JP2015039801A - Laminate polyester film and coat-type magnetic recording tape using the same - Google Patents

Laminate polyester film and coat-type magnetic recording tape using the same Download PDF

Info

Publication number
JP2015039801A
JP2015039801A JP2013171007A JP2013171007A JP2015039801A JP 2015039801 A JP2015039801 A JP 2015039801A JP 2013171007 A JP2013171007 A JP 2013171007A JP 2013171007 A JP2013171007 A JP 2013171007A JP 2015039801 A JP2015039801 A JP 2015039801A
Authority
JP
Japan
Prior art keywords
layer
particles
polyester film
film
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013171007A
Other languages
Japanese (ja)
Other versions
JP6158640B2 (en
Inventor
真哉 渡邊
Shinya Watanabe
真哉 渡邊
室 伸次
Shinji Muro
伸次 室
良敬 田中
Yoshitaka Tanaka
良敬 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52694240&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2015039801(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2013171007A priority Critical patent/JP6158640B2/en
Publication of JP2015039801A publication Critical patent/JP2015039801A/en
Application granted granted Critical
Publication of JP6158640B2 publication Critical patent/JP6158640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyester film capable of exhibiting excellent electromagnetic conversion characteristics and error rate characteristics even when used for a coat-type magnetic recording tape.SOLUTION: The provided laminate polyester film is a base film used for a coat-type magnetic recording tape and consisting of at least two layers, namely a layer A forming the surface of the side where a magnetic layer is formed and a layer B forming the surface of the side where the magnetic layer is not formed, wherein the layer A includes 0.001-0.19 mass% of particles having an average diameter of 0.06-0.29 μm and a relative diameter standard deviation of 20% or below in a state where the textural index of the surface of the layer A is being confined to a range of 80-99.99%, wherein the layer B includes 0.03-0.9 mass% of particles having an average diameter identical to that of the layer A and a relative diameter standard deviation of 20% or below in a state where the content of the included particles is at least 1.5 times higher than that of the layer A, wherein the density of aggregated protrusions of five or more particles of the layer A is 3 protrusions/9 cmor less, and wherein the density of aggregated protrusions of five or more particles of the layer B is 10 protrusions/9 cmor less.

Description

本発明は、データストレージなどの塗布型磁気記録テープのベースフィルムに用いる積層ポリエステルフィルムに関する。   The present invention relates to a laminated polyester film used for a base film of a coating type magnetic recording tape such as data storage.

ポリエステルフィルムは、比較的安価で、優れた機械的特性を有することから磁気記録テープのベースフィルムに用いられてきた。そして、磁気記録テープのベースフィルムに用いる場合、ポリエステルフィルムには粗大な突起や欠点がない平坦な表面を有することが求められる。一方、磁性層をポリエステルフィルムに塗布して形成する塗布型磁気記録テープでは、ベースフィルムの巻取性や走行性が不安定であると、均一な磁性層を効率的に製造することができず、ポリエステルフィルムに滑剤としての粒子を含有させて、表面に突起などを形成することが求められる。この2つの要求は相反するものであり、これらの要求を満たすために、特許文献1〜5には、表面欠点を低減するために触媒種を特定のものにすること、フィルム中に含有させる粒子として粗大粒子の少ないものを用いること、およびそのような処理を行った表面欠点の少ないフィルムが提案されている。また特許文献6〜7には、空間周波数に着目したベースフィルムのウネリ成分を低減することで原反形状の安定化や磁気記録媒体としての電磁変換特性に優れた二軸配向ポリエステルフィルムの提案がなされている。   Polyester films have been used as base films for magnetic recording tapes because they are relatively inexpensive and have excellent mechanical properties. And when using for the base film of a magnetic-recording tape, it is calculated | required that a polyester film has a flat surface without a rough protrusion and a fault. On the other hand, in a coating type magnetic recording tape formed by applying a magnetic layer to a polyester film, a uniform magnetic layer cannot be efficiently produced if the winding property and running property of the base film are unstable. It is required that the polyester film contains particles as a lubricant to form protrusions on the surface. These two requirements are contradictory, and in order to satisfy these requirements, Patent Documents 1 to 5 disclose that the catalyst species should be specific in order to reduce surface defects, and particles to be included in the film. A film having a small number of coarse particles and a film having a small surface defect subjected to such a treatment have been proposed. Patent Documents 6 to 7 propose a biaxially oriented polyester film that is excellent in the stability of the original fabric shape and the electromagnetic conversion characteristics as a magnetic recording medium by reducing the undulation component of the base film focusing on the spatial frequency. Has been made.

しかしながら、近年の高密度記録の要求はすさまじく、特にMRヘッド、GMRヘッドにおいては、その特性から、磁気記録媒体表面の突起物に触れることによって生じる瞬間的な温度上昇によって、信号を読み取ることができなくなる(サーマル・アスピリティー)現象が知られており、サーマル・アスピリティーに対する対策として、磁気記録媒体表面の平滑性が特に重視されており、特に記録容量が極めて高いデータストレージなどの塗布型磁気記録テープでは、前述の特許文献1〜5で表面欠点がないとされたフィルムや特許文献6〜7でウネリが少ないとされたフィルムでも十分に応えられなくなってきた。   However, the demand for high-density recording in recent years is tremendous. Especially in MR heads and GMR heads, signals can be read by the instantaneous temperature rise caused by touching the protrusions on the surface of the magnetic recording medium due to its characteristics. Disappearance (thermal aspirity) phenomenon is known, and smoothness of the surface of the magnetic recording medium is particularly emphasized as a measure against thermal aspirity, especially coating type magnetic recording such as data storage with extremely high recording capacity In the case of a tape, even a film that has no surface defects in the above-mentioned Patent Documents 1 to 5 and a film that has a small amount of undulation in Patent Documents 6 to 7 cannot sufficiently respond.

特開2004−114492号公報JP 2004-114492 A 特開2003−291288号公報JP 2003-291288 A 特開2002−363311号公報JP 2002-36311 A 特開2002−363310号公報JP 2002-363310 A 特開2002−059520号公報JP 2002-059520 A 特開2001−341265号公報JP 2001-341265 A 特開2004−091753号公報JP 2004091753 A

本発明の目的は、フィルムとしての生産性に優れ、その後の搬送性などの加工性も有し、しかも塗布型磁気記録テープ、特にデータストレージのベースフィルムに用いたとき、優れた電磁変換特性と、エラーレートやドロップアウト、サーマルアスピリティを低減できる積層ポリエステルフィルムを提供することにある。   The object of the present invention is excellent in productivity as a film, has subsequent processability such as transportability, and has excellent electromagnetic conversion characteristics when used for a coating type magnetic recording tape, particularly a base film for data storage. An object of the present invention is to provide a laminated polyester film that can reduce error rate, dropout, and thermal aspiration.

本発明者らは上記課題を解決しようと鋭意研究した結果、磁性層を形成する表面と磁性層を形成しない表面とに、それぞれ特定の同一粒子径の粒子を特定の割合で含有させ、かつ磁性層を形成する表面の粒子を含有させるポリエステルの分散性を向上させることで提供できることを見出し、本発明に到達した。   As a result of diligent research to solve the above-mentioned problems, the inventors of the present invention have included a specific ratio of particles having the same particle diameter on the surface on which the magnetic layer is formed and the surface on which the magnetic layer is not formed. The present inventors have found that it can be provided by improving the dispersibility of the polyester containing the particles on the surface forming the layer.

かくして本発明によれば、塗布型磁気記録テープに用いるベースフィルムであって、少なくとも磁性層を形成する側の表面を形成するA層と磁性層を形成しない側の表面を形成するB層の2層からなる積層ポリエステルフィルムであって、
A層は、平均粒子径0.06−0.29μmで、粒子径の相対標準偏差が20%以下の粒子を0.001−0.19質量%含有し、該A層の表面における地肌指数が80〜99.99%の範囲であって、
他方磁性層を形成しない側のB層は、A層と平均粒子径が同じで、粒子径の相対標準偏差が20%以下の粒子を0.03−0.9質量%含有し、かつその粒子含有量がA層の1.5倍以上であり、そして
A層は粒子5個以上の凝集突起が3個/9cm以下であり、他方B層の粒子5個以上の凝集突起が10個/9cm以下である積層ポリエステルフィルムが提供される。
Thus, according to the present invention, there are two base films used for the coating type magnetic recording tape, that is, the A layer that forms at least the surface on which the magnetic layer is formed and the B layer that forms the surface on which the magnetic layer is not formed. A laminated polyester film comprising layers,
A layer contains 0.001-0.19 mass% of particles having an average particle diameter of 0.06-0.29 μm and a relative standard deviation of the particle diameter of 20% or less, and the background index on the surface of the A layer is In the range of 80-99.99%,
On the other hand, the B layer on the side where no magnetic layer is formed contains 0.03-0.9% by mass of particles having the same average particle diameter as that of the A layer and a relative standard deviation of the particle diameter of 20% or less. The content is 1.5 times or more of the A layer, and the A layer has 3 aggregated projections of 5 or more particles / 9 cm 2 or less, while the A layer has 10 aggregated projections of 5 or more particles of the B layer / A laminated polyester film that is 9 cm 2 or less is provided.

また、本発明によれば、本発明の好ましい態様として、ポリエステルがエチレンテレフタレートまたはエチレン−2,6−ナフタレンジカルボキシレートを主たる繰り返し単位とすること、A層の極限粘度が0.50以上0.54以下、B層の極限粘度が0.50以上0.54以下であり、A層の極限粘度がB層のそれよりも大きいこと、含有粒子が球状シリカ粒子、架橋ポリスチレン粒子、シリコーン粒子、シリカーアクリル複合粒子のいずれかであることの少なくともいずれかを具備する積層フィルムも提供される。
さらに本発明によれば、上記本発明の積層ポリエステルフィルムと、その磁性層を形成する側の表面に塗布形成された磁性層とからなる塗布型磁気記録テープも提供される。
According to the present invention, as a preferred embodiment of the present invention, the polyester has ethylene terephthalate or ethylene-2,6-naphthalenedicarboxylate as a main repeating unit, and the intrinsic viscosity of the A layer is 0.50 or more and 0.00. 54, the intrinsic viscosity of the B layer is 0.50 or more and 0.54 or less, the intrinsic viscosity of the A layer is larger than that of the B layer, and the contained particles are spherical silica particles, crosslinked polystyrene particles, silicone particles, silica A laminated film comprising at least one of the car acryl composite particles is also provided.
Furthermore, according to the present invention, there is also provided a coating type magnetic recording tape comprising the above laminated polyester film of the present invention and a magnetic layer coated on the surface on which the magnetic layer is to be formed.

本発明の積層ポリエステルフィルムは、同一粒子径の粒子をいずれの層にも用いることから、フィルム生産時に製品にならなかった部分を回収して、いずれの層にも回収できるという優れた生産性を有しながらも、実用上必要な搬送性などの加工性を具備し、しかも塗布型磁気記録テープ、特にデータストレージのベースフィルムに用いたときに、エラーとなる微小な表面欠点までも低減されていることから、電磁変換特性に優れ、エラーレートやドロップアウト、サーマルアスピリティの少ないデータストレージを提供することができる。   Since the laminated polyester film of the present invention uses particles of the same particle diameter in any layer, the portion that did not become a product at the time of film production is recovered, and it can be recovered in any layer. While possessing workability such as transportability necessary for practical use, and even when used for coating type magnetic recording tapes, especially base films for data storage, even minute surface defects that cause errors are reduced. Therefore, it is possible to provide data storage with excellent electromagnetic conversion characteristics, low error rate, dropout and thermal aspiration.

以下、本発明について、詳述する。
本発明におけるポリエステルは、フィルムへの製膜が可能なものであれば、それ自体公知のものを採用できる。例えば、ジオール成分と芳香族ジカルボン酸成分との重縮合によって得られる芳香族ポリエステルが好ましい。かかる芳香族ジカルボン酸成分としては、例えばテレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、4,4’−ジフェニルジカルボン酸、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸などの6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸が挙げられる。また、かかるジオール成分としては、例えばエチレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール、1,6−ヘキサンジオールが挙げられる。
Hereinafter, the present invention will be described in detail.
As the polyester in the present invention, a known polyester can be adopted as long as it can be formed into a film. For example, an aromatic polyester obtained by polycondensation of a diol component and an aromatic dicarboxylic acid component is preferable. Examples of the aromatic dicarboxylic acid component include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 6,6 ′-(ethylenedioxy) di-2-naphthoic acid, and the like. 6,6 ′-(alkylenedioxy) di-2-naphthoic acid. Examples of the diol component include ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, and 1,6-hexanediol.

これらの中でも、高温での加工時の寸法安定性の点からは、エチレンテレフタレートまたはエチレン−2,6−ナフタレンジカルボキシレートを主たる繰り返し単位とするものが好ましく、特にエチレン−2,6−ナフタレンジカルボキシレートを主たる繰り返し単位とするものが好ましい。ここでいう主たるとは、好ましくは60モル%以上、70モル%以上、80モル%以上、さらに90モル%以上を意味する。   Among these, ethylene terephthalate or ethylene-2,6-naphthalenedicarboxylate is the main repeating unit from the viewpoint of dimensional stability during processing at high temperature, and ethylene-2,6-naphthalene is particularly preferable. Those having carboxylate as the main repeating unit are preferred. The term “main” as used herein means preferably 60 mol% or more, 70 mol% or more, 80 mol% or more, and more preferably 90 mol% or more.

また、より環境変化に対する寸法安定性を向上させる観点から、国際公開2008/096612号パンフレットに記載された6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分、6,6’−(トリメチレンジオキシ)ジ−2−ナフトエ酸成分および6,6’−(ブチレンジオキシ)ジ−2−ナフトエ酸成分などの6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分を共重合したものも挙げられる。好ましい(アルキレンジオキシ)ジ−2−ナフトエ酸成分の共重合量は、全ジカルボン酸成分のモル数を基準として、5〜40モル%の範囲、さらに6〜35モル%の範囲、特に7〜30モル%の範囲である。なお、6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分を共重合する場合は、エチレンテレフタレートまたはエチレン−2,6−ナフタレンジカルボキシレート成分と、6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分との合計量が、全酸成分の90モル%以上であることが好ましい。   Further, from the viewpoint of further improving the dimensional stability against environmental changes, the 6,6 ′-(ethylenedioxy) di-2-naphthoic acid component described in International Publication No. 2008/096612 pamphlet, 6,6 ′-( 6,6 ′-(alkylenedioxy) di-2-naphthoic acid components such as trimethylenedioxy) di-2-naphthoic acid component and 6,6 ′-(butylenedioxy) di-2-naphthoic acid component The thing copolymerized is also mentioned. The copolymerization amount of the (alkylenedioxy) di-2-naphthoic acid component is preferably in the range of 5 to 40 mol%, more preferably in the range of 6 to 35 mol%, particularly 7 to 7 mol, based on the number of moles of the total dicarboxylic acid component. It is in the range of 30 mol%. In the case of copolymerizing the 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component, an ethylene terephthalate or ethylene-2,6-naphthalenedicarboxylate component and 6,6 ′-(alkylenediene) The total amount of the (oxy) di-2-naphthoic acid component is preferably 90 mol% or more of the total acid component.

本発明におけるポリエステルは、6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分を含有しない場合はο−クロロフェノール中、35℃において、6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分を含有する場合はP−クロロフェノール/1,1,2,2−テトラクロロエタン(40/60重量比)の混合溶媒中、35℃において、測定したときの固有粘度が0.40dl/g以上であることが好ましく、0.40〜1.0dl/gであることがさらに好ましい。固有粘度が0.4dl/g未満ではフィルム製膜時に切断が多発したり、成形加工後の製品の強度が不足したりすることがある。一方、固有粘度が1.0dl/gを超える場合は重合時の生産性が低下する。   When the polyester in the present invention does not contain a 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component, it is 6,6 ′-(alkylenedioxy) di- in o-chlorophenol at 35 ° C. When the 2-naphthoic acid component is contained, the intrinsic viscosity when measured in a mixed solvent of P-chlorophenol / 1,1,2,2-tetrachloroethane (40/60 weight ratio) at 35 ° C. is 0. It is preferably 40 dl / g or more, more preferably 0.40 to 1.0 dl / g. If the intrinsic viscosity is less than 0.4 dl / g, cutting may occur frequently during film formation, or the strength of the product after forming may be insufficient. On the other hand, when the intrinsic viscosity exceeds 1.0 dl / g, productivity during polymerization is lowered.

本発明におけるポリエステルの融点は、200〜300℃であることが好ましく、更に好ましくは210〜290℃、特に好ましくは220〜280℃である。融点が下限に満たないと二軸配向フィルムの耐熱性が不十分な場合があり、融点が上限を超える場合は溶融混練する際の温度が非常に高温になり、熱劣化などを引き起こしやすくなる。
なお、本発明におけるポリエステルは、本発明の効果を損なわない範囲で、それ自体公知の他の共重合成分をさらに共重合、例えば繰り返し単位のモル数に対して10モル%以下、さらに5モル%以下の範囲で共重合していてもよいし、他の熱可塑性樹脂などを、例えば20質量%以下、さらに10質量%以下の範囲でブレンドしても良い。
The melting point of the polyester in the present invention is preferably 200 to 300 ° C, more preferably 210 to 290 ° C, and particularly preferably 220 to 280 ° C. If the melting point is less than the lower limit, the heat resistance of the biaxially oriented film may be insufficient, and if the melting point exceeds the upper limit, the temperature during melt kneading becomes very high, which tends to cause thermal degradation.
The polyester in the present invention is further copolymerized with other copolymer components known per se within a range not impairing the effects of the present invention, for example, 10 mol% or less, further 5 mol% with respect to the number of moles of repeating units The copolymer may be copolymerized in the following range, or may be blended with another thermoplastic resin or the like in a range of, for example, 20% by mass or less, and further 10% by mass or less.

