JP2015048272A - Ceramic sintered body and manufacturing method thereof - Google Patents

Ceramic sintered body and manufacturing method thereof Download PDF

Info

Publication number
JP2015048272A
JP2015048272A JP2013180707A JP2013180707A JP2015048272A JP 2015048272 A JP2015048272 A JP 2015048272A JP 2013180707 A JP2013180707 A JP 2013180707A JP 2013180707 A JP2013180707 A JP 2013180707A JP 2015048272 A JP2015048272 A JP 2015048272A
Authority
JP
Japan
Prior art keywords
ceramic
groove
adjusted
molded bodies
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013180707A
Other languages
Japanese (ja)
Other versions
JP6263351B2 (en
Inventor
中村 浩章
Hiroaki Nakamura
中村  浩章
小倉 知之
Tomoyuki Ogura
知之 小倉
友幸 淺野
Tomoyuki Asano
友幸 淺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2013180707A priority Critical patent/JP6263351B2/en
Publication of JP2015048272A publication Critical patent/JP2015048272A/en
Application granted granted Critical
Publication of JP6263351B2 publication Critical patent/JP6263351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic sintered body having reduced deterioration of strength derived from juncture of ceramic molded bodies each other and to provide a manufacturing method thereof.SOLUTION: (1) A plurality of ceramic molded bodies C1 and C2 are prepared. (2) A groove G is formed in at least one of the plurality of ceramic molded bodies C1 and C2 so that it is located continuously from a joint region of the ceramic molded bodies C1 and C2 to a boundary of the joint region. (3) Slurry S is attached to the joint region of the plurality of ceramic molded bodies C1 and C2. (4) A joint molded body C is obtained by jointing the plurality of ceramic molded bodies C1 and C2 at the joint region. (5) The joint molded body C is integrated by sintering.

Description

本発明は、セラミックス焼結体およびその製造方法に関する。   The present invention relates to a ceramic sintered body and a method for producing the same.

未焼結のセラミックス成形体同士を、当該セラミックスと同組成のスラリーを接合材として接合させたうえで焼結して一体化させることによりセラミックス焼結体を製造する方法が提案されている(特許文献1参照)。   There has been proposed a method of manufacturing a ceramic sintered body by bonding unsintered ceramic compacts together with a slurry having the same composition as the ceramic as a bonding material and then sintering and integrating them (patent) Reference 1).

特開平06−191959号公報Japanese Patent Application Laid-Open No. 06-191959

しかし、当該手法によれば、焼結体においてもとは成形体同士の接合界面であった箇所に隙間が存在するため、当該箇所の強度が局所的に低下する。   However, according to the method, since there is a gap at a place where the sintered body was originally a bonding interface between the molded bodies, the strength of the place is locally reduced.

そこで、本発明は、セラミックス成形体同士が接合されたことに由来する強度低下の低減が図られているセラミックス焼結体およびその製造方法を提供することを目的とする。   Then, an object of this invention is to provide the ceramic sintered compact by which the reduction | decrease of the strength reduction resulting from joining the ceramic molded bodies is aimed at, and its manufacturing method.

本発明は、以下の[1]〜[3]のセラミックス焼結体の製造方法を提供する。
[1]同一組成の複数のセラミックス成形体を準備する工程と、
前記複数のセラミックス成形体のうち少なくとも1つに、前記複数のセラミックス成形体同士の接合領域から当該接合領域の境界まで連続する幅0.01〜0.5[mm]かつ当該幅の0.4〜1.0倍の深さの、屈曲箇所が存在しない曲線状の断面形状を有するような溝を形成する工程と、
前記複数のセラミックス成形体と同一組成のセラミックス粉末が分散されているスラリーを前記接合領域に付着させる工程と、
前記複数のセラミックス成形体同士を前記接合領域において接合させる工程と、
当該接合された前記複数のセラミックス成形体を焼結して一体化する工程と、を含むセラミックス焼結体の製造方法。
[2]前記接合領域における面積占有率が0.2〜45%になるように前記溝が形成される[1]記載の方法。
The present invention provides a method for producing a ceramic sintered body according to the following [1] to [3].
[1] preparing a plurality of ceramic molded bodies having the same composition;
At least one of the plurality of ceramic compacts has a width of 0.01 to 0.5 [mm] continuous from the joint region between the ceramic compacts to the boundary of the joint region, and 0.4 of the width. A step of forming a groove having a curved cross-sectional shape with no bent portion at a depth of -1.0 times;
Attaching a slurry in which ceramic powder having the same composition as the plurality of ceramic molded bodies is dispersed to the joining region;
Bonding the plurality of ceramic molded bodies to each other in the bonding region;
A step of sintering and integrating the plurality of joined ceramic molded bodies.
[2] The method according to [1], wherein the groove is formed so that an area occupation ratio in the bonding region is 0.2 to 45%.

本発明は、以下の[3]のセラミックス焼結体を提供する。
[3][1]または[2]記載の方法により製造された、外部に連通する内部空間を有するセラミックス焼結体であって、前記内部空間を画定する側壁に前記溝からはみ出した前記スラリーに由来する局所的な凸部が形成されているセラミックス焼結体。
The present invention provides the following ceramic sintered body [3].
[3] A ceramic sintered body having an internal space communicating with the outside, manufactured by the method according to [1] or [2], wherein the slurry protrudes from the groove on a side wall defining the internal space. A ceramic sintered body in which local protrusions are derived.

本発明の方法および当該方法により製造されたセラミックス焼結体によれば、セラミックス成形体同士の接合領域に付着されたスラリーに含まれる気泡を、溝を通じて当該接合領域の内側から外側に逃がすことができる。セラミックス成形体の接合体(接合成形体)が焼成過程において約20%収縮するが、溝が曲線状の断面形状を有する(屈曲箇所が存在しない)ため、当該屈曲箇所に対する応力の集中によって焼結体にクラックが発生する可能性の低減が図られる。このため、当該気泡に由来する隙間による強度低下度の低減が図られている。   According to the method of the present invention and the ceramic sintered body produced by the method, bubbles contained in the slurry adhered to the joining region between the ceramic molded bodies can be released from the inside to the outside of the joining region through the groove. it can. The ceramic compact joined body (joined compact) shrinks by about 20% during the firing process, but since the groove has a curved cross-sectional shape (there is no bent part), sintering is caused by the concentration of stress on the bent part. The possibility of cracks occurring in the body is reduced. For this reason, reduction of the strength reduction degree by the clearance gap derived from the said bubble is aimed at.

