JP2015026787A - Cooling member - Google Patents
Cooling member Download PDFInfo
- Publication number
- JP2015026787A JP2015026787A JP2013156935A JP2013156935A JP2015026787A JP 2015026787 A JP2015026787 A JP 2015026787A JP 2013156935 A JP2013156935 A JP 2013156935A JP 2013156935 A JP2013156935 A JP 2013156935A JP 2015026787 A JP2015026787 A JP 2015026787A
- Authority
- JP
- Japan
- Prior art keywords
- cooling member
- metal layer
- cooling
- base
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 58
- 229910052751 metal Inorganic materials 0.000 claims abstract description 35
- 239000002184 metal Substances 0.000 claims abstract description 35
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 claims abstract description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000010949 copper Substances 0.000 claims abstract description 16
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 15
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000956 alloy Substances 0.000 claims abstract description 12
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 239000010931 gold Substances 0.000 claims abstract description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052737 gold Inorganic materials 0.000 claims abstract description 4
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 4
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 4
- 229910052709 silver Inorganic materials 0.000 claims abstract description 4
- 239000004332 silver Substances 0.000 claims abstract description 4
- 239000011148 porous material Substances 0.000 claims description 17
- 239000011248 coating agent Substances 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 15
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 239000003507 refrigerant Substances 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 7
- 239000000919 ceramic Substances 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 239000002905 metal composite material Substances 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 14
- 230000017525 heat dissipation Effects 0.000 abstract description 3
- 150000002739 metals Chemical class 0.000 abstract description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 125000004433 nitrogen atom Chemical group N* 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000009770 conventional sintering Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- Y02E60/523—
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、被冷却対象物である各種装置に当接した状態で取り付けられ、当該装置からの吸熱を行う冷却用部材に関する。 The present invention relates to a cooling member that is attached in contact with various devices that are objects to be cooled and that absorbs heat from the device.
従来、各種装置の運転性能や信頼性を維持するために様々な冷却用部材が用いられる。そのようなものとして、例えば特許文献1に示す冷却用部材がある。この文献には、直接メタノール型燃料電池に用いる冷却用部材が記載されている。文献の記載によれば、直接メタノール型燃料電池の膜電極接合体を冷却する場合には、単なる金属板による熱拡散のみでは冷却効果が十分ではなく、さらに空気極上で生成する水によって冷却用部材の通気性が阻害されるという不都合も生じる。 Conventionally, various cooling members are used to maintain the operation performance and reliability of various devices. As such a thing, there exists a cooling member shown in patent document 1, for example. This document describes a cooling member used in a direct methanol fuel cell. According to the description in the literature, when the membrane electrode assembly of a direct methanol fuel cell is cooled, the cooling effect is not sufficient only by thermal diffusion with a simple metal plate, and the cooling member is formed by water generated on the air electrode. There is also a disadvantage that the air permeability of the water is hindered.
これを解決するものとして、特許文献1には、冷却用部材として空孔の周囲に金属粉末が焼結した骨格を有する金属多孔質焼結体を用いたものを利用する技術が開示されている。これにより、液体を金属多孔質結晶体の孔部に毛管現象によって吸収し、吸収した液体を効率よく蒸発させて周囲から蒸発熱を奪い、この結果、良好な冷却効果が発揮されると記載されている。 As a solution to this problem, Patent Document 1 discloses a technique using a metal porous sintered body having a skeleton obtained by sintering a metal powder around pores as a cooling member. . As a result, it is described that the liquid is absorbed into the pores of the metal porous crystal by capillary action, the absorbed liquid is efficiently evaporated and the heat of evaporation is taken away from the surroundings, and as a result, a good cooling effect is exhibited. ing.
