JP2015040330A - Sputtering film deposition apparatus and sputtering film deposition method - Google Patents

Sputtering film deposition apparatus and sputtering film deposition method Download PDF

Info

Publication number
JP2015040330A
JP2015040330A JP2013172107A JP2013172107A JP2015040330A JP 2015040330 A JP2015040330 A JP 2015040330A JP 2013172107 A JP2013172107 A JP 2013172107A JP 2013172107 A JP2013172107 A JP 2013172107A JP 2015040330 A JP2015040330 A JP 2015040330A
Authority
JP
Japan
Prior art keywords
mask
voltage
substrate
film
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013172107A
Other languages
Japanese (ja)
Inventor
水村 通伸
Michinobu Mizumura
通伸 水村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V Technology Co Ltd
Original Assignee
V Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V Technology Co Ltd filed Critical V Technology Co Ltd
Priority to JP2013172107A priority Critical patent/JP2015040330A/en
Priority to KR1020167000917A priority patent/KR20160045667A/en
Priority to PCT/JP2014/071588 priority patent/WO2015025823A1/en
Priority to CN201480046504.5A priority patent/CN105492650A/en
Priority to TW103128541A priority patent/TW201522676A/en
Publication of JP2015040330A publication Critical patent/JP2015040330A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3447Collimators, shutters, apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/3467Pulsed operation, e.g. HIPIMS

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To clean a mask, while depositing a film.SOLUTION: A film deposition apparatus for generating plasma between a target 10 and the substrate 12 by applying a high-voltage cathode voltage to a cathode electrode, and depositing a film on a substrate 12 via a mask 11 includes a pulse bias power source 6 so that a pulsing negative voltage can be applied to the mask 11 in a film deposition step onto the substrate 12.

Description

本発明は、ターゲットに対して対向配置された基板にマスクを介して成膜するスパッタリング成膜装置に関し、特に成膜しながらマスクの洗浄も行い得るスパッタリング成膜装置及びスパッタリング成膜方法に係るものである。   The present invention relates to a sputtering film forming apparatus for forming a film on a substrate opposed to a target through a mask, and more particularly to a sputtering film forming apparatus and a sputtering film forming method capable of cleaning a mask while forming a film. It is.

従来の成膜装置において、マスクの洗浄機能を備えた成膜装置は、減圧された成膜室内でマスクを用いて有機化合物の蒸着を終えた後、成膜室を大気圧にすることなく、マスクに高周波電圧を印加して成膜室に導入されたガスを励起してプラズマを発生させ、マスクに付着した上記有機化合物を除去するものとなっている(例えば、特許文献1参照)。   In a conventional film forming apparatus, a film forming apparatus having a mask cleaning function has completed the deposition of an organic compound using a mask in a decompressed film forming chamber, and then brought the film forming chamber to atmospheric pressure, A high-frequency voltage is applied to the mask to excite the gas introduced into the film formation chamber to generate plasma, thereby removing the organic compound attached to the mask (see, for example, Patent Document 1).

特開2012−197518号公報JP 2012-197518 A

しかし、このような従来の成膜装置においては、マスクの洗浄が基板に対する成膜後に適宜実施されているため、マスクの洗浄中は成膜することができず、成膜基板のスループットが低下するという問題があった。   However, in such a conventional film forming apparatus, since the mask cleaning is appropriately performed after the film formation on the substrate, the film cannot be formed during the mask cleaning, and the throughput of the film formation substrate is reduced. There was a problem.

そこで、本発明は、このような問題点に対処し、成膜しながらマスクの洗浄も行い得るスパッタリング成膜装置及びスパッタリング成膜方法を提供することを目的とする。   In view of the above, an object of the present invention is to provide a sputtering film forming apparatus and a sputtering film forming method capable of coping with such problems and cleaning a mask while forming a film.

上記目的を達成するために、第1の発明によるスパッタリング成膜装置は、カソード電極に高電圧のカソード電圧を印加してターゲットと基板との間にプラズマを生成し、基板にマスクを介して成膜するスパッタリング成膜装置であって、前記基板への成膜過程で、前記マスクにパルス状の負電圧を印加可能にパルスバイアス電源を備えたものである。   In order to achieve the above object, the sputtering film forming apparatus according to the first invention generates a plasma between a target and a substrate by applying a high cathode voltage to the cathode electrode, and forms a plasma on the substrate through a mask. A sputtering film forming apparatus for forming a film, comprising a pulse bias power source capable of applying a pulsed negative voltage to the mask during a film forming process on the substrate.

また、第2の発明によるスパッタリング成膜方法は、カソード電極に高電圧のカソード電圧を印加してターゲットと基板との間にプラズマを生成し、基板にマスクを介して成膜するスパッタリング成膜方法であって、前記基板への成膜過程で、前記マスクにパルス状の負電圧を印加するものである。   Further, the sputtering film forming method according to the second invention is a sputtering film forming method in which a high voltage cathode voltage is applied to the cathode electrode to generate plasma between the target and the substrate, and the film is formed on the substrate through a mask. In the film forming process on the substrate, a pulsed negative voltage is applied to the mask.

本発明によれば、カソード電極に高電圧のカソード電圧を印加して行う基板への成膜過程で、マスクにパルス状の負電圧を印加することにより、マスクの表面に堆積した薄膜を不活性ガスの陽イオンで叩いて除去することができる。したがって、成膜しながらマスクの洗浄も行うことができ、成膜基板のスループットを向上することができる。   According to the present invention, a thin film deposited on the surface of the mask is inactivated by applying a pulsed negative voltage to the mask during the film formation process on the substrate performed by applying a high cathode voltage to the cathode electrode. It can be removed by striking with gas cations. Accordingly, the mask can be cleaned while the film is formed, and the throughput of the film formation substrate can be improved.