セラミックス焼結体の製造方法に関する説明図。Explanatory drawing regarding the manufacturing method of a ceramic sintered compact. 溝が形成されたセラミックス成形体の上面図。The top view of the ceramic molded object in which the groove | channel was formed. セラミックス成形体における溝形成態様に関する説明図。Explanatory drawing regarding the groove formation aspect in a ceramic molded body. 溝が形成されたセラミックス成形体の断面図。Sectional drawing of the ceramic molded body in which the groove | channel was formed. 外部に連通する内部空間を有するセラミックス焼結体の構成説明図。Structure explanatory drawing of the ceramic sintered compact which has the internal space connected to the exterior.

本発明の一実施形態としてのセラミックス焼結体の製造方法は、図1(1)〜(5)に概略的に示されている(1)成形体準備工程と、(2)溝形成工程と、(3)スラリー付着工程と、(4)接合工程と、(5)焼結工程と、を含んでいる。   The method for manufacturing a ceramic sintered body according to an embodiment of the present invention includes (1) a molded body preparing step and (2) a groove forming step schematically shown in FIGS. 1 (1) to (5). , (3) a slurry adhesion step, (4) a joining step, and (5) a sintering step.

(1)成形体準備工程
図(1)に示されているように、複数のセラミックス成形体C1およびC2が準備される。具体的には、アクリルエマルジョン等の適当なバインダが添加されたセラミックス粉末が、CIPまたは鋳込み等の一般的な手法にしたがって成形されることにより複数の成形体C1およびC2が準備される。複数の成形体C1およびC2が一の成形体から切り出されることにより準備されてもよい。
(1) Molded body preparation step As shown in FIG. (1), a plurality of ceramic molded bodies C1 and C2 are prepared. Specifically, a plurality of molded bodies C1 and C2 are prepared by molding ceramic powder to which an appropriate binder such as acrylic emulsion is added according to a general technique such as CIP or casting. The plurality of molded bodies C1 and C2 may be prepared by being cut out from one molded body.

セラミックス粉末としては、アルミナ、マグネシア、スピネル、ジルコニア、イットリア等の酸化物、炭化珪素等の炭化物、窒化珪素、窒化アルミニウム等の窒化物等種々のセラミックスが適用できる。これらを複数用いた混合物、または必要に応じて焼結助剤等の上記以外の成分を含ませることも可能である。これらは市販のセラミックス粉末を用いることができる。平均粒径0.1〜2.0[μm]のセラミックス粉末が原料として用いられることが好ましい。   As the ceramic powder, various ceramics such as oxides such as alumina, magnesia, spinel, zirconia, yttria, carbides such as silicon carbide, nitrides such as silicon nitride and aluminum nitride can be applied. It is also possible to include a mixture using a plurality of these, or, if necessary, other components such as a sintering aid. Commercially available ceramic powder can be used for these. A ceramic powder having an average particle size of 0.1 to 2.0 [μm] is preferably used as a raw material.

(2)溝形成工程
図1(2)に示されているように、複数のセラミックス成形体C1およびC2のうち少なくとも1つ(たとえば成形体C1)に、当該セラミックス成形体C1およびC2同士の接合領域から当該接合領域の境界まで連続するように溝Gが形成される。溝Gはフライス盤を用いたフェイスミル加工等の一般的方法により形成されうる。
(2) Groove formation step As shown in FIG. 1 (2), at least one of the plurality of ceramic molded bodies C1 and C2 (for example, the molded body C1) is joined to the ceramic molded bodies C1 and C2. The groove G is formed so as to continue from the region to the boundary of the bonding region. The groove G can be formed by a general method such as face milling using a milling machine.

たとえば、図2(a)に示されているように、矩形状のセラミックス成形体C1の上面(他方のセラミックス成形体C2との接合領域を構成する)に、上辺の一点と下片の一点とを結ぶように直線状に延在するN1本(図2ではN1=3)の縦溝G1と、左辺の一点と右片の一点とを結ぶように直線状に延在するN2本(図2ではN2=3)の横溝G2とが、溝Gとして形成される。図2(b)に示されているように、一方のセラミックス成形体C1の上面に縦溝G1が形成され、他方のセラミックス成形体C2の下面に横溝G2が形成されてもよい。溝Gは直線状ではなく、円弧状または波線状などの曲線状であってもよい。   For example, as shown in FIG. 2 (a), one point on the upper side and one point on the lower piece are formed on the upper surface of the rectangular ceramic molded body C1 (which constitutes a joining region with the other ceramic molded body C2). N1 (N1 = 3 in FIG. 2) longitudinal grooves G1 extending linearly and N2 extending linearly so as to connect one point on the left side and one point on the right piece (FIG. 2). Then, the lateral groove G2 of N2 = 3) is formed as the groove G. As shown in FIG. 2B, the vertical groove G1 may be formed on the upper surface of one ceramic molded body C1, and the horizontal groove G2 may be formed on the lower surface of the other ceramic molded body C2. The groove G is not linear, but may be a curved line such as an arc or a wavy line.

セラミックス成形体C1の上面およびセラミックス成形体C2の下面の一方または両方に、製造対象であるセラミックス焼結体SCの内部空間を構成する凹部または溝部が形成されている場合、当該凹部に連続するように溝Gが形成されていてもよい。説明の簡単のため、セラミックス成形体C1およびC2の接合領域の境界のうち凹部との境界を「内縁」といい、その他の部分を「外縁」という。   When a concave portion or a groove portion constituting the internal space of the ceramic sintered body SC to be manufactured is formed on one or both of the upper surface of the ceramic molded body C1 and the lower surface of the ceramic molded body C2, it is continuous with the concave portion. A groove G may be formed in the groove. For the sake of simplicity of explanation, the boundary between the ceramic molded bodies C1 and C2 and the recess is referred to as “inner edge” and the other part as “outer edge”.