当該公知文献1の冷却用部材は、単純な焼結構造ではなく、空孔の周囲に金属粉末が焼結した骨格を有する。例えば、金属粉末が集合して構成される骨格部には、平均細孔径が200μm以下の孔が形成され、この骨格部によってさらに平均径3000μm程度の空孔が形成されている。しかし、このように複雑な形態の金属組織を均質に形成するのは非常に困難である。例えば、用いる金属粉末の粒度分布が適切でない場合や、金属粉末とバインダーとの混合状態が不十分で部位によって金属粉末の凝集物が残存しているような場合、さらには、部位によって焼結温度が異なる場合など、各種の要因によって空孔の分布状態が変化する。その結果、所期の熱伝導性が得られない可能性がある。
また、冷却用部材の全体がこのような多孔質体で構成される結果、長期間の使用に際して冷却用部材が破損する可能性もある。
The cooling member of the known document 1 is not a simple sintered structure, but has a skeleton obtained by sintering metal powder around the pores. For example, pores having an average pore diameter of 200 μm or less are formed in a skeleton portion formed by aggregating metal powders, and pores having an average diameter of about 3000 μm are formed by the skeleton portion. However, it is very difficult to form such a complicated metal structure uniformly. For example, when the particle size distribution of the metal powder to be used is not appropriate, or when the mixed state of the metal powder and the binder is insufficient and the agglomerates of the metal powder remain in the part, the sintering temperature depends on the part. The vacancy distribution state changes depending on various factors, such as in the case of different values. As a result, the desired thermal conductivity may not be obtained.
In addition, as a result of the entire cooling member being composed of such a porous body, the cooling member may be damaged during long-term use.
そこで本発明は、簡単に作製することができ、耐久性および放熱効果に優れた冷却用部材を提供することを目的とする。 Accordingly, an object of the present invention is to provide a cooling member that can be easily manufactured and has excellent durability and heat dissipation effect.
本発明に係る冷却用部材の特徴構成は、基材と、当該基材上に被着され、窒素(N)を含むニッケル(Ni)合金、および、金(Au),銀(Ag),銅(Cu),白金(Pt),パラジウム(Pd)の純金属又は合金のうち少なくとも一つを含む金属層と、当該金属層の表面に窒素を供給しつつプラズマ照射することで前記金属層に形成した多孔質層と、を有する点にある。 The characteristic configuration of the cooling member according to the present invention includes a base material, a nickel (Ni) alloy deposited on the base material and containing nitrogen (N), and gold (Au), silver (Ag), copper A metal layer containing at least one of a pure metal or an alloy of (Cu), platinum (Pt), and palladium (Pd), and formed on the metal layer by irradiating with plasma while supplying nitrogen to the surface of the metal layer And a porous layer.
本構成に係る多孔質層は、従来の焼結方法等によるものではなく、基材の上に被覆された金属層に窒素を供給しつつプラズマを照射して得るものである。これにより、窒素原子が、一旦、金属層の内部に打ち込まれ、高温下にある金属層の内部で窒素原子が再び金属層の表面から大気中に拡散する。その際に金属層に多数の孔部が形成され、多孔質層が形成される。
このように本構成の冷却用部材であれば、製作過程を簡便なものとしながら、基材に被着された表面積の大きな多孔質層によって優れた放熱効果を有する冷却用部材を得ることができる。
The porous layer according to this configuration is not obtained by a conventional sintering method or the like, but is obtained by irradiating plasma while supplying nitrogen to a metal layer coated on a substrate. Thereby, nitrogen atoms are once implanted into the metal layer, and the nitrogen atoms diffuse again from the surface of the metal layer into the atmosphere inside the metal layer at a high temperature. At that time, a large number of pores are formed in the metal layer to form a porous layer.
Thus, with the cooling member having this configuration, it is possible to obtain a cooling member having an excellent heat dissipation effect by the porous layer having a large surface area attached to the base material while simplifying the manufacturing process. .
本発明に係る冷却用部材においては、前記多孔質層を形成する基材が、冷却を要する冷却対象物に接触可能なベース部と、流体である冷媒中に露出可能となるよう前記ベース部に設けられた複数の突起部とを備えておくとよい。 In the cooling member according to the present invention, the base material forming the porous layer is formed on the base part so as to be able to be exposed to a cooling object that is a fluid and a base part that can contact a cooling target that requires cooling. A plurality of provided protrusions may be provided.