ところで、本発明の積層ポリエステルフィルムは、上述のポリエステルから製造できるが、搬送や巻取りなどの特性を実用上問題ない範囲で維持しつつ、データストレージにしたときの電磁変換特性を高度に維持させる観点から、磁性層を形成する側の表面は、平均粒子径0.06−0.29μmの粒子を0.001−0.19質量%含有している必要がある。平均粒子径がこの範囲より小さい場合や、含有量が少ない場合は、搬送性が悪化してフィルムにスクラッチと称されるキズが入りやすくなり、エラーレートやドロップアウトの悪化を招く。さらに、磁気ヘッドとの摩擦が高くなるためサーマルアスピリティが悪化する可能性がある。また、粒子径や含有量がこれらの範囲を超える場合、例えば記憶容量が3TB以上などの高記録密度のデータストレージのベースフィルムに用いると、表面が粗くなりすぎてしまい、電磁変換特性が悪化してしまう。好ましい平均粒子径の範囲は、0.07−0.29μm、更に好ましくは0.08−0.24μmである。また、好ましい含有量の範囲は、0.001−0.19質量%、好ましくは0.003−0.15質量%、更に好ましくは0.005−0.10質量%、特に好ましくは0.008−0.06質量%である。   By the way, although the laminated polyester film of the present invention can be produced from the above-mentioned polyester, it maintains a high level of electromagnetic conversion characteristics when data storage is performed while maintaining characteristics such as conveyance and winding within a practically acceptable range. From the viewpoint, the surface on the side where the magnetic layer is formed needs to contain 0.001-0.19 mass% of particles having an average particle diameter of 0.06-0.29 μm. When the average particle size is smaller than this range or when the content is small, the transportability is deteriorated, and scratches called “scratches” are likely to enter the film, resulting in deterioration of error rate and dropout. Furthermore, since the friction with the magnetic head is increased, the thermal aspiration may be deteriorated. In addition, when the particle diameter or content exceeds these ranges, for example, when used for a base film for data storage with a high recording density such as a storage capacity of 3 TB or more, the surface becomes too rough, and electromagnetic conversion characteristics deteriorate. End up. A preferable range of the average particle diameter is 0.07-0.29 μm, more preferably 0.08-0.24 μm. Moreover, the range of preferable content is 0.001-0.19 mass%, Preferably it is 0.003-0.15 mass%, More preferably, it is 0.005-0.10 mass%, Most preferably, it is 0.008. -0.06 mass%.

含有させる粒子としては、もともと粗大粒子を含まないか含有するとしても極めて少ない粒子が好ましい。そのため、粒径分布曲線がシャープなものにしやすく、一次粒子の状態で存在しやすい粒子が好ましく、シリコーン粒子、架橋アクリル樹脂粒子、架橋ポリエステル粒子、架橋ポリスチレン粒子などの有機高分子粒子および球状シリカ粒子、シリカと有機高分子の複合体粒子、からなる群から選ばれる少なくとも1種の粒子であることが好ましく、特にシリコーン粒子、架橋ポリスチレン粒子および球状シリカ粒子、シリカーアクリルの複合体粒子からなる群から選ばれる少なくとも1種の粒子であることが好ましい。もちろん、これらの粒子を含有させる場合は、さらに粗大粒子をなくすため、フィルターでのろ過を行ったり、分散剤で粒子の表面を処理したり、押出機での混練を強化することが好ましい。   As the particles to be contained, particles that do not contain coarse particles or contain very few particles are preferable. Therefore, particles that are easy to have a sharp particle size distribution curve and are likely to exist in the form of primary particles are preferable. Organic polymer particles such as silicone particles, crosslinked acrylic resin particles, crosslinked polyester particles, and crosslinked polystyrene particles, and spherical silica particles It is preferably at least one particle selected from the group consisting of composite particles of silica and organic polymer, and in particular, a group consisting of silicone particles, crosslinked polystyrene particles and spherical silica particles, and silica-acrylic composite particles It is preferably at least one kind of particle selected from Of course, when these particles are contained, it is preferable to filter with a filter, to treat the surface of the particles with a dispersant, or to enhance kneading with an extruder in order to eliminate coarse particles.

これらの粒子は、A層、B層で同じ粒子種類であることが好ましいが、平均粒子径が同じであるならばその種類は異なっていても差し支えない。なお、本発明における平均粒子径が同じとは、粒子の平均粒子径(μm)を算出する際に、小数点三桁目を四捨五入して算出した小数点以下2桁までの値が同じであること、すなわち、平均粒子径が0.01μm以上の大きさで異ならないことを意味する。   These particles are preferably the same particle type in the A layer and the B layer, but the type may be different as long as the average particle diameter is the same. In addition, when the average particle diameter in the present invention is the same, when calculating the average particle diameter (μm) of the particles, the values up to two decimal places calculated by rounding off the third decimal place are the same, That is, it means that the average particle size is not different when the size is 0.01 μm or more.

ところで、上記粒子は、粒子の粒径分布曲線を見たときの全粒子の粒子径の相対標準偏差が20%以下、さらに15%以下であることが必要である。そういった観点から、粒径分布曲線を見たときに、単一のピークを有することが好ましい。ピークが単一かどうかは、横軸に粒子径、縦軸に粒子頻度の粒径分布曲線を作成し、横軸の粒子径の測定ピッチを0.01μmとしたとき、ピークが1つしかないか、ピークが複数あったとしても、ピークとピークとの間に低いピークの方の高さに対して50%以下となる凹みが存在しないことを意味する。   By the way, the above-mentioned particles are required to have a relative standard deviation of the particle size of all the particles as viewed from the particle size distribution curve of 20% or less, and further 15% or less. From such a viewpoint, it is preferable to have a single peak when viewing the particle size distribution curve. Whether or not there is a single peak is determined by creating a particle size distribution curve with the particle diameter on the horizontal axis and the particle frequency on the vertical axis, and when the measurement pitch of the particle diameter on the horizontal axis is 0.01 μm, there is only one peak. Even if there are a plurality of peaks, it means that there is no dent that is 50% or less with respect to the height of the lower peak between the peaks.

また、B層中に含有させる粒子は、B層の質量を基準として、含有量が0.03〜0.9質量%、好ましくは0.05〜0.7質量%、さらに好ましくは0.10〜0.6質量%の範囲で、A層中に含有させる粒子に対して、含有量が質量比で1.5倍以上である。この比率を下回ると、電磁変換特性、搬送性、巻取り性のバランスを取ることができない。なお、好ましくは2倍以上、さらに3倍以上である。また、上限はB層中に含有させる粒子の含有量が上記範囲であればよく、特に制限されない。   The particles contained in the B layer have a content of 0.03 to 0.9% by mass, preferably 0.05 to 0.7% by mass, more preferably 0.10, based on the mass of the B layer. In the range of ˜0.6 mass%, the content is 1.5 times or more by mass ratio with respect to the particles contained in the A layer. Below this ratio, it is impossible to balance electromagnetic conversion characteristics, transportability, and windability. In addition, Preferably it is 2 times or more, Furthermore, it is 3 times or more. Further, the upper limit is not particularly limited as long as the content of particles contained in the B layer is in the above range.

ところで、本発明の特徴の一つは、不活性粒子を含有させつつ、後述の地肌指数を極めて高くしたとき、これまで問題にならなかったような5つ以上の不活性粒子により形成される突起の割合が多くなってしまうという新たな課題を見出したことにある。これらの突起は、ミッシングパルスやエラーレートを発生させるほど高くはないが、通常の突起よりも大きいために、サーマルアスピリティを悪化させる原因となることが判った。そして、磁性層を形成する側のA層における粒子5個以上の凝集突起を3個/9cm以下にすることで、これらの問題も解消できることを見出したのである。また、同様な観点から、磁性層を形成しない側のB層における凝集突起も少なからず影響し、B層の粒子5個以上の凝集突起は10個/9cm以下であることが必要である。A層における粒子5個以上の凝集突起が上限を超えるか、B層における5個以上の凝集突起が上限を超えると、サーマルアスピリティが悪化する。好ましいA層における粒子5個以上の凝集突起の上限は2個以下、さらに1個以下である。また、好ましいB層における粒子5個以上の凝集突起の上限は6個以下、さらに4個以下である。 By the way, one of the features of the present invention is that the projections formed by five or more inert particles that have not been a problem until now when the background index described later is made extremely high while containing inert particles. This is because a new problem has been found that the ratio of the increase will increase. These protrusions are not so high as to generate missing pulses and error rates, but are larger than normal protrusions, and have been found to cause deterioration in thermal aspiration. They have also found that these problems can be resolved by reducing the number of aggregated projections of 5 or more particles in the A layer on the magnetic layer forming side to 3/9 cm 2 or less. Further, from the same viewpoint, the aggregated protrusions in the B layer on the side where the magnetic layer is not formed have a considerable influence, and the aggregated protrusions of 5 or more particles in the B layer need to be 10/9 cm 2 or less. If the aggregated protrusion of 5 or more particles in the A layer exceeds the upper limit, or if the aggregated protrusion of 5 or more particles in the B layer exceeds the upper limit, the thermal aspiration deteriorates. The upper limit of the aggregation protrusions of 5 or more particles in the preferred A layer is 2 or less, and further 1 or less. Moreover, the upper limit of the aggregation protrusion of 5 or more particles in a preferable B layer is 6 or less, and further 4 or less.

このような凝集突起を抑制する方法としては、特に制限されないが、含有させる粒子の分散性を極めて高くする必要があり、含有させる粒子として分散性の良い粒子を選択すること、粒子を分散させるポリエステルとして粒子が分散しやすいポリエステルを選択すること、粒子の分散性を高めるために粒子を重合時に添加し、さらに再度分散性を高めるための溶融混練を別途行うことなどが挙げられ、これらを組合せて行うことが好ましい。   The method for suppressing such aggregated protrusions is not particularly limited, but it is necessary to make the dispersibility of the particles to be contained extremely high. Selecting particles having good dispersibility as the particles to be contained, polyester for dispersing the particles As a polyester, in which particles are easy to disperse, to add particles at the time of polymerization in order to increase the dispersibility of the particles, and to separately perform melt-kneading to increase the dispersibility again. Preferably it is done.

なお、重合時に粒子を添加したときに粒子が分散しやすいポリエステルとしては、その原因は不明だが、ポリエステルの触媒も影響し、例えば、マンガン化合物とアンチモン化合物とを用いて重合する反応系に、不活性粒子を添加して製造することが好ましい。そのため、本発明における磁性層を形成する側のA層は、上記マンガン化合物とアンチモン化合物とを含有することが好ましい。より好ましくは、A層だけでなく、B層も上記マンガン化合物とアンチモン化合物とを含有することが粒子の分散性の点から好ましい。   The cause of the dispersion of the polyester that easily disperses the particles when the particles are added during the polymerization is unknown. However, the polyester catalyst also affects the polyester. For example, it is not suitable for a reaction system that polymerizes using a manganese compound and an antimony compound. It is preferable to manufacture by adding active particles. Therefore, the A layer on the side forming the magnetic layer in the present invention preferably contains the manganese compound and the antimony compound. More preferably, not only the A layer but also the B layer contains the manganese compound and the antimony compound from the viewpoint of the dispersibility of the particles.

なお、上記不活性粒子を添加して製造したポリエステル組成物は、そのままA層用の樹脂として用いてもよいが、不活性粒子を添加して製造したポリエステル組成物をマスターポリマーとして、不活性粒子を含有しないポリエステルで所望の不活性粒子量となるように希釈することがより分散性を高められることから好ましい。なお、希釈ポリマーの触媒系は、不活性粒子の分散性への影響は比較的小さいので特に制限されないが、マスターポリマーと同じマンガン化合物とアンチモン化合物を用いていることが好ましい。   The polyester composition produced by adding the above-mentioned inert particles may be used as the resin for the A layer as it is, but the polyester composition produced by adding the inert particles is used as a master polymer for the inert particles. It is preferable to dilute the polyester so as to have a desired amount of inert particles with a polyester containing no, since dispersibility can be further improved. The catalyst system of the diluted polymer is not particularly limited because it has a relatively small influence on the dispersibility of the inert particles, but it is preferable to use the same manganese compound and antimony compound as the master polymer.

そういった観点から、本発明の積層ポリエステルフィルムは、磁性層を形成する側のA層が、触媒残渣としてマンガン化合物とアンチモン化合物とを、該A層の質量を基準として、下記式(I)〜(II)の範囲で含有することが好ましい。
1≦Mn≦100 (I)
5≦Sb≦300 (II)
(式(I)−(II)中の、Mnは触媒残渣として含有されるマンガン化合物のマンガン元素量(ppm)、Sbは触媒残渣として含有されるマンガン化合物のマンガン元素量(ppm)である。)MnまたはSbが下限未満では、粒子分散性の向上効果が発現されにくく、他方上限を超えると触媒残渣に起因する粗大異物などができやすい。
From such a point of view, in the laminated polyester film of the present invention, the A layer on the side forming the magnetic layer contains a manganese compound and an antimony compound as catalyst residues, and the following formulas (I) to (I): It is preferable to contain in the range of II).
1 ≦ Mn ≦ 100 (I)
5 ≦ Sb ≦ 300 (II)
(In formula (I)-(II), Mn is the manganese element amount (ppm) of the manganese compound contained as the catalyst residue, and Sb is the manganese element amount (ppm) of the manganese compound contained as the catalyst residue. ) If Mn or Sb is less than the lower limit, the effect of improving the particle dispersibility is hardly exhibited, and if it exceeds the other upper limit, coarse foreign matters due to the catalyst residue are easily formed.

そのような観点から、上記式(I)のマンガン元素量は、1〜100ppmの範囲が好ましく、さらに20〜90ppm、特に40〜80ppmの範囲が好ましい。また、そのような範囲にすることで、反応速度を促進しつつ、触媒起因の粗大不溶性異物の生成を抑制でき、さらに得られる共重合芳香族ポリエステルの耐熱性を高度に維持できる。同様な観点からアンチモン元素量は、5〜300ppmの範囲が好ましく、さらに50〜250ppm、特に150〜250ppmの範囲が好ましい。上記範囲にあることで、反応速度を促進しつつ、触媒起因の粗大不溶性異物の生成を抑制できる。なお、本発明における好ましいポリエステルは、上記式(I)と(II)を満足するような触媒組成であればよく、本発明の目的を損なわない範囲で、他の触媒を併用しても構わないが、好ましくはこれらマンガン化合物とアンチモン化合物とを全触媒残渣の90質量%以上となるように用いることが好ましい。
具体的なマンガン化合物としては、酢酸マンガンが挙げられる。また、具体的なアンチモン化合物としては、三酸化アンチモンが挙げられる。
From such a viewpoint, the manganese element amount of the above formula (I) is preferably in the range of 1 to 100 ppm, more preferably 20 to 90 ppm, and particularly preferably 40 to 80 ppm. Moreover, by setting it as such a range, while promoting reaction rate, the production | generation of the coarse insoluble foreign material derived from a catalyst can be suppressed, and also the heat resistance of the copolymerized aromatic polyester obtained can be maintained highly. From the same viewpoint, the antimony element amount is preferably in the range of 5 to 300 ppm, more preferably 50 to 250 ppm, and particularly preferably 150 to 250 ppm. By being in the said range, the production | generation of the coarse insoluble foreign material resulting from a catalyst can be suppressed, promoting a reaction rate. In addition, the preferable polyester in this invention should just be a catalyst composition which satisfies the said Formula (I) and (II), and may use another catalyst together in the range which does not impair the objective of this invention. However, it is preferable to use these manganese compounds and antimony compounds so as to be 90% by mass or more of the total catalyst residue.
Specific examples of the manganese compound include manganese acetate. Specific examples of the antimony compound include antimony trioxide.

つぎに、本発明の積層ポリエステルフィルムの製造方法について説明する。まず、本発明におけるポリエステルの製造方法は、例えば芳香族ジカルボン酸もしくはそのエステル形成性誘導体とアルキレングリコールとをエステル化反応もしくはエステル交換反応させてポリエステルの前駆体を合成する第一反応と、該前駆体を重縮合反応させる第二反応とからなり、それ自体公知の方法を採用できる。   Below, the manufacturing method of the laminated polyester film of this invention is demonstrated. First, the polyester production method of the present invention includes, for example, a first reaction in which an aromatic dicarboxylic acid or an ester-forming derivative thereof and an alkylene glycol are esterified or transesterified to synthesize a polyester precursor, and the precursor It consists of a second reaction in which the product is polycondensed, and a method known per se can be adopted.