たとえば、図3(a)左側に示されているように一のセラミックス成形体C1の上面中央に縦に延在する凹部R1と、当該凹部R1にのみ連続するように横に延在する溝G1が形成される。図3(a)右側に示されているように他のセラミックス成形体C2の下面中央に縦に延在する凹部R2と、凹部R2から離れて当該下面の境界に連続するように(溝G1と縦方向について同じ位置で)横に延在する溝G2が形成される。当該構成のセラミックス成形体C1およびC2が接合されることで、図3(b)に示されているようにセラミックス接合成形体Cにおいて凹部R1およびR2により縦に延在する内部空間R(または通路)が構成され、溝G1およびG2により接合領域(斜線部分)の外縁および内縁(または内部空間R)に連通する溝Gが構成される。   For example, as shown on the left side of FIG. 3A, a concave portion R1 that extends vertically in the center of the upper surface of one ceramic molded body C1, and a groove G1 that extends laterally so as to continue only to the concave portion R1. Is formed. As shown on the right side of FIG. 3 (a), a recess R2 that extends vertically in the center of the lower surface of another ceramic molded body C2, and is separated from the recess R2 and continues to the boundary of the lower surface (groove G1 and A groove G2 is formed which extends laterally (at the same position in the longitudinal direction). By joining the ceramic molded bodies C1 and C2 having the above configuration, as shown in FIG. 3 (b), the internal space R (or the passage) extending vertically by the recesses R1 and R2 in the ceramic bonded molded body C. ) And a groove G communicating with the outer edge and the inner edge (or the inner space R) of the joining region (shaded portion) is formed by the grooves G1 and G2.

溝Gの断面形状は、屈曲箇所が存在しない曲線状に設計されている。たとえば、溝Gの断面形状は、円弧状(真円のほか楕円も含む。)(図4(a)参照)、二等辺三角形における頂点が丸みを帯びた二等辺状(図4(b)参照)または矩形における隅角部が丸みを帯びた3辺状(図4(c)参照)、または台形もしくは平行四辺形における隅角部が丸みを帯びた3辺状など、様々な形状が採用されうる。   The cross-sectional shape of the groove G is designed to be a curved shape having no bent portion. For example, the cross-sectional shape of the groove G is an arc shape (including an ellipse in addition to a perfect circle) (see FIG. 4A), an isosceles shape with rounded vertices in an isosceles triangle (see FIG. 4B). ) Or a three-sided shape with rounded corners in a rectangle (see FIG. 4C), or a three-sided shape with rounded corners in a trapezoid or parallelogram sell.

接合領域における溝Gの面積占有率が0.2〜45%の範囲に含まれるように当該溝Gが形成される。溝Gは、その幅wが0.01〜0.5[mm]の範囲に収まり、その深さdが0.4w〜1.0wの範囲に収まるように設計される。   The groove G is formed so that the area occupation ratio of the groove G in the bonding region is included in the range of 0.2 to 45%. The groove G is designed such that its width w falls within the range of 0.01 to 0.5 [mm] and its depth d falls within the range of 0.4 w to 1.0 w.

(3)スラリー付着工程
図1(3)に示されているように、複数のセラミックス成形体C1およびC2の接合領域にスラリーSを付着させる。スラリーSは、セラミックス成形体C1およびC2と同一組成のセラミックス粉末が分散されているように調整される。分散剤としては、ポリカルボン酸アンモニウム等の一般的なものが用いられる。スラリー付着方法としては、刷毛塗り、スプレー塗布または浸漬等の一般的手法が採用される。
(3) Slurry attachment process As shown in Drawing 1 (3), slurry S is made to adhere to the joined field of a plurality of ceramic fabrication objects C1 and C2. The slurry S is adjusted so that ceramic powders having the same composition as the ceramic molded bodies C1 and C2 are dispersed. As the dispersant, a common one such as ammonium polycarboxylate is used. As a slurry adhesion method, a general method such as brush coating, spray coating, or dipping is employed.

(4)接合工程
図1(4)に示されているように、複数のセラミックス成形体C1およびC2を接合領域において接合させることで接合成形体Cが得られる。この際、接合領域を含む平面の法線方向について、セラミックス成形体C1およびC2に対して圧力が加えられてもよい。当該接合面同士が摺り合わせられるように、セラミックス成形体C1およびC2のうち一方または両方が動かされてもよい。
(4) Joining Step As shown in FIG. 1 (4), a joined compact C is obtained by joining a plurality of ceramic compacts C1 and C2 in the joint region. At this time, pressure may be applied to the ceramic molded bodies C1 and C2 in the normal direction of the plane including the bonding region. One or both of the ceramic molded bodies C1 and C2 may be moved so that the joint surfaces are slid together.

一のセラミックス成形体C1の一の面の全部と、他のセラミックス成形体C2の他の面の全部とが接合することにより接合領域が構成されていてもよく、一のセラミックス成形体C1の一の面の一部と、他のセラミックス成形体C2の他の面の一部または全部とが接合することにより接合領域が構成されていてもよい。たとえば、一のセラミックス成形体C1の上面に凹部R1が形成される一方(図3(a)左側参照)、他のセラミックス成形体C2の下面が平面である場合、セラミックス成形体C1およびC2の接合領域は、セラミックス成形体C1の上面領域(凹部R1を除く)と同じ形状になる。   A joining region may be configured by joining all of one surface of one ceramic molded body C1 and all other surfaces of another ceramic molded body C2, and one of the one ceramic molded body C1 may be formed. The joining region may be configured by joining a part of the surface and a part or all of the other surface of the other ceramic molded body C2. For example, when the concave portion R1 is formed on the upper surface of one ceramic molded body C1 (see the left side of FIG. 3A), and the lower surface of the other ceramic molded body C2 is a plane, the ceramic molded bodies C1 and C2 are joined. The region has the same shape as the upper surface region (excluding the recess R1) of the ceramic molded body C1.

(5)焼結工程
図1(5)に示されているように、接合成形体Cを焼結することにより一体化させてセラミックス焼結体SCが得られる。
(5) Sintering Step As shown in FIG. 1 (5), the sintered compact SC is obtained by integrating the sintered compact C by sintering.