本構成のごとく冷却用部材に冷却対象物に接触可能なベース部を設けておくことで、冷却対象物からの吸熱を促進することができる。さらに、複数の突起部を備えることで、多孔質層を形成する基材の総面積が拡大する。よって、冷却に寄与する多孔の総面積が十分に大きなものとなり優れた冷却効果が発揮されるものとなる。 By providing the cooling member with a base portion that can contact the object to be cooled as in this configuration, heat absorption from the object to be cooled can be promoted. Furthermore, the total area of the base material which forms a porous layer is expanded by providing a some projection part. Therefore, the total area of the pores contributing to cooling becomes sufficiently large, and an excellent cooling effect is exhibited.
本発明に係る冷却用部材においては、前記突起部の基端部から先端部に至る領域において、先端部側の領域の断面積は当該領域に隣接する基端部側の領域の断面積よりも小さいか等しく、かつ、基端部から先端部に至る全ての領域において前記隣接する断面積どうしが等しくならないように構成することができる。 In the cooling member according to the present invention, in the region from the base end portion to the tip end portion of the protrusion, the cross-sectional area of the region on the tip end side is larger than the cross-sectional area of the region on the base end portion side adjacent to the region. It can be configured such that the adjacent cross-sectional areas are not equal in all regions from the base end portion to the tip end portion, which are small or equal.
前記突起部の壁面どうしの間隔が基端部側から先端部側に位置するほど広くなるという限定は、突起部の形状が先端部側に向けて先細形状になっていることを意味する。本構成の冷却用部材ではこのような先細形状の部位が突起部の基端部から先端部に至る何れかの領域に少なくとも一か所あることを意味する。つまり、隣接する突起部どうしの間隔が、基端部側の部位どうしの間隔よりも先端部側の部位どうしの間隔が広い。よって、プラズマ照射する際に、突起の基端部の領域まで確実にプラズマ照射の効果が及び、突起部の全領域に亘って均等な多孔質層を形成することができる。この結果、冷却効果に優れた冷却用部材を得ることができる。 The limitation that the distance between the wall surfaces of the protrusions increases as the distance from the base end side to the tip end side means that the shape of the protrusions is tapered toward the tip end side. In the cooling member of this configuration, it means that such a tapered portion is at least one in any region from the base end portion to the tip end portion of the protrusion. That is, the interval between the adjacent protrusions is wider than the interval between the proximal end portions than the interval between the proximal end portion portions. Therefore, when plasma irradiation is performed, the effect of the plasma irradiation can be ensured up to the region of the base end portion of the protrusion, and a uniform porous layer can be formed over the entire region of the protrusion. As a result, a cooling member having an excellent cooling effect can be obtained.
本発明に係る冷却用部材においては、前記基材をアルミニウム(Al)或いは銅(Cu)、鉄(Fe)もしくはこれらの合金、又はセラミクス(Al2O3、AlN、Si3N4)やこれらの金属複合体で構成し、前記金属層がニッケル(Ni)系被膜で構成することができる。 In the cooling member according to the present invention, the substrate is made of aluminum (Al), copper (Cu), iron (Fe), or an alloy thereof, ceramics (Al 2 O 3 , AlN, Si 3 N 4 ), or these. And the metal layer may be composed of a nickel (Ni) -based coating.
本構成のごとく、基材を熱伝導度の高いアルミニウム或いは銅等の金属やこれらの合金、又はセラミクスやこれらの金属複合体で構成することで、被冷却対象物からの熱吸引速度を高めることができる。さらに、ニッケル系被膜を用いた場合、プラズマ照射によって被膜中に打ち込まれた窒素原子がニッケル系被膜中に留まり難く再び大気中に拡散し易くなる。よって、被膜中の広い領域に空孔が形成され、アルミニウムや銅等の良好な熱伝導性と相まって非常に優れた冷却効果を奏する冷却用部材を得ることができる。 As in this configuration, the heat absorption speed from the object to be cooled is increased by configuring the base material with a metal such as aluminum or copper having high thermal conductivity, an alloy thereof, ceramics, or a metal composite thereof. Can do. Further, when a nickel-based coating is used, nitrogen atoms implanted into the coating by plasma irradiation are less likely to remain in the nickel-based coating and easily diffuse into the atmosphere again. Therefore, voids are formed in a wide area in the coating, and a cooling member that exhibits a very excellent cooling effect in combination with good thermal conductivity such as aluminum and copper can be obtained.
