JP2015052670A - 光変調器、光送信装置、偏波多重位相変調方法及びプログラム - Google Patents

光変調器、光送信装置、偏波多重位相変調方法及びプログラム Download PDF

Info

Publication number
JP2015052670A
JP2015052670A JP2013184699A JP2013184699A JP2015052670A JP 2015052670 A JP2015052670 A JP 2015052670A JP 2013184699 A JP2013184699 A JP 2013184699A JP 2013184699 A JP2013184699 A JP 2013184699A JP 2015052670 A JP2015052670 A JP 2015052670A
Authority
JP
Japan
Prior art keywords
phase
polarization
signal
modulator
phase shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013184699A
Other languages
English (en)
Other versions
JP6124259B2 (ja
Inventor
後藤 広樹
Hiroki Goto
広樹 後藤
吉田 剛
Takeshi Yoshida
剛 吉田
和行 石田
Kazuyuki Ishida
和行 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013184699A priority Critical patent/JP6124259B2/ja
Publication of JP2015052670A publication Critical patent/JP2015052670A/ja
Application granted granted Critical
Publication of JP6124259B2 publication Critical patent/JP6124259B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】偏波多重された位相変調光の2偏波間に位相のずれがなく伝送特性が改善された光変調器等を提供する。【解決手段】光源100から出力される光をクロック信号でRZ変調し、X偏波用の位相変調器1041を第1データ信号で位相変調し、Y偏波用の位相変調器1042を第2データ信号で位相変調する。第1データ信号と、クロック信号との位相のずれを0に近づけるために、Y偏波用のデータ信号をOFFにし位相変調器1042を消光点でバイアス制御した状態で、偏波多重位相変調器104の出力が最大となるときの位相シフタ1024の位相シフト量を特定する。また、第2データ信号と、クロック信号との位相のずれを0に近づけるために、X偏波用のデータ信号をOFFにし位相変調器1041を消光点でバイアス制御した状態で、偏波多重位相変調器104の出力が最大となるときの位相シフタ1025の位相シフト量を特定する。【選択図】図1