(セラミックス焼結体の構成)
図3(a)に示されているように凹部R1およびR2が形成されているセラミックス成形体C1およびC2により構成された接合成形体Cが焼成されることにより、図5(a)に示されているように、当該凹部R1およびR2によって構成される外部に連通する内部空間Rを有するセラミックス焼結体SCが製造される。図5(b)に示されているように、内部空間Rを画定する焼結体SCの側壁には溝Gからはみ出したスラリーに由来する局所的な凸部Pが形成されている。
(Configuration of ceramic sintered body)
As shown in FIG. 3 (a), the bonded molded body C constituted by the ceramic molded bodies C1 and C2 in which the recesses R1 and R2 are formed is fired, so that it is shown in FIG. 5 (a). As described above, the ceramic sintered body SC having the internal space R communicating with the outside constituted by the recesses R1 and R2 is manufactured. As shown in FIG. 5B, local protrusions P derived from the slurry protruding from the grooves G are formed on the side walls of the sintered body SC that defines the internal space R.

内部空間Rを画定する側壁に対するブラスト加工等の加工が困難である場合、このような凸部が残存するが、当該加工が可能である場合には凸部が除去されてもよい。内部空間Rの形状は焼結体SCの外部への連通箇所において断面積が小さいまたは幅狭である一方、焼結体SCの内部において断面積が大きいまたは幅広である場合、当該内部における凸部の除去加工は困難であるため、焼結体SCに凸部が残存する。   When processing such as blasting on the side wall that defines the internal space R is difficult, such a convex portion remains, but when the processing is possible, the convex portion may be removed. The shape of the internal space R has a small or narrow cross-sectional area at a location where the sintered body SC communicates with the outside, whereas if the cross-sectional area is large or wide inside the sintered body SC, the convex portion in the inside Since the removal process is difficult, convex portions remain in the sintered body SC.

(実施例)
(実施例1)
バインダ(製品名:バインドセラム)が添加された市販のアルミナ粉末(平均粒径0.9[μm]、純度99.7%)が原料粉末としてCIP成形されることにより一の成形体が得られた。バインダの添加量は5質量%に調節された。当該一の成形体から略矩形板状の2つの成形体C1およびC2が切り出された。
(Example)
(Example 1)
A commercially available alumina powder (average particle size 0.9 [μm], purity 99.7%) to which a binder (product name: bind serum) is added is CIP-molded as a raw material powder to obtain a single molded body. It was. The amount of the binder added was adjusted to 5% by mass. Two molded bodies C1 and C2 having a substantially rectangular plate shape were cut out from the one molded body.

図2(a)に示されているように一方の成形体C1の上面に溝Gが形成され、その幅wが0.01[mm]に調節され、その深さdが0.005[mm](=0.50w)に調節された。溝Gの断面形状は真円弧状に調節された。溝Gの接合領域における面積占有率は0.5%に調節された。   As shown in FIG. 2A, a groove G is formed on the upper surface of one molded body C1, its width w is adjusted to 0.01 [mm], and its depth d is 0.005 [mm]. ] (= 0.50 w). The cross-sectional shape of the groove G was adjusted to a true arc shape. The area occupation ratio in the junction region of the groove G was adjusted to 0.5%.

原料粉末と同じセラミックス粉末に対して、バインダに加えて分散剤およびイオン交換水が添加されることによりスラリーが調整された。接合成形体Cに対して、当該接合方向に0.005[kgf/cm2]の圧力が印加された。接合成形体Cが大気雰囲気で1500〜1650[℃]に含まれる温度で焼成されることにより実施例1のセラミックス焼結体SCが得られた。 A slurry was prepared by adding a dispersant and ion-exchanged water to the same ceramic powder as the raw material powder in addition to the binder. A pressure of 0.005 [kgf / cm 2 ] was applied to the bonded molded body C in the bonding direction. The sintered compact SC of Example 1 was obtained by firing the bonded compact C at a temperature included in 1500 to 1650 [° C.] in an air atmosphere.

(実施例2)
平均粒径2.0[μm]、純度95.0%のアルミナ粉末が原料粉末として用いられ、バインダの添加量が4質量%に調節された。溝Gの幅wが0.5[mm]に調節され、深さdが0.4[mm](=0.8w)に調節された。溝Gの断面形状は隅角部が丸みを帯びた矩形に調節された。溝Gの接合領域における面積占有率は40%に調節された。その他は実施例1と同様の条件下で実施例2のセラミックス焼結体SCが得られた。
(Example 2)
An alumina powder having an average particle size of 2.0 [μm] and a purity of 95.0% was used as a raw material powder, and the amount of binder added was adjusted to 4% by mass. The width w of the groove G was adjusted to 0.5 [mm], and the depth d was adjusted to 0.4 [mm] (= 0.8 w). The cross-sectional shape of the groove G was adjusted to a rectangle with rounded corners. The area occupation ratio in the junction region of the groove G was adjusted to 40%. Otherwise, a ceramic sintered body SC of Example 2 was obtained under the same conditions as in Example 1.

(実施例3)
平均粒径0.1[μm]、純度99.9%のアルミナ粉末が料粉末として用いられ、バインダの添加量が8質量%に調節された。溝Gの幅wが0.2[mm]に調節され、深さdが0.2[mm](=1.0w)に調節された。溝Gの断面形状は隋円弧状に調節された。溝Gの接合領域における面積占有率は20%に調節された。接合成形体Cに対して当該接合方向に0.03[kgf/cm2]の圧力が印加された。その他は実施例1と同様の条件下で実施例3のセラミックス焼結体SCが得られた。
Example 3
An alumina powder having an average particle size of 0.1 [μm] and a purity of 99.9% was used as a powder, and the amount of binder added was adjusted to 8% by mass. The width w of the groove G was adjusted to 0.2 [mm], and the depth d was adjusted to 0.2 [mm] (= 1.0 w). The cross-sectional shape of the groove G was adjusted to be a circular arc shape. The area occupation ratio in the junction region of the groove G was adjusted to 20%. A pressure of 0.03 [kgf / cm 2 ] was applied to the bonded molded body C in the bonding direction. Otherwise, a ceramic sintered body SC of Example 3 was obtained under the same conditions as in Example 1.