本発明に係る冷却用部材においては、前記多孔質層のうち最表面に開口した空孔の平均孔径を前記金属層の厚さの100分の1〜5分の1の大きさにすると好適である。 In the cooling member according to the present invention, it is preferable that the average pore diameter of the pores opened in the outermost surface of the porous layer is set to a size of 1/100 to 1/5 of the thickness of the metal layer. is there.
本構成のごとく、平均孔径が金属層の厚さの100分の1〜5分の1の大きさであれば、冷却用の流体である空気や水等が空孔の内部に流通し易く、冷却用部材が良好な冷却性能を発揮することができる。 As in this configuration, if the average pore size is 1 / 100th to 1 / 5th the thickness of the metal layer, air or water, which is a cooling fluid, can easily flow through the pores, The cooling member can exhibit good cooling performance.
〔概要〕
本発明に係る冷却用部材1は、各種装置に設けられる電源やコンピュータ等の機能性部材や、モータ或いはエンジン等の被冷却対象物に当接配置して効率的に放熱を行うものである。さらに具体的には、電源として用いられるインバータを構成するパワーデバイスや回路などは通常多くの発熱を伴う装置に好適に用いることができる。
以下、図面を参照しつつ本発明に係る冷却用部材1の実施形態につき説明する。
〔Overview〕
The cooling member 1 according to the present invention efficiently dissipates heat by placing it in contact with a functional member such as a power source or a computer provided in various devices, or an object to be cooled such as a motor or an engine. More specifically, a power device, a circuit, or the like that constitutes an inverter used as a power source can be suitably used for an apparatus that usually generates a large amount of heat.
Hereinafter, embodiments of the cooling member 1 according to the present invention will be described with reference to the drawings.
〔装置形状〕
図1に本実施形態に係る冷却用部材1の外観を示し、図2には部分側断面図を示す。図1に示すように、冷却用部材1は被冷却対象物2に接触可能なベース部3を有する。本実施形態では、ベース部3は長方形の板状を呈する。ベース部3の形状は被冷却対象物2の取付部位の形状に合わせて任意に変更可能である。ベース部3の四隅には例えばボルト4を挿通する取付孔5を設けてあり、パワートランジスタ2aなどの被冷却対象物2に面当接した状態に固定される。
[Device shape]
FIG. 1 shows an appearance of a cooling member 1 according to this embodiment, and FIG. 2 shows a partial side sectional view. As shown in FIG. 1, the cooling member 1 has a base portion 3 that can contact an object 2 to be cooled. In the present embodiment, the base portion 3 has a rectangular plate shape. The shape of the base part 3 can be arbitrarily changed according to the shape of the attachment site of the object 2 to be cooled. For example, mounting holes 5 through which bolts 4 are inserted are provided at the four corners of the base portion 3 and are fixed in a state of being in surface contact with the object to be cooled 2 such as the power transistor 2a.
ベース部3は、被冷却対象物2から熱を受け取る部位である。よって、ベース部3を形成する部材は熱伝導性の良いアルミニウム(Al)材あるいは銅(Cu)材もしくはこれらの合金等を用いるのが好ましい。ただしこれに限られるものではなく、鉄(Fe)を主成分とした一般鋼材やその合金、又はセラミクス(Al2O3、AlN、Si3N4)やこれらの金属複合体等を利用することもできる。 The base part 3 is a part that receives heat from the object to be cooled 2. Therefore, it is preferable to use an aluminum (Al) material, a copper (Cu) material, an alloy thereof, or the like having good thermal conductivity as a member that forms the base portion 3. However, the present invention is not limited to this, and a general steel material or an alloy thereof mainly composed of iron (Fe), ceramics (Al 2 O 3 , AlN, Si 3 N 4 ), or a metal composite thereof may be used. You can also.