本発明によるスパッタリング成膜装置の第1の実施形態の概略構成を示す正面図である。It is a front view which shows schematic structure of 1st Embodiment of the sputtering film-forming apparatus by this invention. 上記第1の実施形態によるスパッタリング成膜方法について説明するフローチャートである。It is a flowchart explaining the sputtering film-forming method by the said 1st Embodiment. 上記第1の実施形態におけるバイアス電圧の印加タイミングを示すタイミングチャートである。3 is a timing chart showing the application timing of the bias voltage in the first embodiment. 上記第1の実施形態におけるシーズニング期間の成膜について説明する図であり、(a)は成膜開始時を示し、(b)は成膜が進んだ状態を示す。It is a figure explaining the film-forming of the seasoning period in the said 1st Embodiment, (a) shows the time of film-forming start, (b) shows the state which film-forming advanced. 上記第1の実施形態によるスパッタリング成膜におけるマスク洗浄について示す説明図である。It is explanatory drawing shown about the mask washing | cleaning in the sputtering film-forming by the said 1st Embodiment. 上記第1の実施形態によるスパッタリング成膜における成膜再開後について説明する図であり、(a)は成膜再開時を示し、(b)は成膜がさらに進んだ状態を示す。It is a figure explaining after film-forming restart in the sputtering film-forming by the said 1st Embodiment, (a) shows the time of film-forming resumption, (b) shows the state which film-forming advanced further. 本発明によるスパッタリング成膜装置の第2の実施形態の概略構成を示す正面図である。It is a front view which shows schematic structure of 2nd Embodiment of the sputtering film-forming apparatus by this invention. 上記第2の実施形態におけるバイアス電圧の印加タイミングを示すタイミングチャートである。It is a timing chart which shows the application timing of the bias voltage in the said 2nd Embodiment.

以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明によるスパッタリング成膜装置の第1の実施形態の概略構成を示す正面図である。このスパッタリング成膜装置は、ターゲットホルダーに高周波電圧を印加してターゲットと基板との間にプラズマを生成し、基板にマスクを介して成膜するRFスパッタリング装置であり、真空チャンバー1と、ターゲットホルダー2と、基板ホルダー3と、シャッター4と、高周波電源5と、パルスバイアス電源6と、を備えて構成されている。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a front view showing a schematic configuration of a first embodiment of a sputtering film forming apparatus according to the present invention. This sputtering film forming apparatus is an RF sputtering apparatus that generates a plasma between a target and a substrate by applying a high-frequency voltage to a target holder, and forms a film on the substrate through a mask. 2, a substrate holder 3, a shutter 4, a high-frequency power source 5, and a pulse bias power source 6.

上記真空チャンバー1は、内部に成膜室7を形成する密閉容器であり、ガス導入口8と排気口9とを備えている。そして、排気口9に接続して備えた真空ポンプ(図示省略)により成膜室7内の空気又はスパッタガスを排気して成膜室7内を一定の真空度に保つことができるようになっている。さらに、ガス導入口8には、アルゴン(Ar)ガス等の不活性ガスのガスボンベ(図示省略)が配管により接続され、成膜室7内にスパッタガスを導入することができるようになっている。   The vacuum chamber 1 is a sealed container that forms a film forming chamber 7 therein, and includes a gas introduction port 8 and an exhaust port 9. Then, the air or sputtering gas in the film forming chamber 7 is exhausted by a vacuum pump (not shown) connected to the exhaust port 9 so that the inside of the film forming chamber 7 can be maintained at a certain degree of vacuum. ing. Further, a gas cylinder (not shown) of an inert gas such as argon (Ar) gas is connected to the gas introduction port 8 by a pipe so that the sputtering gas can be introduced into the film forming chamber 7. .

上記真空チャンバー1の成膜室7内には、ターゲットホルダー2が配設されている。このターゲットホルダー2は、ターゲット10を固定して保持するものであり、真空チャンバー1と電気的に絶縁された状態で金属材料により形成されている。なお、ターゲットホルダー2は、必要に応じて、内部にターゲット10を冷却するための冷却水を外部から導入可能に水路を設けてもよい。   A target holder 2 is disposed in the film forming chamber 7 of the vacuum chamber 1. The target holder 2 is used to fix and hold the target 10 and is formed of a metal material in a state of being electrically insulated from the vacuum chamber 1. Note that the target holder 2 may be provided with a water channel so that cooling water for cooling the target 10 can be introduced from the outside as needed.

上記真空チャンバー1の成膜室7内には、ターゲットホルダー2と対向させて基板ホルダー3が配設されている。この基板ホルダー3は、複数の開口パターンを設けた例えば樹脂製のフィルムからなるマスク11を基板12の成膜表面に密着させた状態で基板12を保持するものであり、金属材料で形成されている。   A substrate holder 3 is disposed in the film forming chamber 7 of the vacuum chamber 1 so as to face the target holder 2. The substrate holder 3 holds the substrate 12 in a state in which a mask 11 made of, for example, a resin film provided with a plurality of opening patterns is in close contact with the film formation surface of the substrate 12, and is formed of a metal material. Yes.

なお、上記マスク11は、樹脂製フィルムのような非導電性の材料で形成されたものに限られず、導電性のメタルマスクであってもよい。この場合、成膜される薄膜が導電性の膜であるときには、非導電性のマスク及び導電性のメタルマスクのいずれを使用してもよい。また、成膜される薄膜が非導電性の膜であるときには、導電性のメタルマスク、又は非導電性のマスクのターゲット側表面に導電性の薄膜を被着させた複合マスクを使用するのがよい。本実施形態の説明においては、成膜される薄膜が導電性の膜であり、マスク11が非導電性の樹脂製フィルムである場合について述べる。   Note that the mask 11 is not limited to a non-conductive material such as a resin film, and may be a conductive metal mask. In this case, when the thin film to be formed is a conductive film, either a non-conductive mask or a conductive metal mask may be used. In addition, when the thin film to be formed is a non-conductive film, it is possible to use a conductive metal mask or a composite mask in which a conductive thin film is deposited on the target side surface of the non-conductive mask. Good. In the description of this embodiment, the case where the thin film to be formed is a conductive film and the mask 11 is a non-conductive resin film will be described.