(実施例4)
平均粒径1.5[μm]、純度96.0%のアルミナ 平均粒径0.1[μm]、純度99.9%のアルミナ粉末が料粉末として用いられ、バインダの添加量が8質量%に調節された。溝Gの幅wが0.3[mm]に調節され、深さdが0.15[mm](=0.5w)に調節された。溝Gの断面形状は真円弧状に調節された。溝Gの接合領域における面積占有率は0.2%に調節された。接合成形体Cに対して、当該接合方向に0.055[kgf/cm2]の圧力が印加された。その他は実施例1と同様の条件下で実施例4のセラミックス焼結体SCが得られた。
Example 4
Alumina powder having an average particle diameter of 1.5 [μm] and a purity of 96.0% An alumina powder having an average particle diameter of 0.1 [μm] and a purity of 99.9% is used as a powder, and the amount of binder added is 8% by mass. Adjusted to. The width w of the groove G was adjusted to 0.3 [mm], and the depth d was adjusted to 0.15 [mm] (= 0.5 w). The cross-sectional shape of the groove G was adjusted to a true arc shape. The area occupancy in the junction region of the groove G was adjusted to 0.2%. A pressure of 0.055 [kgf / cm 2 ] was applied to the bonded molded body C in the bonding direction. Otherwise, the ceramic sintered body SC of Example 4 was obtained under the same conditions as in Example 1.

(実施例5)
市販のジルコニア粉末(平均粒径0.5[μm])が原料粉末として用いられ、バインダ添加量が8質量%に調節された。溝Gの幅wが0.2[mm]に調節され、その深さdが0.14[mm](=0.7W)に調節された。溝Gの断面形状は頂点に丸みの帯びた二等辺三角形に調節された。溝Gの接合領域における面積占有率は45%に調節された。接合成形体Cに対して、当該接合方向に0.070[kgf/cm2]の圧力が印加された。接合成形体Cが大気雰囲気で1350〜1550[℃]に含まれる温度で焼成されることにより実施例5のセラミックス焼結体SCが得られた。
(Example 5)
Commercially available zirconia powder (average particle size 0.5 [μm]) was used as a raw material powder, and the amount of binder added was adjusted to 8 mass%. The width w of the groove G was adjusted to 0.2 [mm], and the depth d was adjusted to 0.14 [mm] (= 0.7 W). The cross-sectional shape of the groove G was adjusted to an isosceles triangle with a rounded apex. The area occupation ratio in the junction region of the groove G was adjusted to 45%. A pressure of 0.070 [kgf / cm 2 ] was applied to the bonded molded body C in the bonding direction. The sintered compact SC of Example 5 was obtained by firing the bonded compact C at a temperature included in 1350 to 1550 [° C.] in an air atmosphere.

(実施例6)
市販の炭化珪素粉末(平均粒径1.0[μm])が原料粉末として用いられた。溝Gの幅wが0.01[mm]に調節され、その深さdが0.004[mm](=0.4w)に調節された。溝Gの断面形状は隅角部が丸みを帯びた台形に調節された。溝Gの接合領域における面積占有率は10%に調節された。接合成形体Cに対して、当該接合方向に0.016[kgf/cm2]の圧力が印加された。接合成形体Cが真空を含む非酸化雰囲気で1800〜2100[℃]に含まれる温度で焼成されることにより実施例6のセラミックス焼結体SCが得られた。
(Example 6)
Commercially available silicon carbide powder (average particle size 1.0 [μm]) was used as the raw material powder. The width w of the groove G was adjusted to 0.01 [mm], and the depth d was adjusted to 0.004 [mm] (= 0.4 w). The cross-sectional shape of the groove G was adjusted to a trapezoid with rounded corners. The area occupation ratio in the bonding region of the groove G was adjusted to 10%. A pressure of 0.016 [kgf / cm 2 ] was applied to the bonded molded body C in the bonding direction. The sintered compact SC of Example 6 was obtained by firing the bonded compact C at a temperature included in 1800 to 2100 [° C.] in a non-oxidizing atmosphere including vacuum.

(試験方法)
各実施例の焼結体を対象として超音波デジタル映像探傷装置(SONIX社製)により得られた探傷画像のうち、傷部分(隙間部分)を除く部分の面積の当該探傷画像の全面積に対する比率が接合率として測定された。焼結体の曲げ強度(4点曲げ強度)が測定され、成形体がそのまま焼結されることにより得られた無垢の緻密質セラミックス焼結体の曲げ強度(たとえばアルミナは400[MPa]、ジルコニアは1000[MPa])を基準とする当該測定結果の低減度が測定された。30個の試料を対象とする当該低減度の測定結果のばらつきを表わす分散σが測定された。
(Test method)
Of the flaw detection images obtained by the ultrasonic digital video flaw detector (manufactured by SONIX) for the sintered body of each example, the ratio of the area of the portion excluding the flaw portion (gap portion) to the total area of the flaw detection image Was measured as the bonding rate. The bending strength (four-point bending strength) of the sintered body was measured, and the bending strength of a pure dense ceramic sintered body obtained by sintering the formed body as it is (for example, 400 [MPa] for alumina, zirconia) Was measured based on 1000 [MPa]). The dispersion σ representing the variation in the measurement results of the degree of reduction for 30 samples was measured.

表1には、各実施例のセラミックス焼結体についてもとになったセラミックス成形体およびそこに形成された溝の態様とともに、これらの測定結果がまとめて示されている。   Table 1 summarizes the measurement results together with the ceramic molded body based on the ceramic sintered body of each example and the mode of the grooves formed therein.

表1から明らかなように、実施例1〜6のセラミックス焼結体の接合率は90〜100%であり、特に実施例3、4および6のセラミックス焼結体の接合率は96%以上と高い。実施例1〜6のセラミックス焼結体の無垢材に対する曲げ強度の低減率は10〜40%であり、特に実施例3、4および6のセラミックス焼結体の無垢材に対する曲げ強度の低減率は22%以下と低い。   As is apparent from Table 1, the bonding rate of the ceramic sintered bodies of Examples 1 to 6 is 90 to 100%, and in particular, the bonding rate of the ceramic sintered bodies of Examples 3, 4 and 6 is 96% or more. high. The reduction rate of the bending strength with respect to the solid material of the ceramic sintered bodies of Examples 1 to 6 is 10 to 40%. In particular, the reduction rate of the bending strength with respect to the solid material of the ceramic sintered bodies of Examples 3, 4 and 6 is It is as low as 22% or less.

(比較例)
(比較例1)
平均粒径1.0[μm]、純度99.7%のアルミナ粉末が原料粉末として用いられた。溝Gの幅wが5.0[mm]に調節され、深さdが2.5[mm]に調節された。溝Gの接合領域における面積占有率は40%に調節された。その他は実施例1と同様の条件下で比較例1のセラミックス焼結体SCが得られた。溝Gの幅wおよび深さdが大きすぎるため、これがスラリーにより充填されず、接合界面に隙間の存在が確認された。
(Comparative example)
(Comparative Example 1)
An alumina powder having an average particle size of 1.0 [μm] and a purity of 99.7% was used as a raw material powder. The width w of the groove G was adjusted to 5.0 [mm], and the depth d was adjusted to 2.5 [mm]. The area occupation ratio in the junction region of the groove G was adjusted to 40%. Otherwise, a ceramic sintered body SC of Comparative Example 1 was obtained under the same conditions as in Example 1. Since the width w and depth d of the groove G were too large, it was not filled with the slurry, and the presence of a gap at the bonding interface was confirmed.

(比較例2)
平均粒径0.5[μm]、純度90.0%のアルミナ粉末が原料粉末として用いられ、バインダの添加量が8質量%に調節された。溝Gの幅wが0.4[mm]に調節され、深さdが0.2[mm]に調節された。溝Gの断面形状は隋円弧状に調節された。溝Gの接合領域における面積占有率は70%に調節された。接合成形体Cに対して、当該接合方向に0.020[kgf/cm2]の圧力が印加された。その他は実施例1と同様の条件下で比較例2のセラミックス焼結体SCが得られた。溝Gの面積占有率が高いため、これがスラリーにより充填されず、接合界面に多数の隙間の存在が確認された。
(Comparative Example 2)
An alumina powder having an average particle size of 0.5 [μm] and a purity of 90.0% was used as a raw material powder, and the amount of binder added was adjusted to 8% by mass. The width w of the groove G was adjusted to 0.4 [mm], and the depth d was adjusted to 0.2 [mm]. The cross-sectional shape of the groove G was adjusted to be a circular arc shape. The area occupation ratio in the junction region of the groove G was adjusted to 70%. A pressure of 0.020 [kgf / cm 2 ] was applied to the bonded molded body C in the bonding direction. Otherwise, a ceramic sintered body SC of Comparative Example 2 was obtained under the same conditions as in Example 1. Since the area occupation ratio of the groove G was high, it was not filled with the slurry, and it was confirmed that there were many gaps at the joint interface.

(比較例3)
平均粒径2.0[μm]、純度98.0%のアルミナ粉末が原料粉末として用いられた。成形体C1およびC2のいずれにも溝Gは形成されず、接合成形体Cに対して、当該接合方向に0.070[kgf/cm2]の圧力が印加された。その他は実施例1と同様の条件下で比較例3のセラミックス焼結体SCが得られた。接合時に成形体C1およびC2の滑りが確認され、得られた焼結体SCの接合率、強度の低下が確認された。
(Comparative Example 3)
An alumina powder having an average particle size of 2.0 [μm] and a purity of 98.0% was used as a raw material powder. The groove G was not formed in any of the molded bodies C1 and C2, and a pressure of 0.070 [kgf / cm 2 ] was applied to the bonded molded body C in the bonding direction. Otherwise, a ceramic sintered body SC of Comparative Example 3 was obtained under the same conditions as in Example 1. Slip of the compacts C1 and C2 was confirmed at the time of joining, and a reduction in joining rate and strength of the obtained sintered body SC was confirmed.

(比較例4)
平均粒径0.8[μm]、純度95.5%のアルミナ粉末が原料粉末として用いられた。図2(b)に示されているように成形体C1およびC2のそれぞれに溝Gが形成され、その幅wが0.5[mm]に調節され、その深さdが0.25[mm]に調節された。溝Gの断面形状が二等辺三角形の二等辺形状(V字形状)に調節された。溝Gの接合領域における面積占有率は30%に調節された。接合成形体Cに対して、当該接合方向に0.008[kgf/cm2]の圧力が印加された。その他は実施例1と同様の条件下で比較例4のセラミックス焼結体SCが得られた。溝Gの断面形状が屈曲箇所を有するため、接合界面に隙間およびクラックが発生した。
(Comparative Example 4)
An alumina powder having an average particle size of 0.8 [μm] and a purity of 95.5% was used as a raw material powder. As shown in FIG. 2B, a groove G is formed in each of the molded bodies C1 and C2, its width w is adjusted to 0.5 [mm], and its depth d is 0.25 [mm]. ] Was adjusted. The cross-sectional shape of the groove G was adjusted to an isosceles triangle isosceles shape (V shape). The area occupation ratio in the junction region of the groove G was adjusted to 30%. A pressure of 0.008 [kgf / cm 2 ] was applied to the bonded molded body C in the bonding direction. Otherwise, a ceramic sintered body SC of Comparative Example 4 was obtained under the same conditions as in Example 1. Since the cross-sectional shape of the groove G has a bent portion, a gap and a crack occurred at the bonding interface.

(比較例5)
平均粒径1.2[μm]、純度98.0%のアルミナ粉末が原料粉末として用いられた。図2(b)に示されているように成形体C1およびC2のそれぞれに溝Gが形成され、その幅wが0.5[mm]に調節され、その深さdが5.0[mm]に調節された。溝Gの断面形状は隋円弧状に調節された。溝Gの接合領域における面積占有率は10%に調節された。接合成形体Cに対して、当該接合方向に0.010[kgf/cm2]の圧力が印加された。その他は実施例1と同様の条件下で比較例5のセラミックス焼結体SCが得られた。溝Gの深さdが大きく、アスペクト比の高い溝構造のため、溝Gを基点としたクラックが発生した。
(Comparative Example 5)
An alumina powder having an average particle size of 1.2 [μm] and a purity of 98.0% was used as a raw material powder. As shown in FIG. 2B, a groove G is formed in each of the molded bodies C1 and C2, its width w is adjusted to 0.5 [mm], and its depth d is 5.0 [mm]. ] Was adjusted. The cross-sectional shape of the groove G was adjusted to be a circular arc shape. The area occupation ratio in the bonding region of the groove G was adjusted to 10%. A pressure of 0.010 [kgf / cm 2 ] was applied to the bonded molded body C in the bonding direction. Otherwise, a ceramic sintered body SC of Comparative Example 5 was obtained under the same conditions as in Example 1. Due to the groove structure having a large depth d and a high aspect ratio, cracks with the groove G as a starting point occurred.

(比較例6)
平均粒径0.8[μm]、純度95.0%のアルミナ粉末が原料粉末として用いられ、バインダの添加量が8質量%に調節された。溝Gの幅wが0.4[mm]に調節され、深さdが0.1[mm]に調節された。溝Gの断面形状は隋円弧状に調節された。溝Gの接合領域における面積占有率は30%に調節された。接合成形体Cに対して、当該接合方向に0.020[kgf/cm2]の圧力が印加された。その他は実施例1と同様の条件下で比較例6のセラミックス焼結体SCが得られた。成形体同士の接合時にスラリーの潤滑作用による滑りが確認された。
(Comparative Example 6)
An alumina powder having an average particle size of 0.8 [μm] and a purity of 95.0% was used as a raw material powder, and the amount of binder added was adjusted to 8% by mass. The width w of the groove G was adjusted to 0.4 [mm], and the depth d was adjusted to 0.1 [mm]. The cross-sectional shape of the groove G was adjusted to be a circular arc shape. The area occupation ratio in the junction region of the groove G was adjusted to 30%. A pressure of 0.020 [kgf / cm 2 ] was applied to the bonded molded body C in the bonding direction. Otherwise, a ceramic sintered body SC of Comparative Example 6 was obtained under the same conditions as in Example 1. Sliding due to the lubricating action of the slurry was confirmed when the compacts were joined.

(比較例7)
平均粒径1.0[μm]、純度92.0%のアルミナ粉末が原料粉末として用いられ、バインダの添加量が5質量%に調節された。溝Gの幅wが0.005[mm]に調節され、深さdが0.0025[mm]に調節された。溝Gの断面形状は真円弧状に調節された。溝Gの接合領域における面積占有率は5%に調節された。接合成形体Cに対して、当該接合方向に0.035[kgf/cm2]の圧力が印加された。その他は実施例1と同様の条件下で比較例7のセラミックス焼結体SCが得られた。溝幅wが狭すぎるため、接合時に成形体C1およびC2の滑りが確認され、得られた焼結体SCの接合率、強度の低下が確認された。
(Comparative Example 7)
An alumina powder having an average particle size of 1.0 [μm] and a purity of 92.0% was used as a raw material powder, and the amount of binder added was adjusted to 5% by mass. The width w of the groove G was adjusted to 0.005 [mm], and the depth d was adjusted to 0.0025 [mm]. The cross-sectional shape of the groove G was adjusted to a true arc shape. The area occupation ratio in the junction region of the groove G was adjusted to 5%. A pressure of 0.035 [kgf / cm 2 ] was applied to the bonded molded body C in the bonding direction. Otherwise, a ceramic sintered body SC of Comparative Example 7 was obtained under the same conditions as in Example 1. Since the groove width w was too narrow, slipping of the molded bodies C1 and C2 was confirmed at the time of joining, and a reduction in the joining rate and strength of the obtained sintered body SC was confirmed.

(比較例8)
平均粒径0.5[μm]、純度90.0%のアルミナ粉末が原料粉末として用いられ、バインダの添加量が5質量%に調節された。溝Gの幅wが0.2[mm]に調節され、深さdが0.12[mm]に調節された。溝Gの断面形状は隋円弧状に調節された。溝Gの接合領域における面積占有率は0.1%に調節された。接合成形体Cに対して、当該接合方向に0.016[kgf/cm2]の圧力が印加された。その他は実施例1と同様の条件下で比較例8のセラミックス焼結体SCが得られた。溝Gの面積占有率が少ないため、接合時に成形体C1およびC2の滑りが確認され、得られた焼結体SCの接合率、強度の低下が確認された。
(Comparative Example 8)
An alumina powder having an average particle size of 0.5 [μm] and a purity of 90.0% was used as a raw material powder, and the amount of binder added was adjusted to 5% by mass. The width w of the groove G was adjusted to 0.2 [mm], and the depth d was adjusted to 0.12 [mm]. The cross-sectional shape of the groove G was adjusted to be a circular arc shape. The area occupation ratio in the junction region of the groove G was adjusted to 0.1%. A pressure of 0.016 [kgf / cm 2 ] was applied to the bonded molded body C in the bonding direction. Otherwise, a ceramic sintered body SC of Comparative Example 8 was obtained under the same conditions as in Example 1. Since the area occupancy of the groove G is small, slipping of the molded bodies C1 and C2 was confirmed during bonding, and a decrease in the bonding ratio and strength of the obtained sintered body SC was confirmed.

表2には、各比較例のセラミックス焼結体についてもとになったセラミックス成形体およびそこに形成された溝の態様とともに、これらの測定結果がまとめて示されている。   Table 2 summarizes the measurement results together with the ceramic molded body based on the ceramic sintered bodies of the comparative examples and the mode of the grooves formed therein.

表2から明らかなように、比較例1〜8のセラミックス焼結体の接合率は76〜89%であり、実施例1〜6のセラミックス焼結体の接合率と比較して低い。比較例1〜8のセラミックス焼結体の無垢材に対する曲げ強度の低減率は45〜62%であり、実施例1〜6のセラミックス焼結体の無垢材に対する曲げ強度の低減率よりも高い。   As is apparent from Table 2, the bonding rate of the ceramic sintered bodies of Comparative Examples 1 to 8 is 76 to 89%, which is lower than the bonding rate of the ceramic sintered bodies of Examples 1 to 6. The reduction rate of the bending strength of the ceramic sintered bodies of Comparative Examples 1 to 8 with respect to the solid material is 45 to 62%, which is higher than the reduction rate of the bending strength of the ceramic sintered bodies of Examples 1 to 6 with respect to the solid material.

C‥接合成形体、C1、C2‥複数のセラミックス成形体、G‥溝、P‥凸部、R‥閉塞内部空間、S‥スラリー、SC‥セラミックス焼結体。 C: Bonded molded body, C1, C2: Multiple ceramic molded bodies, G: Groove, P: Convex part, R: Closure internal space, S: Slurry, SC: Ceramic sintered body

Claims (3)

同一組成の複数のセラミックス成形体を準備する工程と、
前記複数のセラミックス成形体のうち少なくとも1つに、前記複数のセラミックス成形体同士の接合領域から当該接合領域の境界まで連続する幅0.01〜0.5[mm]かつ当該幅の0.4〜1.0倍の深さの、屈曲箇所が存在しない曲線状の断面形状を有するような溝を形成する工程と、
前記複数のセラミックス成形体と同一組成のセラミックス粉末が分散されているスラリーを前記接合領域に付着させる工程と、
前記複数のセラミックス成形体同士を前記接合領域において接合させる工程と、
当該接合された前記複数のセラミックス成形体を焼結して一体化する工程と、を含むセラミックス焼結体の製造方法。
Preparing a plurality of ceramic molded bodies having the same composition;
At least one of the plurality of ceramic compacts has a width of 0.01 to 0.5 [mm] continuous from the joint region between the ceramic compacts to the boundary of the joint region, and 0.4 of the width. A step of forming a groove having a curved cross-sectional shape with no bent portion at a depth of -1.0 times;
Attaching a slurry in which ceramic powder having the same composition as the plurality of ceramic molded bodies is dispersed to the joining region;
Bonding the plurality of ceramic molded bodies to each other in the bonding region;
A step of sintering and integrating the plurality of joined ceramic molded bodies.
前記接合領域における面積占有率が0.2〜45%になるように前記溝が形成される請求項1記載の方法。   The method according to claim 1, wherein the groove is formed so that an area occupation ratio in the bonding region is 0.2 to 45%. 請求項1または2記載の方法により製造された、外部に連通する内部空間を有するセラミックス焼結体であって、
前記内部空間を画定する側壁に前記溝からはみ出した前記スラリーに由来する局所的な凸部が形成されているセラミックス焼結体。
A ceramic sintered body produced by the method according to claim 1 or 2 and having an internal space communicating with the outside,
The ceramic sintered compact by which the local convex part derived from the said slurry protruded from the said groove | channel is formed in the side wall which demarcates the said internal space.
JP2013180707A 2013-08-30 2013-08-30 Ceramic sintered body and method for producing the same Active JP6263351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013180707A JP6263351B2 (en) 2013-08-30 2013-08-30 Ceramic sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013180707A JP6263351B2 (en) 2013-08-30 2013-08-30 Ceramic sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015048272A true JP2015048272A (en) 2015-03-16
JP6263351B2 JP6263351B2 (en) 2018-01-17

Family

ID=52698574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013180707A Active JP6263351B2 (en) 2013-08-30 2013-08-30 Ceramic sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP6263351B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200024910A (en) 2017-08-29 2020-03-09 쿄세라 코포레이션 Ceramic assembly and its manufacturing method
JP2020138877A (en) * 2019-02-27 2020-09-03 京セラ株式会社 Member for semiconductor production device, and method of producing the same
US11999660B2 (en) 2017-08-29 2024-06-04 Kyocera Corporation Ceramic joined body and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191959A (en) * 1992-12-24 1994-07-12 Kyocera Corp Method for joining ceramic member
JP2011011930A (en) * 2009-06-30 2011-01-20 Taiheiyo Cement Corp Method for producing ceramic sintered compact
JP2011093779A (en) * 2009-09-30 2011-05-12 Taiheiyo Cement Corp Method for producing ceramic sintered compact
JP2013075800A (en) * 2011-09-30 2013-04-25 Taiheiyo Cement Corp METHOD FOR JOINING B4C/Si COMPOSITE MATERIAL BODY AND B4C/Si COMPOSITE MATERIAL JOINED BODY

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191959A (en) * 1992-12-24 1994-07-12 Kyocera Corp Method for joining ceramic member
JP2011011930A (en) * 2009-06-30 2011-01-20 Taiheiyo Cement Corp Method for producing ceramic sintered compact
JP2011093779A (en) * 2009-09-30 2011-05-12 Taiheiyo Cement Corp Method for producing ceramic sintered compact
JP2013075800A (en) * 2011-09-30 2013-04-25 Taiheiyo Cement Corp METHOD FOR JOINING B4C/Si COMPOSITE MATERIAL BODY AND B4C/Si COMPOSITE MATERIAL JOINED BODY

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200024910A (en) 2017-08-29 2020-03-09 쿄세라 코포레이션 Ceramic assembly and its manufacturing method
US11999660B2 (en) 2017-08-29 2024-06-04 Kyocera Corporation Ceramic joined body and method for manufacturing same
JP2020138877A (en) * 2019-02-27 2020-09-03 京セラ株式会社 Member for semiconductor production device, and method of producing the same
JP7181123B2 (en) 2019-02-27 2022-11-30 京セラ株式会社 Member for semiconductor manufacturing equipment and manufacturing method thereof

Also Published As

Publication number Publication date
JP6263351B2 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
JP4666656B2 (en) Vacuum adsorption apparatus, method for producing the same, and method for adsorbing an object to be adsorbed
JP6263351B2 (en) Ceramic sintered body and method for producing the same
JPH10128634A (en) Sucker and its manufacture
JP4718397B2 (en) Manufacturing method of vacuum suction device
JP6512401B2 (en) Reaction sintered silicon carbide member
KR102525393B1 (en) Setter for firing
KR102387056B1 (en) Ceramic assembly and manufacturing method thereof
JP2008028170A (en) Vacuum suction device and manufacturing method thereof
CN106715004B (en) Complex and its manufacturing method
KR102582472B1 (en) Setter for firing
JP5530275B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP5279550B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2011093779A (en) Method for producing ceramic sintered compact
JP6335737B2 (en) Method for producing hollow structure
JP5289218B2 (en) Manufacturing method of ceramic sintered body
JPH06191959A (en) Method for joining ceramic member
JP5597155B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2018199609A (en) Porous material, honeycomb structure, and manufacturing method of porous material
JP2005211101A (en) Orthodontic bracket
JP6058334B2 (en) Ceramic sintered body and method for producing the same
US20190202743A1 (en) Silicon carbide-natured refractory block
JP2010173881A (en) Ceramic porous body and method for producing the same
JP5791394B2 (en) Method for manufacturing ceramic molded body and method for manufacturing sintered body
JP6382579B2 (en) Cordierite joint
JP4666791B2 (en) CONNECTED BODY AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R150 Certificate of patent or registration of utility model

Ref document number: 6263351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250