図2に示すように、ベース部3には複数の突起部6が形成されている。ベース部3と突起部6とは熱伝導を良好に維持する観点から同じ材質の部材によって一体成形するのが望ましい。一体形成は、鋳造・切削加工・鍛造・溶接など各種の方法で実施することができる。複数の突起部6は、型成形や切削加工等によって形成することができる。これら突起部6の形状は、冷却用部材1の総表面積や、空気や水など冷媒の種類によって任意に設定可能である。ただし、後に説明するプラズマ照射の条件によって、突起部6の基端部まで確実にプラズマ照射処理できる隙間を備えているのが望ましい。 As shown in FIG. 2, a plurality of protrusions 6 are formed on the base portion 3. It is desirable that the base portion 3 and the protrusion portion 6 are integrally formed of members of the same material from the viewpoint of maintaining good heat conduction. The integral formation can be performed by various methods such as casting, cutting, forging, and welding. The plurality of protrusions 6 can be formed by molding or cutting. The shape of these protrusions 6 can be arbitrarily set according to the total surface area of the cooling member 1 and the type of refrigerant such as air or water. However, it is desirable to provide a gap that can reliably perform the plasma irradiation treatment up to the base end portion of the protrusion 6 depending on the plasma irradiation conditions described later.
図2には、直方体の突起部6を多数設けた例を示す。突起部6の高さ寸法、あるいは、高さ方向に垂直な断面形状等は任意に設定可能である。断面形状は矩形に限らず円形等であってもよい。 FIG. 2 shows an example in which a large number of rectangular parallelepiped protrusions 6 are provided. The height dimension of the protrusion 6 or the cross-sectional shape perpendicular to the height direction can be arbitrarily set. The cross-sectional shape is not limited to a rectangle and may be a circle or the like.
〔多孔質層〕
図2および図3に示す如く、突起部6の表面およびベース部3の表面には多孔質層8を形成してある。本実施形態では、突起部6およびベース部3を形成するアルミニウム材を基材とし、この基材の表面にニッケル系被膜をメッキ形成し、この被膜に窒素ガスを供給しつつプラズマ照射を行う。このニッケル系被膜は金属層の一例である。プラズマ照射は図外のチャンバーの内部で行い、その条件は、例えば、チャンバー内圧:300Pa,プラズマ電流:4A,窒素ガス流量:40ml/分,基材加熱温度:400℃,処理時間:1hrである。これにより窒素原子のニッケル系被膜への固溶と、窒素原子の再ガス化による外気中への拡散とが同時に進行する。このガス拡散の過程で空孔が形成される。
(Porous layer)
As shown in FIGS. 2 and 3, a porous layer 8 is formed on the surface of the protrusion 6 and the surface of the base 3. In this embodiment, an aluminum material for forming the protrusions 6 and the base 3 is used as a base material, a nickel-based film is plated on the surface of the base material, and plasma irradiation is performed while supplying nitrogen gas to the film. This nickel-based film is an example of a metal layer. Plasma irradiation is performed inside a chamber (not shown), and the conditions are, for example, chamber internal pressure: 300 Pa, plasma current: 4 A, nitrogen gas flow rate: 40 ml / min, substrate heating temperature: 400 ° C., treatment time: 1 hr. . As a result, solid solution of nitrogen atoms into the nickel-based coating and diffusion into the outside air by regasification of nitrogen atoms proceed simultaneously. Holes are formed in the process of gas diffusion.
空孔のサイズは、供給する窒素ガス流量・処理温度・処理時間等に応じて変動する。特に、処理時間に影響を受け易く、処理時間が長いほど空孔直径が大きくなる傾向がある。 The size of the holes varies depending on the nitrogen gas flow rate to be supplied, the processing temperature, the processing time, and the like. In particular, the processing time is easily affected, and the longer the processing time, the larger the hole diameter tends to be.