上記ターゲットホルダー2と基板ホルダー3とは、真空チャンバー1の成膜室7内にどのように配置されてもよい。例えば、ターゲットホルダー2と基板ホルダー3とが上下に対向配置されてもよく、又は左右に対向配置されてもよい。ただし、本実施形態のように、マスク11がフィルム製の場合には、基板ホルダー3が下側となるようにしてターゲットホルダー2と基板ホルダー3とを上下に対向配置するか、又は垂直軸に対して傾けて対向配置するのが望ましい。これにより、フィルム製のマスク11が自重で垂れ下がるため、マスク11を基板12の成膜面に密着させることができる。   The target holder 2 and the substrate holder 3 may be arranged in any manner in the film forming chamber 7 of the vacuum chamber 1. For example, the target holder 2 and the substrate holder 3 may be opposed to each other in the vertical direction, or may be arranged to be opposed to the left and right. However, when the mask 11 is made of a film as in the present embodiment, the target holder 2 and the substrate holder 3 are arranged vertically opposite to each other so that the substrate holder 3 is on the lower side, or on the vertical axis. It is desirable to incline and arrange them oppositely. Thereby, since the film mask 11 hangs down by its own weight, the mask 11 can be brought into close contact with the film formation surface of the substrate 12.

上記ターゲットホルダー2と基板ホルダー3との間には、シャッター4が設けられている。このシャッター4は、成膜の開始と終了のタイミングを制御するためのもので、ターゲット10から基板12に向かって飛翔するスパッタ粒子19の通路を開閉自在に設けられている。即ち、シャッター4が図1に示す矢印A方向に移動してスパッタ粒子19の通路が開かれると成膜が開始し、シャッター4が同図に示す矢印B方向に移動してスパッタ粒子19の通路が閉じられると成膜が終了する。これにより、成膜される薄膜パターンの膜厚を制御することができる。なお、スパッタ粒子19の通路がシャッター4によって閉じられた状態を「シャッター4が閉じられている」と言い、スパッタ粒子19の通路が開かれた状態を「シャッター4が開かれている」と言う。   A shutter 4 is provided between the target holder 2 and the substrate holder 3. The shutter 4 is for controlling the start and end timing of the film formation, and is provided so that the passage of the sputtered particles 19 flying from the target 10 toward the substrate 12 can be opened and closed. That is, when the shutter 4 moves in the direction of arrow A shown in FIG. 1 and the passage of the sputtered particles 19 is opened, film formation starts, and the shutter 4 moves in the direction of arrow B shown in FIG. When is closed, the film formation is completed. Thereby, the film thickness of the thin film pattern formed can be controlled. The state where the passage of the sputtered particles 19 is closed by the shutter 4 is referred to as “the shutter 4 is closed”, and the state where the passage of the sputtered particles 19 is opened is referred to as “the shutter 4 is opened”. .

上記ターゲットホルダー2に電気的に接続して高周波電源(RF電源)5が備えられている。この高周波電源5は、ターゲットホルダー2に13.56MHzの高周波電力を供給してターゲットホルダー2に高周波電圧(RF電圧)を印加してターゲット10と基板12との間にプラズマを発生させるためのものであり、高周波電力を調整する図示省略の高周波整合器を備えている。この場合、ターゲットホルダー2側がカソード電極で、基板ホルダー3側がアース電極(アノード電極)となる。なお、図1において符号13は、ターゲットホルダー2に直列に接続されたバイパスコンデンサであり、符号14は、陽極イオンが基板12に対向したターゲット10の部分以外の、例えばターゲットホルダー2の部分には衝突しないようにするためのシールド部材であり、ターゲット10の中央領域に対応して開口15が設けられている。   A high frequency power source (RF power source) 5 is provided in electrical connection with the target holder 2. The high-frequency power source 5 supplies a high-frequency power of 13.56 MHz to the target holder 2 and applies a high-frequency voltage (RF voltage) to the target holder 2 to generate plasma between the target 10 and the substrate 12. And a high-frequency matching unit (not shown) for adjusting the high-frequency power is provided. In this case, the target holder 2 side is a cathode electrode, and the substrate holder 3 side is a ground electrode (anode electrode). In FIG. 1, reference numeral 13 denotes a bypass capacitor connected in series to the target holder 2, and reference numeral 14 denotes, for example, a portion of the target holder 2 other than the portion of the target 10 where the anode ions face the substrate 12. This is a shield member for preventing collision, and an opening 15 is provided corresponding to the central region of the target 10.

上記マスク11のターゲット10側表面に通電可能にパルスバイアス電源6が設けられている。このパルスバイアス電源6は、カソード電圧に同期して駆動するもので、カソード電圧が正の時にON駆動してパルス状の負電圧を出力し、マスク11にバイアス電圧を印加するようになっている。この場合、パルスバイアス電源6には、図1に示すように、マスク11の表面に接触するバイアス電極16と、該バイアス電極16とパルスバイアス電源6との間に挿入され、過電流が流れるのを制限するための制限抵抗17とが直列に接続されている。   A pulse bias power supply 6 is provided on the surface of the mask 11 on the target 10 side so as to be energized. The pulse bias power source 6 is driven in synchronization with the cathode voltage, and is driven to be turned on when the cathode voltage is positive to output a pulsed negative voltage and to apply a bias voltage to the mask 11. . In this case, the pulse bias power source 6 is inserted between the bias electrode 16 contacting the surface of the mask 11 and the bias electrode 16 and the pulse bias power source 6 as shown in FIG. Is connected in series with a limiting resistor 17.