好ましい第一反応の条件については、常圧下で行ってもよいが、0.05MPa〜0.5MPaの加圧下で行うことが反応速度をより速めやすいことから好ましい。また、第一反応の温度は、210℃〜270℃の範囲で行うことが好ましい。反応圧力を上記範囲内とすることで反応の進行を進みやすくしつつ、ジアルキレングリコールに代表される副生物の発生を抑制できる。このとき、アルキレングリコール成分は、第一反応を行う反応系に存在する酸成分に対し1.1〜6モル倍用いることが、反応速度及び樹脂の物性維持の点から好ましい。より好ましくは2〜5モル倍、さらに好ましくは3〜5モル倍である。   The preferable first reaction condition may be performed under normal pressure, but it is preferable to perform the reaction under a pressure of 0.05 MPa to 0.5 MPa because the reaction rate can be easily increased. Moreover, it is preferable to perform the temperature of 1st reaction in the range of 210 to 270 degreeC. By making the reaction pressure within the above range, it is possible to suppress the generation of by-products typified by dialkylene glycol while facilitating the progress of the reaction. At this time, the alkylene glycol component is preferably used in an amount of 1.1 to 6 moles relative to the acid component present in the reaction system in which the first reaction is carried out from the viewpoint of maintaining the reaction rate and the physical properties of the resin. More preferably, it is 2-5 mol times, More preferably, it is 3-5 mol times.

また、第一反応の反応速度をより早くするには、それ自体公知の触媒を用いることが好ましく、たとえばLi,Na,K,Mg,Ca,Mn、Co、Tiなどの金属成分を有する金属化合物が好ましく挙げられるが、前述のとおり、粒子の分散性を向上させる目的でMn化合物を使用することが好ましい。   Further, in order to increase the reaction rate of the first reaction, it is preferable to use a catalyst known per se, for example, a metal compound having a metal component such as Li, Na, K, Mg, Ca, Mn, Co, and Ti. As mentioned above, it is preferable to use a Mn compound for the purpose of improving the dispersibility of the particles.

つぎに、第一反応で得られた前駆体を重縮合反応させる第二反応について説明する。
本発明では、得られるポリエステルに、高度の熱安定性を付与させる目的で、第二反応における重縮合反応の開始以前に、反応系にリン化合物からなる熱安定剤を添加することが好ましい。具体的なリン化合物としては、化合物中にリン元素を有するものであれば特に限定されず、例えば、リン酸、亜リン酸、リン酸トリメチルエステル、リン酸トリブチルエステル、リン酸トリフェニルエステル、リン酸モノメチルエステル、リン酸ジメチルエステル、フェニルホスホン酸、フェニルホスホン酸ジメチルエステル、フェニルホスホン酸ジエチルエステル、リン酸アンモニウム、トリエチルホスホノアセテート、メチルジエチルホスホノアセテートなどを挙げることができ、これらのリン化合物は二種以上を併用してもよい。なお、リン化合物の添加時期は、第一反応が実質的に終了してから第二反応である重縮合反応初期の間に行うことが好ましく、添加は一度に行ってもよいし、2回以上に分割して行ってもよい。
Next, the second reaction in which the precursor obtained in the first reaction is polycondensed will be described.
In the present invention, for the purpose of imparting a high degree of thermal stability to the obtained polyester, it is preferable to add a thermal stabilizer composed of a phosphorus compound to the reaction system before the start of the polycondensation reaction in the second reaction. The specific phosphorus compound is not particularly limited as long as it has a phosphorus element in the compound. For example, phosphoric acid, phosphorous acid, phosphoric acid trimethyl ester, phosphoric acid tributyl ester, phosphoric acid triphenyl ester, phosphorus Examples include acid monomethyl ester, phosphoric acid dimethyl ester, phenylphosphonic acid, phenylphosphonic acid dimethyl ester, phenylphosphonic acid diethyl ester, ammonium phosphate, triethylphosphonoacetate, methyldiethylphosphonoacetate, and these phosphorus compounds May use 2 or more types together. The addition timing of the phosphorus compound is preferably performed during the initial stage of the polycondensation reaction, which is the second reaction after the first reaction is substantially completed, and the addition may be performed at one time or two or more times. You may divide into.

ところで、重縮合反応の温度は270℃〜300℃の範囲で行い、重縮合反応中の圧力は50Pa以下の減圧下で行うのが好ましい。重縮合反応中の圧力が上限より高いと重縮合反応に要する時間が長くなり且つ重合度の高い共重合芳香族ポリエステルを得ることが困難になる。重縮合触媒としては、それ自体公知のTi,Al,Sb,Geなどの金属化合物を好適に使用でき、それらの中でも不活性粒子の分散性を向上させる目的で、少なくともアンチモン化合物を使用することが好ましい。   By the way, the polycondensation reaction is preferably performed at a temperature in the range of 270 ° C. to 300 ° C., and the pressure during the polycondensation reaction is preferably performed under a reduced pressure of 50 Pa or less. If the pressure during the polycondensation reaction is higher than the upper limit, the time required for the polycondensation reaction becomes long and it becomes difficult to obtain a copolymerized aromatic polyester having a high degree of polymerization. As the polycondensation catalyst, known metal compounds such as Ti, Al, Sb, and Ge can be suitably used. Among them, at least an antimony compound can be used for the purpose of improving the dispersibility of the inert particles. preferable.

また、粒子を含有させる方法については、粒子をアルキレングリコールのスラリー状態として、フィルターなどによって粗大粒子を低減し、それを前述の重合工程で添加して、所望の粒子含有量のポリエステルを作成するか、粒子含有量が0.02〜1.0質量%の粒子含有マスターポリエステルを作成し、該マスターポリエステルを、粒子を含有しないポリエステルで希釈するのが、粒子の凝集による粗大突起を低減する上で好ましい。また、本発明では、極めて高度の粒子分散性が求められることから、上記方法によって得られた粒子を含有させたポリエステル組成物を、そのままフィルムに製膜するための溶融混練押し出し機に投入するのではなく、その前に別途溶融混練過程を経て、さらに粒子の分散性を高めておくことが好ましい。このような別途の溶融混練過程としては、粒子を含有させたポリエステル組成物を、溶融製膜前に、別途溶融混練する方法でもよいし、一旦溶融製膜した後、それを回収してポリエステル組成物として用いる方法であってもよい。この際、別途の溶融混練としては、より粒子の分散性を高めやすいことから、一軸混練押し出し機よりも二軸混練押し出し機を用いることが好ましい。   In addition, regarding the method of containing particles, whether the particles are made into an alkylene glycol slurry state, coarse particles are reduced by a filter or the like, and added in the above-described polymerization step to create a polyester having a desired particle content. In order to reduce coarse protrusions due to aggregation of particles, a particle-containing master polyester having a particle content of 0.02 to 1.0% by mass is prepared and the master polyester is diluted with a polyester not containing particles. preferable. In the present invention, since a very high degree of particle dispersibility is required, the polyester composition containing the particles obtained by the above method is directly put into a melt-kneading extruder for forming a film. Instead, it is preferable to further improve the dispersibility of the particles through a separate melt-kneading process before that. As such a separate melt-kneading process, a method of separately melting and kneading the polyester composition containing particles before melt film formation may be used. The method used as a thing may be sufficient. In this case, as the separate melt-kneading, it is preferable to use a biaxial kneading extruder rather than a uniaxial kneading extruder because the dispersibility of the particles is easily improved.

また、このように別途の溶融混練を行って粒子の分散性を高める観点から、得られるA層、さらに好ましくはA層とB層の両層は、該フィルム層を構成するポリエステルの極限粘度が、0.50dl/g以上0.54dl/g以下であることが好ましく、さらに0.51dl/g以上0.53dl/g以下であることが好ましい。なお、A層のポリエステルの極限粘度は、溶融押出し時、高シェアがかかり粒子の分散に有利になるための観点から、B層の極限粘度よりも大きいことが好ましい。   In addition, from the viewpoint of improving the dispersibility of particles by performing separate melt-kneading in this way, the obtained A layer, more preferably both the A layer and the B layer, have an intrinsic viscosity of the polyester constituting the film layer. It is preferably 0.50 dl / g or more and 0.54 dl / g or less, more preferably 0.51 dl / g or more and 0.53 dl / g or less. The intrinsic viscosity of the polyester of the A layer is preferably larger than the intrinsic viscosity of the B layer from the viewpoint of high shear during melt extrusion and advantageous particle dispersion.

このようにして得られるポリエステル組成物は、本発明の効果を阻害しない範囲で、紫外線吸収剤等の安定剤、酸化防止剤、可塑剤、ワックスなどの滑剤、難燃剤、離型剤、核剤、を必要に応じて配合しても良い。なお、磁性層を形成する側の表面における地肌指数を所望の範囲とする観点から、ポリエステルと非相溶な他の熱可塑性ポリマー、顔料、充填剤、ガラス繊維、炭素繊維、層状ケイ酸塩などは含有させないことが好ましい。   The polyester composition thus obtained is a stabilizer such as an ultraviolet absorber, an antioxidant, a plasticizer, a lubricant such as a wax, a flame retardant, a release agent, and a nucleating agent as long as the effects of the present invention are not impaired. , May be blended as necessary. In addition, from the viewpoint of making the background index on the surface on the side where the magnetic layer is formed into a desired range, other thermoplastic polymers that are incompatible with polyester, pigments, fillers, glass fibers, carbon fibers, layered silicates, etc. Is preferably not contained.

ところで、本発明の積層ポリエステルフィルムの磁性層を形成する表面の地肌指数は80〜99.99%の範囲である。更に好ましくは85〜99.5%の範囲、特に好ましくは90〜99.5%の範囲、もっとも好ましくは96〜99.5%の範囲であることが好ましい。この地肌指数は、非接触式三次元表面粗さ計によって測定された値であり、フィルム表面における突起や凹み部分を除外した面の面積比率を示す数値である。この地肌指数が電磁変換特性やテープカートリッジ保存後のエラーレートと密接な関係にあることを見出したのが本発明の特徴の一つである。地肌指数が、上記範囲にあることで、高度の電磁変換特性やテープカートリッジ保存後のエラーレートの低減を図りつつ、搬送性などを高度に両立できる。   By the way, the background index of the surface forming the magnetic layer of the laminated polyester film of the present invention is in the range of 80 to 99.99%. More preferably, it is in the range of 85 to 99.5%, particularly preferably in the range of 90 to 99.5%, and most preferably in the range of 96 to 99.5%. The background index is a value measured by a non-contact type three-dimensional surface roughness meter, and is a numerical value indicating the area ratio of the surface excluding protrusions and dents on the film surface. It is one of the features of the present invention that the background index is closely related to the electromagnetic conversion characteristics and the error rate after storage of the tape cartridge. When the background index is in the above range, it is possible to achieve both high transportability and the like while reducing the electromagnetic rate and the error rate after storing the tape cartridge.

このような地肌指数を所望の範囲にするには、粗面層側の粒子を前述した範囲内で配合することが効果的であるが、それだけでなく該積層ポリエステルフィルムの製造工程において延伸温度を後述するような条件にて延伸させることも極めて効果的である。なお、地肌指数を大きくしたい場合は、フィルムの横延伸時に粘弾性ができるだけ低くなる温度で、なおかつ、その温度自体で結晶が瞬時に進まない比較的高い温度での延伸といった条件を選択すればよく、他方小さくしたい場合は、フィルムの横延伸時に粘弾性の低下が起き始める温度での延伸といった、延伸温度を低くする条件を選択すればよい。   In order to make such a background index within a desired range, it is effective to mix the particles on the rough surface layer side within the above-mentioned range, but in addition, the stretching temperature is set in the production process of the laminated polyester film. It is also very effective to stretch the film under the conditions described later. In order to increase the background index, it is sufficient to select conditions such as stretching at a temperature at which the viscoelasticity is as low as possible during transverse stretching of the film and at a relatively high temperature at which the crystal does not progress instantaneously at that temperature itself. On the other hand, if it is desired to reduce the stretching temperature, a condition for lowering the stretching temperature may be selected, such as stretching at a temperature at which a decrease in viscoelasticity starts during transverse stretching of the film.

本発明の積層ポリエステルフィルムは、例えば、ポリエステルA層用のポリマーと、反対面を形成するポリエステルB層用のポリマーとを用意し、これらを溶融状態で積層してダイからシート状に共押出する工程、得られたシート状物を冷却固化することで、積層未延伸ポリエステルフィルムとする工程、そして得られた積層未延伸ポリエステルフィルムを製膜方向と幅方向に延伸することで製造できる。溶融状態で押し出す工程での温度は、未溶融物がなく、過度にポリエステルの熱劣化が進まない温度であれば特に制限されず、例えば、ポリエステルの融点(Tm:℃)ないし(Tm+70)℃の温度で行うことが好ましい。つぎに、冷却については、得られる積層未延伸ポリエステルフィルムの平坦性を維持しつつ、厚み斑も少なくするために、フィルム製膜方向に沿ってダイの下方に設置された回転する冷却ドラムを用い、それにシート状物を密着させて冷却するのが好ましい。つづいて、延伸については、積層未延伸ポリエステルフィルムを、一軸方向(縦方向または横方向)に(ポリエステルのガラス転移温度(Tg)−10)℃〜(Tg+60)℃の温度で2.5倍以上、好ましくは3倍以上の倍率で延伸し、次いで上記延伸方向と直交する方向にTg〜(Tg+60)℃の温度で2.5倍以上、好ましくは3倍以上の倍率で延伸するのが好ましい。この際、前述した地肌指数を所望の範囲内に収めるため、横延伸温度は、(Tg+25)〜(Tg+60)℃の範囲で延伸させることが望ましい。更に好ましくは(Tg+30)〜(Tg+60)℃、特に好ましくは(Tg+30)〜(Tg+55)℃が望ましく、最も望ましくは(Tg+35)〜(Tg+55)℃の範囲である。この際、横延伸温度は、段階的に引き上げることが好ましく、いずれの温度も上記範囲内にあることが好ましい。横延伸温度がTgに対して低すぎたりすると過度な延伸時応力が粒子に集中し、その結果、粒子周辺のボイドが大きくなることで突起が高く且つ、大きなものとなる。一方、上述した温度領域でマイルドに横延伸させた場合、同時に横延伸倍率を通常よりも高くすることで粗面層側を平坦化させることができ、その結果、所望の高さと大きさを有する突起を形成することが可能になる。   The laminated polyester film of the present invention is prepared, for example, by preparing a polymer for the polyester A layer and a polymer for the polyester B layer forming the opposite surface, and laminating these in a molten state and coextruding them from a die into a sheet. It can manufacture by extending | stretching the process of making a lamination | stacking unstretched polyester film and the obtained lamination | stacking unstretched polyester film in a film forming direction and the width direction by cooling and solidifying the obtained sheet-like material. The temperature in the process of extruding in a molten state is not particularly limited as long as there is no unmelted material and the temperature of the polyester does not excessively deteriorate. For example, the melting point of the polyester (Tm: ° C.) to (Tm + 70) ° C. It is preferable to carry out at temperature. Next, for cooling, in order to reduce the thickness unevenness while maintaining the flatness of the obtained laminated unstretched polyester film, a rotating cooling drum installed below the die along the film forming direction is used. It is preferable to cool the sheet-like material in close contact with it. Subsequently, for stretching, the laminated unstretched polyester film is uniaxially (longitudinal or transverse) (polyester glass transition temperature (Tg) −10) ° C. to (Tg + 60) ° C. to 2.5 times or more. Preferably, the film is stretched at a magnification of 3 times or more, and then stretched at a temperature of Tg to (Tg + 60) ° C. at a temperature of 2.5 times or more, preferably at a magnification of 3 times or more in the direction orthogonal to the stretching direction. At this time, in order to keep the above-mentioned background index within a desired range, it is desirable that the transverse stretching temperature is stretched in the range of (Tg + 25) to (Tg + 60) ° C. More preferred is (Tg + 30) to (Tg + 60) ° C., particularly preferred is (Tg + 30) to (Tg + 55) ° C., and most preferred is (Tg + 35) to (Tg + 55) ° C. At this time, the transverse stretching temperature is preferably increased stepwise, and any temperature is preferably within the above range. If the transverse stretching temperature is too low with respect to Tg, excessive stretching stress concentrates on the particles, and as a result, the voids around the particles become larger and the protrusions are higher and larger. On the other hand, when mildly stretched in the temperature range described above, the rough surface layer side can be flattened by simultaneously increasing the transverse stretch ratio higher than usual, and as a result, it has a desired height and size. Protrusions can be formed.

さらに必要に応じて縦方向および/または横方向に再度延伸してもよい。このように延伸したときの全延伸倍率は、面積延伸倍率(縦方向の延伸倍率×横方向の延伸倍率)として9倍以上が好ましく、12〜35倍がさらに好ましく、15〜30倍が特に好ましい。さらにまた、二軸配向フィルムは、(Tm−70)〜(Tm−10)℃の温度で熱固定することができ、例えば180〜250℃で熱固定するのが好ましい。熱固定時間は0.1〜60秒が好ましい。また、前述の延伸は逐次二軸延伸で説明したが、縦方向と横方向に同時に延伸する同時二軸延伸を用いても良い。   Further, if necessary, the film may be stretched again in the machine direction and / or the transverse direction. The total draw ratio when stretched in this way is preferably 9 times or more, more preferably 12 to 35 times, and particularly preferably 15 to 30 times as an area draw ratio (longitudinal draw ratio x transverse draw ratio). . Furthermore, the biaxially oriented film can be heat-set at a temperature of (Tm-70) to (Tm-10) ° C., and is preferably heat-set at, for example, 180 to 250 ° C. The heat setting time is preferably 0.1 to 60 seconds. Moreover, although the above-mentioned extending | stretching was demonstrated by sequential biaxial stretching, you may use simultaneous biaxial stretching which extends | stretches simultaneously in the vertical direction and a horizontal direction.