ニッケル系被膜には他の元素としてリン(P)やホウ素(B)を混入可能である。これらを混入することで空孔率が増大する。特に、リン(P)の混入により組織が硬くなり、多孔質膜の強度が向上する。
また、この他に、多孔質層8を形成する被膜としては、金(Au),銀(Ag),銅(Cu),白金(Pt),パラジウム(Pd)等の純金属又は合金のうち少なくとも一つを含む金属メッキ層を用いることもできる。
Phosphorus (P) and boron (B) can be mixed in the nickel-based coating as other elements. By mixing these, the porosity increases. Particularly, the structure becomes hard due to the mixing of phosphorus (P), and the strength of the porous film is improved.
In addition to this, as a film for forming the porous layer 8, at least one of pure metals or alloys such as gold (Au), silver (Ag), copper (Cu), platinum (Pt), palladium (Pd), etc. A metal plating layer including one can also be used.
基材とニッケル系被膜との間には中間層である例えば亜鉛(Zn)被膜を形成しておいてもよい。基材がアルミニウムである場合に亜鉛皮膜を形成しておくと、アルミニウムにニッケル系被膜を直接形成するよりも、ニッケル系被膜の密着性が向上する。 For example, a zinc (Zn) film as an intermediate layer may be formed between the base material and the nickel-based film. When the base material is aluminum and the zinc coating is formed, the adhesion of the nickel coating is improved as compared with the case where the nickel coating is directly formed on the aluminum.
多孔質層8の表面に開口した空孔の平均孔径は被膜の厚さの100分の1〜5分の1の大きさであることが好ましい。孔径が過小であれば冷媒が円滑に孔の内部を流通することができず冷却効果が損なわれる。孔径が過大であれば多孔質層8の強度が不足し脆い被膜となる。 The average pore diameter of the pores opened on the surface of the porous layer 8 is preferably 1/100 to 1/5 of the thickness of the coating. If the hole diameter is too small, the refrigerant cannot smoothly flow through the hole and the cooling effect is impaired. If the pore diameter is excessive, the strength of the porous layer 8 is insufficient and a brittle film is formed.
ニッケル系被膜の厚みは、多孔質層8を厚く形成するという意味では厚いほど好ましいが、現実には1μm〜100μm程度である。この厚みが薄いと、多孔質領域が十分に確保できず冷却効果が不十分となる。厚みが過大であると被膜の強度が低下し基材から剥離し易くなる。 The thickness of the nickel-based coating is preferably as thick as possible in the sense that the porous layer 8 is formed thick, but is actually about 1 μm to 100 μm. When this thickness is thin, a sufficient porous region cannot be secured and the cooling effect becomes insufficient. If the thickness is too large, the strength of the coating will be reduced and it will be easy to peel off from the substrate.
多孔質層8の厚みは、冷媒に対する接触面積を増大させるためには厚い方が良い。現在のところ20μm程度までは形成可能である。この厚みが薄いと、冷媒に対する接触面積が十分に確保できず冷却効果が不十分となる。厚みが過大になると被膜の強度が低下し基材から剥離し易くなるなどの不都合が生じる。 The thickness of the porous layer 8 is better to increase the contact area with the refrigerant. At present, it can be formed up to about 20 μm. When this thickness is thin, a sufficient contact area with the refrigerant cannot be secured, and the cooling effect becomes insufficient. When the thickness is excessively large, the strength of the coating film is lowered, which causes inconveniences such as easy peeling from the substrate.
(別実施形態)
図4に冷却用部材1の別実施形態を示す。
ここでは、突起部6の形状を、基端部から先端部に至る何れかの領域で先細形状に構成する。その結果、プラズマ照射の際に、基端部においても窒素原子を確実に基材に進入させることができ、多孔質層8を基端部側まで均等に形成し易くなる。また、先端部の側ほど突起部6どうしの間隔が広くなるため冷媒が突起部6どうしの間に進入し易くなる。特に基端部側での冷媒の滞留が低減されるから冷却効果を高めることができる。
(Another embodiment)
FIG. 4 shows another embodiment of the cooling member 1.