次に、このように構成されたスパッタリング成膜装置を使用するスパッタリング成膜方法について、図2のフローチャートを参照して説明する。
先ず、ステップS1において、成膜の準備が行われる。詳細には、真空チャンバー1の成膜室7の真空を破って、成膜室7内のターゲットホルダー2に例えばITO(インジウム−錫を主成分とする複合酸化物成膜材料)のターゲット10が取り付けられる。
Next, a sputtering film forming method using the thus configured sputtering film forming apparatus will be described with reference to the flowchart of FIG.
First, in step S1, preparation for film formation is performed. Specifically, the vacuum in the film forming chamber 7 of the vacuum chamber 1 is broken, and a target 10 made of, for example, ITO (a composite oxide film forming material mainly composed of indium-tin) is placed on the target holder 2 in the film forming chamber 7. It is attached.

次いで、基板ホルダー3上に基板12が設置され、さらに基板12の成膜面に密着させてマスク11が設置される。その後、パルスバイアス電源6に繋がったバイアス電極16がマスク11の表面に接触される。   Next, the substrate 12 is placed on the substrate holder 3, and the mask 11 is placed in close contact with the film formation surface of the substrate 12. Thereafter, a bias electrode 16 connected to the pulse bias power source 6 is brought into contact with the surface of the mask 11.

ステップS2においては、成膜開始の準備が行われる。詳細には、ターゲット10及び基板12の取り付けが終了すると、真空チャンバー1は閉じられる。そして、真空チャンバー1の排気口9側に備えられた排気バルブ(図示省略)が徐々に開かれ、真空ポンプにより成膜室7内の空気が排気される。なお、このときガス導入口8側に備えられたガス導入バルブ(図示省略)は閉じられている。また、シャッター4も閉じられた状態にある。   In step S2, preparation for starting film formation is performed. Specifically, when the attachment of the target 10 and the substrate 12 is completed, the vacuum chamber 1 is closed. Then, an exhaust valve (not shown) provided on the exhaust port 9 side of the vacuum chamber 1 is gradually opened, and the air in the film forming chamber 7 is exhausted by the vacuum pump. At this time, the gas introduction valve (not shown) provided on the gas introduction port 8 side is closed. The shutter 4 is also closed.

成膜室7内の真空度が予め定められた所定の値に達すると、ガス導入バルブが開かれて、例えばマスフローコントローラにより一定流量に調整されたArガスが導入される。続いて、排気バルブを調節することにより排気ポンプの排気量が調整され、成膜室7内の全ガス圧力が予め定められた所定値に調節される。   When the degree of vacuum in the film forming chamber 7 reaches a predetermined value, the gas introduction valve is opened, and Ar gas adjusted to a constant flow rate by, for example, a mass flow controller is introduced. Subsequently, the exhaust amount of the exhaust pump is adjusted by adjusting the exhaust valve, and the total gas pressure in the film forming chamber 7 is adjusted to a predetermined value.

ステップS3においては、透明導電膜21の成膜が実施される。詳細には、成膜室7内のガス圧力が所定値になると高周波電源5が起動され、予め定められた所定値の図3(a)に示すような高周波(RF)電圧がターゲット10に印加される。この高周波電力は、高周波整合器及び電源出力により調整される。   In step S3, the transparent conductive film 21 is formed. Specifically, when the gas pressure in the film forming chamber 7 reaches a predetermined value, the high-frequency power source 5 is activated, and a predetermined high-frequency (RF) voltage as shown in FIG. Is done. This high frequency power is adjusted by a high frequency matching device and a power output.

ターゲット10に所定の高周波電力が印加されると成膜室7内のArガスが電離して、ターゲット10とシャッター4との間にプラズマが生成される。そして、一定時間だけプリスパッタリングが実行されてターゲット10の表面の不純物が除去されるとシャッター4が開かれ、基板12に対するスパッタリング成膜が開始される。   When a predetermined high frequency power is applied to the target 10, the Ar gas in the film forming chamber 7 is ionized and plasma is generated between the target 10 and the shutter 4. Then, when pre-sputtering is performed for a certain time and the impurities on the surface of the target 10 are removed, the shutter 4 is opened and sputtering film formation on the substrate 12 is started.

以下、本発明のスパッタリング成膜について詳細に説明する。
ターゲットホルダー2に図3(a)に示すようなRF電圧が印加されると、カソード電圧は、バイパスコンデンサ13があるため同図(b)に示すように負側に偏った正弦波形となる。そして、同図に斜線を付して示すように、カソード電圧が負である期間にターゲットのスパッタリングが実行され、基板12へ成膜が行われる。スパッタリングが開始してから一定期間(同図(c)に示すシーズニング期間)が経過するまでは、マスク11の表面には、パルスバイアス電源6からバイアス電圧を印加可能な十分な膜厚の透明導電膜21が堆積していないため、パルスバイアス電源6を起動してもマスク11の表面にはバイアス電圧は印加されない。そこで、本実施形態においては、上記シーズニング期間は、パルスバイアス電源6は0Vにされている。
Hereinafter, the sputtering film formation of the present invention will be described in detail.
When an RF voltage as shown in FIG. 3A is applied to the target holder 2, the cathode voltage has a sine waveform biased to the negative side as shown in FIG. Then, as shown by hatching in the figure, sputtering of the target is performed during a period in which the cathode voltage is negative, and film formation is performed on the substrate 12. From the start of sputtering until the passage of a certain period (seasoning period shown in FIG. 5C), the transparent conductive film having a sufficient thickness to which a bias voltage can be applied from the pulse bias power source 6 is applied to the surface of the mask 11. Since the film 21 is not deposited, no bias voltage is applied to the surface of the mask 11 even when the pulse bias power supply 6 is activated. Therefore, in the present embodiment, the pulse bias power source 6 is set to 0 V during the seasoning period.

上記シーズニング期間においては、図4(a)に示すように、電離したArガスの陽イオン18は、カソード電圧が負のときターゲット10側に引き寄せられ、同図に矢印で示すようにターゲット10に衝突してスパッタ粒子19を弾き飛ばす。こうして、弾き飛ばされたスパッタ粒子19は、基板12側に向かって飛翔し、同図(b)に示すように、マスク11の開口パターン20を通って基板12の表面に付着し成膜が実行される。同時に、マスク11の表面にもスパッタ粒子19が付着し透明導電膜21が堆積する。このように、図3(b)に示すように、カソード電圧が負であるターゲットスパッタ期間において、成膜が実施される。   In the seasoning period, as shown in FIG. 4A, the ionized Ar gas cation 18 is attracted to the target 10 side when the cathode voltage is negative. The sputtered particles 19 are blown off by collision. The sputtered particles 19 thus blown off fly toward the substrate 12 and adhere to the surface of the substrate 12 through the opening pattern 20 of the mask 11 as shown in FIG. Is done. At the same time, the sputtered particles 19 adhere to the surface of the mask 11 and the transparent conductive film 21 is deposited. Thus, as shown in FIG. 3B, film formation is performed in the target sputtering period in which the cathode voltage is negative.

シーズニング期間が経過すると、図3(c)に示すように、パルスバイアス電源6が起動される。そして、カソード電圧が正となりスパッタが停止されている期間(同図(b)に示すターゲットスパッタ停止期間)に、パルスバイアス電源6が負電圧を出力し、マスク11の表面に堆積した透明導電膜21にパルス状のバイアス電圧(−Vb)が印加される。これにより、図5に示すように、電離したArガスの陽イオン18は、マスク11側に引き寄せられ、同図に矢印で示すようにマスク11の表面に堆積した透明導電膜21を叩いてイオンボンバードメントが行われる(マスク洗浄)。   When the seasoning period elapses, the pulse bias power supply 6 is activated as shown in FIG. Then, during the period when the cathode voltage is positive and sputtering is stopped (target sputtering stop period shown in FIG. 5B), the pulse bias power supply 6 outputs a negative voltage and is deposited on the surface of the mask 11. A pulsed bias voltage (−Vb) is applied to 21. As a result, as shown in FIG. 5, the ionized Ar gas cation 18 is attracted to the mask 11 side and hits the transparent conductive film 21 deposited on the surface of the mask 11 as shown by the arrow in FIG. Bombardment is performed (mask cleaning).

次いで、図3(b)に示すように、カソード電圧の正期間が終え、負に切り替わると、同図(c)に示すように、上記カソード電圧に同期してパルスバイアス電源6が制御され、マスク11に対する印加電圧が0Vにされる(パルスバイアス電源6がOFF駆動)。これにより、図6(a)に示すように、再びマスク11を使用した通常のスパッタリング成膜が開始され、同図(b)に示すように透明導電膜21が基板12及びマスク11表面に堆積する。   Next, as shown in FIG. 3B, when the positive period of the cathode voltage is finished and switched to negative, as shown in FIG. 3C, the pulse bias power source 6 is controlled in synchronization with the cathode voltage, The voltage applied to the mask 11 is set to 0 V (the pulse bias power supply 6 is turned off). As a result, as shown in FIG. 6A, normal sputtering film formation using the mask 11 is started again, and the transparent conductive film 21 is deposited on the surface of the substrate 12 and the mask 11 as shown in FIG. 6B. To do.

以降、スパッタリング成膜とマスク11洗浄が交互に実施され、予め定められた所定時間が経過するとシャッター4を閉じて成膜が終了される。さらに、高周波電源5及びパルスバイアス電源6がOFFされる。   Thereafter, the sputtering film formation and the mask 11 cleaning are performed alternately. When a predetermined time has elapsed, the shutter 4 is closed and the film formation is completed. Further, the high frequency power supply 5 and the pulse bias power supply 6 are turned off.

続いて、ステップS4においては、基板が取り出される。詳細には、排気バルブ及びガス導入バルブが閉じられ、図示省略のリークバルブが開けられて真空チャンバー1の成膜室7内の真空が破られる。これにより、成膜室7を開いて基板12を取り出すことができる。   Subsequently, in step S4, the substrate is taken out. Specifically, the exhaust valve and the gas introduction valve are closed, a leak valve (not shown) is opened, and the vacuum in the film forming chamber 7 of the vacuum chamber 1 is broken. Thereby, the film formation chamber 7 can be opened and the substrate 12 can be taken out.

図7は本発明によるスパッタリング成膜装置の第2の実施形態の概略構成を示す正面図である。ここでは、第1の実施形態と異なる部分について説明する。
この第2の実施形態は、第1の実施形態において高周波電源5に替えて直流電源22を備えたもので、直流電源22の負極側を抵抗23を介してターゲットホルダー2(カソード電極)に接続し、正極側を基板ホルダー3(アノード電極)に接続したDCスパッタリング装置である。この場合、使用されるターゲット材料は、導電性材料に限られる。
FIG. 7 is a front view showing a schematic configuration of the second embodiment of the sputtering film-forming apparatus according to the present invention. Here, a different part from 1st Embodiment is demonstrated.
In the second embodiment, a DC power supply 22 is provided instead of the high frequency power supply 5 in the first embodiment, and the negative electrode side of the DC power supply 22 is connected to the target holder 2 (cathode electrode) via a resistor 23. In this DC sputtering apparatus, the positive electrode side is connected to the substrate holder 3 (anode electrode). In this case, the target material used is limited to a conductive material.

また、第2の実施形態におけるパルスバイアス電源6は、ターゲットホルダー2にカソード電圧(−Vc)が印加された状態で、一定周期のパルス状の負電圧を出力してマスク11に上記カソード電圧(−Vc)よりも電圧の絶対値が大きいバイアス電圧(−Vb)を印加できるようになっている(Vc<Vb)。   In addition, the pulse bias power source 6 in the second embodiment outputs a negative pulse voltage having a constant cycle in a state where the cathode voltage (−Vc) is applied to the target holder 2, and outputs the cathode voltage ( A bias voltage (-Vb) having a voltage absolute value larger than -Vc) can be applied (Vc <Vb).

この第2の実施形態によれば、図8(a)に示すように、成膜時には、カソード電極に常時、数百ボルトの負の直流電圧(カソード電圧)が印加され、ターゲット10と基板12の間にプラズマを発生させて基板12への成膜が行われる。   According to the second embodiment, as shown in FIG. 8A, a negative DC voltage (cathode voltage) of several hundred volts is constantly applied to the cathode electrode during film formation, and the target 10 and the substrate 12 During this time, plasma is generated to form a film on the substrate 12.

詳細には、上記第1の実施形態と同様に、Arガスがプラズマ化して生じたアルゴンの陽イオン18でターゲット10を叩き、これにより弾き飛ばされたスパッタ粒子19を基板12上に堆積させて導電膜の成膜が行われる。   More specifically, as in the first embodiment, the target 10 is struck by argon cations 18 generated by the Ar gas being turned into plasma, and the sputtered particles 19 bounced thereby are deposited on the substrate 12. A conductive film is formed.

また、パルスバイアス電源6は、図8(b)に示すように、成膜開始後のシーズニング期間には、マスク11への印加電圧を0Vとし、シーズニング期間経過後に一定周期のパルス状の負電圧を出力してマスク11にカソード電圧(−Vc)よりも電圧の絶対値が大きいバイアス電圧(−Vb)を印加する(Vc<Vb)。これにより、パルス状のバイアス電圧(−Vb)がマスク11に印加されているときには、アルゴンの陽イオン18は、マスク11側に引き寄せられ、第1の実施形態と同様にマスク11の表面に堆積した導電膜を叩いてイオンボンバードメントが行われる(マスク洗浄)。   Further, as shown in FIG. 8B, the pulse bias power source 6 sets the applied voltage to the mask 11 to 0 V during the seasoning period after the start of film formation, and a pulse-like negative voltage with a constant cycle after the seasoning period has elapsed. And a bias voltage (-Vb) having a voltage absolute value larger than the cathode voltage (-Vc) is applied to the mask 11 (Vc <Vb). Thus, when a pulsed bias voltage (-Vb) is applied to the mask 11, the argon cations 18 are attracted to the mask 11 side and deposited on the surface of the mask 11 as in the first embodiment. Ion bombardment is performed by hitting the conductive film (mask cleaning).

このように、本発明によるスパッタリング成膜装置によれば、カソード電極に高電圧のカソード電圧を印加して行う成膜過程で、マスク11にパルス状の負電圧を印加することにより、マスク11の表面に堆積した薄膜を不活性ガスの陽イオン18で叩いて除去することができる。したがって、成膜しながらマスク11の洗浄も行うことができ、成膜基板のスループットを向上することができる。   Thus, according to the sputtering film forming apparatus of the present invention, by applying a pulsed negative voltage to the mask 11 in the film forming process performed by applying a high cathode voltage to the cathode electrode, The thin film deposited on the surface can be removed by hitting with an inert gas cation 18. Accordingly, the mask 11 can be cleaned while the film is formed, and the throughput of the film formation substrate can be improved.

なお、上記実施形態においては、シーズニング期間にパルスバイアス電源6が停止され、マスク11に対する印加電圧が0Vとされている場合について説明したが、本発明はこれに限られず、高周波電源5又は直流電源22を起動すると同時にパルスバイアス電源6を起動して、マスク11に一定周期の負電圧が印加されるようにしてもよい。ただし、マスク11の表面の全面に十分な膜厚の導電膜が堆積してバイアス電圧が通電可能となるまでは、パルスバイアス電源6が起動されていても導電膜にバイアス電圧が印加されないため、マスク洗浄機能は発揮されない。   In the above embodiment, the case where the pulse bias power source 6 is stopped and the applied voltage to the mask 11 is set to 0 V in the seasoning period has been described. However, the present invention is not limited to this, and the high frequency power source 5 or the DC power source is used. The pulse bias power supply 6 may be activated at the same time as the activation of the voltage 22 so that a negative voltage having a constant period is applied to the mask 11. However, the bias voltage is not applied to the conductive film even when the pulse bias power supply 6 is activated until a conductive film having a sufficient thickness is deposited on the entire surface of the mask 11 and the bias voltage can be applied. The mask cleaning function is not demonstrated.

また、上記実施形態においては、基板12に成膜される膜が導電膜である場合について説明したが、マスク11が導電性のメタルマスクや、メタルマスクと樹脂製フィルムとを密接させた複合マスクの場合には、成膜される膜は非導電膜であってもよい。   In the above embodiment, the case where the film formed on the substrate 12 is a conductive film has been described. However, the mask 11 is a conductive metal mask or a composite mask in which a metal mask and a resin film are in close contact. In this case, the film to be formed may be a non-conductive film.

さらに、上記実施形態においては、バッチ方式のスパッタリング成膜装置について説明したが、本発明はこれに限られず、インライン方式のスパッタリング成膜装置であってもよい。この場合、成膜室7を間にして基板12の搬送方向上流側にロードロック室を備え、下流側にアンロード室を備えて構成される。そして、先ず、基板12をロードロック室の上流側のゲートバルブを開いてロードロック室に搬送し、ロードロック室を排気した後に、ロードロック室の下流側のゲートバルブを開いて基板12を成膜室7内に搬送し、基板ホルダー3に設置する。その後、成膜室7内のマスクホルダーに予め保持されたマスク11をローディングして基板12上に設置し、さらに、バイアス電極16をマスク11の表面に接触させる。これにより、前述のRFスパッタリング成膜が可能となる。一方、成膜が終了すると、バイアス電極16を退避させた後、マスク11をアンローディングする。それから、成膜室7を排気した後、成膜室7の下流側のゲートバルブを開いて基板12をアンロード室に搬送する。その後、成膜室7の下流側のゲートバルブを閉じて、アンロード室内の真空を破ることにより基板12の取り出しが可能となる。   Furthermore, although the batch-type sputtering film forming apparatus has been described in the above embodiment, the present invention is not limited to this, and may be an in-line type sputtering film forming apparatus. In this case, a load lock chamber is provided on the upstream side in the transport direction of the substrate 12 with the film forming chamber 7 therebetween, and an unload chamber is provided on the downstream side. First, the substrate 12 is transferred to the load lock chamber by opening the gate valve on the upstream side of the load lock chamber. After exhausting the load lock chamber, the gate valve on the downstream side of the load lock chamber is opened to form the substrate 12. The film is transferred into the film chamber 7 and placed in the substrate holder 3. Thereafter, the mask 11 previously held in the mask holder in the film forming chamber 7 is loaded and placed on the substrate 12, and the bias electrode 16 is brought into contact with the surface of the mask 11. Thereby, the RF sputtering film formation described above can be performed. On the other hand, when the film formation is completed, the bias electrode 16 is retracted, and then the mask 11 is unloaded. Then, after the film formation chamber 7 is evacuated, the gate valve on the downstream side of the film formation chamber 7 is opened to transfer the substrate 12 to the unload chamber. Thereafter, the gate valve on the downstream side of the film formation chamber 7 is closed, and the substrate 12 can be taken out by breaking the vacuum in the unload chamber.

2…ターゲットホルダー
3…基板ホルダー
5…高周波電源
6…パルスバイアス電源
10…ターゲット
11…マスク
12…基板
22…直流電源
2 ... Target holder 3 ... Substrate holder 5 ... High frequency power supply 6 ... Pulse bias power supply 10 ... Target 11 ... Mask 12 ... Substrate 22 ... DC power supply

Claims (11)

カソード電極に高電圧のカソード電圧を印加してターゲットと基板との間にプラズマを生成し、基板にマスクを介して成膜するスパッタリング成膜装置であって、
前記基板への成膜過程で、前記マスクにパルス状の負電圧を印加可能にパルスバイアス電源を備えたことを特徴とするスパッタリング成膜装置。
A sputtering film forming apparatus for generating a plasma between a target and a substrate by applying a high voltage cathode voltage to the cathode electrode, and forming a film on the substrate through a mask,
A sputtering film forming apparatus comprising a pulse bias power source capable of applying a pulsed negative voltage to the mask during a film forming process on the substrate.
前記カソード電圧は、高周波電圧であり、
前記パルスバイアス電源は、前記カソード電圧に同期して駆動し、該カソード電圧が正の時に前記パルス状の負電圧を出力して前記マスクに負電圧を印加することを特徴とする請求項1記載のスパッタリング成膜装置。
The cathode voltage is a high frequency voltage,
2. The pulse bias power source is driven in synchronization with the cathode voltage, and when the cathode voltage is positive, outputs the pulsed negative voltage to apply a negative voltage to the mask. Sputter deposition system.
前記カソード電圧は、直流電圧であり、
前記パルスバイアス電源は、前記カソード電圧が印加された状態で、一定周期の前記パルス状の負電圧を出力して前記マスクに前記カソード電圧よりも電圧の絶対値が大きい負電圧を印加することを特徴とする請求項1記載のスパッタリング成膜装置。
The cathode voltage is a DC voltage,
The pulse bias power source outputs the pulse-shaped negative voltage having a constant period in a state where the cathode voltage is applied, and applies a negative voltage having an absolute value larger than the cathode voltage to the mask. The sputtering film forming apparatus according to claim 1.
前記基板に成膜される薄膜は、導電性の膜であり、
前記マスクは、非導電性材料で形成されたものである、
ことを特徴とする請求項1〜3のいずれか1項に記載のスパッタリング成膜装置。
The thin film formed on the substrate is a conductive film,
The mask is made of a non-conductive material.
The sputtering film-forming apparatus of any one of Claims 1-3 characterized by the above-mentioned.
前記マスクは、導電性材料で形成されたものであることを特徴とする請求項1〜3のいずれか1項に記載のスパッタリング成膜装置。   The sputtering film forming apparatus according to claim 1, wherein the mask is made of a conductive material. カソード電極に高電圧のカソード電圧を印加してターゲットと基板との間にプラズマを生成し、基板にマスクを介して成膜するスパッタリング成膜方法であって、
前記基板への成膜過程で、前記マスクにパルス状の負電圧を印加することを特徴とするスパッタリング成膜方法。
A sputtering film forming method in which a high voltage cathode voltage is applied to a cathode electrode to generate plasma between a target and a substrate, and a film is formed on the substrate through a mask,
A sputtering film forming method, wherein a pulsed negative voltage is applied to the mask in the film forming process on the substrate.
前記カソード電圧は、高周波電圧であり、前記カソード電圧が正の時に前記パルス状の負電圧を前記マスクに印加することを特徴とする請求項6記載のスパッタリング成膜方法。   The sputtering film forming method according to claim 6, wherein the cathode voltage is a high-frequency voltage, and the negative pulse voltage is applied to the mask when the cathode voltage is positive. 前記カソード電圧は、直流電圧であり、前記カソード電圧が印加された状態で、該カソード電圧よりも電圧値の絶対値が大きい一定周期の前記パルス状の負電圧を前記マスクに印加することを特徴とする請求項6記載のスパッタリング成膜方法。   The cathode voltage is a direct current voltage, and the pulse-like negative voltage having a constant period whose absolute value is larger than the cathode voltage is applied to the mask in a state where the cathode voltage is applied. The sputtering film forming method according to claim 6. 前記マスクには、成膜が開始されてから、予め定められた時間経過後に前記パルス状の負電圧の印加が開始されることを特徴とする請求項6〜8のいずれか1項に記載のスパッタリング成膜方法。   9. The application of the pulse-like negative voltage to the mask starts after a predetermined time has elapsed since the start of film formation. Sputtering film forming method. 前記基板に成膜される薄膜は、導電性の膜であり、
前記マスクは、非導電性材料で形成されたものである、
ことを特徴とする請求項6〜9のいずれか1項に記載のスパッタリング成膜方法。
The thin film formed on the substrate is a conductive film,
The mask is made of a non-conductive material.
The sputtering film-forming method according to any one of claims 6 to 9, wherein
前記マスクは、導電性材料で形成されたものであることを特徴とする請求項6〜9のいずれか1項に記載のスパッタリング成膜方法。   10. The sputtering film forming method according to claim 6, wherein the mask is made of a conductive material. 11.
JP2013172107A 2013-08-22 2013-08-22 Sputtering film deposition apparatus and sputtering film deposition method Pending JP2015040330A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013172107A JP2015040330A (en) 2013-08-22 2013-08-22 Sputtering film deposition apparatus and sputtering film deposition method
KR1020167000917A KR20160045667A (en) 2013-08-22 2014-08-18 Sputtering film formation device and sputtering film formation method
PCT/JP2014/071588 WO2015025823A1 (en) 2013-08-22 2014-08-18 Sputtering film formation device and sputtering film formation method
CN201480046504.5A CN105492650A (en) 2013-08-22 2014-08-18 Sputtering film formation device and sputtering film formation method
TW103128541A TW201522676A (en) 2013-08-22 2014-08-20 Sputtering film formation device and sputtering film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013172107A JP2015040330A (en) 2013-08-22 2013-08-22 Sputtering film deposition apparatus and sputtering film deposition method

Publications (1)

Publication Number Publication Date
JP2015040330A true JP2015040330A (en) 2015-03-02

Family

ID=52483598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013172107A Pending JP2015040330A (en) 2013-08-22 2013-08-22 Sputtering film deposition apparatus and sputtering film deposition method

Country Status (5)

Country Link
JP (1) JP2015040330A (en)
KR (1) KR20160045667A (en)
CN (1) CN105492650A (en)
TW (1) TW201522676A (en)
WO (1) WO2015025823A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017123263A (en) * 2016-01-07 2017-07-13 株式会社ジャパンディスプレイ Electrode manufacturing method and method of manufacturing display device having electrode
US10777606B2 (en) 2017-08-08 2020-09-15 Samsung Electronics Co., Ltd. Semiconductor memory device and semiconductor memory manufacturing apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109652761B (en) * 2019-01-30 2021-01-26 惠科股份有限公司 Film coating method and film coating device
JP6972427B2 (en) * 2019-11-28 2021-11-24 株式会社アルバック Film formation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310167A (en) * 1996-05-21 1997-12-02 Toshiba Corp Sheet type magnetron sputtering device
JP2005240081A (en) * 2004-02-25 2005-09-08 Matsushita Electric Ind Co Ltd Plastic film deposition system
CN101271869B (en) 2007-03-22 2015-11-25 株式会社半导体能源研究所 The manufacture method of luminescent device
DE112009003614T5 (en) * 2008-11-14 2013-01-24 Tokyo Electron Ltd. Substrate processing system
JP5424972B2 (en) * 2010-04-23 2014-02-26 株式会社アルバック Vacuum deposition equipment
JP2012132053A (en) * 2010-12-21 2012-07-12 Panasonic Corp Sputtering apparatus and sputtering method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017123263A (en) * 2016-01-07 2017-07-13 株式会社ジャパンディスプレイ Electrode manufacturing method and method of manufacturing display device having electrode
US10777606B2 (en) 2017-08-08 2020-09-15 Samsung Electronics Co., Ltd. Semiconductor memory device and semiconductor memory manufacturing apparatus
US11444122B2 (en) 2017-08-08 2022-09-13 Samsung Electronics Co., Ltd. Semiconductor memory device and semiconductor memory manufacturing apparatus

Also Published As

Publication number Publication date
TW201522676A (en) 2015-06-16
WO2015025823A1 (en) 2015-02-26
CN105492650A (en) 2016-04-13
KR20160045667A (en) 2016-04-27

Similar Documents

Publication Publication Date Title
US20150136585A1 (en) Method for sputtering for processes with a pre-stabilized plasma
TW201705179A (en) Ion beam device, ion implantation device, ion beam irradiation method
EP3788181B1 (en) Method of low-temperature plasma generation, method of an electrically conductive or ferromagnetic tube coating using pulsed plasma and corresponding devices
WO2015025823A1 (en) Sputtering film formation device and sputtering film formation method
JP2011124215A (en) Ion beam generator, and cleaning method thereof
JP6088780B2 (en) Plasma processing method and plasma processing apparatus
JP2014518941A (en) Glow discharge apparatus and method with transversely rotating arc cathode
JP2002306957A (en) Plasma treating device
JP2009275281A (en) Sputtering method and system
KR101293129B1 (en) Sputtering apparatus
KR200436092Y1 (en) A vacuum evaporation coating apparatus for ion nitriding treatment
EP2422352B1 (en) Rf-plasma glow discharge sputtering
JP5959409B2 (en) Film forming apparatus and method of operating film forming apparatus
KR100469552B1 (en) System and method for surface treatment using plasma
JP2011231390A (en) Film forming method and film forming device
JP2006028562A (en) Film deposition apparatus, and reverse sputtering method
JP7219941B2 (en) Plasma CVD device, magnetic recording medium manufacturing method and film forming method
KR20170117279A (en) Magnetron sputtering appparatus and thin film deposition method using the same
JP6713623B2 (en) Plasma CVD apparatus, magnetic recording medium manufacturing method and film forming method
JPS63458A (en) Vacuum arc vapor deposition device
JPH01272766A (en) Magnetron sputtering operation
JP2002043235A (en) Plasma treatment system
JP2004035935A (en) Film deposition system and film deposition method
CN114411099A (en) Vacuum coating system and coating method
JP2007277635A (en) Coating apparatus and coating method