本発明の積層ポリエステルフィルムは、高密度磁気記録媒体のベースフィルムとして用いた際に優れた寸法安定性を発現するために、長手方向のヤング率が3〜10GPa、さらに3.5〜9GPa、特に4〜8GPaであることが好ましい。一方、幅方向のヤング率は、ベースフィルムでの温度膨張係数を後述の範囲とさせやすい観点から、4〜15GPa、さらに5〜14GPa、特に6〜13GPa、もっとも好ましくは7〜11GPaの範囲であることが好ましい。幅方向のヤング率が下限未満では、磁気記録テープとしたときの温度膨張係数を小さくすることが困難となり、他方上限を超えると、磁気記録テープとしたときの温度膨張係数が過度に小さくなってしまう。   The laminated polyester film of the present invention has a longitudinal Young's modulus of 3 to 10 GPa, more preferably 3.5 to 9 GPa, particularly in order to develop excellent dimensional stability when used as a base film of a high-density magnetic recording medium. It is preferably 4 to 8 GPa. On the other hand, the Young's modulus in the width direction is 4 to 15 GPa, more preferably 5 to 14 GPa, particularly 6 to 13 GPa, most preferably 7 to 11 GPa, from the viewpoint of easily setting the temperature expansion coefficient of the base film to the range described later. It is preferable. If the Young's modulus in the width direction is less than the lower limit, it is difficult to reduce the temperature expansion coefficient when the magnetic recording tape is used. On the other hand, if the upper limit is exceeded, the temperature expansion coefficient when the magnetic recording tape is used becomes excessively small. End up.

本発明の積層ポリエステルフィルムの全厚みは、2.0〜8.0μmが好ましい。より好ましくは2.5〜7μm、さらに好ましくは3〜6μm、特に好ましくは3.0−4.5μmである。厚みが下限より小さい場合は、テープに腰がなくなるため、電磁変換特性が低下する。厚みが上限を超える場合は、テープ1巻あたりのテープ長さが短くなるため、磁気テープの小型化、高容量化が困難になりやすい。   The total thickness of the laminated polyester film of the present invention is preferably 2.0 to 8.0 μm. More preferably, it is 2.5-7 micrometers, More preferably, it is 3-6 micrometers, Most preferably, it is 3.0-4.5 micrometers. When the thickness is smaller than the lower limit, the tape becomes dull and electromagnetic conversion characteristics deteriorate. When the thickness exceeds the upper limit, the tape length per one tape is shortened, so that it is difficult to reduce the size and increase the capacity of the magnetic tape.

また、本発明の積層ポリエステルフィルムは、磁性層を形成する平坦層側の表面を形成するポリエステル層をA層とした場合、その厚みが、積層ポリエステルフィルムの厚みに対して、20〜99%、さらに30〜98%、特に40〜97%の範囲にあることが好ましい。A層が全厚に対して下限未満の場合、磁性層を形成しない粗面層側のポリエステル層(B層)に含まれる粒子の突上げが発生し、電磁変換特性が悪化しやすくなる。他方、A層の厚みを上限以下にすることで、A層に含有される粒子の脱落を抑制できる。なお、通常であれば、回収した樹脂をA層の表面の平坦性を損なわずに再利用しようとすると、B層にしか用いられず、前述のようにB層の厚みを薄くすると再利用できる割合が極端に低下する。しかしながら、本発明では、A層とB層がともに同一粒子径の粒子を含有することから、いずれの層にも用いることができ、A層を厚く、B層を極めて薄くしても再利用できる割合は、極めて高度に維持できる。   Moreover, the laminated polyester film of the present invention has a thickness of 20 to 99% with respect to the thickness of the laminated polyester film, when the polyester layer forming the surface on the flat layer side forming the magnetic layer is an A layer. Furthermore, it is preferable to be in the range of 30 to 98%, particularly 40 to 97%. When the A layer is less than the lower limit with respect to the total thickness, the particles included in the polyester layer (B layer) on the rough surface layer that does not form the magnetic layer are generated, and the electromagnetic conversion characteristics are likely to deteriorate. On the other hand, dropping the particles contained in the A layer can be suppressed by making the thickness of the A layer below the upper limit. Normally, if the recovered resin is reused without impairing the flatness of the surface of the A layer, it can be used only for the B layer, and can be reused by reducing the thickness of the B layer as described above. The rate drops extremely. However, in the present invention, since both the A layer and the B layer contain particles having the same particle diameter, they can be used for any layer, and can be reused even if the A layer is thick and the B layer is extremely thin. The ratio can be kept very high.

本発明の積層ポリエステルフィルムは、高密度磁気記録テープ、特にディジタル記録型磁気記録テープのベースフィルムとして好ましく用いられる。そこで、本発明の積層ポリエステルフィルムを用いた磁気記録媒体について、さらに説明する。
本発明の磁気記録媒体は、上述の積層ポリエステルフィルムに磁性層を形成することで製造できる。なお、本発明の積層ポリエステルフィルムの表面には、磁性層などとの接着性を向上させるために、本発明の効果を損なわない範囲で、それ自体公知の易接着機能を有する塗膜層などを形成しても良い。
The laminated polyester film of the present invention is preferably used as a base film of a high-density magnetic recording tape, particularly a digital recording magnetic recording tape. Therefore, the magnetic recording medium using the laminated polyester film of the present invention will be further described.
The magnetic recording medium of the present invention can be produced by forming a magnetic layer on the above-described laminated polyester film. In addition, on the surface of the laminated polyester film of the present invention, in order to improve the adhesiveness with a magnetic layer or the like, a coating layer having a well-known easy-adhesion function, etc., as long as the effect of the present invention is not impaired. It may be formed.

本発明の磁気記録テープにおける磁性層は、鉄または鉄を主成分とする針状微細磁性粉やバリウムフェライトをポリ塩化ビニル、塩化ビニル・酢酸ビニル共重合体等のバインダーに均一分散し、その塗液を塗布して形成したものであり、前述のとおり、本発明の積層ポリエステルフィルムを使用することで、寸法安定性と電磁変換特性やエラーレート性能に選りすぐれた磁気記録テープとすることができる。   The magnetic layer in the magnetic recording tape of the present invention is prepared by uniformly dispersing iron or acicular fine magnetic powder or barium ferrite in a binder such as polyvinyl chloride or a vinyl chloride / vinyl acetate copolymer. As described above, by using the laminated polyester film of the present invention, a magnetic recording tape excellent in dimensional stability, electromagnetic conversion characteristics and error rate performance can be obtained. .

なお、磁性層は、その厚みが1μm以下、さらに0.1〜1μmとなるように塗布するのが、特に短波長領域での出力、S/N、C/N等の電磁変換特性に優れ、ドロップアウト、エラーレートの少ない高密度記録用塗布型磁気記録テープとする観点から好ましい。また、必要に応じて、塗布型磁性層の下地層として、微細な酸化チタン粒子等を含有する非磁性層を磁性層と同様の有機バインダー中に分散し、塗設することも好ましい。   In addition, it is excellent in electromagnetic conversion characteristics such as output in a short wavelength region, S / N, C / N, etc., particularly when the magnetic layer is applied so that the thickness is 1 μm or less, and further 0.1 to 1 μm. This is preferable from the viewpoint of a coating type magnetic recording tape for high density recording with low dropout and error rate. If necessary, it is also preferable to disperse and coat a nonmagnetic layer containing fine titanium oxide particles or the like in the same organic binder as that of the magnetic layer as the underlayer of the coating type magnetic layer.

また、磁性層の表面には、目的、用途、必要に応じてダイアモンドライクカーボン(DLC)等の保護層、含フッ素カルボン酸系潤滑層を順次設け、さらに他方の表面に、公知のバックコート層を設けてもよい。
このようにして得られる塗布型磁気記録テープは、データ8ミリ、DDSIV、DLT、S−DLT、LTO等のデータ用途の磁気テープとして極めて有用である。
Further, a protective layer such as diamond-like carbon (DLC) and a fluorine-containing carboxylic acid-based lubricating layer are sequentially provided on the surface of the magnetic layer as required, and a known backcoat layer is provided on the other surface. May be provided.
The coating type magnetic recording tape thus obtained is extremely useful as a magnetic tape for data use such as data 8 mm, DDSIV, DLT, S-DLT, LTO and the like.

以下に実施例及び比較例を挙げ、本発明をより具体的に説明する。なお、本発明におけるポリエステル、積層ポリエステルフィルムおよびデータストレージの特性は、下記の方法で測定および評価した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. The characteristics of the polyester, laminated polyester film and data storage in the present invention were measured and evaluated by the following methods.

(1)固有粘度
得られたポリエステルの固有粘度は、前述のとおり、o−クロロフェノール、35℃で測定し、o−クロロフェノールでは均一に溶解するのが困難な場合は、p−クロロフェノール/1,1,2,2−テトラクロロエタン(40/60重量比)の混合溶媒を用いて35℃で測定して求めた。
(1) Intrinsic viscosity As described above, the intrinsic viscosity of the obtained polyester is measured at o-chlorophenol at 35 ° C. When it is difficult to dissolve uniformly with o-chlorophenol, p-chlorophenol / It was determined by measurement at 35 ° C. using a mixed solvent of 1,1,2,2-tetrachloroethane (40/60 weight ratio).

(2)フィルム中の粒子の粒径、平均粒子径、粒子径の相対標準偏差
フィルム表面層のポリエステルをプラズマ低温灰化処理法(例えばヤマト科学製、PR−503型)で除去し、粒子を露出させる。処理条件は、ポリエステルは灰化されるが粒子はダメージを受けない条件を選択する。これをSEM(走査型電子顕微鏡)にて1万倍程度の倍率で粒子を観察し、粒子の画像(粒子によってできる光の濃淡)をイメージアナライザー(例えば、ケンブリッジインストルメント製、QTM900)に結びつけ、観察箇所を変えて少なくとも5,000個の粒子の面積円相当径(Di)を求める。この結果から粒子の粒径分布曲線を作成し、数平均を平均粒子径とし、粒子径の標準偏差を前記平均粒子径で割った値を相対標準偏差とした。なお、粒子種の同定はSEM−XMA、ICPによる金属元素の定量分析などを使用して行うことができる。また、添加する粒子の平均粒子径も、同様な測定を行って算出した。
(2) Particle size, average particle size, and relative standard deviation of particle size in film
The polyester on the film surface layer is removed by a plasma low temperature ashing method (for example, PR-503, manufactured by Yamato Kagaku) to expose the particles. The treatment conditions are such that the polyester is ashed but the particles are not damaged. This is observed with a SEM (scanning electron microscope) at a magnification of about 10,000 times, and an image of the particle (light density produced by the particle) is connected to an image analyzer (for example, QTM900, manufactured by Cambridge Instrument) The observation area is changed, and the area equivalent circle diameter (Di) of at least 5,000 particles is obtained. From this result, a particle size distribution curve was created, the number average was taken as the average particle size, and the value obtained by dividing the standard deviation of the particle size by the average particle size was taken as the relative standard deviation. The identification of the particle type can be performed using SEM-XMA, quantitative analysis of metal elements by ICP, or the like. Further, the average particle size of the particles to be added was calculated by performing the same measurement.

(3)凝集突起数
フィルム表面層のポリエステルをプラズマ低温灰化処理法(例えばヤマト科学製、PR−503型)で除去し、粒子を露出させる。処理条件は、ポリエステルは灰化されるが粒子はダメージを受けない条件を選択する。これをSEM(走査型電子顕微鏡)にて1万倍程度の倍率で粒子を観察する。フィルム表面上の突起は、延伸により粒子の周辺にボイドが発生する。ボイドの中に1つの粒子がある場合は凝集ではない。ボイドの中に5つ以上の粒子がある場合に凝集による突起とし、粒子5個以上の凝集突起する。そして、100個のボイドを確認し、それに要した測定面積から9cmあたりに存在する粒子5個以上の凝集突起数を算出した。
(3) Number of aggregation protrusions The polyester on the film surface layer is removed by a plasma low-temperature ashing method (for example, PR-503, manufactured by Yamato Kagaku) to expose the particles. The treatment conditions are such that the polyester is ashed but the particles are not damaged. This is observed with a SEM (scanning electron microscope) at a magnification of about 10,000 times. The protrusions on the film surface generate voids around the particles due to stretching. If there is one particle in the void, it is not agglomeration. When there are five or more particles in the void, the projection is caused by aggregation, and aggregation projection of five or more particles occurs. Then, 100 voids were confirmed, and the number of aggregated protrusions of 5 or more particles present per 9 cm 2 was calculated from the measurement area required for the voids.

(4)触媒残渣
触媒残渣としてのマンガン、アンチモン原子のフィルム中の濃度は、蛍光X線装置(理学電機工業3270E型)にて定量分析した。
(4) Catalyst residue The concentrations of manganese and antimony atoms as catalyst residues in the film were quantitatively analyzed with a fluorescent X-ray apparatus (Rigaku Corporation 3270E type).

(5)粒子の含有量
(5−1)各層中の粒子の総含有量
積層二軸配向ポリエステルフィルムからポリエステルA層、ポリエステルB層を各々100g程度削り採ってサンプリングし、ポリエステルは溶解し粒子は溶解させない溶媒を選択して、サンプルを溶解した後、粒子をポリエステルから遠心分離し、サンプル重量に対する粒子の比率(質量%)をもって各層中の粒子総含有量とする。
(5) Content of particles (5-1) Total content of particles in each layer The polyester A layer and the polyester B layer were sampled by scraping about 100 g each from the laminated biaxially oriented polyester film, the polyester was dissolved, and the particles were After selecting the solvent not to be dissolved and dissolving the sample, the particles are centrifuged from the polyester, and the ratio (mass%) of the particles to the sample weight is used as the total particle content in each layer.

(5−2)各層中の無機粒子の総含有量
積層ポリエステルフィルムの無機粒子が存在する場合は、ポリエステルA層、ポリエステルB層を各々削り採って100g程度サンプリングし、これを白金ルツボ中にて1,000℃程度の炉の中で3時間以上燃焼させ、次いでルツボ中の燃焼物をテレフタル酸(粉体)と混合し50グラムの錠型のプレートを作成する。このプレートを、波長分散型蛍光X線を用いて各元素のカウント値をあらかじめ作成してある元素毎の検量線より換算し各層中の無機粒子の総含有量を決定する。蛍光X線を測定する際のX線管はCr管が好ましくRh管で測定してもよい。X線出力は4KWと設定し分光結晶は測定する元素毎に変更する。材質の異なる無機粒子が複数種類存在する場合は、この測定により各材質の無機粒子の含有量を決定する。
(5-2) Total content of inorganic particles in each layer When inorganic particles of the laminated polyester film are present, the polyester A layer and the polyester B layer are each scraped and sampled about 100 g, and this is sampled in a platinum crucible. Burn in a furnace at about 1,000 ° C. for 3 hours or more, then mix the burned product in the crucible with terephthalic acid (powder) to make a 50 gram tablet plate. The plate is converted from a calibration curve for each element in which the count value of each element is prepared in advance using wavelength-dispersed fluorescent X-rays, and the total content of inorganic particles in each layer is determined. The X-ray tube for measuring fluorescent X-rays is preferably a Cr tube and may be measured with an Rh tube. The X-ray output is set to 4 kW, and the spectral crystal is changed for each element to be measured. When there are a plurality of types of inorganic particles of different materials, the content of the inorganic particles of each material is determined by this measurement.

(5−3)各層中の各種粒子の含有量(無機粒子が存在しない場合)
層中に無機粒子が存在しない場合は、前記(2)により求めたピークを構成する各粒子の個数割合と平均粒子径と粒子の密度から各ピーク領域に存在する粒子の重量割合を算出し、これと前記(5−1)で求めた各層中の粒子の総含有量とから、各ピーク領域に存在する粒子の含有量(質量%)を求める。
なお、代表的な微粒子の密度は下記のとおりである。
架橋シリコーン樹脂の密度 : 1.35g/cm
架橋ポリスチレン樹脂の密度: 1.05g/cm
架橋アクリル樹脂の密度 : 1.20g/cm
なお、樹脂の密度は(5−1)の方法でポリエステルから遠心分離した粒子をさらに分別し、例えば、ピクノメーターにより「微粒子ハンドブック:朝倉書店、1991年版、150頁」に記載の方法で測定することができる。
(5-3) Content of various particles in each layer (when no inorganic particles are present)
When inorganic particles are not present in the layer, the weight ratio of the particles present in each peak region is calculated from the number ratio of each particle constituting the peak determined in (2) above, the average particle diameter and the density of the particles, From this and the total content of particles in each layer determined in (5-1) above, the content (% by mass) of particles present in each peak region is determined.
The typical fine particle density is as follows.
Density of crosslinked silicone resin: 1.35 g / cm 3
Cross-linked polystyrene resin density: 1.05 g / cm 3
Cross-linked acrylic resin density: 1.20 g / cm 3
The resin density is further determined by separating the particles centrifuged from the polyester by the method (5-1), and measured by a method described in “Fine Particles Handbook: Asakura Shoten, 1991, p. 150”, for example, with a pycnometer. be able to.

(5−4)各層中の各種粒子の含有量(無機粒子が存在する場合)
層中に無機粒子が存在する場合は、前記(5−1)で求めた各層中の粒子の総含有量と前記(5−2)で求めた各層中の無機粒子の総含有量とから層中の有機粒子と無機粒子の含有量をそれぞれ算出し、有機粒子の含有量は上記(5−3)の方法で、無機粒子の含有量は上記(5−2)の方法で、それぞれ含有量(質量%)を求める。
(5-4) Content of various particles in each layer (when inorganic particles are present)
When inorganic particles are present in the layer, the layer is determined from the total content of particles in each layer determined in (5-1) and the total content of inorganic particles in each layer determined in (5-2). The content of the organic particles and the inorganic particles in each is calculated, the content of the organic particles is the method of (5-3) above, and the content of the inorganic particles is the content of the method (5-2) above. (Mass%) is obtained.

(6)フィルムおよび各ポリエステル層の厚み
(6−1)フィルムの厚み
ゴミが入らないようにフィルムを10枚重ね、打点式電子マイクロメータにて厚みを測定し、1枚当たりのフィルム厚みを計算する。
(6) Thickness of film and each polyester layer (6-1) Thickness of film 10 films are stacked so that dust does not enter, the thickness is measured with a dot-type electronic micrometer, and the film thickness per sheet is calculated. To do.

(6−2)各ポリエステル層の厚み
2次イオン質量分析装置(SIMS)を用いて、表層から深さ3,000nm迄の範囲のフィルム中の粒子の内もっとも高濃度の粒子に起因する元素とポリエステルの炭素元素の濃度比(M+/C+)を粒子濃度とし、表面から深さ3,000nmまで厚さ方向の分析を行う。表層では表面という界面のために粒子濃度は低く表面から遠ざかるにつれて粒子濃度は高くなる。そして一旦極大値となった粒子濃度がまた減少し始める。この濃度分布曲線をもとに表層粒子濃度が極大値の1/2となる深さ(この深さは極大値となる深さよりも深い)を求め、これを表層厚さとする。そして、先ほどのフィルムの厚みと表層厚みとから、各層の厚みを算出する。
条件は次のとおりである。
(a)測定装置:2次イオン質量分析装置(SIMS)
(b)測定条件
1次イオン種 :O2+
1次イオン加速電圧:12KV
1次イオン電流:200nA
ラスター領域 :400μm□
分析領域 :ゲート30%
測定真空度 :0.8Pa(6.0×10−3Torr)
E−GUN :0.5KV−3.0A
なお、表層から深さ3000nm迄の範囲にもっとも多く含有する粒子が有機高分子粒子の場合はSIMSでは測定が難しいので、表面からエッチングしながらXPS(X線光電子分光法)、IR(赤外分光法)などで上記同様のデプスプロファイルを測定し、表層厚さを求めてもよい。
(6-2) Thickness of each polyester layer Using a secondary ion mass spectrometer (SIMS), an element caused by the highest concentration of particles in the film ranging from the surface layer to a depth of 3,000 nm The concentration ratio (M + / C +) of the carbon element in the polyester is defined as the particle concentration, and analysis in the thickness direction is performed from the surface to a depth of 3,000 nm. In the surface layer, the particle concentration is low due to the interface of the surface, and the particle concentration increases as the distance from the surface increases. And the particle concentration once reached the maximum value starts to decrease again. Based on this concentration distribution curve, a depth at which the surface layer particle concentration is ½ of the maximum value (this depth is deeper than the depth at which the maximum value is reached) is determined, and this is defined as the surface layer thickness. Then, the thickness of each layer is calculated from the thickness of the film and the thickness of the surface layer.
The conditions are as follows.
(A) Measuring device: secondary ion mass spectrometer (SIMS)
(B) Measurement conditions Primary ion species: O 2+
Primary ion acceleration voltage: 12KV
Primary ion current: 200 nA
Raster area: 400 μm
Analysis area: 30% gate
Measurement degree of vacuum: 0.8 Pa (6.0 × 10 −3 Torr)
E-GUN: 0.5KV-3.0A
In addition, when the most contained particles in the range from the surface layer to a depth of 3000 nm are organic polymer particles, it is difficult to measure by SIMS, so XPS (X-ray photoelectron spectroscopy), IR (infrared spectroscopy) while etching from the surface. The depth profile similar to the above may be measured by the method) to obtain the surface layer thickness.

(7)ヤング率
フィルムを試料幅10mm、長さ15cmに切り、チャック間100mmにして、引張速度10m/min、チャート速度500mm/minの条件でインストロンタイプの万能引張試験装置にて引っ張る。得られる荷重−伸び曲線の立上り部の接線よりヤング率を計算する。
(7) Young's modulus The film is cut into a sample width of 10 mm and a length of 15 cm, and the distance between chucks is set to 100 mm. The film is pulled with an Instron type universal tensile tester under the conditions of a tensile speed of 10 m / min and a chart speed of 500 mm / min. The Young's modulus is calculated from the tangent of the rising portion of the obtained load-elongation curve.

(8)表面粗さ(Ra)
非接触式三次元表面粗さ計(ZYGO社製:New View5022)を用いて測定倍率25倍、測定面積283μm×213μm(=0.0603mm)の条件にて測定し、該粗さ計に内蔵された表面解析ソフトMetro Proにより中心面平均粗さ(Ra)を求め、これを表面粗さ(Ra)とした。なお、測定は測定箇所を変えて10回行い、それらの平均値を中心面平均粗さ(Ra)とした。また積層ポリエステルフィルムの平坦な側(A層側)の表面の表面粗さをRaA、粗い側(B層側)の表面の粗さをRaBとした。
(8) Surface roughness (Ra)
Measured using a non-contact type three-dimensional surface roughness meter (manufactured by ZYGO: New View 5022) at a measurement magnification of 25 times and a measurement area of 283 μm × 213 μm (= 0.0603 mm 2 ), and incorporated in the roughness meter The center surface average roughness (Ra) was determined by the surface analysis software Metro Pro, which was defined as the surface roughness (Ra). The measurement was performed 10 times while changing the measurement location, and the average value thereof was defined as the center plane average roughness (Ra). The surface roughness of the flat side (A layer side) of the laminated polyester film was RaA, and the surface roughness of the rough side (B layer side) was RaB.

(9)地肌指数
非接触式三次元表面粗さ計(ZYGO社製:New View5022)を用いて、上述(6)の条件にてRaを測定後、該粗さ計に内蔵されたソフトMetro Proにより、表面のセンターラインから高さ方向に凸側と凹側にそれぞれ5nmずつ離れたラインを引き、それ以上の高さを有するものを突起と認識させ、さらに0.5μm以上の面積を有する突起を突起数としてカウントした。この突起全ての突起面積を合計し、測定面積283μm×213μm=(0.0603mm)から差し引いた値を測定面積に対する百分率で表した数値を本発明でいう地肌指数として求めた。なお、測定は測定箇所を変えて10回行い、それらの平均値を地肌指数とした。
(9) Background Index After measuring Ra under the condition (6) above using a non-contact type three-dimensional surface roughness meter (manufactured by ZYGO: New View 5022), the software Metro Pro built in the roughness meter By drawing a line that is 5 nm away from the center line on the surface in the height direction on the convex side and the concave side, respectively, a thing having a height higher than that is recognized as a protrusion, and further has an area of 0.5 μm 2 or more The protrusions were counted as the number of protrusions. The projection areas of all the projections were totaled, and a value obtained by subtracting the measurement area 283 μm × 213 μm = (0.0603 mm 2 ) as a percentage of the measurement area was determined as the background index in the present invention. In addition, the measurement was performed 10 times while changing the measurement location, and the average value thereof was used as the background index.

(10)フィルムの静摩擦係数
ポリエステルA層側の表面とポリエステルB層側の表面とを重ね合せた2枚のフィルム(それぞれ縦方向20cm×横方向10cm)の下側に固定したアクリル板を置き、重ね合せた2枚のフィルムの上側の中央部にスレッドを配置し、重ね合せたフィルムの表面粗さが大きい側を下にしてアクリル板に固定し、アクリル板を低速ロールにて引取り(10cm/min)、上側のフィルムの一端(下側フィルムの引取り方向と逆端)に検出器を固定してフィルム/フィルム間のスタート時の引張力を検出する。なお、そのときに用いるスレッドは重さ200g、下側面積50cm(縦方向10cm×横方向5cmの長方形)のものを使用する。
なお、静摩擦係数(μs)は次式より求めた。
μs=(スタート時の引張力g)/(荷重200g)
フィルムの静摩擦係数が大きくなると、滑り性が低下し、フィルムをロール状に巻き取る際、シワや欠陥が出やすくなる。
(10) Coefficient of static friction of the film An acrylic plate fixed on the lower side of two films (each 20 cm in the vertical direction × 10 cm in the horizontal direction) on which the surface on the polyester A layer side and the surface on the polyester B layer side are placed, A thread is placed at the center of the upper side of the two overlapped films, fixed to the acrylic plate with the surface with the larger surface roughness facing down, and the acrylic plate is taken up with a low speed roll (10 cm). / Min), a detector is fixed to one end of the upper film (opposite to the take-off direction of the lower film), and the tensile force at the start of the film / film is detected. The thread used at that time has a weight of 200 g and a lower area of 50 cm 2 (rectangle of 10 cm in the vertical direction × 5 cm in the horizontal direction).
The static friction coefficient (μs) was obtained from the following equation.
μs = (Tensile force at start g) / (Load 200 g)
When the static friction coefficient of the film increases, slipperiness decreases, and wrinkles and defects are likely to occur when the film is wound into a roll.

(11)走行フィルム貼りつき試験
市販のフリクションテスターを用いて、幅12.7mm、長さ30cmのフィルムを試験片として準備し、荷重100g、速度10mm/秒、走行長さ10cm、繰り返し回数30回の条件下で、粗さ19nm、直径6mmのクロムメッキ性の金属ガイドローラーに抱き角90°でフィルムの平坦面側を走行させた。走行させた際に、走行は安定していたが、走行後のフィルムを実体顕微鏡で観察したときに長さ1cm以上の傷が5本以下だった場合を△、フィルムが金属ガイドローラーに貼りついて走行が不安定になったり、傷が5本から無数に入ったりしたものを×として評価した。
○:貼りつきが起こらずフィルム搬送が安定し、長さ1cm以上の傷がない
△:貼りつきが起こらずフィルム搬送が安定し、長さ1cm以上の傷が5本以下
×:貼りつきが起こり、フィルム搬送が不安定、もしくは傷が5本以上
(11) Running film sticking test Using a commercially available friction tester, a film having a width of 12.7 mm and a length of 30 cm was prepared as a test piece, a load of 100 g, a speed of 10 mm / sec, a running length of 10 cm, and a repetition count of 30 times. Under the conditions, the flat surface side of the film was run at a holding angle of 90 ° on a chromium-plating metal guide roller having a roughness of 19 nm and a diameter of 6 mm. When running, the running was stable, but when the film after running was observed with a stereomicroscope, there were 5 or less scratches with a length of 1 cm or more, and the film stuck to the metal guide roller A case where running was unstable or an innumerable number of scratches from 5 was evaluated as x.
○: Sticking does not occur and film conveyance is stable, and there are no scratches with a length of 1 cm or more. Δ: Sticking does not occur, film transportation is stable, and there are five or less scratches with a length of 1 cm or more. , Film transport is unstable, or more than 5 scratches

(12)磁気テープの作成
各実施例及び比較例で得られた幅1000mm、長さ1000mの積層二軸配向ポリエステルフィルムの粗面層(A層)側表面に、下記組成のバックコート層塗料をダイコータ(加工時の張力:20MPa、温度:120℃、速度:200m/分)で、塗布し、乾燥させた後、フィルムの平坦層(B層)側表面に下記組成の非磁性塗料、磁性塗料をダイコータで同時に膜厚を変えて塗布し、磁気配向させて乾燥させる。さらに、小型テストカレンダ−装置(スチ−ルロール/ナイロンロール、5段)で、温度:70℃、線圧:200kg/cmでカレンダ−処理した後、70℃、48時間キュアリングする。上記テ−プを12.65mmにスリットし、カセットに組み込み磁気記録テープとした。なお、乾燥後のバックコート層、非磁性層および磁性層の厚みは、それぞれ0.5μm、1.2μmおよび0.1μmとなるように塗布量を調整した。
<非磁性塗料の組成>
・二酸化チタン微粒子 :100重量部
・エスレックA(積水化学製塩化ビニル/酢酸ビニル共重合体 :10重量部
・ニッポラン2304(日本ポリウレタン 製ポリウレタンエラストマ):10重量部
・コロネートL(日本ポポリウレタン製ポリイソシアネート) : 5重量部
・レシチン : 1重量部
・メチルエチルケトン :75重量部
・メチルイソブチルケトン :75重量部
・トルエン :75重量部
・カーボンブラック : 2重量部
・ラウリン酸 :1.5重量部
<磁性塗料の組成>
・鉄(長軸:0.037μm、針状比:3.5、2350エルステッド):100重量部
・エスレックA(積水化学製塩化ビニル/酢酸ビニル共重合体 :10重量部
・ニッポラン2304(日本ポリウレタン 製ポリウレタンエラストマ):10重量部
・コロネートL(日本ポリウレタン製ポリイソシアネート) : 5重量部
・レシチン : 1重量部
・メチルエチルケトン :75重量部
・メチルイソブチルケトン :75重量部
・トルエン :75重量部
・カーボンブラック : 2重量部
・ラウリン酸 :1.5重量部
<バックコート層塗料の組成:>
カーボンブラック :100重量部
熱可塑性ポリウレタン樹脂 :60重量部
イソシアネート化合物 :18重量部
(日本ポリウレタン工業社製コロネートL)
シリコーンオイル :0.5重量部
メチルエチルケトン :250重量部
トルエン :50重量部
(12) Preparation of magnetic tape A back coat layer paint having the following composition was applied to the surface of the rough surface layer (A layer) of the laminated biaxially oriented polyester film having a width of 1000 mm and a length of 1000 m obtained in each Example and Comparative Example. After coating and drying with a die coater (tension during processing: 20 MPa, temperature: 120 ° C., speed: 200 m / min), a non-magnetic paint or magnetic paint having the following composition on the surface of the flat layer (B layer) side of the film Is applied at the same time with a die coater while changing the film thickness, magnetically oriented and dried. Further, after calendering with a small test calender (steel roll / nylon roll, 5 stages) at a temperature of 70 ° C. and a linear pressure of 200 kg / cm, curing is performed at 70 ° C. for 48 hours. The tape was slit to 12.65 mm and incorporated into a cassette to obtain a magnetic recording tape. The coating amount was adjusted so that the thicknesses of the dried backcoat layer, nonmagnetic layer and magnetic layer were 0.5 μm, 1.2 μm and 0.1 μm, respectively.
<Composition of non-magnetic paint>
-Titanium dioxide fine particles: 100 parts by weight-Esreck A (Sekisui Chemical's vinyl chloride / vinyl acetate copolymer: 10 parts by weight-Nipponran 2304 (Nippon Polyurethane Polyurethane Elastomer): 10 parts by weight-Coronate L (Nippon Polyurethane Poly Isocyanate): 5 parts by weight, lecithin: 1 part by weight, methyl ethyl ketone: 75 parts by weight, methyl isobutyl ketone: 75 parts by weight, toluene: 75 parts by weight, carbon black: 2 parts by weight, lauric acid: 1.5 parts by weight <magnetic Composition of paint>
Iron (major axis: 0.037 μm, needle ratio: 3.5, 2350 oersted): 100 parts by weight Eslek A (vinyl chloride / vinyl acetate copolymer made by Sekisui Chemical: 10 parts by weight) Nipponan 2304 (Nippon Polyurethane) Polyurethane elastomer): 10 parts by weight, Coronate L (polyisocyanate made by Nippon Polyurethane): 5 parts by weight, lecithin: 1 part by weight, methyl ethyl ketone: 75 parts by weight, methyl isobutyl ketone: 75 parts by weight, toluene: 75 parts by weight, carbon Black: 2 parts by weight ・ Lauric acid: 1.5 parts by weight <Composition of back coat layer paint:>
Carbon black: 100 parts by weight Thermoplastic polyurethane resin: 60 parts by weight Isocyanate compound: 18 parts by weight (Coronate L manufactured by Nippon Polyurethane Industry Co., Ltd.)
Silicone oil: 0.5 parts by weight Methyl ethyl ketone: 250 parts by weight Toluene: 50 parts by weight

(13)電磁変換特性
電磁変換特性測定には、ヘッドを固定した1/2インチリニアシステムを用いた。記録は、電磁誘導型ヘッド(トラック幅25μm、ギャップ0.1μm)を用い、再生はMRヘッド(8μm)を用いた。ヘッド/テープの相対速度は10m/秒とし、記録波長0.2μmの信号を記録し、再生信号をスペクトラムアナライザーで周波数分析し、キャリア信号(波長0.2μm)の出力Cと、スペクトル全域の積分ノイズNの比をC/N比とし、上記10の方法で作成した実施例9を0dBとした相対値を求め、以下の基準で、評価した。
◎ : +1dB以上
○ : −1dB以上、+1dB未満
× : −1dB未満
(13) Electromagnetic conversion characteristics For measuring the electromagnetic conversion characteristics, a 1/2 inch linear system with a fixed head was used. Recording was performed using an electromagnetic induction head (track width 25 μm, gap 0.1 μm), and reproduction was performed using an MR head (8 μm). The relative speed of the head / tape is 10 m / sec, a signal with a recording wavelength of 0.2 μm is recorded, the reproduced signal is analyzed with a spectrum analyzer, the output C of the carrier signal (wavelength 0.2 μm), and the integration over the entire spectrum. The noise N ratio was defined as C / N ratio, and a relative value was obtained with 0 dB as Example 9 created by the above method 10, and evaluated according to the following criteria.
◎: +1 dB or more ○: −1 dB or more, less than +1 dB ×: less than −1 dB

(14)エラーレート
上記(12)で作製したテープ原反を12.65mm(1/2インチ)幅にスリットし、それをLTO用のケースに組み込み、磁気記録テープの長さが850mのデータストレージカートリッジを作成した。このデータストレージを、IBM社製LTO5ドライブを用いて23℃50%RHの環境で記録し(記録波長0.55μm)、次に、カートリッジを50℃、80%RH環境下に7日間保存した。カートリッジを1日常温に保存した後、全長の再生を行い、再生時の信号のエラーレートを測定した。エラーレートはドライブから出力されるエラー情報(エラービット数)から次式にて算出する。次の基準でエラーレートを評価する。
エラーレート=(エラービット数)/(書き込みビット数)
◎:エラーレートが1.0×10−6未満
○:エラーレートが1.0×10−6以上、1.0×10−4未満
×:エラーレートが1.0×10−4以上
(14) Error rate Data storage with an original tape produced in (12) slit to a width of 12.65 mm (1/2 inch) and incorporated into an LTO case, and the length of the magnetic recording tape is 850 m. A cartridge was created. This data storage was recorded using an IBM LTO5 drive in an environment of 23 ° C. and 50% RH (recording wavelength 0.55 μm), and then the cartridge was stored in an environment of 50 ° C. and 80% RH for 7 days. After the cartridge was stored at room temperature for one day, the full length was reproduced, and the error rate of the signal at the time of reproduction was measured. The error rate is calculated from the error information (number of error bits) output from the drive by the following formula. The error rate is evaluated according to the following criteria.
Error rate = (number of error bits) / (number of write bits)
A: Error rate is less than 1.0 × 10 −6 ○: Error rate is 1.0 × 10 −6 or more, less than 1.0 × 10 −4 ×: Error rate is 1.0 × 10 −4 or more

(15)ドロップアウト(DO)
上記(14)でエラーレートを測定したデータストレージカートリッジを、IBM社製LTO5ドライブに装填してデータ信号を14GB記録し、それを再生した。平均信号振幅に対して50%以下の振幅(P−P値)の信号をミッシングパルスとし、4個以上連続したミッシングパルスをドロップアウトとして検出した。なお、ドロップアウトは850m長1巻を評価し、1m当たりの個数に換算して、下記の基準で判定する。
◎:ドロップアウト 3個/m未満
○:ドロップアウト 3個/m以上、9個/m未満
×:ドロップアウト 9個/m以上
(15) Dropout (DO)
The data storage cartridge whose error rate was measured in the above (14) was loaded into an IBM LTO5 drive, a data signal was recorded at 14 GB, and it was reproduced. A signal having an amplitude (PP value) of 50% or less with respect to the average signal amplitude was detected as a missing pulse, and four or more consecutive missing pulses were detected as dropouts. In addition, dropout evaluates 1 volume of 850m, converts into the number per 1m, and determines by the following references | standards.
◎: Dropout less than 3 pieces / m ○: Dropout of 3 pieces / m or more, less than 9 pieces / m ×: Dropout of 9 pieces / m or more

(16)サーマルアスペリティ
上記で作成したデータストレージテープをエラーレートと同様にIBM社製LTO5ドライブを用いて再生信号を読み取る。読み取ったそれぞれの再生波形のうち500kHz以下の低域成分が発生した場合、その低域成分をサーマルアスピリティ成分としてカウントし、次式にて算出する。次の基準で、サーマルアスピリティを評価する。
サーマルアスピリティ=(サーマルアスピリティ数)/(再生波形数)
◎:サーマルアスピリティが1.0×10−4未満
○:サーマルアスピリティが1.0×10−4以上、1.0×10−2未満
×:サーマルアスピリティが1.0×10−2以上
(16) Thermal Asperity The reproduction signal is read from the data storage tape created above using an LTO5 drive manufactured by IBM in the same manner as the error rate. When a low frequency component of 500 kHz or less is generated in each read reproduction waveform, the low frequency component is counted as a thermal aspiration component and calculated by the following equation. The thermal aspiration is evaluated according to the following criteria.
Thermal aspiration = (The number of thermal aspirations) / (Number of reproduced waveforms)
A: Thermal aspiration is less than 1.0 × 10 −4 ○: Thermal aspiration is 1.0 × 10 −4 or more, less than 1.0 × 10 −2 ×: Thermal aspiration is 1.0 × 10 −2 that's all

[実施例1]
2,6−ジメチルナフタレート100部とエチレングリコール56部の混合物に、酢酸マンガン・4水和物0.0313部を加圧反応が可能なSUS(ステンレス)製容器に仕込み、0.07MPaの加圧を行い140℃から240℃に昇温しながらエステル交換反応させた後、トリエチルホスホノアセテート0.042部を添加し、エステル交換反応を終了させた。
その後、反応生成物を重合容器に移し、290℃まで昇温して3酸化アンチモン0.0239部を添加し100Paの高真空にて重縮合反応を行い、固有粘度0.62、ジエチレングリコール量1.5モル%(2,6−エチレンナフタレート成分対比)の希釈用ポリエチレン−2,6−ナフタレート樹脂組成物(PEN−0)を得た。
[Example 1]
A mixture of 100 parts of 2,6-dimethylnaphthalate and 56 parts of ethylene glycol is charged with 0.0313 parts of manganese acetate tetrahydrate in a SUS (stainless steel) container capable of pressure reaction, and 0.07 MPa is added. The ester exchange reaction was carried out while increasing the pressure from 140 ° C. to 240 ° C., and then 0.042 part of triethylphosphonoacetate was added to complete the ester exchange reaction.
Thereafter, the reaction product is transferred to a polymerization vessel, heated to 290 ° C., 0.0239 parts of antimony trioxide is added, and a polycondensation reaction is carried out at a high vacuum of 100 Pa, an intrinsic viscosity of 0.62, a diethylene glycol amount of 1. A polyethylene-2,6-naphthalate resin composition for dilution (PEN-0) of 5 mol% (compared with 2,6-ethylene naphthalate component) was obtained.

また、上記と同様に2,6−ジメチルナフタレート100部とエチレングリコール56部の混合物に、酢酸マンガン・4水和物0.0313部を加圧反応が可能なSUS(ステンレス)製容器に仕込み、0.07MPaの加圧を行い140℃から240℃に昇温しながらエステル交換反応させた後、トリエチルホスホノアセテート0.042部を添加し、エステル交換反応を終了させた。
その後、反応生成物を重合容器に移し、滑剤として平均粒子径0.12μmの真球状シリカ粒子を0.01質量%を添加し、290℃まで昇温して3酸化アンチモン0.0239部を添加し100Paの高真空にて重縮合反応を行い、固有粘度0.62、ジエチレングリコール量1.5モル%(2,6−エチレンナフタレート成分対比)のA層用ポリエチレン−2,6−ナフタレート樹脂組成物(PEN−A1)を得た。さらに、二軸混練押出機((株)神戸製鋼所、機種名:HYPERKTX)を使用して、PEN−A1を再度溶融押出し、真球状シリカの分散性を向上させたPEN−A1aを得た。
さらに、上記PEN−A1と含有させる真球状シリカ粒子の量を1.0質量%に変更加する以外は同様にしてB層用ポリエチレン−2,6−ナフタレート樹脂組成物(PEN−B1)を得た。さらに、二軸混練押出機((株)神戸製鋼所、機種名;HYPERKTX)を使用して、PEN−B1を再度溶融押出し、真球状シリカの分散性を向上させたPEN−B1aを得た。
In the same manner as above, a mixture of 100 parts of 2,6-dimethylnaphthalate and 56 parts of ethylene glycol was charged with 0.0313 parts of manganese acetate tetrahydrate in a SUS (stainless steel) container capable of pressure reaction. The ester exchange reaction was carried out while increasing the pressure from 140 ° C. to 240 ° C. under a pressure of 0.07 MPa, and then 0.042 parts of triethylphosphonoacetate was added to complete the ester exchange reaction.
Thereafter, the reaction product is transferred to a polymerization vessel, 0.01 mass% of spherical silica particles having an average particle size of 0.12 μm are added as a lubricant, the temperature is raised to 290 ° C., and 0.0239 parts of antimony trioxide is added. Polyethylene-2,6-naphthalate resin composition for layer A having an intrinsic viscosity of 0.62 and an amount of diethylene glycol of 1.5 mol% (compared to 2,6-ethylene naphthalate component) A product (PEN-A1) was obtained. Furthermore, PEN-A1 was melt-extruded again using a twin-screw kneading extruder (Kobe Steel, Ltd., model name: HYPERKTX) to obtain PEN-A1a with improved spherical silica dispersibility.
Further, a polyethylene-2,6-naphthalate resin composition for B layer (PEN-B1) is obtained in the same manner except that the amount of the spherical silica particles to be contained with PEN-A1 is changed to 1.0% by mass. It was. Furthermore, PEN-B1 was melt-extruded again using a twin-screw kneading extruder (Kobe Steel Corporation, model name: HYPERKTX) to obtain PEN-B1a with improved dispersibility of true spherical silica.

そして、A層用はPEN−A1を単独で、B層用はPEN−B1とPEN−0のペレットを配合して粒子量が0.4重量%になるように配合した。これらのチップを170℃で6時間乾燥した後、2台の押出機ホッパーにそれぞれ供給し、溶融温度310℃で、A層:B層=42:58の厚み比率でダイから冷却ドラム上にシート状に共押出し、積層未延伸ポリエステルフィルムを得た。この積層未延伸フィルムをスプリットカッターで粉砕し再度押出機((株)神戸製鋼所、機種名;HYPERKTX)にて溶融押出を行い、ペレットを作成した。このペレットをPEN−C1とする。そして、PEN−C1および、希釈用のPEN−0を配合して、合計の真球状シリカ粒子濃度0.01質量%のA層用のチップを作成した。さらに、PEN−C1をとPEN−B1を合計の真球状シリカ粒子濃度0.4質量%となるように配合して、B層用のチップを作成した。これらのチップを使用して、170℃で6時間乾燥した後、2台の押出機ホッパーにそれぞれ供給し、溶融温度310℃で、A層:B層=42:58の厚み比率でダイから冷却ドラム上にシート状に共押出し、積層未延伸ポリエステルフィルムを得た。   For layer A, PEN-A1 was used alone, and for layer B, PEN-B1 and PEN-0 pellets were blended so that the amount of particles was 0.4% by weight. After these chips were dried at 170 ° C. for 6 hours, they were respectively supplied to two extruder hoppers, and were melted at 310 ° C. and sheeted from the die onto the cooling drum at a thickness ratio of A layer: B layer = 42: 58. To form a laminated unstretched polyester film. The laminated unstretched film was pulverized with a split cutter, and again melt-extruded with an extruder (Kobe Steel Works, model name: HYPERKTX) to prepare pellets. This pellet is designated as PEN-C1. And PEN-C1 and the PEN-0 for dilution were mix | blended, and the chip | tip for A layers with a total spherical silica particle density | concentration of 0.01 mass% was created. Further, PEN-C1 and PEN-B1 were blended so as to have a total true spherical silica particle concentration of 0.4% by mass to prepare a chip for B layer. Using these chips, after drying at 170 ° C. for 6 hours, each was supplied to two extruder hoppers and cooled from the die at a melting temperature of 310 ° C. at a thickness ratio of A layer: B layer = 42: 58 Coextruded into a sheet on a drum to obtain a laminated unstretched polyester film.

このようにして得られた積層未延伸ポリエステルフィルムを、120℃に予熱し、上方よりIRヒーターにてフィルム表面温度が140℃になるように加熱し、延伸倍率5.0倍で縦方向(製膜方向)の延伸を行った。続いて、155℃に加熱されたステンター内に供給し、165℃、170℃に段階的に温度を上げながら、横方向に5.3倍に延伸(第1段)後、更に180℃に加熱されたステンター内に供給して再度横方向に1.2倍に延伸した後、210℃の熱風で4秒間熱固定し、厚み3.8μmの積層二軸配向ポリエステルフィルムを得た。得られた積層二軸配向ポリエステルフィルムのヤング率は縦方向6.0GPa、横方向9.1GPaであった。ポリエステルA層の地肌指数は99.00%であった。
得られた積層二軸配向ポリエステルフィルムの特性を表1に示す。
The laminated unstretched polyester film thus obtained was preheated to 120 ° C. and heated from above with an IR heater so that the film surface temperature was 140 ° C. Stretching in the film direction) was performed. Subsequently, it is supplied into a stenter heated to 155 ° C., and is stretched 5.3 times in the lateral direction (first stage) while being gradually increased to 165 ° C. and 170 ° C., and further heated to 180 ° C. After being supplied into the stenter and stretched 1.2 times in the transverse direction again, it was heat-fixed with hot air at 210 ° C. for 4 seconds to obtain a laminated biaxially oriented polyester film having a thickness of 3.8 μm. The Young's modulus of the obtained laminated biaxially oriented polyester film was 6.0 GPa in the vertical direction and 9.1 GPa in the horizontal direction. The background index of the polyester A layer was 99.00%.
Table 1 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[実施例2]
二軸混練押出機((株)神戸製鋼所、機種名:HYPERKTX)を使用して、実施例1におけるPEN−A1を再度溶融押出し、真球状シリカの分散性を向上させたPEN−A1aを得た。また、二軸混練押出機((株)神戸製鋼所、機種名;HYPERKTX)を使用して、実施例1におけるPEN−B1を再度溶融押出し、真球状シリカの分散性を向上させたPEN−B1aを得た。
そして、実施例1において、PEN−A1の代りにPEN−A1aを用い、PEN−B1の代りにPEN−B1aを用いた以外はと同様な操作を繰り返した。得られた積層二軸配向ポリエステルフィルムの特性を表1に示す。
[Example 2]
Using a twin-screw kneading extruder (Kobe Steel Corporation, model name: HYPERKTX), PEN-A1 in Example 1 was melt-extruded again to obtain PEN-A1a with improved dispersibility of true spherical silica. It was. In addition, PEN-B1a in which PEN-B1 in Example 1 was melt-extruded again using a twin-screw kneading extruder (Kobe Steel Corporation, model name: HYPERKTX) to improve the dispersibility of true spherical silica. Got.
In Example 1, the same operation was repeated except that PEN-A1a was used instead of PEN-A1 and PEN-B1a was used instead of PEN-B1. Table 1 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[実施例3]
実施例2において、真球状シリカ粒子の代りに、平均粒子径0.15μmのシリカーアクリル粒子を用い、その粒子含有量を表1に示す量となるように変更したほかは同様な操作を繰り返した。なお、シリカーアクリル粒子は日本触媒製ソリオスターSP−01(固形分5%の水分散体)の分散媒をエチレングリコールに置換し手から用いた。また、粒子含有量の調整は、A層は重合時に添加する粒子量で調整し、B層は希釈するPEN−0との配合比で調整した。
得られた積層二軸配向ポリエステルフィルムの特性を表1に示す。
[Example 3]
In Example 2, the same operation was repeated except that silica-acrylic particles having an average particle diameter of 0.15 μm were used in place of the spherical silica particles and the particle content was changed to the amount shown in Table 1. It was. The silica-acrylic particles were used by replacing the dispersion medium of Soliostar SP-01 (5% solids aqueous dispersion) made by Nippon Shokubai with ethylene glycol. In addition, the particle content was adjusted by adjusting the amount of particles added during polymerization for the A layer, and by adjusting the blending ratio with the PEN-0 for diluting the B layer.
Table 1 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[実施例4]
実施例2において、真球状シリカ粒子の代りに、平均粒子径0.15μmの架橋ポリスチレン粒子を用い、その粒子含有量を表1に示す量となるように変更したほかは同様な操作を繰り返した。また、粒子含有量の調整は、A層は重合時に添加する粒子量で調整し、B層は希釈するPEN−0との配合比で調整した。
得られた積層二軸配向ポリエステルフィルムの特性を表1に示す。
[Example 4]
In Example 2, the same operation was repeated except that crosslinked polystyrene particles having an average particle diameter of 0.15 μm were used in place of the true spherical silica particles and the particle content was changed to the amount shown in Table 1. . In addition, the particle content was adjusted by adjusting the amount of particles added during polymerization for the A layer, and by adjusting the blending ratio with the PEN-0 for diluting the B layer.
Table 1 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[実施例5]
実施例2において、真球状シリカ粒子の含有量を表1に示す量となるように変更したほかは同様な操作を繰り返した。また、粒子含有量の調整は、A層は重合時に添加する粒子量で調整し、B層は希釈するPEN−0との配合比で調整した。
得られた積層二軸配向ポリエステルフィルムの特性を表1に示す。
[Example 5]
In Example 2, the same operation was repeated except that the content of the spherical silica particles was changed to the amount shown in Table 1. In addition, the particle content was adjusted by adjusting the amount of particles added during polymerization for the A layer, and by adjusting the blending ratio with the PEN-0 for diluting the B layer.
Table 1 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[実施例6]
実施例2において、真球状シリカ粒子の代りに、平均粒子径0.06μmの架橋ポリスチレン粒子を用い、その粒子含有量を表1に示す量となるように変更したほかは同様な操作を繰り返した。また、粒子含有量の調整は、A層は重合時に添加する粒子量で調整し、B層は希釈するPEN−0との配合比で調整した。
得られた積層二軸配向ポリエステルフィルムの特性を表1に示す。
[Example 6]
In Example 2, the same operation was repeated except that cross-linked polystyrene particles having an average particle size of 0.06 μm were used instead of true spherical silica particles and the particle content was changed to the amount shown in Table 1. . In addition, the particle content was adjusted by adjusting the amount of particles added during polymerization for the A layer, and by adjusting the blending ratio with the PEN-0 for diluting the B layer.
Table 1 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[実施例7]
実施例2において、真球状シリカ粒子の代りに、平均粒子径0.24μmの架橋ポリスチレン粒子を用い、その粒子含有量を表1に示す量となるように変更したほかは同様な操作を繰り返した。また、粒子含有量の調整は、A層は重合時に添加する粒子量で調整し、B層は希釈するPEN−0との配合比で調整した。
得られた積層二軸配向ポリエステルフィルムの特性を表1に示す。
[Example 7]
In Example 2, the same operation was repeated except that cross-linked polystyrene particles having an average particle diameter of 0.24 μm were used instead of true spherical silica particles, and the content of the particles was changed to the amount shown in Table 1. . In addition, the particle content was adjusted by adjusting the amount of particles added during polymerization for the A layer, and by adjusting the blending ratio with the PEN-0 for diluting the B layer.
Table 1 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[実施例8]
実施例2において、A層の真球状シリカ粒子の含有量を表1に示す量となるように変更したほかは同様な操作を繰り返した。なお、粒子含有量の調整は、重合時に添加する粒子量で調整した。
得られた積層二軸配向ポリエステルフィルムの特性を表1に示す。
[Example 8]
In Example 2, the same operation was repeated except that the content of the spherical silica particles in the A layer was changed to the amount shown in Table 1. In addition, adjustment of particle content was adjusted with the particle amount added at the time of superposition | polymerization.
Table 1 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[実施例9、10]
実施例2において、B層の真球状シリカ粒子の含有量を表1に示す量となるように、PEN−0との配合比を変更したほかは同様な操作を繰り返した。
得られた積層二軸配向ポリエステルフィルムの特性を表1に示す。
[Examples 9 and 10]
In Example 2, the same operation was repeated except that the blending ratio with PEN-0 was changed so that the content of the spherical silica particles in the B layer was the amount shown in Table 1.
Table 1 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[実施例11]
実施例2において、触媒量を変更したほかは同様な操作を繰り返した。なお、PEN−0、PEN−A1、PEN−B1の固有粘度はそれぞれ0.60dl/gであった。
得られた積層二軸配向ポリエステルフィルムの特性を表1に示す。
[Example 11]
In Example 2, the same operation was repeated except that the amount of catalyst was changed. In addition, the intrinsic viscosity of PEN-0, PEN-A1, and PEN-B1 was 0.60 dl / g, respectively.
Table 1 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[比較例1]
2,6−ジメチルナフタレート100部とエチレングリコール56部の混合物に、テトラ−n−ブチルチタネート0.011部を加圧反応が可能なSUS(ステンレス)製容器に仕込み、0.07MPaの加圧を行い140℃から240℃に昇温しながらエステル交換反応させた後、トリエチルホスホノアセテート0.042部を添加し、エステル交換反応を終了させた。
その後、反応生成物を重合容器に移し、滑剤として平均粒子径0.12μmの真球状シリカ粒子を0.01質量%を添加し、290℃まで昇温して100Paの高真空にて重縮合反応を行い、固有粘度0.62、ジエチレングリコール量1.5モル%(2,6−エチレンナフタレート成分対比)のA層用ポリエチレン−2,6−ナフタレート樹脂(PENーA2)組成物を得た。また上記と同様に、滑剤として平均粒子径0.12μmの真球状シリカ粒子1.0質量%を添加する以外は同様にしてB層用ポリエチレン−2,6−ナフタレート樹脂(PENーB2)組成物を得た。そして、PEN−A1の代りにPEN−A2を、PEN−B1の代りにPEN−B2を用いる以外は、実施例1と同様な操作を繰り返した。
得られた積層二軸配向ポリエステルフィルムの特性を表2に示す。
[Comparative Example 1]
A mixture of 100 parts of 2,6-dimethylnaphthalate and 56 parts of ethylene glycol is charged with 0.011 part of tetra-n-butyl titanate in a SUS (stainless steel) container capable of pressure reaction, and pressurized to 0.07 MPa. Then, the ester exchange reaction was carried out while raising the temperature from 140 ° C. to 240 ° C., and then 0.042 part of triethylphosphonoacetate was added to complete the ester exchange reaction.
Thereafter, the reaction product is transferred to a polymerization vessel, 0.01 mass% of true spherical silica particles having an average particle size of 0.12 μm are added as a lubricant, the temperature is raised to 290 ° C., and the polycondensation reaction is performed at a high vacuum of 100 Pa. A polyethylene-2,6-naphthalate resin (PEN-A2) composition for layer A having an intrinsic viscosity of 0.62 and a diethylene glycol amount of 1.5 mol% (compared to 2,6-ethylene naphthalate component) was obtained. In the same manner as above, a polyethylene-2,6-naphthalate resin (PEN-B2) composition for layer B is similarly used except that 1.0% by mass of spherical silica particles having an average particle size of 0.12 μm is added as a lubricant. Got. And operation similar to Example 1 was repeated except using PEN-A2 instead of PEN-A1, and PEN-B2 instead of PEN-B1.
Table 2 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[比較例2]
実施例2において、PEN−A1の代りに、PEN−0を用い、真球状シリカ粒子を含有させなかったほかは実施例2と同様な操作を繰り返した。
得られた積層二軸配向ポリエステルフィルムの特性を表2に示す。
[Comparative Example 2]
In Example 2, PEN-0 was used instead of PEN-A1, and the same operation as in Example 2 was repeated except that no spherical silica particles were contained.
Table 2 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[比較例3]
実施例2において、真球状シリカ粒子として、平均粒子径0.08μmの粒子を用い、その粒子含有量を表1に示す量となるように変更したほかは同様な操作を繰り返した。また、粒子含有量の調整は、A層は重合時に添加する粒子量で調整し、B層は希釈するPEN−0との配合比で調整した。
得られた積層二軸配向ポリエステルフィルムの特性を表2に示す。
[Comparative Example 3]
In Example 2, the same operation was repeated except that particles having an average particle diameter of 0.08 μm were used as true spherical silica particles and the particle content was changed to the amount shown in Table 1. In addition, the particle content was adjusted by adjusting the amount of particles added during polymerization for the A layer, and by adjusting the blending ratio with the PEN-0 for diluting the B layer.
Table 2 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[比較例4]
実施例3において、A層の粒子含有量を表1に示す量となるように変更したほかは同様な操作を繰り返した。また、粒子含有量の調整は、重合時に添加する粒子量で調整した。
得られた積層二軸配向ポリエステルフィルムの特性を表2に示す。
[Comparative Example 4]
In Example 3, the same operation was repeated except that the particle content of the A layer was changed to the amount shown in Table 1. The particle content was adjusted by the amount of particles added during polymerization.
Table 2 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[比較例5]
実施例4において、PEN−B1の代りに、平均粒径0.12μmの架橋ポリスチレン粒子を1質量%含有するPEN−B3と、平均粒子径0.3μmの架橋ポリスチレン粒子を1質量%含有するPEN−B4とを用意し、これらをPEN−B1の代りに、表1の粒子含有量となるように配合したほかは、実施例4と同様な操作を繰り返した。
得られた積層二軸配向ポリエステルフィルムの特性を表2に示す。
[Comparative Example 5]
In Example 4, instead of PEN-B1, PEN-B3 containing 1% by mass of crosslinked polystyrene particles having an average particle diameter of 0.12 μm and PEN containing 1% by mass of crosslinked polystyrene particles having an average particle diameter of 0.3 μm -B4 was prepared, and the same operation as in Example 4 was repeated except that these were blended so as to have the particle content in Table 1 instead of PEN-B1.
Table 2 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[比較例6]
実施例1において、B層の真球状シリカ粒子の含有量を表1に示す量となるように、PEN−0との配合比を変更したほかは同様な操作を繰り返した。
得られた積層二軸配向ポリエステルフィルムの特性を表2に示す。
[Comparative Example 6]
In Example 1, the same operation was repeated except that the blending ratio with PEN-0 was changed so that the content of the spherical silica particles in the B layer was the amount shown in Table 1.
Table 2 shows the characteristics of the obtained laminated biaxially oriented polyester film.

[比較例7]
実施例1において、延伸条件について、再度横延伸する前の横延伸温度を125℃、130℃、160℃に段階的に温度を上げる条件に変更する以外は同様な操作を繰り返した。得られた積層二軸配向ポリエステルフィルムの特性を表2に示す。
[Comparative Example 7]
In Example 1, with respect to the stretching conditions, the same operation was repeated except that the transverse stretching temperature before transverse stretching again was changed to the conditions of stepwise increasing the temperature to 125 ° C, 130 ° C, and 160 ° C. Table 2 shows the characteristics of the obtained laminated biaxially oriented polyester film.

Figure 2015039801
Figure 2015039801

Figure 2015039801
Figure 2015039801

表1および2中の、真球状シリカは真球状シリカ粒子、シリカ−アクリルはシリカ−アクリル複合粒子、架橋ポリスチレンは架橋ポリスチレン粒子を意味する。   In Tables 1 and 2, true spherical silica means true spherical silica particles, silica-acryl means silica-acryl composite particles, and crosslinked polystyrene means crosslinked polystyrene particles.

本発明の二軸配向積層ポリエステルフィルムは、磁気記録媒体としたときにエラーやドロップアウトが少なく、かつ優れた電磁変換特性を発現できることから、高密度磁気記録媒体、特にディジタル記録型磁気記録テープのベースフィルムとして好適に用いることができる。   The biaxially oriented laminated polyester film of the present invention has few errors and dropouts when used as a magnetic recording medium, and can exhibit excellent electromagnetic conversion characteristics, so that it can be used for high-density magnetic recording media, particularly digital recording magnetic recording tapes. It can be suitably used as a base film.

Claims (5)

塗布型磁気記録テープに用いるベースフィルムであって、少なくとも磁性層を形成する側の表面を形成するA層と磁性層を形成しない側の表面を形成するB層の2層からなる積層ポリエステルフィルムであって、
A層は、平均粒子径0.06−0.29μmで、粒子径の相対標準偏差が20%以下の粒子を0.001−0.19質量%含有し、該A層の表面における地肌指数が80〜99.99%の範囲であり、
他方磁性層を形成しない側のB層は、A層と平均粒子径が同じで、粒子径の相対標準偏差が20%以下の粒子を0.03−0.9質量%含有し、かつその粒子含有量がA層の1.5倍以上であり、そして
A層の粒子5個以上の凝集突起が3個/9cm以下であり、B層の粒子5個以上の凝集突起が10個/9cm以下である積層ポリエステルフィルム。
A base film used for a coating type magnetic recording tape, which is a laminated polyester film comprising at least two layers of an A layer that forms a surface on which a magnetic layer is formed and a B layer that forms a surface on which a magnetic layer is not formed. There,
A layer contains 0.001-0.19 mass% of particles having an average particle diameter of 0.06-0.29 μm and a relative standard deviation of the particle diameter of 20% or less, and the background index on the surface of the A layer is 80 to 99.99% range,
On the other hand, the B layer on the side where no magnetic layer is formed contains 0.03-0.9% by mass of particles having the same average particle diameter as that of the A layer and a relative standard deviation of the particle diameter of 20% or less. The content is 1.5 times or more of the A layer, and the aggregation protrusions of 5 or more particles of the A layer are 3/9 cm 2 or less, and the aggregation protrusions of 5 or more particles of the B layer are 10/9 cm. A laminated polyester film that is 2 or less.
ポリエステルがエチレンテレフタレートまたはエチレン−2,6−ナフタレンジカルボキシレートを主たる繰り返し単位とする請求項1記載の積層ポリエステルフィルム。   The laminated polyester film according to claim 1, wherein the polyester comprises ethylene terephthalate or ethylene-2,6-naphthalenedicarboxylate as a main repeating unit. A層の極限粘度が0.50以上0.54以下、B層の極限粘度が0.50以上0.54以下であり、A層の極限粘度がB層のそれよりも大きい請求項1記載の積層ポリエステルフィルム。   The intrinsic viscosity of the A layer is 0.50 or more and 0.54 or less, the intrinsic viscosity of the B layer is 0.50 or more and 0.54 or less, and the intrinsic viscosity of the A layer is larger than that of the B layer. Laminated polyester film. 含有粒子が球状シリカ粒子、架橋ポリスチレン粒子、シリコーン粒子、シリカーアクリル複合粒子のいずれかである請求項1記載の積層ポリエステルフィルム。   The laminated polyester film according to claim 1, wherein the contained particles are any of spherical silica particles, crosslinked polystyrene particles, silicone particles, and silica-acryl composite particles. 請求項1〜4のいずれかに記載の積層ポリエステルフィルムと、その磁性層を形成する側の表面に塗布形成された磁性層とからなる塗布型磁気記録テープ。   5. A coating type magnetic recording tape comprising the laminated polyester film according to claim 1 and a magnetic layer coated on the surface on which the magnetic layer is formed.
JP2013171007A 2013-08-21 2013-08-21 Laminated polyester film and coated magnetic recording tape using the same Active JP6158640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013171007A JP6158640B2 (en) 2013-08-21 2013-08-21 Laminated polyester film and coated magnetic recording tape using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013171007A JP6158640B2 (en) 2013-08-21 2013-08-21 Laminated polyester film and coated magnetic recording tape using the same

Publications (2)

Publication Number Publication Date
JP2015039801A true JP2015039801A (en) 2015-03-02
JP6158640B2 JP6158640B2 (en) 2017-07-05

Family

ID=52694240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013171007A Active JP6158640B2 (en) 2013-08-21 2013-08-21 Laminated polyester film and coated magnetic recording tape using the same

Country Status (1)

Country Link
JP (1) JP6158640B2 (en)

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111842A (en) * 2015-12-16 2017-06-22 富士フイルム株式会社 Magnetic tape, magnetic tape cartridge, magnetic recording playback apparatus, and manufacturing method for magnetic tape
US10347280B2 (en) 2016-06-23 2019-07-09 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10347279B2 (en) 2016-02-03 2019-07-09 Fujifilm Corporation Magnetic tape having characterized backcoat layer and method of manufacturing the same
US10360937B2 (en) 2017-03-29 2019-07-23 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10366721B2 (en) 2017-06-23 2019-07-30 Fujifilm Corporation Head positioning of timing-based servo system for magnetic tape recording device
US10373633B2 (en) 2016-12-27 2019-08-06 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10373639B2 (en) 2017-03-29 2019-08-06 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10395685B2 (en) 2017-03-29 2019-08-27 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10403320B2 (en) 2016-12-27 2019-09-03 Fujifilm Corporation Magnetic tape device with TMR head and specific logarithmic decrement and magnetic reproducing method
US10403317B2 (en) 2017-03-29 2019-09-03 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10403319B2 (en) 2015-12-16 2019-09-03 Fujifilm Corporation Magnetic tape having characterized magnetic layer, tape cartridge, and recording and reproducing device
US10403318B2 (en) 2016-06-24 2019-09-03 Fujifilm Corporation Magnetic tape having characterized back coating layer
US10403316B2 (en) 2017-07-19 2019-09-03 Fujifilm Corporation Magnetic tape having characterized magnetic layer with servo pattern and magnetic tape device
US10403314B2 (en) 2017-02-20 2019-09-03 Fujifilm Corporation Magnetic tape device employing TMR head and magnetic tape with characterized magnetic layer, and head tracking servo method
US10403312B2 (en) 2017-03-29 2019-09-03 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10410665B2 (en) 2017-03-29 2019-09-10 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10410666B2 (en) 2017-03-29 2019-09-10 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10424330B2 (en) 2017-02-20 2019-09-24 Fujifilm Corporation Magnetic tape having characterized back coating layer
US10431248B2 (en) 2016-06-10 2019-10-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10431249B2 (en) 2016-06-23 2019-10-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10431251B2 (en) 2017-03-29 2019-10-01 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10431250B2 (en) 2017-02-20 2019-10-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10438623B2 (en) 2017-03-29 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10438621B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized back coating layer
US10438625B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10438624B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10438622B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10438628B2 (en) 2016-12-27 2019-10-08 Fujifilm Corporation Magnetic tape device with magnetic tape having particular C-H derived C concentration and magnetic reproducing method
US10453488B2 (en) 2017-02-20 2019-10-22 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10477072B2 (en) 2016-06-22 2019-11-12 Fujifilm Corporation Magnetic tape having characterized magnetic layer and hexagonal ferrite powder
US10475480B2 (en) 2017-02-20 2019-11-12 Fujifilm Corporation Magnetic tape having characterized back coating and magnetic layers
US10475481B2 (en) 2016-02-03 2019-11-12 Fujifilm Corporation Magnetic tape having characterized backcoat layer and method of manufacturing the same
US10482915B2 (en) 2016-12-27 2019-11-19 Fujifilm Corporation Magnetic tape device and magnetic reproducing method employing TMR head and magnetic tape having characterized magnetic layer
US10482913B2 (en) 2017-02-20 2019-11-19 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10490220B2 (en) 2017-03-29 2019-11-26 Fujifilm Corporation Magnetic tape device, magnetic reproducing method, and head tracking servo method
US10497384B2 (en) 2017-02-20 2019-12-03 Fujifilm Corporation Magnetic tape device and reproducing method employing TMR reproducing head and magnetic tape with characterized magnetic layer
US10497388B2 (en) 2016-06-23 2019-12-03 Fujifilm Corporation Magnetic tape including characterized magnetic layer
US10497389B2 (en) 2016-06-13 2019-12-03 Fujifilm Corporation Magnetic tape and magnetic tape device
US10504546B2 (en) 2016-06-23 2019-12-10 Fujifilm Corporation Magnetic tape having characterized magnetic particles and magnetic tape device
US10510368B2 (en) 2016-06-23 2019-12-17 Fujifilm Corporation Magnetic tape including characterized magnetic layer and magnetic tape device
US10510370B2 (en) 2016-06-23 2019-12-17 Fujifilm Corporation Magnetic tape including characterized magnetic layer and magnetic tape device
US10510369B2 (en) 2016-06-23 2019-12-17 Fujifilm Corporation Magnetic tape having characterized magnetic particles and magnetic tape device
US10515657B2 (en) 2017-09-29 2019-12-24 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US10515660B2 (en) 2016-06-22 2019-12-24 Fujifilm Corporation Magnetic tape having controlled surface properties of the back coating layer and magnetic layer
US10522171B2 (en) 2016-06-23 2019-12-31 Fujifilm Corporation Magnetic tape having controlled surface properties of the magnetic layer
US10522179B2 (en) 2016-08-31 2019-12-31 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10529368B2 (en) 2016-08-31 2020-01-07 Fujifilm Corporation Magnetic tape having characterized magnetic layer and back coating layer
US10540996B2 (en) 2015-09-30 2020-01-21 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10546605B2 (en) 2017-03-29 2020-01-28 Fujifilm Corporation Head tracking servo method for magnetic tape recording device
US10546602B2 (en) 2017-02-20 2020-01-28 Fujifilm Corporation Magnetic tape device and reproducing method employing TMR reproducing head and tape with characterized XRD intensity ratio
US10573341B2 (en) 2015-12-25 2020-02-25 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US10573338B2 (en) 2017-02-20 2020-02-25 Fujifilm Corporation Magnetic tape device and magnetic reproducting method employing TMR head and tape with characterized magnetic layer
US10692522B2 (en) 2016-09-16 2020-06-23 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and method for manufacturing same
US20200211592A1 (en) 2018-12-28 2020-07-02 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US10714139B2 (en) 2017-07-19 2020-07-14 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10770105B2 (en) 2017-07-19 2020-09-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
JP2020163844A (en) * 2019-03-28 2020-10-08 東レ株式会社 Biaxially oriented polyester film
US10839849B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10839851B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10839850B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10854228B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10854233B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854230B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10854234B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854231B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854229B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10854226B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10854232B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10854227B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10861491B2 (en) 2016-02-29 2020-12-08 Fujifilm Corporation Magnetic tape
US10896692B2 (en) 2016-02-29 2021-01-19 Fujifilm Corporation Magnetic tape
US10910009B2 (en) 2015-08-21 2021-02-02 Fujifilm Corporation Magnetic tape having a characterized magnetic layer and method of manufacturing the same
US10937456B2 (en) 2016-02-29 2021-03-02 Fujifilm Corporation Magnetic tape
US10978105B2 (en) 2017-09-29 2021-04-13 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11373680B2 (en) 2017-09-29 2022-06-28 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11417357B2 (en) 2018-07-27 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417358B2 (en) 2019-01-31 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417359B2 (en) 2019-09-17 2022-08-16 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US11430478B2 (en) 2018-12-28 2022-08-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11468911B2 (en) 2018-10-22 2022-10-11 Fujifilm Corporation Magnetic tape having characterized magnetic layer, magnetic tape cartridge, and magnetic tape apparatus
US11475915B2 (en) 2017-06-23 2022-10-18 Fujifilm Corporation Magnetic recording medium
US11501799B2 (en) 2017-09-29 2022-11-15 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043539A (en) * 2002-07-09 2004-02-12 Teijin Ltd Polyester composition, film composed of the same and method for producing the same
JP2004223736A (en) * 2003-01-20 2004-08-12 Teijin Ltd Polyethylene-2,6-naphthalate resin composition, method for manufacturing polythylene-2,6-naphthalate film and polyethylene-2,6-naphthalate film
JP2010250910A (en) * 2009-04-17 2010-11-04 Teijin Dupont Films Japan Ltd Support for magnetic recording medium and data storage using the same
JP2011204334A (en) * 2010-03-26 2011-10-13 Teijin Dupont Films Japan Ltd Polyester film and data storage using the same
JP2012018733A (en) * 2010-07-08 2012-01-26 Teijin Dupont Films Japan Ltd Laminated biaxially oriented polyester film for coating type magnetic recording tape
JP2012153099A (en) * 2011-01-28 2012-08-16 Teijin Dupont Films Japan Ltd Laminated polyester film and coated magnetic recording tape using this polyester film
JP2013147616A (en) * 2012-01-23 2013-08-01 Teijin Dupont Films Japan Ltd Method for producing polyester composition, polyester composition using the method, and polyester film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043539A (en) * 2002-07-09 2004-02-12 Teijin Ltd Polyester composition, film composed of the same and method for producing the same
JP2004223736A (en) * 2003-01-20 2004-08-12 Teijin Ltd Polyethylene-2,6-naphthalate resin composition, method for manufacturing polythylene-2,6-naphthalate film and polyethylene-2,6-naphthalate film
JP2010250910A (en) * 2009-04-17 2010-11-04 Teijin Dupont Films Japan Ltd Support for magnetic recording medium and data storage using the same
JP2011204334A (en) * 2010-03-26 2011-10-13 Teijin Dupont Films Japan Ltd Polyester film and data storage using the same
JP2012018733A (en) * 2010-07-08 2012-01-26 Teijin Dupont Films Japan Ltd Laminated biaxially oriented polyester film for coating type magnetic recording tape
JP2012153099A (en) * 2011-01-28 2012-08-16 Teijin Dupont Films Japan Ltd Laminated polyester film and coated magnetic recording tape using this polyester film
JP2013147616A (en) * 2012-01-23 2013-08-01 Teijin Dupont Films Japan Ltd Method for producing polyester composition, polyester composition using the method, and polyester film

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10910009B2 (en) 2015-08-21 2021-02-02 Fujifilm Corporation Magnetic tape having a characterized magnetic layer and method of manufacturing the same
US10540996B2 (en) 2015-09-30 2020-01-21 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10522180B2 (en) 2015-12-16 2019-12-31 Fujifilm Corporation Magnetic tape including characterized magnetic layer, tape cartridge, recording and reproducing device, and method of manufacturing
JP2017111842A (en) * 2015-12-16 2017-06-22 富士フイルム株式会社 Magnetic tape, magnetic tape cartridge, magnetic recording playback apparatus, and manufacturing method for magnetic tape
US10403319B2 (en) 2015-12-16 2019-09-03 Fujifilm Corporation Magnetic tape having characterized magnetic layer, tape cartridge, and recording and reproducing device
US10573341B2 (en) 2015-12-25 2020-02-25 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US10475481B2 (en) 2016-02-03 2019-11-12 Fujifilm Corporation Magnetic tape having characterized backcoat layer and method of manufacturing the same
US10347279B2 (en) 2016-02-03 2019-07-09 Fujifilm Corporation Magnetic tape having characterized backcoat layer and method of manufacturing the same
US10861491B2 (en) 2016-02-29 2020-12-08 Fujifilm Corporation Magnetic tape
US10896692B2 (en) 2016-02-29 2021-01-19 Fujifilm Corporation Magnetic tape
US10937456B2 (en) 2016-02-29 2021-03-02 Fujifilm Corporation Magnetic tape
US10431248B2 (en) 2016-06-10 2019-10-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10679660B2 (en) 2016-06-13 2020-06-09 Fujifilm Corporation Magnetic tape and magnetic tape device
US10497389B2 (en) 2016-06-13 2019-12-03 Fujifilm Corporation Magnetic tape and magnetic tape device
US10477072B2 (en) 2016-06-22 2019-11-12 Fujifilm Corporation Magnetic tape having characterized magnetic layer and hexagonal ferrite powder
US10515660B2 (en) 2016-06-22 2019-12-24 Fujifilm Corporation Magnetic tape having controlled surface properties of the back coating layer and magnetic layer
US10510370B2 (en) 2016-06-23 2019-12-17 Fujifilm Corporation Magnetic tape including characterized magnetic layer and magnetic tape device
US10510369B2 (en) 2016-06-23 2019-12-17 Fujifilm Corporation Magnetic tape having characterized magnetic particles and magnetic tape device
US10522171B2 (en) 2016-06-23 2019-12-31 Fujifilm Corporation Magnetic tape having controlled surface properties of the magnetic layer
US10431249B2 (en) 2016-06-23 2019-10-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10510368B2 (en) 2016-06-23 2019-12-17 Fujifilm Corporation Magnetic tape including characterized magnetic layer and magnetic tape device
US10504546B2 (en) 2016-06-23 2019-12-10 Fujifilm Corporation Magnetic tape having characterized magnetic particles and magnetic tape device
US10497388B2 (en) 2016-06-23 2019-12-03 Fujifilm Corporation Magnetic tape including characterized magnetic layer
US10347280B2 (en) 2016-06-23 2019-07-09 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10403318B2 (en) 2016-06-24 2019-09-03 Fujifilm Corporation Magnetic tape having characterized back coating layer
US10522179B2 (en) 2016-08-31 2019-12-31 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10529368B2 (en) 2016-08-31 2020-01-07 Fujifilm Corporation Magnetic tape having characterized magnetic layer and back coating layer
US10692522B2 (en) 2016-09-16 2020-06-23 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and method for manufacturing same
US10510366B2 (en) 2016-12-27 2019-12-17 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10438628B2 (en) 2016-12-27 2019-10-08 Fujifilm Corporation Magnetic tape device with magnetic tape having particular C-H derived C concentration and magnetic reproducing method
US10373633B2 (en) 2016-12-27 2019-08-06 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10403320B2 (en) 2016-12-27 2019-09-03 Fujifilm Corporation Magnetic tape device with TMR head and specific logarithmic decrement and magnetic reproducing method
US10482915B2 (en) 2016-12-27 2019-11-19 Fujifilm Corporation Magnetic tape device and magnetic reproducing method employing TMR head and magnetic tape having characterized magnetic layer
US10546602B2 (en) 2017-02-20 2020-01-28 Fujifilm Corporation Magnetic tape device and reproducing method employing TMR reproducing head and tape with characterized XRD intensity ratio
US10403314B2 (en) 2017-02-20 2019-09-03 Fujifilm Corporation Magnetic tape device employing TMR head and magnetic tape with characterized magnetic layer, and head tracking servo method
US10497384B2 (en) 2017-02-20 2019-12-03 Fujifilm Corporation Magnetic tape device and reproducing method employing TMR reproducing head and magnetic tape with characterized magnetic layer
US10453488B2 (en) 2017-02-20 2019-10-22 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10438621B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized back coating layer
US10438624B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10431250B2 (en) 2017-02-20 2019-10-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10573338B2 (en) 2017-02-20 2020-02-25 Fujifilm Corporation Magnetic tape device and magnetic reproducting method employing TMR head and tape with characterized magnetic layer
US10424330B2 (en) 2017-02-20 2019-09-24 Fujifilm Corporation Magnetic tape having characterized back coating layer
US10482913B2 (en) 2017-02-20 2019-11-19 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10475480B2 (en) 2017-02-20 2019-11-12 Fujifilm Corporation Magnetic tape having characterized back coating and magnetic layers
US10438622B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10438625B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10360937B2 (en) 2017-03-29 2019-07-23 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10546605B2 (en) 2017-03-29 2020-01-28 Fujifilm Corporation Head tracking servo method for magnetic tape recording device
US10490220B2 (en) 2017-03-29 2019-11-26 Fujifilm Corporation Magnetic tape device, magnetic reproducing method, and head tracking servo method
US10373639B2 (en) 2017-03-29 2019-08-06 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10410666B2 (en) 2017-03-29 2019-09-10 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10403317B2 (en) 2017-03-29 2019-09-03 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10403312B2 (en) 2017-03-29 2019-09-03 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10515661B2 (en) 2017-03-29 2019-12-24 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10497386B2 (en) 2017-03-29 2019-12-03 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10431251B2 (en) 2017-03-29 2019-10-01 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10395685B2 (en) 2017-03-29 2019-08-27 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10438623B2 (en) 2017-03-29 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10410665B2 (en) 2017-03-29 2019-09-10 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10366721B2 (en) 2017-06-23 2019-07-30 Fujifilm Corporation Head positioning of timing-based servo system for magnetic tape recording device
US11631427B2 (en) 2017-06-23 2023-04-18 Fujifilm Corporation Magnetic recording medium
US11475915B2 (en) 2017-06-23 2022-10-18 Fujifilm Corporation Magnetic recording medium
US10839851B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10770105B2 (en) 2017-07-19 2020-09-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10839850B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10854228B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10403316B2 (en) 2017-07-19 2019-09-03 Fujifilm Corporation Magnetic tape having characterized magnetic layer with servo pattern and magnetic tape device
US10854230B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10839849B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10714139B2 (en) 2017-07-19 2020-07-14 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10854229B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10854226B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10854232B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10854227B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US11373680B2 (en) 2017-09-29 2022-06-28 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11501799B2 (en) 2017-09-29 2022-11-15 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US10854231B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10515657B2 (en) 2017-09-29 2019-12-24 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US10978105B2 (en) 2017-09-29 2021-04-13 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854233B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US11462242B2 (en) 2017-09-29 2022-10-04 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US10854234B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11581015B2 (en) 2018-03-23 2023-02-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11551716B2 (en) 2018-03-23 2023-01-10 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11430475B2 (en) 2018-07-27 2022-08-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417357B2 (en) 2018-07-27 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11468911B2 (en) 2018-10-22 2022-10-11 Fujifilm Corporation Magnetic tape having characterized magnetic layer, magnetic tape cartridge, and magnetic tape apparatus
US11443766B2 (en) 2018-12-28 2022-09-13 Fujifilm Corporation Magnetic tape with particular refractive index characteristics, magnetic tape cartridge, and magnetic tape apparatus
US11423935B2 (en) 2018-12-28 2022-08-23 Fujifilm Corporation Magnetic tape with particular refractive index characteristics, magnetic tape cartridge, and magnetic tape apparatus
US11430478B2 (en) 2018-12-28 2022-08-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US20200211592A1 (en) 2018-12-28 2020-07-02 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11437063B2 (en) 2019-01-31 2022-09-06 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417358B2 (en) 2019-01-31 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
JP7456203B2 (en) 2019-03-28 2024-03-27 東レ株式会社 Biaxially oriented polyester film
JP2020163844A (en) * 2019-03-28 2020-10-08 東レ株式会社 Biaxially oriented polyester film
US11417359B2 (en) 2019-09-17 2022-08-16 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device

Also Published As

Publication number Publication date
JP6158640B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP6158640B2 (en) Laminated polyester film and coated magnetic recording tape using the same
WO2002045959A1 (en) Biaxially oriented layered polyester film and magnetic recording medium
JP7303999B2 (en) LAMINATED POLYESTER FILM AND MAGNETIC RECORDING TAPE USING THE SAME
JP2014022027A (en) Biaxially-oriented polyester film and coating type magnetic recording tape using the same
JP6072623B2 (en) Biaxially oriented laminated polyester film and coating type magnetic recording tape using the same
JP6049337B2 (en) Biaxially oriented polyester film and coated magnetic recording tape using the same
JP5981185B2 (en) Laminated polyester film and coated magnetic recording tape using the same
US20050147795A1 (en) Biaxially oriented polyster film and flexible disk
JPH09277475A (en) Laminated biaxially oriented polyester film
JP6087529B2 (en) Biaxially oriented laminated polyester film and coating type magnetic recording tape using the same
JP5749504B2 (en) Laminated polyester film and coated magnetic recording tape using the same
KR100244069B1 (en) Biaxially oriented polyester film for a magnetic recording medium
JP2014004788A (en) Laminated polyester film and coating type magnetic recording tape using the same
JP5749505B2 (en) Laminated polyester film and coated magnetic recording tape using the same
JP5865749B2 (en) Laminated polyester film and coated magnetic recording tape using the same
JP5596445B2 (en) Laminated biaxially oriented polyester film for coated magnetic recording tape
JP5981186B2 (en) LAMINATED POLYESTER FILM AND METHOD FOR PRODUCING COATING MAGNETIC RECORDING TAPE USING SAME
JP2010274472A (en) Biaxially oriented laminated polyester film and magnetic recording medium
JP6158672B2 (en) Laminated polyester film and ferromagnetic metal thin film magnetic recording tape
JP2014022026A (en) Laminated polyester film and coating type magnetic recording tape using the same
JP5676127B2 (en) Polyester film and data storage using it
JP4243143B2 (en) Laminated polyester film
JP5964655B2 (en) Laminated polyester film
JP2015025047A (en) Biaxially oriented polyester film and coat-type magnetic recording tape using the same
JP6301711B2 (en) Oriented laminated polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170608

R150 Certificate of patent or registration of utility model

Ref document number: 6158640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250