Here, the shape of the protrusion 6 is configured to be tapered in any region from the base end to the tip. As a result, at the time of plasma irradiation, nitrogen atoms can surely enter the substrate also at the base end portion, and the porous layer 8 can be easily formed evenly to the base end portion side. Moreover, since the space | interval of the projection parts 6 becomes wide near the front-end | tip part, a refrigerant | coolant becomes easy to approach between the projection parts 6. FIG. In particular, since the retention of the refrigerant on the base end side is reduced, the cooling effect can be enhanced.
図4には、突起部6の傾斜を基端部から先端部まで均一に形成した例を示しているが、必ずしも基端部から先端部までの全長に亘って傾斜させる必要はない。例えば、先端部側のみ或いは基端部側のみを先細形状とし、その他の部分は単なる角柱状に構成してもよい。さらに、高さ方向に沿って基端部側の半分を太い角柱で構成し、先端部側の半分を細い角柱としてもよい。この場合、上下の角柱どうしの境界位置では明瞭な段部が形成される。このような別形態の突起部6であっても、突起部6の基端部まで多孔質層8が形成され易くなるという効果を得ることができる。 FIG. 4 shows an example in which the slope of the protrusion 6 is uniformly formed from the base end portion to the tip end portion, but it is not always necessary to incline the entire length from the base end portion to the tip end portion. For example, only the distal end side or only the proximal end side may be tapered, and the other portions may be configured in a simple prism shape. Furthermore, the half on the base end side along the height direction may be formed of a thick prism, and the half on the tip end side may be a thin prism. In this case, a clear step is formed at the boundary position between the upper and lower prisms. Even in the case of such another type of protrusion 6, it is possible to obtain an effect that the porous layer 8 is easily formed up to the base end of the protrusion 6.
本発明に係る冷却用部材は、各種装置に設けられるインバータ等の電源やコンピュータ等の機能性部材として用いることができる他、モータ或いはエンジン等の冷却に好適に用いることができる。 The cooling member according to the present invention can be used as a power member such as an inverter provided in various devices and a functional member such as a computer, and can be suitably used for cooling a motor or an engine.
3 ベース部
6 突起部
8 多孔質層
11 冷却用部材
3 Base part 6 Protrusion part 8 Porous layer 11 Cooling member
Claims (5)
当該基材の上に被着され、窒素(N)を含むニッケル(Ni)合金、および、金(Au),銀(Ag),銅(Cu),白金(Pt),パラジウム(Pd)の純金属又は合金のうち少なくとも一つを含む金属層と、当該金属層の表面に窒素を供給しつつプラズマ照射することで前記金属層に形成した多孔質層と、を有する冷却用部材。 A substrate;
Nickel (Ni) alloy containing nitrogen (N) deposited on the base material, and pure of gold (Au), silver (Ag), copper (Cu), platinum (Pt), palladium (Pd) A cooling member comprising: a metal layer containing at least one of a metal or an alloy; and a porous layer formed on the metal layer by irradiating plasma while supplying nitrogen to the surface of the metal layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013156935A JP6209891B2 (en) | 2013-07-29 | 2013-07-29 | Manufacturing method of cooling member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013156935A JP6209891B2 (en) | 2013-07-29 | 2013-07-29 | Manufacturing method of cooling member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015026787A true JP2015026787A (en) | 2015-02-05 |
JP6209891B2 JP6209891B2 (en) | 2017-10-11 |
Family
ID=52491197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013156935A Active JP6209891B2 (en) | 2013-07-29 | 2013-07-29 | Manufacturing method of cooling member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6209891B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017135227A (en) * | 2016-01-27 | 2017-08-03 | 三菱マテリアル株式会社 | heat sink |
JP2020145260A (en) * | 2019-03-05 | 2020-09-10 | 東京エレクトロン株式会社 | Substrate holder, inspection device, and inspection method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5380565A (en) * | 1976-12-24 | 1978-07-17 | Fujitsu Ltd | Printed circuit board having porous rough grain structure layer and chip |
JPS56127791A (en) * | 1980-03-11 | 1981-10-06 | Mitsubishi Electric Corp | Surface treatment of heat radiating body |