Description

本発明は、偏波多重位相変調を行う光変調器、偏波多重位相変調光を送信する光送信装置、偏波多重位相変調方法及びプログラムに関する。
データ通信のトラフィック拡大に伴い、長距離光ファイバ通信での大容量化が求められている。波長多重に加えて1波長当たりの伝送速度の高速化が要求され、従来の10Gbps−OOK(On-Off-Keying)システムから40Gbps、100Gbpsへの期待が高まっている。
40Gbpsや100Gbpsシステムへの実現手段として、偏波多重と位相変調方式を組み合わせた方式が検討されている。例えば、DP−BPSK(Dual Polarization - Binary Phase Shift Keying)やDP−QPSK(Dual Polarization - Quadrature Phase Shift Keying)等の変調方式が注目されている。
このような変調方式は、受信端において高い光信号対雑音比を必要とするため、光ファイバを高い光信号パワーで伝送することが求められる。しかし、高い光信号パワーによる伝送は、光ファイバ中における非線形の影響を助長するため、伝送特性が劣化してしまう。
長距離伝送における伝送特性の改善のためには非線形耐力に優れた変調方式と組み合わせることが有効である。例えば、RZ(Return-to-Zero)フォーマットやCS−RZ(Carrier-Suppressed - Return-to-Zero)フォーマットのような、データシンボルに同期した様々な既知のフォーマットのパルス強度変調方式が非線形耐力に優れている。これらのパルス強度変調方式の変調器と、位相変調方式等の他の変調器を縦列接続した構成が知られている(例えば、特許文献1〜3)。このとき、データとクロックとのタイミングを高精度に合わせこむことが必要になる。
特許文献1の光変調方式は、RZ−DQPSK(Return-to-Zero - Differential Quadrature Phase Shift Keying)である。入力される複数のデータ信号を、それぞれ入力されるクロック信号の基準レベルとの大小に基づく立ち上がり又は立ち下がりタイミングに同期して波形整形する2つの波形整形部を備えている。波形整形された2つのデータ信号によってI成分とQ成分の光信号を変調し合波することによってDQPSK変調する。そしてDQPSK変調された光信号に基づいて、波形整形部に入力するクロック信号の振幅レベルに対する基準レベルの相対的レベル比を可変制御することにより、I成分とQ成分の位相のずれを補償すると説明されている。
特開2009−033658号公報 特開2002−023121号公報 特表2003−501685号公報
偏波多重と位相変調方式を組み合わせた方式においては、2つの偏波(X偏波とY偏波)のデータとクロックのタイミングを高精度に合わせ、2つの偏波の位相のずれを削減する必要がある。しかし、2つの偏波は互いに直交し干渉しないため、特許文献1に記載の方法等の従来の方法では、2つの偏波を合成した状態で位相を調整することができなかった。
従って、偏波多重された2つの偏波(X偏波とY偏波)のデータとクロックのタイミングを合わせるためには、2つの偏波を分離した状態でそれぞれ位相の調整をする必要があり、実際のシステム稼働状態で評価できないという問題があった。また、温度変動や経時変動に伴う位相ずれにより、データとクロックのタイミングが変化することで伝送性能が劣化するという問題があった。
本発明は、上記事情に鑑みてなされたものであり、偏波多重された位相変調光の2偏波間に位相のずれがなく伝送特性が改善された光変調器等を提供することを目的とする。
上記目的を達成するため、本発明の光変調器は、送信データを含む変調用データ信号と同一の周波数のクロック信号で連続光をパルス変調する光パルス変調器と、光パルス変調器から出力するパルス変調光を偏波分離した互いに直交するX偏波及びY偏波の光をそれぞれX偏波用の変調用データ信号及びY偏波用の変調用データ信号で位相変調し偏波多重する偏波多重位相変調器と、X偏波用の変調用データ信号の位相をシフトさせる第1位相シフタと、Y偏波用の変調用データ信号の位相をシフトさせる第2位相シフタと、を備える。第1位相シフタは、X偏波用の変調用データ信号の位相のシフト量を変化させたときの偏波多重位相変調器の出力光の強度の変化に基づいて決定されたシフト量に設定し、第2位相シフタは、Y偏波用の変調用データ信号の位相のシフト量を変化させたときの偏波多重位相変調器の出力光の強度の変化に基づいて決定されたシフト量に設定する。
本発明によれば、偏波多重された位相変調光の2偏波間に位相のずれを低減でき伝送特性を改善することができる。
本発明の実施の形態1に係る光送信装置の構成を示すブロック図である。 データ信号とクロック信号の位相のずれを説明するための図である。(a)は位相のずれが0であり、(b)は位相のずれがπ/2であり、(c)は位相のずれが0とπ/2の間である。 位相のずれと出力光の平均強度の関係を説明するための図である。 実施の形態1に係る位相調整処理を示すフローチャートである。 位相変調器バイアス制御処理を示すフローチャートである。 位相シフト電圧制御処理を示すフローチャートである。 本発明の実施の形態2に係る光送信装置の構成を示すブロック図である。 (a)位相のずれと出力光の平均強度の関係を説明するための図である。(b)位相のずれと出力光のパワー変化率の関係を説明するための図である。 実施の形態2に係る位相調整処理を示すフローチャートである。
実施の形態1.
本発明の実施の形態1について図面を参照して詳細に説明する。
本実施の形態に係る光通信システムは、送信データを位相変調し偏波多重した偏波多重位相変調信号を送信する光送信装置1と、光送信装置1から出力される偏波多重位相変調信号を伝送する光ファイバと、光ファイバを伝送してきた偏波多重位相変調信号を受信して光信号を復調して受信データを取得する光受信装置と、から構成される。
光送信装置1は、図1に示すように、光源100と光変調器101から構成される。光変調器101は、光源100から出力する光を変調するためのデータ信号を生成するデータ信号生成部102と、光源100から出力する光をRZ変調するRZ変調器103と、RZ変調器103でRZ変調された光を互いに直交する2偏波に偏波分離してそれぞれを位相変調した後に偏波合成する偏波多重位相変調器104と、偏波多重位相変調器104から出力される光の一部を分岐して光強度を測定する光強度測定部105と、偏波多重位相変調器104に入力するデータ信号の位相を調整する位相調整処理を実行する制御部106と、を備える。
より詳細には、光源100は、CW光(Continuous Wave:連続光)を発光する発光素子であり、例えば、半導体レーザから構成される。
光変調器101のデータ信号生成部102は、送信データから第1データ信号、第2データ信号をそれぞれ生成する第1データ信号生成部1021、第2データ信号生成部1022と、クロック信号を生成するクロック信号生成部1023と、第1データ信号生成部1021から出力される第1データ信号の位相をシフトさせる位相シフタ1024と、第2データ信号生成部1022から出力される第2データ信号の位相をシフトさせる位相シフタ1025と、位相シフタ1024と位相シフタ1025から出力されるデータ信号とクロック信号をそれぞれ増幅させるドライバ1026、1027、1028と、を備える。
第1データ信号生成部1021、第2データ信号生成部1022から出力される第1データ信号、第2データ信号とクロック信号の周波数は同じである。位相シフタ1024、1025は、印加電圧の大きさによって位相のシフト量が変化する位相器である。
RZ変調器103は、データ信号生成部102のクロック信号生成部1023で生成され、ドライバ1028で増幅されたクロック信号により光強度をON/OFFしRZ変調光を生成する光パルス変調器である。
偏波多重位相変調器104は、例えば、DP−BPSK(Dual Polarization - Binary Phase Shift Keying)変調器やDP−QPSK(Dual Polarization - Quadrature Phase Shift Keying)変調器等である。偏波多重位相変調器104は、互いに直交するX偏波光とY偏波光に偏波分離する偏波分離器、X偏波光とY偏波光をそれぞれ位相変調する位相変調器1041、1042、X偏波光とY偏波光を合成する偏波合成器から構成される。ここで、X偏波光とY偏波光の偏光方向は直交するのが最善であるが、許容される伝送特性によっては2つの偏波光の偏光方向がなす角度は90度からずれていてもよい。
X偏波用の位相変調器1041、Y偏波用の位相変調器1042は、例えば、マッハツェンダ型位相変調器であり、BPSK変調又はQPSK変調等の位相変調を行う。また、偏波分離器、偏波合成器は、例えばマッハツェンダ干渉計からなる光導波路型偏波分離合成素子であり、位相変調器1041、1042と一体化された構成でも良い。
位相変調器1041、1042は、位相変調用データ信号を入力するデータ入力端子を有している。X偏波用の位相変調器1041は、第1データ信号生成部1021で生成され位相シフタ1024とドライバ1026を介してデータ入力端子に入力されるデータ信号で、X偏波光を位相変調する。また、Y偏波用の位相変調器1042は第2データ信号生成部1022で生成され位相シフタ1025とドライバ1027を介してデータ入力端子に入力されるデータ信号で、Y偏波光を位相変調する。
また、位相変調器1041、1042は、バイアス電圧を印加するバイアス入力端子も有しており、印加されるバイアス電圧により動作点を設定する。
光強度測定部105は、偏波多重位相変調器104から出力される光信号の一部を分岐する光分岐器1051と、光分岐器1051で分岐された光信号に対して光源100の中心波長を中心とする狭帯域に波長制限するバンドパスフィルタ(Band Pass Filter:BPF)1052と、バンドパスフィルタ1052を透過した光信号を光電変換して、光信号強度に比例する電流を出力する光電変換器(Optical / Electrical Converter:図中O/Eと示す)1053と、電流信号を電圧信号に変換する電流電圧変換器(図中I/Vと示す)1054と、から構成される。つまり、光強度測定部105は、偏波多重位相変調器104から出力される光信号強度に比例する電圧信号を出力する。
ここで、バンドパスフィルタ1052は、位相変調器1041、1042に入力される第1データ信号、第2データ信号のシンボルレートに基づく透過帯域幅を有する光フィルタである。光強度測定部105にバンドパスフィルタ1052を挿入することで、光電変換器1053が検出する光強度の感度を高めることができる。バンドパスフィルタ1052の帯域幅は、光電変換器1053の検出感度に応じて適宜選択されたものであり、例えば、100GbpsのDP−QPSK方式の場合、シンボルレートが25GSymbol/sであるため、繰り返し周波数の2倍の50GHz程度である。
制御部106は、光強度測定部105から入力される光信号強度に比例する電圧信号をデジタル信号に変換するADコンバータ(図中ADCと示す)1061と、ADコンバータ1061から出力されるデジタル信号に基づいて位相変調器1041、1042のバイアス電圧を制御する制御信号を出力するバイアス制御部1062と、ADコンバータから出力されるデジタル信号に基づいて位相シフタ1024、1025の位相を制御する制御信号を出力する位相制御部1063と、第1データ信号生成部1021、第2データ信号生成部1022からのデータ出力のON/OFFを制御するデータ出力制御部1064と、バイアス制御部1062、位相制御部1063から出力される制御信号を電圧信号に変換するDAコンバータ(図中DACと示す)1065、1066、1067、1068と、を備える。
以上のように構成された光送信装置1の動作について説明する。
光源100から出力されるCW光はRZ変調器103でRZ変調され、偏波多重位相変調器104でX偏波とY偏波それぞれに対して位相変調される。偏波多重位相変調器104の位相変調器1041と位相変調器1042で位相変調された光信号は互いに直交する偏波であるため、互いに干渉せずに偏光特性を保ったまま偏波合成されて、偏波多重位相変調器104から出力される。
偏波多重位相変調器104から出力された光信号は、光分岐器1051で一部が分岐される。分岐された光信号は、バンドパスフィルタ1052で帯域狭窄化されて光電変換器1053に入力される。光電変換器1053で光電変換された電流は、電流電圧変換器1054で電圧信号に変換されて出力される。つまり、光強度測定部105が出力する電圧は、偏波多重位相変調器104を出力する光信号の強度に比例する。
ここで、偏波多重位相変調器104のX偏波用の位相変調器1041を出力する光信号は、クロック信号生成部1023が生成するクロック信号の位相と、第1データ信号生成部1021が生成して位相シフタ1024を介し位相変調器1041に入力する第1データ信号の位相と、の位相のずれに応じて光強度が変わる。
図2は、クロック信号の波形、第1データ信号の波形、位相変調器1041を出力する光信号の波形を示した図である。クロック信号と第1データ信号の周波数は同じであるため、クロック信号の位相と第1データ信号の位相のずれΔθが0であるときは、図2(a)に示すように、位相変調器1041を出力する光信号の平均強度PAVEは最大となる。クロック信号の位相と第1データ信号の位相のずれΔθが(±π/2)であるときは、図2(b)に示すように、位相変調器1041を出力する光信号の平均強度PAVEは、最小となる。図2(c)は、位相のずれΔθが0と(±π/2)の間であるときの光波形を示している。
つまり、位相変調器1041を出力する光信号の平均強度PAVEは、位相のずれΔθに対して図3に示すように変化する。位相変調器1042を出力する光信号の平均強度も、クロック信号の位相と第2データ信号の位相のずれΔθに対して同様に変化する。
位相のずれΔθが0であるとき、RZ変調と位相変調のタイミングを高精度で合わせることができ、優れた伝送特性の光信号を送信することができる。よって、位相のずれΔθが0となるシフト量で位相シフタ1024、1025を動作させるようにすればよい。
制御部106は、第1データ信号と第2データ信号のうちいずれか一方のみを入力させた状態で、位相変調器1041又は位相変調器1042の位相ずれを0にする制御を行う。具体的には、データ出力制御部1064が第1データ信号生成部1021のデータ出力をONし第2データ信号生成部1022のデータ出力をOFFして、Y偏波用の位相変調器1042の光出力を消光させた状態で、X偏波用の位相シフタ1024に印加する位相シフト電圧の最適値を決定する。また、データ出力制御部1063が第1データ信号生成部1021のデータ出力をOFFし第2データ信号生成部1022のデータ出力をONして、X偏波用の位相変調器1042を消光させた状態で、Y偏波用の位相シフタ1025に印加する位相シフト電圧の最適値を決定する。
制御部106が実行する位相調整処理を図4のフローチャートに沿って説明する。
まず、データ出力制御部1064が、第1データ信号生成部1021からX偏波用変調信号の第1データ信号を、第2データ信号生成部1022からY偏波用変調信号の第2データ信号を出力させる(データ信号ON)。また、バイアス制御部1062が予め定めたバイアス電圧をX偏波用の位相変調器1041とY偏波用の位相変調器1042に印加するための制御信号を出力する(バイアスON)(ステップS101)。
次に、データ出力制御部1064は、第2データ信号生成部1022にY偏波用の第2データ信号の出力を停止させる(データ信号OFF)(ステップS102)。
その後、バイアス制御部1062がY偏波用の位相変調器1042のバイアス電圧を制御して、電流電圧変換器1054の出力が最小となるバイアス電圧に設定する(位相変調器バイアス制御処理:ステップS103)。これは、X偏波用の位相変調器1041に入力する第1データ信号の位相を調整するために、Y偏波用の位相変調器1042の出力を最小にする工程である。位相変調器1042の製造時に生じる位相誤差により、消光点(NULL点)がゼロ電圧のところに現れない場合があり、この場合、位相変調器1041に印加するバイアス電圧を変化させて消光点を特定することが必要となる。
Y偏波用の位相変調器1042の出力を最小にした状態で、位相制御部1063がX偏波用の位相シフタ1024の位相シフト電圧を制御して、電流電圧変換器1054の出力が最大となる位相シフト電圧に設定する(位相シフト電圧制御処理:ステップS104)。これにより、X偏波用の第1データ信号の位相の、クロックの位相に対するずれΔθを0に近づけることができる。
次に、データ出力制御部1064は、Y偏波用の第2データ信号の出力を開始させる(データ信号ON)(ステップS105)。また、バイアス制御部1062は、ステップS101で印加した電圧と同じバイアス電圧をY偏波用の位相変調器1042に印加させる(ステップS106)。
次に、データ出力制御部1064は、X偏波用の第1データ信号の出力を停止させる(データ信号OFF)(ステップS107)。
その後、バイアス制御部1062がX偏波用の位相変調器1042のバイアス電圧を制御して、電流電圧変換器1054の出力が最小となる消光点(NULL点)を特定し、そのバイアス電圧に設定する(位相変調器バイアス制御処理:ステップS108)。これは、Y偏波用の位相変調器1042に入力する第2データの位相を調整するために、X偏波用の位相変調器1041の出力を最小にする工程である。
X偏波用の位相変調器1041の出力を最小にした状態で、位相制御部1063がY偏波用の位相シフタ1025の位相シフト電圧を制御して、電流電圧変換器1054の出力が最大となる位相シフト電圧に設定する(位相シフト電圧制御処理:ステップS109)。これにより、Y偏波用の第2データ信号の位相の、クロックの位相に対するずれΔθを0に近づける事ができる。
次に、データ出力制御部1064は、X偏波用の第1データ信号の出力を開始させる(データ信号ON)(ステップS110)。また、バイアス制御部1062は、ステップS101で印加した電圧と同じバイアス電圧をX偏波用の位相変調器1042に印加させる(ステップS111)。そして、処理を終了する。
ステップS103とS108の位相変調器バイアス制御処理は、位相変調器1041、1042の出力が最小となるバイアス電圧を導出できる方法であれば任意の方法でよい。ステップS108の位相変調器バイアス制御処理の一例を図5のフローチャートを用いて説明する。
まず、位相変調器1041に印加するバイアス電圧のNULL点近傍と予測される範囲の電圧値を予めn個定めておく。m=0からスタートし(ステップS201)、位相変調器1041にバイアス電圧Vi−mを印加し(ステップS202)、そのときの電流電圧変換器1054の出力電圧Vo−mを取得する(ステップS203)。
位相変調器1041へのバイアス電圧Vi−mの印加(ステップS202)と、電流電圧変換器1054の出力電圧Vo−mの取得(ステップS203)を、mがnを下回っている限り(ステップS204)mの値を順に上げて(ステップS205)繰り返し実行する。
取得した電流電圧変換器1054の出力電圧Vo−mの中で最小の電圧を特定し、その電圧を出力したときの位相変調器1041へのバイアス電圧Vi−m0を特定する(ステップS206)。そして、位相変調器1041にバイアス電圧Vi−m0を印加する(ステップS207)。ステップS103の位相変調器バイアス制御処理も同様の手順で実行する。
ステップS104とS109の位相シフト電圧制御処理は、偏波多重位相変調器104の出力が最大となる位相シフタ1024、1025の位相シフト電圧を導出できる方法であれば任意の方法でよい。ステップS104の位相シフト電圧制御処理の一例を図6のフローチャートを用いて説明する。
まず、位相シフタ1024に印加する位相シフト電圧の可変範囲内の電圧値を予めn個定めておく。k=0からスタートし(ステップS301)、位相シフタ1024に位相シフト電圧Vi−kを印加し(ステップS302)、そのときの電流電圧変換器1054の出力電圧Vo−kを取得する(ステップS303)。
位相シフタ1024への位相シフト電圧Vi−kの印加(ステップS302)と、電流電圧変換器1054の出力電圧Vo−kの取得(ステップS303)を、kがnを下回っている限り(ステップS304)kの値を順に上げて(ステップS305)繰り返し実行する。
取得した電流電圧変換器1054の出力電圧Vo−kの中で最大の電圧を特定し、その電圧を出力したときの位相シフタ1024への位相シフト電圧Vi−k0を特定する(ステップS306)。そして、位相シフタ1024に位相シフト電圧Vi−k0を印加する(ステップS307)。ステップS109の位相変調器バイアス制御処理も同様の手順で実行する。
以上のように、制御部106の制御により、X偏波用の位相変調器1041に入力する第1データ信号の位相と、Y偏波用の位相変調器1042に入力する第2データ信号の位相と、クロック信号の位相のずれを最小にすることができる。
以上説明したように、本実施の形態によれば、光源100から出力される光をクロック信号でRZ変調し、X偏波用の第1データ信号とY偏波用の第2データ信号で位相変調する光送信装置において、X偏波用の第1データ信号とY偏波用の第2データ信号のいずれか一方と、クロック信号との位相のずれを0に近づけるために、他方のデータ信号をOFFにした状態で偏波多重位相変調器104の出力が最大となるときの位相シフタに印加する位相シフト電圧を特定することとした。これにより、RZ変調と位相変調のタイミングを高精度で合わせることができ、優れた伝送特性の光信号を送信することができる。
実施の形態2.
本発明の実施の形態2における光通信システムは実施の形態1の構成と同様である。本実施の形態に係る光送信装置2は、図7に示すように、光源100と光変調器201から構成される。光変調器201は、光源100から出力する光を変調するためのデータ信号を生成するデータ信号生成部102と、光源100から出力する光をRZ変調するRZ変調器103と、RZ変調器103でRZ変調された光を互いに直交する2偏波に偏波分離してそれぞれを位相変調した後に偏波合成する偏波多重位相変調器104と、偏波多重位相変調器104から出力される光の一部を分岐して光強度を測定する光強度測定部105と、偏波多重位相変調器104に入力するデータ信号の位相を調整する位相調整処理を実行する制御部206と、を備える。
光源100、データ信号生成部102、RZ変調器103、偏波多重位相変調器104、光強度測定部105の機能及び構成は、実施の形態1と同様である。
制御部206は、実施の形態1の制御部106と同様のADコンバータ1061と、バイアス制御部1062と、位相制御部1063と、データ出力制御部1064と、DAコンバータ1065、1066、1067、1068に加えて、位相制御部1063からの制御信号に基づいて低周波数のディザ信号を生成するディザ信号生成部2011、2012と、ディザ信号生成部2011、2012から出力されるディザ信号をアナログ信号に変換するDAコンバータ2013、2014を更に備えている。
ディザ信号生成部2011、2012がそれぞれ生成する第1ディザ信号、第2ディザ信号は、正極の値と負極の値とを交互にとる周期信号である。第1ディザ信号、第2ディザ信号の周波数は、互いに異なる周波数であり、また、データ信号の伝送速度の数10Gbpsに比べて十分に低速で、例えば数10〜数100Hzである。
ディザ信号生成部2011が生成した第1ディザ信号をDA変換した電圧信号は、加算器2015で、位相制御部1063から出力された位相シフタ1024の位相を制御するための制御信号をDA変換した電圧信号と加算されて、位相シフタ1024に入力される。また、ディザ信号生成部2012が生成した第2ディザ信号をDA変換した電圧信号は、加算器2016で、位相制御部1063から出力された位相シフタ1025の位相を制御するための制御信号をDA変換した電圧信号と加算されて、位相シフタ1025に入力される。
以上のように構成された光送信装置2の動作について説明する。
実施の形態1と同様に、本実施の形態に係る光送信装置2の光源100から出力されるCW光はRZ変調器103でRZ変調され、偏波多重位相変調器104でX偏波とY偏波それぞれに対して位相変調される。偏波多重位相変調器104の位相変調器1041と位相変調器1042で位相変調された光信号は互いに直交する偏波であるため、互いに干渉せずに偏光特性を保ったまま偏波合成されて、偏波多重位相変調器104を出力する。
ここで、偏波多重位相変調器104のX偏波用の位相変調器1041を出力する光信号は、クロック信号生成部1023が生成するクロック信号の位相と、第1データ信号生成部1021が生成して位相シフタ1024を介し位相変調器1041に入力する第1データ信号の位相と、の位相のずれに応じて光強度が変わる。
位相変調器1041を出力する光信号の平均強度は、位相のずれΔθに対して図8(a)に示すように変化する。位相変調器1042を出力する光信号の平均強度も、クロック信号の位相と第2データ信号の位相のずれΔθに対して同様に変化する。
図8(a)に示した矩形波は、ディザ信号を重畳したときの位相のずれの変化の様子を模式的に示している。図8(a)から明らかなように、ディザ信号の正極の値と負極の値のときのパワーの変化は、位相のずれが0、±π/2のときに小さくなり、0と±π/2の間のとき(例えば±1/4π)のときに大きくなっている。
図8(b)には位相のずれΔθに対する光パワーの変化率を示す。位相のずれが0、±π/2のときに0となる。
位相のずれΔθが0であるとき、RZ変調と位相変調のタイミングが高精度で合っているため、優れた伝送特性の光信号を送信することができる。よって、位相のずれΔθが0となるシフト量で位相シフタ1024、1025を動作させるようにすればよい。
制御部106の位相制御部1063は、ADコンバータ1061から出力されるデジタル電圧信号と第1ディザ信号との積を演算し、次の式(1)で表されるX偏波用誤差信号e_Xpolを生成する。
e_Xpol∝I(p)−I(n) (1)
I(p)は、第1ディザ信号が正極性側にあるときの、光電変換器1053から出力される電流信号を示し、I(n)は、第1ディザ信号が負極性側にあるときの、光電変換器1053から出力される電流信号を示している。つまり、X偏波用誤差信号e_Xpolは、第2ディザ信号の正極に対する偏波多重位相変調器104の出力と第2ディザ信号の負極に対する偏波多重位相変調器104の出力の差に比例する。
同様に、制御部106の位相制御部1063は、ADコンバータ1061からのデジタル電圧信号と第2ディザ信号との積を演算し、次の式(2)で表されるY偏波用誤差信号e_Ypolを生成する。
e_Ypol∝I(p)−I(n) (2)
I(p)は、第2ディザ信号が正極側にあるときの、光電変換器1053から出力される電流信号を示し、I(n)は、第2ディザ信号が負極側にあるときの、光電変換器1053から出力される電流信号を示している。つまり、X偏波用誤差信号e_Xpolは、第2ディザ信号の正極に対する偏波多重位相変調器104の出力と第2ディザ信号の負極に対する偏波多重位相変調器104の出力の差に比例する。
位相制御部1063は、X偏波用誤差信号e_Xpolに基づいて、例えば比例積分制御を実行することでX偏波用の制御信号を生成し、DAコンバータ1067に出力する。なお、比例積分制御は、誤差信号に比例して位相シフト電圧を変化させる動作と誤差信号の積分値に基づいて位相シフト電圧を変化させる動作とを組み合わせた制御を行う。
より具体的には、図8(b)に示したように、位相のずれΔθに対する光パワーの変化率が、位相のずれが0、±π/2のときに0となり、0、±π/2から離れるほど大きくなることと、また、位相のずれが0、±π/2のいずれに近いかによって、変化率の傾きの極性が異なることを利用した制御を行う。
つまり、X偏波用誤差信号e_Xpolの値が大きいときには、位相シフタ1024に印加する位相シフト電圧の変化を大きくさせ、X偏波用誤差信号e_Xpolの値が小さいときには、位相シフタ1024に印加する位相シフト電圧の変化を小さくさせる、誤差信号に比例した制御を行う。これにより、位相のずれを0、±π/2のいずれかに近づけることができる。また、位相のずれが0、±π/2に近いときに位相シフト電圧を変化させたときのX偏波用誤差信号e_Xpolの積分値は、位相のずれが0か±π/2によって極性が異なるため、積分値に基づいて位相のずれが0と±π/2のいずれに近いのかを判別して位相シフト電圧を変化させる、誤差信号の積分値に基づく制御を行う。
このように、位相制御部1063は、X偏波用誤差信号e_Xpolに基づいて、位相シフタ1024に印加する位相シフト電圧を制御することにより、X偏波用の第1データ信号の位相の、クロックの位相に対するずれΔθが0に最も近い位相シフト電圧を特定することができる。
同様にして、位相制御部1063は、Y偏波用誤差信号e_Ypolに基づいて、位相シフタ1025に印加する位相シフト電圧を制御することにより、Y偏波用の第2データ信号の位相の、クロックの位相に対するずれΔθが0に最も近い位相シフト電圧を特定することができる。
制御部206が実行する位相器調整処理を図9のフローチャートに沿って説明する。
まず、データ出力制御部1064が、第1データ信号生成部1021からX偏波用の第1データ信号を、第2データ信号生成部1022からY偏波用の第2データ信号を出力させる(データ信号ON)。また、バイアス制御部1062が予め定めたバイアス電圧をX偏波用の位相変調器1041とY偏波用の位相変調器1042に印加するための制御信号を出力する(バイアスON)。また、位相制御部1063が予め定めた位相シフト電圧をX偏波用の位相シフタ1024とY偏波用の位相シフタ1025に印加するための制御信号を出力する(ステップS401)。
ディザ信号生成部2011が第1ディザ信号の出力を開始して(ステップS402)、位相シフタ1024の位相シフト電圧を調整する処理を行う。まず、電流電圧変換器1054の出力レベルVoを測定し(ステップS403)、第2ディザ信号との積を演算することにより誤差信号e_Xpolを算出する(ステップS404)。求めた誤差信号e_Xpolの値と積分値に基づいて、第1データ信号とクロック信号の位相のずれがΔθ≒0であるか否かを判定する(ステップS405)。例えば、誤差信号e_Xpolの値が0に近く、誤差信号e_Xpolの積分値が、位相シフト電圧の変化方向に対応した極性を有するか否かなどによって判定する。
Δθ≒0であると判定できない場合は(ステップS405:No)、位相シフト電圧Viを変化させて(ステップS406)、ステップS403に戻る。ここで位相シフトの電圧Viの変化は、誤差信号e_Xpolの値と積分値に基づいて変化方向、変化量を決定する。例えば、誤差信号e_Xpolの値が大きい場合には、位相シフト電圧Viの変化量を大きくし、誤差信号e_Xpolの値が小さい場合には、位相シフト電圧Viの変化量を小さくする。また、誤差信号e_Xpolの積分値が位相シフト電圧の変化方向に対応した極性を有しない場合には、π/2程度位相をシフトさせるように位相シフト電圧を変化させる。
このようにして、電流電圧変換器1054の出力電圧の測定、誤差信号の算出、誤差信号に基づく位相シフト電圧の変化を繰り返し、位相のずれΔθ≒0と判定した場合に(ステップS405:Yes)、判定時の位相シフト電圧Viに固定する(ステップS407)。
次に、ディザ信号生成部2011が第1ディザ信号の出力を停止し、ディザ信号生成部2012が第2ディザ信号の出力を開始して(ステップS408)、位相シフタ1024の位相シフト電圧の調整と同様に、位相シフタ1025の位相シフト電圧を調整する処理を行う。まず、電流電圧変換器1054の出力レベルVoを測定し(ステップS409)、第2ディザ信号との積を演算することにより誤差信号e_Ypolを算出する(ステップS410)。求めた誤差信号e_Ypolの値と積分値に基づいて、第2データ信号とクロック信号の位相のずれΔθ≒0であるか否かを判定する(ステップS411)。Δθ≒0であると判定できない場合は(ステップS411:No)、位相シフト電圧Viを変化させて(ステップS412)、ステップS409に戻る。
電流電圧変換器1054の出力電圧の測定、誤差信号の算出、誤差信号に基づく位相シフト電圧の変化を繰り返し、位相のずれΔθ≒0と判定した場合に(ステップS411:Yes)、判定時の位相シフト電圧Viに固定する(ステップS413)。なお、ステップS412の位相シフト電圧Viの変化の方法はステップS406と同様である。その後、ディザ信号生成部2012が第2ディザ信号の出力を停止して処理を終了する。
以上説明したように、本実施の形態によれば、光源100から出力される光をクロック信号でRZ変調し、X偏波用の第1データ信号とY偏波用の第2データ信号で位相変調する光送信装置において、X偏波用の第1データ信号とY偏波用の第2データ信号のいずれか一方に低周波のディザ信号を重畳し、ディザ信号の正極に対する偏波多重位相変調器104の出力とディザ信号の負極に対する偏波多重位相変調器104の出力の差に比例する誤差信号に基づいて、X偏波用又はY偏波用の位相シフタの位相シフト電圧を調整し、X偏波用の第1データ信号とY偏波用の第2データ信号それぞれとクロック信号との位相のずれを0に近づけることとした。これにより、X偏波用の第1データ信号とY偏波用の第2データ信号のいずれもOFFすることなく、位相シフタ1024、1025の位相シフト量を最適化することができる。つまり、システム稼働中にも位相調整が可能となる。
このように本発明は、送信データを含む変調用データ信号と同一の周波数のクロック信号で連続光をパルス変調したパルス変調光を、互いに直交するX偏波とY偏波に分離して、それぞれをX偏波用の変調用データ信号及びY偏波用の変調用データ信号で位相変調し、偏波多重して出力する光変調器において、X偏波用の変調用データ信号又はY偏波用の変調用データ信号の位相を変化させたときの偏波多重位相変調光の光強度の変化に基づいて、X偏波用の変調用データ信号とY偏波用の変調用データ信号の位相のシフト量を決定するようにした。これにより、偏波多重された位相変調光の2偏波間に位相のずれがなく伝送特性を改善することができる。
なお、本発明は、上記実施の形態に限定されず、本発明の要旨を逸脱しない範囲での種々の変更は勿論可能である。
例えば、本実施の形態では、クロック信号によりRZ変調した光信号について偏波多重位相変調を行うとしたが、クロック信号による変調は、位相変調用のデータ信号と同じ周波数の既知のフォーマットのパルス変調であれば、他の変調方式でもよい。例えばCS−RZ変調でもよい。
また、本実施の形態では、位相制御部1063が実行する位相シフト電圧制御処理では、X偏波用とY偏用のいずれか一方のデータ信号をOFFして、他方の位相シフタに印加する位相シフト電圧を変化させて偏波多重位相変調器104の出力が最大になる位相シフト電圧を特定するとしたが、他の方法で位相シフト電圧を特定してもよい。例えば、位相シフタに印加する位相シフト電圧を変化させたときの偏波多重位相変調器104の出力の変化が増加から減少、又は減少から増加に変化する点(増分値が0になる点)の電圧を位相シフト電圧として特定するようにしても良い。
また、本実施の形態では、偏波多重位相変調器104における位相変調方式はDP−BPSK方式であるとしたが、これに限られず、1シンボルあたりM値を有するDP−MPSK(M-array Phase Shift Keying)でもよい。
また、本実施の形態では、第1データ信号生成部1021、第2データ信号生成部1022が出力する第1データ信号、第2データ信号の位相を位相シフタ1024、1025で調整することとしたが、第1データ信号生成部1021、第2データ信号生成部1022が位相を調整する機能を有する場合には、位相制御部1063による位相制御を第1データ信号生成部1021、第2データ信号生成部1022に対して行っても良い。
制御部106、206が位相調整処理等を実行するためのプログラムを既存の演算処理装置に適用することにより、当該演算処理装置を備えた光送信装置等を構成することも可能である。
このようなプログラムの配布方法は任意であり、例えば、CD−ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)、MO(Magneto Optical Disk)、メモリカード等のコンピュータ読み取り可能な記録媒体に格納して配布してもよいし、インターネット等の通信ネットワークを介して配布してもよい。
1 光送信装置、100 光源、101,201 光変調器、102 データ信号生成部、1021 第1データ信号生成部、1022 第2データ信号生成部、1023 クロック信号生成部、1024,1025 位相シフタ、1026,1027,1028 ドライバ、103 RZ変調器、104 偏波多重位相変調器、1041,1042 位相変調器、105 光強度測定部、1051 光分岐器、1052 バンドパスフィルタ、1053 光電変換器、1054 電流電圧変換器、106,206 制御部、1061 ADコンバータ、1062 バイアス制御部、1063 位相制御部、1064 データ出力制御部、1065,1066,1067,1068,2013,2014 DAコンバータ、2011,2012 ディザ信号生成部、2015,2016 加算器

Claims (10)

  1. 送信データを含む変調用データ信号と同一の周波数のクロック信号で連続光をパルス変調する光パルス変調器と、
    前記光パルス変調器から出力するパルス変調光を偏波分離した、互いに直交するX偏波及びY偏波の光を、それぞれ前記X偏波用の前記変調用データ信号及び前記Y偏波用の前記変調用データ信号で位相変調し、偏波多重して出力する偏波多重位相変調器と、
    前記X偏波用の前記変調用データ信号の位相をシフトさせる第1位相シフタと、
    前記Y偏波用の前記変調用データ信号の位相をシフトさせる第2位相シフタと、を備え、
    前記第1位相シフタは、前記X偏波用の前記変調用データ信号の位相のシフト量を変化させたときの前記偏波多重位相変調器の出力光の強度の変化に基づいて決定されたシフト量に設定し、
    前記第2位相シフタは、前記Y偏波用の前記変調用データ信号の位相のシフト量を変化させたときの前記偏波多重位相変調器の出力光の強度の変化に基づいて決定されたシフト量に設定する、
    光変調器。
  2. 前記光パルス変調器は、前記連続光を前記クロック信号でRZ(Return to Zero)フォーマット又はCR−RZ(Carrier Suppressed Return to Zero)フォーマットでパルス強度変調する、
    請求項1に記載の光変調器。
  3. 前記偏波多重位相変調器は、前記X偏波及び前記Y偏波の光を、それぞれMPSK(M-array Phase Shift Keying)方式の位相変調を行う、
    請求項1又は2に記載の光変調器。
  4. 前記第1位相シフタ及び前記第2位相シフタは、印加する位相シフト電圧により位相のシフト量が変化する位相器であって、
    前記第1位相シフタに印加する第1位相シフト電圧と、前記第2位相シフタに印加する第2位相シフト電圧と、を出力する位相シフト電圧出力部と、
    前記光変調器の調整時に、前記偏波多重位相変調器へ前記X偏波用の変調用データ信号を入力し前記Y偏波用の変調用データ信号を入力しない状態で、位相シフト電圧出力部から出力する第1位相シフト電圧を連続的に変化させたときの、前記偏波多重位相変調器の出力光の強度をモニタし、前記出力光の強度が最大となるときの、第1位相シフト電圧を設定電圧として決定し、前記偏波多重位相変調器へ前記Y偏波用の変調用データ信号を入力し前記X偏波用の変調用データ信号を入力しない状態で、第2位相シフト電圧を連続的に変化させたときの、前記偏波多重位相変調器の出力光の強度をモニタし、前記出力光の強度が最大となるときの、第2位相シフト電圧を設定電圧として決定し、前記光変調器の光変調時には、決定した前記第1位相シフト電圧を第1位相シフタに設定し、決定した前記第2位相シフト電圧を前記第2位相シフタに設定する制御を行う制御部と、を更に備える、
    請求項1から3のいずれか1項に記載の光変調器。
  5. 前記制御部は、前記Y偏波用の変調用データ信号の前記偏波多重位相変調器への入力を停止させた後に、前記Y偏波用の位相変調器のバイアス電圧を消光点に制御してから、前記偏波多重位相変調器の出力光の強度をモニタし、前記X偏波用の変調用データ信号の前記偏波多重位相変調器への入力を停止させた後に、前記X偏波用の位相変調器のバイアス電圧を消光点に制御してから、前記偏波多重位相変調器の出力光の強度をモニタする制御を行う、
    請求項4に記載の光変調器。
  6. 前記第1位相シフタ及び前記第2位相シフタは、印加する位相シフト電圧により位相のシフト量が変化する位相器であって、
    前記変調用データ信号の周波数よりも低周波数の、正及び負の2極性を交互に取る微小かつ矩形の電圧信号である第1ディザ信号を生成する第1ディザ信号生成部と、
    前記変調用データ信号の周波数よりも低周波数でかつ前記第1ディザ信号の周波数と異なる周波数の、正及び負の2極性を交互に取る微小かつ矩形の電圧信号である第2ディザ信号を生成する第2ディザ信号生成部と、
    前記第1位相シフタに印加する第1位相シフト電圧と、前記第2位相シフタに印加する第2位相シフト電圧と、を出力する位相シフト電圧出力部と、
    前記第1ディザ信号生成部が生成する第1ディザ信号と前記第1位相シフト電圧を加算し、前記第1位相シフタに印加する第1加算部と、
    前記第2ディザ信号生成部が生成する第2ディザ信号と前記第2位相シフト電圧を加算し、前記第2位相シフタに印加する第2加算部と、
    前記第1ディザ信号を出力し前記第2ディザ信号を停止した状態で、前記第1位相シフト電圧を変化させたときの、前記第1ディザ信号が正極であるときの前記偏波多重位相変調器の出力光の強度と前記第1ディザ信号が負極であるときの前記偏波多重位相変調器の出力光の強度に基づいて、その光強度差に比例する第1誤差信号を生成し、前記第1誤差信号が0であり、かつ、前記第1誤差信号の積分値が予め定めた極性を示す時の前記第1位相シフト電圧を設定電圧として決定し、前記第2ディザ信号を出力し前記第1ディザ信号を停止した状態で、前記第2位相シフト電圧を変化させたときの、前記第2ディザ信号が正極であるときの前記偏波多重位相変調器の出力光の強度と前記第2ディザ信号が負極であるときの前記偏波多重位相変調器の出力光の強度に基づいて、その光強度差に比例する第2誤差信号を生成し、前記第2誤差信号が0であり、かつ、前記第2誤差信号の積分値が予め定めた極性を示す時の前記第2位相シフト電圧を設定電圧として決定し、前記光変調器の光変調時には、決定した前記第1位相シフト電圧を前記第1位相シフタに設定し、決定した前記第2位相シフト電圧を前記第2位相シフタに設定する制御を行う制御部と、を更に備える、
    請求項1から3のいずれか1項に記載の光変調器。
  7. 前記第1位相シフタ及び前記第2位相シフタは、前記偏波多重位相変調器の出力光の強度に変えて、前記偏波多重位相変調器の出力光が波長フィルタを透過した後の光の強度に基づいてシフト量を決定する、
    請求項1から6のいずれか1項に記載の光変調器。
  8. 請求項1から7のいずれか1項に記載の光変調器を搭載した光送信装置。
  9. 送信データを含む変調用データ信号と同一の周波数のクロック信号で連続光をパルス変調し、当該パルス変調光を偏波分離した、互いに直交するX偏波及びY偏波の光を、それぞれ前記X偏波用の前記変調用データ信号及び前記Y偏波用の前記変調用データ信号で位相変調し、偏波多重して出力する光変調器が行う偏波多重位相変調方法であって、
    前記X偏波用の前記変調用データ信号の位相のシフト量を変化させたときの偏波多重した光信号の強度の変化に基づいて決定されたシフト量でX偏波用の前記変調用データ信号を位相シフトする第1位相シフトステップと、
    前記Y偏波用の前記変調用データ信号の位相のシフト量を変化させたときの偏波多重した光信号の強度の変化に基づいて決定されたシフト量でY偏波用の前記変調用データ信号を位相シフトする第2位相シフトステップと、を有する、
    偏波多重位相変調方法。
  10. 送信データを含む変調用データ信号と同一の周波数のクロック信号で連続光をパルス変調し、当該パルス変調光を偏波分離した、互いに直交するX偏波及びY偏波の光を、それぞれ前記X偏波用の前記変調用データ信号及び前記Y偏波用の前記変調用データ信号で位相変調し、偏波多重して出力する光変調器を制御するコンピュータを、
    前記X偏波用の前記変調用データ信号の位相のシフト量を変化させたときの偏波多重した光信号の強度の変化に基づいて決定されたシフト量でX偏波用の前記変調用データ信号を位相シフトするように制御する第1位相シフト制御部と、
    前記Y偏波用の前記変調用データ信号の位相のシフト量を変化させたときの偏波多重した光信号の強度の変化に基づいて決定されたシフト量でY偏波用の前記変調用データ信号を位相シフトするように制御する第2位相シフト制御部、
    として機能させるプログラム。
JP2013184699A 2013-09-06 2013-09-06 光変調器、光送信装置、偏波多重位相変調方法及びプログラム Expired - Fee Related JP6124259B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013184699A JP6124259B2 (ja) 2013-09-06 2013-09-06 光変調器、光送信装置、偏波多重位相変調方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013184699A JP6124259B2 (ja) 2013-09-06 2013-09-06 光変調器、光送信装置、偏波多重位相変調方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2015052670A true JP2015052670A (ja) 2015-03-19
JP6124259B2 JP6124259B2 (ja) 2017-05-10

Family

ID=52701736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013184699A Expired - Fee Related JP6124259B2 (ja) 2013-09-06 2013-09-06 光変調器、光送信装置、偏波多重位相変調方法及びプログラム

Country Status (1)

Country Link
JP (1) JP6124259B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061296A1 (ja) * 2016-09-30 2018-04-05 三菱電機株式会社 光変調器および光変調器の制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010057106A (ja) * 2008-08-29 2010-03-11 Fujitsu Ltd 制御装置,偏波多重光変調器,光送信装置および偏波多重光変調器の制御方法
JP2011002640A (ja) * 2009-06-18 2011-01-06 Fujitsu Optical Components Ltd 光変調装置および光送信器、並びに、光変調装置の制御方法
JP2011028087A (ja) * 2009-07-28 2011-02-10 Fujitsu Ltd 光信号送信装置および偏波多重光信号の制御方法
WO2013005623A1 (ja) * 2011-07-01 2013-01-10 日本電気株式会社 Rz光変調器及びrz光変調方法
JP2013042531A (ja) * 2012-10-11 2013-02-28 Ntt Electornics Corp 位相変調装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010057106A (ja) * 2008-08-29 2010-03-11 Fujitsu Ltd 制御装置,偏波多重光変調器,光送信装置および偏波多重光変調器の制御方法
JP2011002640A (ja) * 2009-06-18 2011-01-06 Fujitsu Optical Components Ltd 光変調装置および光送信器、並びに、光変調装置の制御方法
JP2011028087A (ja) * 2009-07-28 2011-02-10 Fujitsu Ltd 光信号送信装置および偏波多重光信号の制御方法
WO2013005623A1 (ja) * 2011-07-01 2013-01-10 日本電気株式会社 Rz光変調器及びrz光変調方法
JP2013042531A (ja) * 2012-10-11 2013-02-28 Ntt Electornics Corp 位相変調装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061296A1 (ja) * 2016-09-30 2018-04-05 三菱電機株式会社 光変調器および光変調器の制御方法
CN109716679A (zh) * 2016-09-30 2019-05-03 三菱电机株式会社 光调制器以及光调制器的控制方法
US10547389B2 (en) 2016-09-30 2020-01-28 Mitsubishi Electric Corporation Optical modulation unit, and method for controlling optical modulation unit
CN109716679B (zh) * 2016-09-30 2022-03-08 三菱电机株式会社 光调制器以及光调制器的控制方法

Also Published As

Publication number Publication date
JP6124259B2 (ja) 2017-05-10

Similar Documents

Publication Publication Date Title
US7773283B2 (en) Optical modulation device and optical modulation method
JP5195677B2 (ja) 光信号送信装置および偏波多重光信号の制御方法
JP5476697B2 (ja) 光信号送信装置
EP3208954B1 (en) Optical up/down-conversion-type optical phase conjugate pair signal transmission/reception circuit
EP2530855B1 (en) Optical transmitter, control method for the same, and optical transmission system
US8676060B2 (en) Quadrature amplitude modulation signal generating device
JP6354553B2 (ja) バイアス制御回路およびそれを含む光送信器
JP6357742B2 (ja) 相補型電力変調を使用する帯域内管理データ変調
US7536108B2 (en) High precision chromatic dispersion measuring method and automatic dispersion compensating optical link system that uses this method
Raybon et al. Single-carrier 400G interface and 10-channel WDM transmission over 4,800 km using all-ETDM 107-Gbaud PDM-QPSK
US9853739B2 (en) Optical transmitter and method for controlling bias of optical modulator
US20150188639A1 (en) Optical transmitter and control apparatus of optical modulator
US20080232816A1 (en) Polarization-multiplexing optical transmitter polarization-multiplexing optical receiver, polarization-multiplexing optical transceiving system, and controlling method thereof
JP2014096663A (ja) 光伝送システム、光送信器、光受信器及び光伝送方法
JP2008092172A (ja) 光送信機
US9337936B2 (en) Optical transmission apparatus, optical transmission method and program for optical transmission
US10234704B2 (en) Optical module that includes optical modulator and bias control method for optical modulator
JP2007329886A (ja) 光送信装置
JPWO2010026894A1 (ja) 光信号伝送システム、送信器、受信器、光信号伝送方法
JP5068240B2 (ja) 光伝送方式、送信器及び受信器
JP6124259B2 (ja) 光変調器、光送信装置、偏波多重位相変調方法及びプログラム
JP4802270B2 (ja) 光位相変調方式における光位相同期方法および光位相同期装置
JP2019047338A (ja) デジタル信号処理回路、光送受信機、及び光送受信機の駆動方法
JP3730789B2 (ja) 光変調器
JP2014183369A (ja) 光送信機、光通信システム、偏波変調方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170328

R150 Certificate of patent or registration of utility model

Ref document number: 6124259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees