周回軌道2からイオンの取り出しを開始するまでの時間Sに基づいて、第1イオンの質量電荷比m/zを算出する質量電荷比算出工程(ステップS14)と、質量電荷比算出工程で算出された第1イオンの質量電荷比m/zが適切な値か否かを判定する判定工程(ステップS16)と、判定工程で適切な値と判定された場合に、第1イオンの飛行時間を算出された第1イオンの質量電荷比m/zに変換する変換工程(ステップS22)と、を含む。これにより、周回軌道2におけるイオンの周回数を決定して、当該周回数から質量電荷比m/zを算出することができる。そのため、イオンの追い越しによって飛行時間スペクトルに異なる飛行時間(周回数)のイオンのピークが存在しても、飛行時間スペクトルから質量電荷比m/zを正確に算出することができる。
また、本実施形態に係るプログラムでは、飛行時間スペクトルから第1イオン、および第1イオンと異なる飛行時間の第2イオンを選択するイオン選択部442と、第1イオンと第2イオンの飛行時間の差ΔT、およびイオン源10でイオンが排出されてから周回軌道2からイオンの取り出しを開始するまでの時間Sに基づいて、第1イオンの質量電荷比m/zを算出する質量電荷比算出部444と、質量電荷比算出部444で算出された第1イオンの質量電荷比m/zが適切な値か否かを判定する判定部446と、判定部446が適切な値と判定した場合に、第1イオンの飛行時間を算出された第1イオンの質量電荷比m/zに変換する変換部448として、コンピューターを機能させる。これにより、周回軌道2におけるイオンの周回数を決定して、当該周回数から質量電荷比m/zを算出することができる。そのため、イオンの追い越しによって飛行時間スペクトルに異なる飛行時間(周回数)のイオンのピークが存在しても、飛行時間スペクトルから質量電荷比m/zを正確に算出することができる。
なお、本発明は、上述した実施形態に限定されず、本発明の要旨の範囲内で種々の変形実施が可能である。
例えば、上述した実施形態では、マススペクトル生成部44は飛行時間スペクトル生成部42が生成した飛行時間スペクトルをマススペクトルに変換したが、情報記憶媒体を介して取得した飛行時間スペクトルをマススペクトルに変換してもよい。
また、例えば、上述した実施形態では、判定部446は同位体イオンピークと飛行時間スペクトルとを照合して、第1イオンの質量電荷比が適切な値か否かの判定を行ったが、同位体イオンピークに限らず、既知のイオンピーク群(質量電荷比とその相対強度が既知であるイオン群)と飛行時間スペクトルとを照合して、判定をおこなってもよい。
本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。
2…周回軌道、10…イオン源、20…質量分離部、22a,22b,22c,22d…セクター電極、30…検出部、40…処理部、42…飛行時間スペクトル生成部、44…マススペクトル生成部、50…操作部、52…表示部、54…記憶部、56…情報記憶媒
体、100…質量分析装置、442…イオン選択部、444…質量電荷比算出部、446…判定部、448…変換部

Claims (9)

  1. イオンを供給するイオン源と、
    前記イオン源から供給されたイオンを周回軌道に沿って周回させて質量分離する質量分離部と、
    前記周回軌道から取り出されたイオンを検出する検出部と、
    前記検出部の検出結果に基づいて、イオンの検出強度と飛行時間の関係を表す飛行時間スペクトルを生成する飛行時間スペクトル生成部と、
    前記飛行時間スペクトルから第1イオン、および前記第1イオンと異なる飛行時間の第2イオンを選択するイオン選択部と、
    前記第1イオンと前記第2イオンの飛行時間の差、および前記イオン源でイオンが排出されてから前記周回軌道からイオンの取り出しを開始するまでの時間に基づいて、前記第1イオンの質量電荷比を算出する質量電荷比算出部と、
    前記質量電荷比算出部で算出された前記第1イオンの質量電荷比が適切な値か否かを判定する判定部と、
    前記判定部が適切な値と判定した場合に、前記第1イオンの飛行時間を算出された前記第1イオンの質量電荷比に変換する変換部と、
    を含む、質量分析装置。
  2. 請求項1において、
    前記判定部は、前記質量電荷比算出部で算出された前記第1イオンの質量電荷比から、前記第1イオンの同位体イオンピークを求め、当該同位体イオンピークと前記飛行時間スペクトルとを照合して、算出された前記第1イオンの質量電荷比が適切な値か否かを判定する、質量分析装置。
  3. 請求項1または2において、
    前記質量電荷比算出部は、下記式に基づいて前記第1イオンの周回数を算出し、当該周回数から前記第1イオンの質量電荷比を算出する、質量分析装置。
    Figure 2015056262
    ただし、kは、前記イオン源から前記周回軌道までの質量較正の比例定数であり、kは前記周回軌道のイオンの取り出し位置から前記検出部まで質量較正の比例定数であり、kは、前記周回軌道の1周回分の質量較正の比例定数であり、Sは、前記イオン源でイオンが排出されてから前記周回軌道からイオンの取り出しを開始するまでの時間であり、ΔTは前記第1イオンと前記第2イオンの飛行時間の差であり、Tはイオンの質量に依らない飛行時間である。
  4. イオンを供給するイオン源と、前記イオン源から供給されたイオンを周回軌道に沿って周回させて質量分離する質量分離部と、前記周回軌道から取り出されたイオンを検出する検出部と、を含む質量分析装置の前記検出部の検出結果に基づいて生成された飛行時間スペクトルをマススペクトルに変換する質量分析方法であって、
    前記飛行時間スペクトルから第1イオン、および前記第1イオンと異なる飛行時間の第2イオンを選択するイオン選択工程と、
    前記第1イオンと前記第2イオンの飛行時間の差、および前記イオン源でイオンが排出されてから前記周回軌道からイオンの取り出しを開始するまでの時間に基づいて、前記第1イオンの質量電荷比を算出する質量電荷比算出工程と、
    前記質量電荷比算出工程で算出された前記第1イオンの質量電荷比が適切な値か否かを
    判定する判定工程と、
    前記判定工程で適切な値と判定された場合に、前記第1イオンの飛行時間を算出された前記第1イオンの質量電荷比に変換する変換工程と、
    を含む、質量分析方法。
  5. 請求項4において、
    前記判定工程では、前記質量電荷比算出工程で算出された前記第1イオンの質量電荷比から、前記第1イオンの同位体イオンピークを求め、当該同位体イオンピークと前記飛行時間スペクトルとを照合して、算出された前記第1イオンの質量電荷比が適切な値か否かを判定する、質量分析方法。
  6. 請求項4または5において、
    前記質量電荷比算出工程では、下記式に基づいて前記第1イオンの周回数を算出し、当該周回数から前記第1イオンの質量電荷比を算出する、質量分析方法。
    Figure 2015056262
    ただし、kは、前記イオン源から前記周回軌道までの質量較正の比例定数であり、kは前記周回軌道のイオンの取り出し位置から前記検出部まで質量較正の比例定数であり、kは、前記周回軌道の1周回分の質量較正の比例定数であり、Sは、前記イオン源でイオンが排出されてから前記周回軌道からイオンの取り出しを開始するまでの時間であり、ΔTは前記第1イオンと前記第2イオンの飛行時間の差であり、Tはイオンの質量に依らない飛行時間である。
  7. イオンを供給するイオン源と、前記イオン源から供給されたイオンを周回軌道に沿って周回させて質量分離する質量分離部と、前記周回軌道から取り出されたイオンを検出する検出部と、を含む質量分析装置の前記検出部の検出結果に基づいて生成された飛行時間スペクトルをマススペクトルに変換するプログラムであって、
    前記飛行時間スペクトルから第1イオン、および前記第1イオンと異なる飛行時間の第2イオンを選択するイオン選択部と、
    前記第1イオンと前記第2イオンの飛行時間の差、および前記イオン源でイオンが排出されてから前記周回軌道からイオンの取り出しを開始するまでの時間に基づいて、前記第1イオンの質量電荷比を算出する質量電荷比算出部と、
    前記質量電荷比算出部で算出された前記第1イオンの質量電荷比が適切な値か否かを判定する判定部と、
    前記判定部が適切な値と判定した場合に、前記第1イオンの飛行時間を算出された前記第1イオンの質量電荷比に変換する変換部として、コンピューターを機能させるプログラム。
  8. 請求項7において、
    前記判定部では、前記質量電荷比算出部で算出された前記第1イオンの質量電荷比から、前記第1イオンの同位体イオンピークを求め、当該同位体イオンピークと前記飛行時間スペクトルとを照合して、算出された前記第1イオンの質量電荷比が適切な値か否かを判定する、プログラム。
  9. 請求項7または8において、
    前記質量電荷比算出部では、下記式に基づいて前記第1イオンの周回数を算出し、当該周回数から前記第1イオンの質量電荷比を算出する、プログラム。
    Figure 2015056262
    ただし、kは、前記イオン源から前記周回軌道までの質量較正の比例定数であり、kは前記周回軌道のイオンの取り出し位置から前記検出部まで質量較正の比例定数であり、kは、前記周回軌道の1周回分の質量較正の比例定数であり、Sは、前記イオン源でイオンが排出されてから前記周回軌道からイオンの取り出しを開始するまでの時間であり、ΔTは前記第1イオンと前記第2イオンの飛行時間の差であり、Tはイオンの質量に依らない飛行時間である。
JP2013188298A 2013-09-11 2013-09-11 質量分析装置、質量分析方法、およびプログラム Pending JP2015056262A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013188298A JP2015056262A (ja) 2013-09-11 2013-09-11 質量分析装置、質量分析方法、およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013188298A JP2015056262A (ja) 2013-09-11 2013-09-11 質量分析装置、質量分析方法、およびプログラム

Publications (1)

Publication Number Publication Date
JP2015056262A true JP2015056262A (ja) 2015-03-23

Family

ID=52820537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013188298A Pending JP2015056262A (ja) 2013-09-11 2013-09-11 質量分析装置、質量分析方法、およびプログラム

Country Status (1)

Country Link
JP (1) JP2015056262A (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010049972A1 (ja) * 2008-10-30 2010-05-06 株式会社島津製作所 質量分析装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010049972A1 (ja) * 2008-10-30 2010-05-06 株式会社島津製作所 質量分析装置

Similar Documents

Publication Publication Date Title
JP4182844B2 (ja) 質量分析装置
US9514922B2 (en) Mass analysis data processing apparatus
JP6090479B2 (ja) 質量分析装置
US8563923B2 (en) Orthogonal acceleration time-of-flight mass spectrometer
WO2010052756A1 (ja) 質量分析方法及び質量分析装置
JP4182853B2 (ja) 質量分析方法及び質量分析装置
US20110248161A1 (en) Multi-Turn Time-of-Flight Mass Spectrometer
JP4506481B2 (ja) 飛行時間型質量分析装置
US8030611B2 (en) Mass spectrometer, method of mass spectrometry and program for mass spectrometry
JP6285735B2 (ja) 質量分析装置
US8354635B2 (en) Mass spectrometer
CN107923872A (zh) 串联型质谱分析装置
JP2017535773A (ja) 修飾化合物の識別の決定
JP2015056262A (ja) 質量分析装置、質量分析方法、およびプログラム
Svendsen et al. Analysis of ionic photofragments stored in an electrostatic storage ring
JP6599452B2 (ja) 分解能飽和に起因する畳み込みを検出するためのtof抽出の振幅のグループ化
WO2009110026A1 (ja) 質量分析方法及び質量分析装置
Berthias et al. Measurement of the velocity of neutral fragments by the “correlated ion and neutral time of flight” method combined with “velocity-map imaging”
Zavilopulo et al. An upgraded ion source for a mass spectrometer
JP4273917B2 (ja) 質量分析装置
JP5533255B2 (ja) 質量分析方法及び装置
JP2006275530A (ja) 質量分析装置
JP5915702B2 (ja) 多重周回飛行時間型質量分析装置
JP7294425B2 (ja) 質量分析で得られたデータの解析方法、質量分析方法およびプログラム
US10312066B1 (en) Generation of digital waveforms with high resolution duty cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170705