JPS57146346U (en) * | 1981-03-06 | 1982-09-14 | ||
JP2009515054A (en) * | 2005-11-07 | 2009-04-09 | スリーエム イノベイティブ プロパティズ カンパニー | Thermal transfer coating |
JP2012070525A (en) * | 2010-09-22 | 2012-04-05 | Toshiba Corp | Power supply unit for vehicle |
-
2013
- 2013-07-29 JP JP2013156935A patent/JP6209891B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5380565A (en) * | 1976-12-24 | 1978-07-17 | Fujitsu Ltd | Printed circuit board having porous rough grain structure layer and chip |
JPS56127791A (en) * | 1980-03-11 | 1981-10-06 | Mitsubishi Electric Corp | Surface treatment of heat radiating body |
JPS57146346U (en) * | 1981-03-06 | 1982-09-14 | ||
JP2009515054A (en) * | 2005-11-07 | 2009-04-09 | スリーエム イノベイティブ プロパティズ カンパニー | Thermal transfer coating |
JP2012070525A (en) * | 2010-09-22 | 2012-04-05 | Toshiba Corp | Power supply unit for vehicle |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017135227A (en) * | 2016-01-27 | 2017-08-03 | 三菱マテリアル株式会社 | heat sink |
JP2020145260A (en) * | 2019-03-05 | 2020-09-10 | 東京エレクトロン株式会社 | Substrate holder, inspection device, and inspection method |
JP7262249B2 (en) | 2019-03-05 | 2023-04-21 | 東京エレクトロン株式会社 | SUBSTRATE HOLDER, INSPECTION APPARATUS, AND INSPECTION METHOD |
Also Published As
Publication number | Publication date |
---|---|
JP6209891B2 (en) | 2017-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7695808B2 (en) | Thermal transfer coating | |
US20190141855A1 (en) | Vapor chamber | |
CN111053291A (en) | Electronic atomization device, atomization core and preparation method of atomization core | |
JP2006202586A (en) | Bonding method and bonding structure | |
CN211746958U (en) | Electronic atomization device and atomization core thereof | |
US20070247822A1 (en) | Method for the production of a printed circuit structure as well as a printed circuit structure thus produced | |
US9414441B2 (en) | Shaft-equipped heater unit and method for manufacturing shaft-equipped heater unit | |
JP2006202944A (en) | Joining method and joining structure | |
JP6209891B2 (en) | Manufacturing method of cooling member | |
JP6917006B2 (en) | Manufacturing method of vapor chamber, metal sheet for vapor chamber and vapor chamber | |
JP2011189354A (en) | Metal-ceramics joined substrate, and method for producing the same | |
JP6875990B2 (en) | Carbon nanotubes placed on a metal substrate with one or more cavities | |
JP2024002948A (en) | Heating element, atomizer, and electronic atomization device | |
JP2009092344A (en) | Vapor chamber with superior heat transport characteristic | |
JP2011132561A (en) | Electrode structure and method for producing the same | |
JP2008202093A (en) | Discharge surface-treatment apparatus and discharge surface-treatment method | |
JP2013093302A (en) | Heater | |
CN115866965A (en) | Heat dissipation device, preparation method of heat dissipation device and electronic equipment | |
EP1729322A1 (en) | Plasma processing device | |
JP2012043688A (en) | Porous body passage type fuel cell separator using low-temperature diffusion bonding and method for manufacturing the same | |
JP3684440B2 (en) | Heat sink and manufacturing method thereof | |
KR100624812B1 (en) | Heat Pipe | |
JP2009283752A (en) | Soaking plate, and substrate heating device and substrate cooling device using the same | |
CN212573417U (en) | Ultrathin heat conduction patch and electronic equipment | |
JP2011170989A (en) | Separator for fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160610 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170307 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170815 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170828 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6209891 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |