JP2015026770A - Semiconductor laminate structure and semiconductor element using the same - Google Patents

Semiconductor laminate structure and semiconductor element using the same Download PDF

Info

Publication number
JP2015026770A
JP2015026770A JP2013156638A JP2013156638A JP2015026770A JP 2015026770 A JP2015026770 A JP 2015026770A JP 2013156638 A JP2013156638 A JP 2013156638A JP 2013156638 A JP2013156638 A JP 2013156638A JP 2015026770 A JP2015026770 A JP 2015026770A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
composition
superlattice
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013156638A
Other languages
Japanese (ja)
Other versions
JP6265328B2 (en
Inventor
江川 孝志
Takashi Egawa
孝志 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2013156638A priority Critical patent/JP6265328B2/en
Publication of JP2015026770A publication Critical patent/JP2015026770A/en
Application granted granted Critical
Publication of JP6265328B2 publication Critical patent/JP6265328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor laminate structure which reduces warpage or has a small X-ray half bandwidth, the semiconductor laminate structure in which AlGaN semiconductor layers each having a lattice constant or a thermal expansion coefficient different from those of a substrate are sequentially provided; and provide a semiconductor element using the semiconductor laminate structure.SOLUTION: In the semiconductor laminate structure in which AlGaN-based semiconductor layers composed of a buffer layer, a distortion relaxation layer, and a device layer are sequentially provided on the substrate, the distortion relaxation layer is composed of a graded composition layer and a superlattice layer and one of the graded composition layer and the superlattice layer exists between two layers composed of the other layers.

Description

本発明は、電界効果トランジスタ(FET)、発光ダイオード(LED)等の半導体素子に用いられる半導体積層構造であって、特に反りを抑制し、結晶品質の優れた、主にSi基板を用いた半導体積層構造およびこれを用いた半導体素子に関するものである。   The present invention is a semiconductor laminated structure used for semiconductor elements such as field effect transistors (FETs), light emitting diodes (LEDs), etc., and particularly a semiconductor using mainly a Si substrate that suppresses warpage and has excellent crystal quality. The present invention relates to a laminated structure and a semiconductor element using the same.

窒化物半導体は、電界効果トランジスタ等の電子デバイス、あるいは、可視光領域から紫外光領域の短波長帯における受発光デバイスの活性材料として、近年盛んに研究開発が行われている。 BACKGROUND ART Nitride semiconductors have been actively researched and developed in recent years as active materials for electronic devices such as field effect transistors or light receiving and emitting devices in the short wavelength band from the visible light region to the ultraviolet light region.

一般的に、前記窒化物半導体は、サファイア、SiC又はSi等からなる基板上に形成される。特に、Si単結晶基板(以下、「Si基板」という)は、大面積が低価格で入手でき、結晶性及び放熱性に優れ、さらに、へき開やエッチングが容易で、プロセス技術が成熟しているといった多くの利点を具えている。   Generally, the nitride semiconductor is formed on a substrate made of sapphire, SiC, Si, or the like. In particular, a Si single crystal substrate (hereinafter referred to as “Si substrate”) has a large area and is available at a low price, is excellent in crystallinity and heat dissipation, is easy to cleave and etch, and has a mature process technology. Has many advantages.

しかし、前記窒化物半導体とSi基板とでは、格子定数や熱膨張係数が大きく異なるため、Si基板上に窒化物半導体を成長させた場合、成長した窒化物半導体は、ウェーハとして反る、あるいはクラックやピット(点状欠陥)が発生するという問題があった。特に反りが大きいと、デバイス加工としてプロセスが困難となり、また素子として耐圧が低いなど大きな課題となっている。   However, since the nitride semiconductor and the Si substrate have greatly different lattice constants and thermal expansion coefficients, when the nitride semiconductor is grown on the Si substrate, the grown nitride semiconductor warps as a wafer or cracks. And pits (point defects) occur. In particular, when the warpage is large, the process becomes difficult as device processing, and the breakdown voltage as an element is low, which is a big problem.

上記問題を解決するための手段としては、前記Si基板と窒化物半導体層との間にバッファ層を形成することで、反りあるいはクラックを抑制する技術が知られている。例えば、特許文献1では、Si基板の上に、窒化物半導体からなり、組成的に勾配を付けたAlGa1−XN等からなる緩衝層(バッファ層)を形成し、該緩衝層の上に窒化ガリウムを形成してなる半導体材料が開示されている。 As a means for solving the above problem, a technique for suppressing warpage or cracking by forming a buffer layer between the Si substrate and the nitride semiconductor layer is known. For example, in Patent Document 1, a buffer layer (buffer layer) made of a nitride semiconductor and made of a compositionally graded Al x Ga 1-X N or the like is formed on a Si substrate. A semiconductor material having gallium nitride formed thereon is disclosed.

また、特許文献2では、Si基板上に、高Al含有層と、低Al含有層とを交互に複数層積層してなるAlN系超格子複合層を形成し、該AlN系超格子複合バッファ層上に窒化物半導体層を形成してなる窒化物半導体素子が開示されている。 In Patent Document 2, an AlN-based superlattice composite layer formed by alternately laminating a plurality of high Al-containing layers and low Al-containing layers on a Si substrate is formed, and the AlN-based superlattice composite buffer layer is formed. A nitride semiconductor device having a nitride semiconductor layer formed thereon is disclosed.

しかしながら、特許文献1及び2に記載の半導体材料では、いずれも前記窒化物半導体層に発生する反りあるいはクラックの抑制については十分でなかった。 However, none of the semiconductor materials described in Patent Documents 1 and 2 is sufficient for suppressing warpage or cracks generated in the nitride semiconductor layer.

一方、特許文献3および4では、反りの少ない半導体積層基板を得るため、2インチ径で330μm厚のサファイア基板上に、30nm厚のGaNバッファ層を設けた後、GaN層とGaの一部をInで置換したInGaN層からなる中間層を設け、さらにAlGaN系の膜を20〜30nmの厚みで形成した半導体積層構造の反りが10〜25μmであることが開示されている。 On the other hand, in Patent Documents 3 and 4, a GaN buffer layer having a thickness of 30 nm is provided on a sapphire substrate having a diameter of 2 inches and a thickness of 330 μm in order to obtain a semiconductor multilayer substrate with little warpage. It is disclosed that the warp of a semiconductor multilayer structure in which an intermediate layer composed of an InGaN layer substituted with In is provided and an AlGaN-based film is formed with a thickness of 20 to 30 nm is 10 to 25 μm.

しかし、特許文献3および4で用いたサファイア基板のヤング率はSi基板のヤング率の2〜3倍であり、相対的に反りが小さくなること、また、基板の径を2インチから4インチへと大きくすれば反りは4倍程度大きくなることが予想され、さらに歪緩和のための中間層上のAlGaNの膜厚が小さく、中間層の歪緩和効果が十分には確認されていない。 However, the Young's modulus of the sapphire substrate used in Patent Documents 3 and 4 is 2 to 3 times the Young's modulus of the Si substrate, so that the warpage is relatively small, and the diameter of the substrate is changed from 2 inches to 4 inches. If it is larger, the warpage is expected to be about 4 times larger. Further, the film thickness of AlGaN on the intermediate layer for strain relaxation is small, and the strain relaxation effect of the intermediate layer has not been sufficiently confirmed.

特表2004−524250号公報Special table 2004-524250 gazette 特開2007−67077号公報JP 2007-67077 A 特開2008−211246号公報JP 2008-211246 A 特開2007−60140号公報JP 2007-60140 A

本発明の課題は、基板とは格子定数あるいは熱膨張係数が異なるAlGaN系半導体層を順次設けた半導体積層構造において、反りを低減し、あるいはX線半値幅の小さい半導体積層構造およびこれを用いた半導体素子を提供することにある。   An object of the present invention is to provide a semiconductor multilayer structure in which AlGaN-based semiconductor layers having different lattice constants or thermal expansion coefficients from those of a substrate are sequentially provided, and a semiconductor multilayer structure having a reduced X-ray half-value width and a semiconductor multilayer structure using the same It is to provide a semiconductor device.

本発明者らは、前記半導体積層構造において、歪緩和層が組成傾斜層と超格子層からなり、組成傾斜層と超格子層の一方が他方からなる2層の中間に存在する半導体積層構造が上記課題が解決しうることを見出した。すなわち、本発明によれば、以下の半導体積層構造およびこれを用いた半導体素子が提供される。   In the semiconductor stacked structure, the present inventors have a semiconductor stacked structure in which the strain relaxation layer is composed of a composition gradient layer and a superlattice layer, and one of the composition gradient layer and the superlattice layer exists between two layers. It has been found that the above problems can be solved. That is, according to the present invention, the following semiconductor multilayer structure and a semiconductor element using the same are provided.

[1]基板上にバッファ層、歪緩和層、デバイス層からなるAlGaN系半導体層あるいはInAlN系半導体層を順次設けた半導体積層構造であって、前記歪緩和層が組成傾斜層と超格子層からなり、組成傾斜層と超格子層の一方が他方からなる2層の中間に存在する半導体積層構造。 [1] A semiconductor laminated structure in which an AlGaN-based semiconductor layer or an InAlN-based semiconductor layer including a buffer layer, a strain relaxation layer, and a device layer is sequentially provided on a substrate, and the strain relaxation layer includes a composition gradient layer and a superlattice layer. A semiconductor laminated structure in which one of the composition gradient layer and the superlattice layer exists in the middle of the other two layers.

[2]前記超格子層が2層の組成傾斜層の中間に存在する前記[1]に記載の半導体積層構造。 [2] The semiconductor multilayer structure according to [1], wherein the superlattice layer exists in the middle of two composition gradient layers.

[3]前記超格子層の平均組成が、基板に近い一方の組成傾斜層AlX1Ga1−X1Nの最終に形成される組成と他方の組成傾斜層AlX2Ga1−X2Nの最初に形成される組成と一致する、前記[2]に記載の半導体積層構造。 [3] The average composition of the superlattice layer is the final composition of one composition gradient layer Al X1 Ga 1 -X1 N close to the substrate and the first composition gradient layer Al X2 Ga 1 -X2 N The semiconductor multilayer structure according to [2], which matches the composition to be formed.

[4]基板に近い一方の組成傾斜層AlX1Ga1−X1NのAl含有率X1が膜成長方向に1〜0.45、他方の組成傾斜層AlX2Ga1−X2NのAl含有率X2が膜成長方向に0.45〜0、超格子層の平均組成がAl0.45Ga0.55Nである、前記[3]に記載の半導体積層構造。 [4] Al content ratio X1 of one composition gradient layer Al X1 Ga 1-X1 N close to the substrate is 1 to 0.45 in the film growth direction, Al content ratio of the other composition gradient layer Al X2 Ga 1-X2 N The semiconductor multilayer structure according to [3], wherein X2 is 0.45 to 0 in the film growth direction, and the average composition of the superlattice layer is Al 0.45 Ga 0.55 N.

[5]前記超格子層が2つあり、その平均組成がともに同じ組成であり、当該2つの超格子層に挟まれた組成傾斜層AlGa1−XNのXが前記超格子層の平均組成のAl含有率から0に変化する前記[1]に記載の半導体積層構造。 [5] There are two superlattice layers, the average composition of which is the same, and the composition gradient layer Al X Ga 1-X N sandwiched between the two superlattice layers is the superlattice layer X The semiconductor multilayer structure according to [1], wherein the Al content of the average composition changes from 0.

[6]前記組成傾斜層AlGa1−XNのXが、膜成長方向に連続的に減少する、あるいは膜成長方向に膜厚10nm〜100nm毎に階段状に減少する前記[1]〜[5]のいずれかに記載の半導体積層構造。 [6] The X of the composition gradient layer Al X Ga 1-X N decreases continuously in the film growth direction, or decreases stepwise every 10 to 100 nm in the film growth direction. [5] The semiconductor multilayer structure according to any one of [5].

[7]前記超格子層を構成する一方の組成がAlNであり、他方の組成がAlX3Ga1−X3Nであり、X3が0〜0.2である前記[1]〜[6]のいずれかに記載の半導体積層構造。 [7] The above-described [1] to [6], wherein one composition constituting the superlattice layer is AlN, the other composition is Al X3 Ga 1-X3 N, and X3 is 0 to 0.2. The semiconductor laminated structure in any one.

[8]前記超格子を構成する一方の組成がAlNであり、他方の組成がAlX3Ga1−X3Nであり、X3が0〜0.2の場合、その膜厚比が1:2〜1:4である、前記[7]に記載の半導体積層構造。 [8] When one composition constituting the superlattice is AlN, the other composition is Al X3 Ga 1-X3 N, and X3 is 0 to 0.2, the film thickness ratio is 1: 2 The semiconductor multilayer structure according to [7], wherein the semiconductor multilayer structure is 1: 4.

[9]前記組成傾斜層の厚みが0.1〜1.0μm、前記超格子層の厚みが1.0〜5.0μmである前記[1]〜[8]のいずれかに記載の半導体積層構造。 [9] The semiconductor multilayer according to any one of [1] to [8], wherein the composition gradient layer has a thickness of 0.1 to 1.0 μm, and the superlattice layer has a thickness of 1.0 to 5.0 μm. Construction.

[10]前記デバイス層がチャネル層およびバリア層を含む、前記[1]〜[9]のいずれかに記載の半導体積層構造。 [10] The semiconductor multilayer structure according to any one of [1] to [9], wherein the device layer includes a channel layer and a barrier layer.

[11]前記チャネル層がi‐GaN、前記バリア層がi‐AlGa1−XN(0.1≦X≦0.3)あるいはi‐InAl1−XN(0.1≦X≦0.3)である、前記[10]に記載の半導体積層構造。 [11] The channel layer is i-GaN and the barrier layer is i-Al X Ga 1-X N (0.1 ≦ X ≦ 0.3) or i-In X Al 1-X N (0.1 ≦ The semiconductor stacked structure according to [10], wherein X ≦ 0.3).

[12]前記デバイス層が、第1の導電型半導体層、活性層、および第1の導電型と反対の第2の導電型半導体層を順次積層してなる受発光層である前記[1]〜[9]のいずれかに記載の半導体積層構造。 [12] The light emitting / receiving layer, in which the device layer is formed by sequentially laminating a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer opposite to the first conductive type. The semiconductor multilayer structure according to any one of to [9].

[13]前記基板がSi単結晶である前記[1]〜[12]のいずれかに記載の半導体積層構造。 [13] The semiconductor multilayer structure according to any one of [1] to [12], wherein the substrate is a Si single crystal.

[14]前記[10]または[11]の半導体積層構造にソース電極、ゲート電極、およびドレイン電極を形成したHEMT素子。 [14] A HEMT device in which a source electrode, a gate electrode, and a drain electrode are formed on the semiconductor stacked structure according to [10] or [11].

[15]前記[12]の半導体積層構造にカソード電極およびアノード電極を形成した受発光素子。 [15] A light emitting and receiving element in which a cathode electrode and an anode electrode are formed on the semiconductor laminated structure of [12].

比較例1(構造1)の半導体積層構造の概念図である。It is a conceptual diagram of the semiconductor laminated structure of the comparative example 1 (structure 1). 比較例2(構造2)の半導体積層構造の概念図である。It is a conceptual diagram of the semiconductor laminated structure of the comparative example 2 (structure 2). 比較例3(構造3)の半導体積層構造の概念図である。It is a conceptual diagram of the semiconductor laminated structure of the comparative example 3 (structure 3). 本発明実施例1(構造4)の半導体積層構造の概念図である。It is a conceptual diagram of the semiconductor laminated structure of this invention Example 1 (structure 4). 本発明実施例2(構造5)の半導体積層構造の概念図である。It is a conceptual diagram of the semiconductor laminated structure of this invention Example 2 (structure 5). 本発明および比較例の半導体積層構造を有するウェーハの反り量を測定する方法を示す図である。It is a figure which shows the method of measuring the curvature amount of the wafer which has a semiconductor laminated structure of this invention and a comparative example. 本発明および比較例の半導体積層構造を有するウェーハの反り量を示す図である。It is a figure which shows the curvature amount of the wafer which has a semiconductor laminated structure of this invention and a comparative example. 本発明および比較例の半導体積層構造を有するウェーハの(0004)面X線回折半値幅を示す図である。It is a figure which shows the (0004) plane X-ray-diffraction half-width of the wafer which has a semiconductor laminated structure of this invention and a comparative example. 本発明および比較例の半導体積層構造を有するウェーハの(20−24)面X線回折半値幅を示す図である。It is a figure which shows the (20-24) plane X-ray-diffraction half value width of the wafer which has a semiconductor laminated structure of this invention and a comparative example. 本発明および比較例の半導体積層構造を有するウェーハのシート抵抗を示す図である。It is a figure which shows the sheet resistance of the wafer which has a semiconductor laminated structure of this invention and a comparative example. 本発明および比較例の半導体積層構造を有するウェーハのシートキャリア密度を示す図である。It is a figure which shows the sheet | seat carrier density of the wafer which has a semiconductor laminated structure of this invention and a comparative example. 本発明および比較例の半導体積層構造を有するウェーハのキャリア移動度を示す図である。It is a figure which shows the carrier mobility of the wafer which has the semiconductor laminated structure of this invention and a comparative example.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

図1〜図3は本発明に対する比較例1〜3(構造1〜3)の半導体積層構造の概念図であり、図4および図5は、本発明の実施例1および実施例2の半導体積層構造の概念図である。なお、図示の都合上、図1〜図5における各層の厚みの比率は実際の比率を反映していない。図1〜図5に示す半導体積層構造は、Si基板の上に、バッファ層としてAlN層、またはこれに加えてAlGaN層を形成し、次に歪緩和層、さらにデバイス層を順次積層したものである。これら半導体積層構造は、基板上に、バッファ層、歪緩和層、さらにデバイス層を順次エピタキシャル成長させることにより形成されるので、当該半導体積層構造は半導体エピタキシャル基板(あるいは半導体エピ基板)と称する場合がある。そして、図1〜図5は、i‐GaNからなるチャネル層およびi‐Al0.20Ga0.80Nからなるバリア層を含むHEMT素子を対象として、歪緩和層の構成を異なるように形成したものである。歪緩和層は、組成傾斜層あるいは超格子層の少なくとも一方からなり、本発明では、組成傾斜層と超格子層の組み合わせに特徴がある。以下、組成傾斜層および超格子層をそれぞれ一つの層として扱う。 1 to 3 are conceptual diagrams of semiconductor stacked structures of Comparative Examples 1 to 3 (Structures 1 to 3) for the present invention, and FIGS. 4 and 5 are semiconductor stacked layers of Embodiments 1 and 2 of the present invention. It is a conceptual diagram of a structure. For convenience of illustration, the ratio of the thickness of each layer in FIGS. 1 to 5 does not reflect the actual ratio. The semiconductor laminated structure shown in FIGS. 1 to 5 is obtained by forming an AlN layer as a buffer layer or an AlGaN layer in addition to a Si substrate on a Si substrate, and then sequentially laminating a strain relaxation layer and a device layer. is there. Since these semiconductor multilayer structures are formed by sequentially epitaxially growing a buffer layer, a strain relaxation layer, and a device layer on a substrate, the semiconductor multilayer structure may be referred to as a semiconductor epitaxial substrate (or a semiconductor epi substrate). . FIGS. 1 to 5 show HEMT elements including a channel layer made of i-GaN and a barrier layer made of i-Al 0.20 Ga 0.80 N with different strain relaxation layer configurations. It is a thing. The strain relaxation layer is composed of at least one of a composition gradient layer or a superlattice layer, and the present invention is characterized by a combination of a composition gradient layer and a superlattice layer. Hereinafter, each of the composition gradient layer and the superlattice layer is treated as one layer.

図1〜図5の半導体積層構造に、たとえば、ソース電極、ゲート電極、およびドレイン電極を形成することにより、HEMT素子を形成することができる。一方、デバイス層として、第1の導電型半導体層、活性層、および第1の導電型と反対の第2の導電型半導体層を順次積層してなる受発光層、さらに電極を設けることにより受発光素子を形成することができる。 A HEMT element can be formed by forming, for example, a source electrode, a gate electrode, and a drain electrode in the semiconductor stacked structure of FIGS. On the other hand, as a device layer, a light receiving / emitting layer formed by sequentially laminating a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer opposite to the first conductive type, and further receiving electrodes are provided. A light emitting element can be formed.

本発明において基板は、その上に形成するバッファ層、歪緩和層、デバイス層の組成や構造、あるいは各層の形成手法に応じて適宜に選択される。例えば、基板としては、シリコン、ゲルマニウム、サファイア、炭化ケイ素、酸化物(ZnO、LiAlO,LiGaO,MgAl,(LaSr)(AlTa)O,NdGaO,MgOなど)、Si-Ge合金、周期律表の第3族−第5族化合物(GaAs,AlN,GaN,AlGaN、AlInN)、ホウ化物(ZrB2など)、などを用いることができる。ただし、室温〜1200℃における前記基板の熱膨張係数が基板上に形成するAlGa1−XNからなる膜の熱膨張係数より小さいことが好ましく、なかでもSi基板が品質およびコストの点で好ましく、Si基板の厚みとしては0.42〜1.00mmが好適である。 In the present invention, the substrate is appropriately selected according to the composition and structure of the buffer layer, strain relaxation layer, and device layer formed thereon, or the formation method of each layer. For example, as a substrate, silicon, germanium, sapphire, silicon carbide, oxide (ZnO, LiAlO 2 , LiGaO 2 , MgAl 2 O 4 , (LaSr) (AlTa) O 3 , NdGaO 3 , MgO, etc.), Si—Ge An alloy, a Group 3 to Group 5 compound of the periodic table (GaAs, AlN, GaN, AlGaN, AlInN), boride (such as ZrB2), and the like can be used. However, the thermal expansion coefficient of the substrate at room temperature to 1200 ° C. is preferably smaller than the thermal expansion coefficient of the film made of Al X Ga 1-X N formed on the substrate, and in particular, the Si substrate is in terms of quality and cost. Preferably, the thickness of the Si substrate is 0.42 to 1.00 mm.

バッファ層は、その上に形成する歪緩和層、デバイス層の組成や構造、あるいは各層の形成手法に応じて、様々な第3族窒化物半導体からなる単一層または複数層から形成される。本発明では、バッファ層はAlGa1−XNからなり、X≧0.2の1層または2層からなり,合計の厚みとして30〜500nmが好ましく、50〜150nmがより好ましい。このバッファ層は、例えばMOCVD法やMBE法などの公知の成膜手法にて形成される。歪や転位密度ができるだけ少ない膜構造とすることが好ましく、後に形成される膜の品質に影響するため、転位密度は1×1011/cm以下に形成することが好ましい。 The buffer layer is formed of a single layer or a plurality of layers made of various Group 3 nitride semiconductors depending on the strain relaxation layer formed thereon, the composition and structure of the device layer, or the formation method of each layer. In the present invention, the buffer layer is made of Al X Ga 1-X N, consists of one or two layers of X ≧ 0.2, 30 to 500 nm are preferred as the thickness of the total, 50 to 150 nm is more preferable. This buffer layer is formed by a known film formation method such as MOCVD method or MBE method. It is preferable that the film structure has as little strain and dislocation density as possible, and the dislocation density is preferably 1 × 10 11 / cm 3 or less in order to affect the quality of a film to be formed later.

バッファ層の次に歪緩和層が形成される。当該歪緩和層は組成傾斜層と超格子層からなり、組成傾斜層と超格子層の一方が他方からなる2層の中間に存在することが好ましい。超格子層が2層の組成傾斜層の中間に存在することがより好ましく、超格子層の平均組成が、基板に近い一方の組成傾斜層AlX1Ga1−X1Nの最終に形成される組成と他方の組成傾斜層AlX2Ga1−X2Nの最初に形成される組成と一致することが特に好ましい。好例としては、基板に近い一方の組成傾斜層AlX1Ga1−X1NのAl含有率X1が膜成長方向に1〜0.45、他方の組成傾斜層AlX2Ga1−X2NのAl含有率X2が同じく膜成長方向に0.45〜0、超格子層の平均組成がAl0.45Ga0.55Nである。 A strain relaxation layer is formed next to the buffer layer. The strain relaxation layer is preferably composed of a composition gradient layer and a superlattice layer, and one of the composition gradient layer and the superlattice layer is preferably present between two layers composed of the other. More preferably, the superlattice layer is present in the middle of the two composition gradient layers, and the average composition of the superlattice layer is the final composition of one composition gradient layer Al X1 Ga 1 -X1 N close to the substrate. It is particularly preferable to match the first composition of the other composition gradient layer Al X2 Ga 1 -X2 N. As a good example, the Al content X1 of one composition gradient layer Al X1 Ga 1 -X1 N close to the substrate is 1 to 0.45 in the film growth direction, and the other composition gradient layer Al X2 Ga 1 -X2 N contains Al. Similarly, the rate X2 is 0.45 to 0 in the film growth direction, and the average composition of the superlattice layer is Al 0.45 Ga 0.55 N.

一方、組成傾斜層が2層の超格子層の中間にある構造であってもよい。超格子層が2つあり、その平均組成がともに同じ組成であり、当該2つの超格子層に挟まれた組成傾斜層AlGa1−XNのXが前記超格子層の平均組成のAl含有率と同じ値から0に変化することがその一例である。 On the other hand, a structure in which the composition gradient layer is in the middle of the two superlattice layers may be employed. There are two superlattice layers, both of which have the same average composition, and X of the composition gradient layer Al X Ga 1-X N sandwiched between the two superlattice layers is Al of the average composition of the superlattice layer An example thereof is that the content changes from 0 to 0.

前記組成傾斜層はその組成が、膜成長方向に連続的に減少する、あるいは膜成長方向に膜厚10nm〜100nm毎に階段状に減少することが好ましい。超格子層を構成する一方の組成がAlNであり、他方の組成がAlX3Ga1−X3Nであり、X3が0〜0.2であることが好ましい。そして、超格子の一対がAlNとAlX3Ga1−X3Nの場合、その膜厚比が1:2〜1:4が好ましい。当該膜厚比の組み合わせの場合、超格子の一対がAlNとAl0.15Ga0.85Nの場合には超格子層の平均組成におけるAl組成比が0.45〜0.30となる。さらに組成傾斜層の厚みが0.1〜1.0μm、前記超格子層の厚みが1.0〜5.0μmであることが好ましい。 It is preferable that the composition gradient layer has a composition that continuously decreases in the film growth direction or decreases stepwise in a film growth direction every 10 nm to 100 nm. It is preferable that one composition constituting the superlattice layer is AlN, the other composition is Al X3 Ga 1 -X3 N, and X3 is 0 to 0.2. When the superlattice pair is AlN and Al X3 Ga 1-X3 N, the film thickness ratio is preferably 1: 2 to 1: 4. In the case of the combination of the film thickness ratios, when the pair of superlattices is AlN and Al 0.15 Ga 0.85 N, the Al composition ratio in the average composition of the superlattice layer is 0.45 to 0.30. Furthermore, the thickness of the composition gradient layer is preferably 0.1 to 1.0 μm, and the thickness of the superlattice layer is preferably 1.0 to 5.0 μm.

本発明の半導体積層構造がHEMT素子に適用される場合は、歪緩和層に引き続き、チャネル層とバリア層、さらにこの2層間に適宜スペーサ層が設けられる。チャネル層はi‐GaNで構成することが好ましく、バリア層としてi‐AlGa1−XN(0.1≦X≦0.3)とすることが好ましい。二次元電子ガスの移動度を改善させるため、チャネル層とバリア層との間に0.5〜1.5nm厚のAlNスペーサ層が適宜形成される。なお、チャネル層のi‐GaNに対して、バリア層としてi‐InAl1−XN(0.1≦X≦0.3)を用いることもできる。 When the semiconductor multilayer structure of the present invention is applied to a HEMT element, a channel layer and a barrier layer are provided after the strain relaxation layer, and a spacer layer is appropriately provided between the two layers. The channel layer is preferably made of i-GaN, and the barrier layer is preferably i-Al X Ga 1-X N (0.1 ≦ X ≦ 0.3). In order to improve the mobility of the two-dimensional electron gas, an AlN spacer layer having a thickness of 0.5 to 1.5 nm is appropriately formed between the channel layer and the barrier layer. Incidentally, with respect to i-GaN of the channel layer, i-In X Al 1- X N (0.1 ≦ X ≦ 0.3) can also be used as a barrier layer.

一方、本発明の半導体積層構造が受発光素子に適用される場合は、HEMT素子同様に、基板上にバッファ層、歪緩和層を設けた後、受発光層を設ける。この場合、発光層は第1の導電型半導体層、活性層、および第1の導電型と反対の第2の導電型半導体層からなる。例えば、膜厚0.1μm〜1.0μmのn型半導体層、膜厚2nm〜20nmの活性層、および膜厚0.1μm〜1.0μmのp型半導体層を順次形成する。そして、好適にはn型半導体層およびp型半導体層としてGaN、活性層としてInGaNを用いることができる。この後、発光層上にカソード電極およびアノード電極を設ける、あるいは一方の電極を基板の他方の面(積層膜とは反対)に形成して発光素子を作製することができる。   On the other hand, when the semiconductor multilayer structure of the present invention is applied to a light emitting / receiving element, a light receiving / emitting layer is provided after a buffer layer and a strain relaxation layer are provided on a substrate like a HEMT element. In this case, the light emitting layer includes a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer opposite to the first conductive type. For example, an n-type semiconductor layer having a thickness of 0.1 μm to 1.0 μm, an active layer having a thickness of 2 nm to 20 nm, and a p-type semiconductor layer having a thickness of 0.1 μm to 1.0 μm are sequentially formed. Preferably, GaN can be used as the n-type semiconductor layer and p-type semiconductor layer, and InGaN can be used as the active layer. Thereafter, a cathode electrode and an anode electrode are provided on the light emitting layer, or one electrode is formed on the other surface of the substrate (opposite to the laminated film), whereby a light emitting element can be manufactured.

(実施例1:歪緩和層として2層の超格子層間に組成傾斜層が介在する半導体積層構造)
本実施例において、まず4インチ径の厚み525μmの(111)面Si単結晶基板を用い、これを所定のMOCVD装置の反応菅内に設置した。MOCVD装置は、キャリアガスあるいは反応ガスとして、少なくともH、N、TMG(トリメチルガリウム)、TMA(トリメチルアルミニウム)、およびNHが、反応管内に供給可能とされている。キャリアガスとして水素を流量20SLM及び窒素を流量10SLMで流しながら、反応管内の圧力を100Torrに保ちつつ、基板を1210℃まで昇温した後、10分間保持し、基板のサーマルクリーニングを実施した。
(Example 1: Semiconductor laminated structure in which a composition gradient layer is interposed between two superlattice layers as a strain relaxation layer)
In this example, a (111) -plane Si single crystal substrate having a diameter of 4 inches and a thickness of 525 μm was first used and placed in a reaction vessel of a predetermined MOCVD apparatus. In the MOCVD apparatus, at least H 2 , N 2 , TMG (trimethyl gallium), TMA (trimethyl aluminum), and NH 3 can be supplied into the reaction tube as a carrier gas or a reaction gas. While flowing hydrogen as a carrier gas at a flow rate of 20 SLM and nitrogen at a flow rate of 10 SLM, while maintaining the pressure in the reaction tube at 100 Torr, the substrate was heated to 1210 ° C. and held for 10 minutes to perform thermal cleaning of the substrate.

その後、基板温度を下げて1030℃に保ちつつ、TMAとそのキャリアガスである水素を供給するとともに、NHとそのキャリアガスである水素とを供給することにより、バッファ層として膜厚80nmのAlN層を最初に形成した。供給反応ガスのモル比、すなわち、第5族ガス/第3族ガス(NH/TMA)の比は5600とし、反応管内の圧力は100Torrとした。 Then, while maintaining the substrate temperature at 1030 ° C. while supplying TMA and hydrogen as its carrier gas, and supplying NH 3 and hydrogen as its carrier gas, AlN having a thickness of 80 nm as a buffer layer is supplied. A layer was first formed. The molar ratio of the supplied reaction gas, that is, the ratio of Group 5 gas / Group 3 gas (NH 3 / TMA) was 5600, and the pressure in the reaction tube was 100 Torr.

そして基板温度を1130℃にし、供給する反応ガスモル比(第5族ガス/第3族ガス)を3900として膜厚30nmのAl0.30Ga0.70Nを形成した。以上により、AlN層およびAl0.3Ga0.7N層からなるバッファ層を形成した。 Then, the substrate temperature was set to 1130 ° C., the reaction gas molar ratio (Group 5 gas / Group 3 gas) to be supplied was 3900, and Al 0.30 Ga 0.70 N having a film thickness of 30 nm was formed. Thus, a buffer layer composed of an AlN layer and an Al 0.3 Ga 0.7 N layer was formed.

次に、基板温度を1130℃に維持したまま、第1の超格子層を形成した。バッファ層同様に供給ガスとしてTMA、TMG、およびNHの供給量を調整して、AlNとAl0.15Ga0.85Nをそれぞれ6nm、15nmの膜厚で交互に積層し、1.25μm厚とした。 Next, the first superlattice layer was formed while maintaining the substrate temperature at 1130 ° C. As with the buffer layer, the supply amounts of TMA, TMG, and NH 3 are adjusted as supply gases, and AlN and Al 0.15 Ga 0.85 N are alternately stacked at a thickness of 6 nm and 15 nm, respectively, and 1.25 μm. Thickness.

次に組成傾斜層を形成した。組成傾斜層としてAlX3Ga1−X3Nなる層は、基板温度を1130℃に維持し、圧力を100Torr、供給する反応ガスのモル比(第5族ガス/第3族ガス)を、4000から2800へと変えて、Al組成比X3を0.45から0へと減少させ、膜厚400nmの組成傾斜層を形成した。膜成長方向に連続的にAl組成を減少させた。 Next, a composition gradient layer was formed. The layer composed of Al X3 Ga 1-X3 N as the composition gradient layer maintains the substrate temperature at 1130 ° C., the pressure is 100 Torr, and the molar ratio of reaction gas to be supplied (Group 5 gas / Group 3 gas) from 4000 Instead of 2800, the Al composition ratio X3 was decreased from 0.45 to 0, and a composition gradient layer having a thickness of 400 nm was formed. The Al composition was continuously reduced in the film growth direction.

次に、基板温度を1130℃に維持したまま、第1の超格子層と同一の条件にて、1.25μm厚の第2の超格子層を形成した。第1超格子層、組成傾斜層、および第2超格子層を合わせた歪緩和層の総厚は2.9μmである。 Next, a second superlattice layer having a thickness of 1.25 μm was formed under the same conditions as the first superlattice layer while maintaining the substrate temperature at 1130 ° C. The total thickness of the strain relaxation layer including the first superlattice layer, the composition gradient layer, and the second superlattice layer is 2.9 μm.

基板温度を1130℃維持したまま、圧力を100Torr、供給する反応ガスモル比(第5族ガス/第3族ガス)が2800となるように供給して、チャネル層として膜厚1.0μmのi‐GaN層を形成した。 While maintaining the substrate temperature at 1130 ° C., the pressure is 100 Torr, the supplied reactive gas molar ratio (Group 5 gas / Group 3 gas) is 2800, and the channel layer is an i − having a film thickness of 1.0 μm. A GaN layer was formed.

チャネル層形成後、基板温度を1130℃維持したまま、供給する反応ガスモル比(第5族ガス/第3族ガス)をAlNバッファ層と同様に供給して、1nm厚のAlNスペーサ層を形成した。引き続き、Al0.20Ga0.80Nなるバリア層を膜厚20nm形成した。以上により、半導体積層構造(実施例1)を得た。 After forming the channel layer, the reaction gas molar ratio (Group 5 gas / Group 3 gas) to be supplied was supplied in the same manner as the AlN buffer layer while the substrate temperature was maintained at 1130 ° C. to form an AlN spacer layer having a thickness of 1 nm. . Subsequently, a barrier layer of Al 0.20 Ga 0.80 N was formed to a thickness of 20 nm. Thus, a semiconductor multilayer structure (Example 1) was obtained.

(実施例2:歪緩和層として2層の組成傾斜層間に超格子層が介在する半導体積層構造)
実施例1同様に、まず4インチ径の厚み525μmの(111)面Si単結晶基板を用い、これを所定のMOCVD装置の反応菅内に設置し、キャリアガスとして水素を流量20SLM及び窒素を流量10SLMで流しながら、反応管内の圧力を100Torrに保ちつつ、基板を1210℃まで昇温した後、10分間保持し、基板のサーマルクリーニングを実施した。
(Example 2: Semiconductor laminated structure in which a superlattice layer is interposed between two composition gradient layers as a strain relaxation layer)
As in Example 1, a (111) -plane Si single crystal substrate having a diameter of 4 inches and a thickness of 525 μm was first installed in a reaction vessel of a predetermined MOCVD apparatus, and hydrogen was flowed at 20 SLM and nitrogen was flowed at 10 SLM. The substrate was heated up to 1210 ° C. while maintaining the pressure in the reaction tube at 100 Torr while being flowed in, and then held for 10 minutes to perform thermal cleaning of the substrate.

その後、基板温度を下げて1030℃に保ちつつ、TMAとそのキャリアガスである水素を供給するとともに、NHとそのキャリアガスである水素とを供給することにより、バッファ層として膜厚110nmのAlN層を最初に形成した。供給反応ガスのモル比、すなわち、第5族ガス/第3族ガス(NH/TMA)の比は5600とし、反応管内の圧力は100Torrとした。 Thereafter, while the substrate temperature is lowered and maintained at 1030 ° C., TMA and hydrogen as its carrier gas are supplied, and NH 3 and hydrogen as its carrier gas are supplied to thereby form AlN having a film thickness of 110 nm as a buffer layer. A layer was first formed. The molar ratio of the supplied reaction gas, that is, the ratio of Group 5 gas / Group 3 gas (NH 3 / TMA) was 5600, and the pressure in the reaction tube was 100 Torr.

次に第1の組成傾斜層を形成した。組成傾斜層としてAlX3Ga1−X3Nなる層は、基板温度を1130℃に維持し、圧力を100Torr、供給する反応ガスモル比(第5族ガス/第3族ガス)を、5600から4000へと変えて、Al組成比のX3を1.0から0.45へと減少させ、膜厚400nmの組成傾斜層を形成した。膜成長方向に連続的にAl組成を減少させた。 Next, a first composition gradient layer was formed. The layer composed of Al X3 Ga 1-X3 N as the composition gradient layer maintains the substrate temperature at 1130 ° C., the pressure is 100 Torr, and the reaction gas molar ratio (Group 5 gas / Group 3 gas) is increased from 5600 to 4000. In other words, the Al composition ratio X3 was decreased from 1.0 to 0.45 to form a composition gradient layer having a thickness of 400 nm. The Al composition was continuously reduced in the film growth direction.

次に、基板温度を1130℃に維持したまま、超格子層を形成した。バッファ層同様に供給ガスとしてTMA、TMG、およびNHの供給量を調整して、AlNとAl0.15Ga0.85Nをそれぞれ6nm、15nmの膜厚で交互に積層し、2.1μm厚とした。 Next, a superlattice layer was formed while maintaining the substrate temperature at 1130 ° C. Similarly to the buffer layer, the supply amounts of TMA, TMG, and NH 3 are adjusted as supply gases, and AlN and Al 0.15 Ga 0.85 N are alternately stacked with a thickness of 6 nm and 15 nm, respectively, to 2.1 μm. Thickness.

さらに、第1の組成傾斜層と同一の条件にて、膜厚400nmの第2の組成傾斜層を形成した。第1組成傾斜層、超格子層、および第2組成傾斜層を合わせた歪緩和層の総厚は実施例1と同様に2.9μmである。 Furthermore, a 400 nm-thick second composition gradient layer was formed under the same conditions as the first composition gradient layer. The total thickness of the strain relaxation layer including the first composition gradient layer, the superlattice layer, and the second composition gradient layer is 2.9 μm as in the first embodiment.

チャネル層、スペーサ層、およびバリア層は、実施例1と同一の条件で同じ層にて各層を形成した。   The channel layer, the spacer layer, and the barrier layer were formed in the same layer under the same conditions as in Example 1.

(比較例1〜3)
歪緩和層の構成は、実施例1および実施例2とは異なり、比較例1は超格子層のみ、比較例2は組成傾斜層上に超格子層、比較例3は超格子層上に組成傾斜層を形成した。歪緩和層の総厚は、実施例1および実施例2と同様に、総厚を2.9μmとした。
(Comparative Examples 1-3)
The configuration of the strain relaxation layer is different from that of Example 1 and Example 2. Comparative Example 1 is a superlattice layer only, Comparative Example 2 is a superlattice layer on the composition gradient layer, and Comparative Example 3 is a composition on the superlattice layer. A gradient layer was formed. The total thickness of the strain relaxation layer was 2.9 μm as in the case of Example 1 and Example 2.

(半導体積層構造の反り量を測定)
実施例1および実施例2、さらに比較例1〜3の半導体エピウェーハの反り量を測定した。反り量の測定は図6のように行い、基板のオリフラ方向とこれに直角方向の平均とした。測定結果を図7に示す。ウェーハの反り量は実施例2(構造5)が最も小さくなった。
(Measures the amount of warpage of the semiconductor laminated structure)
The amount of warpage of the semiconductor epiwafers of Examples 1 and 2 and Comparative Examples 1 to 3 was measured. The amount of warpage was measured as shown in FIG. 6, and the average of the orientation flat direction of the substrate and the direction perpendicular thereto was taken. The measurement results are shown in FIG. The amount of warpage of the wafer was smallest in Example 2 (Structure 5).

(X線回折半値幅測定)
実施例1、実施例2、および比較例1〜3の半導体エピウェーハの(0004)面、および(20−24)面のX線回折によるロッキングカーブ半値幅の測定結果をそれぞれ図8および図9に示す。両面ともに実施例2が最も半値幅が小さく、実施例1も比較的小さな半値幅が得られた。
(X-ray diffraction half-width measurement)
FIGS. 8 and 9 show the measurement results of the rocking curve half-value widths by X-ray diffraction of the (0004) plane and (20-24) plane of the semiconductor epiwafers of Example 1, Example 2, and Comparative Examples 1 to 3, respectively. Show. In both surfaces, Example 2 had the smallest half width, and Example 1 also had a relatively small half width.

(転位密度測定)
実施例1、実施例2、および比較例1〜3の半導体エピウェーハのらせん転位密度、および刃状転位密度を測定した結果を表1に示す。実施例2が、らせん転位密度および刃状転位密度ともに小さく、実施例1も比較的小さな転位密度であった。
(Dislocation density measurement)
Table 1 shows the results of measuring the screw dislocation density and the edge dislocation density of the semiconductor epiwafers of Example 1, Example 2, and Comparative Examples 1 to 3. In Example 2, both the screw dislocation density and the edge dislocation density were small, and Example 1 also had a relatively small dislocation density.

(シート抵抗、シートキャリア濃度、およびキャリア移動度の測定)
シート抵抗については、実施例1(構造4)が最も小さくなった。シートキャリア密度については、実施例1および実施例2、比較例1〜3について大きな差異は見られなかった。キャリア移動度は、比較例2を除いてデータの幅が大きいが、実施例1および実施例2は比較的大きなキャリア移動度が得られた。
(Measurement of sheet resistance, sheet carrier concentration, and carrier mobility)
Regarding sheet resistance, Example 1 (Structure 4) was the smallest. Regarding the sheet carrier density, no significant difference was found between Example 1 and Example 2, and Comparative Examples 1 to 3. The carrier mobility has a large data width except for Comparative Example 2, but comparatively large carrier mobility was obtained in Example 1 and Example 2.

ウェーハの反り、X線半値幅、および転位密度の測定結果より、実施例2が最も良好であり、実施例1も比較的良好であった。特にウェーハの反りはデバイス作製に影響するため、実施例2が特に好ましい。キャリア移動度もウェーハの反りおよびX線半値幅が影響するためか、実施例1および実施例2が比較的好ましい結果が得られた。 From the measurement results of the warpage of the wafer, the X-ray half width, and the dislocation density, Example 2 was the best, and Example 1 was also relatively good. In particular, Example 2 is particularly preferable because warpage of the wafer affects device fabrication. The carrier mobility was also affected by the warpage of the wafer and the X-ray half width, so that relatively preferable results were obtained in Example 1 and Example 2.

本発明の半導体積層構造は、電界効果トランジスタ(FET、HEMT)あるいは受発光素子等の半導体素子に用いられる。
The semiconductor multilayer structure of the present invention is used for a semiconductor element such as a field effect transistor (FET, HEMT) or a light emitting / receiving element.

Claims (15)

基板上にバッファ層、歪緩和層、デバイス層からなるAlGaN系半導体層あるいはInAlN系半導体層を順次設けた半導体積層構造であって、前記歪緩和層が組成傾斜層と超格子層からなり、組成傾斜層と超格子層の一方が他方からなる2層の中間に存在する半導体積層構造。 A semiconductor laminated structure in which an AlGaN-based semiconductor layer or an InAlN-based semiconductor layer comprising a buffer layer, a strain relaxation layer, and a device layer is sequentially provided on a substrate, wherein the strain relaxation layer comprises a composition gradient layer and a superlattice layer. A semiconductor laminated structure in which one of an inclined layer and a superlattice layer exists between two layers composed of the other. 前記超格子層が2層の組成傾斜層の中間に存在する請求項1に記載の半導体積層構造。 The semiconductor multilayer structure according to claim 1, wherein the superlattice layer exists in the middle of two composition gradient layers. 前記超格子層の平均組成が、基板に近い一方の組成傾斜層AlX1Ga1−X1Nの最終に形成される組成と他方の組成傾斜層AlX2Ga1−X2Nの最初に形成される組成と一致する、請求項2に記載の半導体積層構造。 The average composition of the superlattice layer is formed at the end of one composition gradient layer Al X1 Ga 1-X1 N close to the substrate and the first composition gradient layer Al X2 Ga 1-X2 N. The semiconductor multilayer structure according to claim 2, which matches the composition. 基板に近い一方の組成傾斜層AlX1Ga1−X1NのAl含有率X1が膜成長方向に1〜0.45、他方の組成傾斜層AlX2Ga1−X2NのAl含有率X2が膜成長方向に0.45〜0、超格子層の平均組成がAl0.45Ga0.55Nである、請求項3に記載の半導体積層構造。 The Al content X1 of one composition gradient layer Al X1 Ga 1 -X1 N close to the substrate is 1 to 0.45 in the film growth direction, and the Al content X2 of the other composition gradient layer Al X2 Ga 1 -X2 N is a film. The semiconductor multilayer structure according to claim 3, wherein 0.45 to 0 in the growth direction and the average composition of the superlattice layer is Al 0.45 Ga 0.55 N. 前記超格子層が2つあり、その平均組成がともに同じ組成であり、当該2つの超格子層に挟まれた組成傾斜層AlGa1−XNのXが前記超格子層の平均組成のAl含有率から0に変化する請求項1に記載の半導体積層構造。 There are two superlattice layers, both of which have the same average composition, and X of the composition graded layer Al X Ga 1-X N sandwiched between the two superlattice layers is the average composition of the superlattice layer The semiconductor multilayer structure according to claim 1, which changes from Al content to 0. 前記組成傾斜層AlGa1−XNのXが、膜成長方向に連続的に減少する、あるいは膜成長方向に膜厚10nm〜100nm毎に階段状に減少する前記請求項1〜5のいずれかに記載の半導体積層構造。 The X in the composition gradient layer Al X Ga 1-X N continuously decreases in the film growth direction, or decreases stepwise in the film growth direction every 10 nm to 100 nm in film thickness. A semiconductor laminated structure according to claim 1. 前記超格子層を構成する一方の組成がAlNであり、他方の組成がAlX3Ga1−X3Nであり、X3が0〜0.2である請求項1〜6のいずれかに記載の半導体積層構造。 7. The semiconductor according to claim 1, wherein one composition constituting the superlattice layer is AlN, the other composition is Al X3 Ga 1-X3 N, and X3 is 0 to 0.2. Laminated structure. 超格子を構成する一方の組成がAlNであり、他方の組成がAlX3Ga1−X3Nであり、X3が0〜0.2の場合、その膜厚比が1:2〜1:4である請求項7に記載の半導体積層構造。 When one composition constituting the superlattice is AlN, the other composition is Al X3 Ga 1-X3 N, and X3 is 0 to 0.2, the film thickness ratio is 1: 2 to 1: 4. The semiconductor laminated structure according to claim 7. 前記組成傾斜層の厚みが0.1〜1.0μm、前記超格子層の厚みが1.0〜5.0μmである請求項1〜8のいずれかに記載の半導体積層構造。 The semiconductor multilayer structure according to claim 1, wherein the composition gradient layer has a thickness of 0.1 to 1.0 μm, and the superlattice layer has a thickness of 1.0 to 5.0 μm. 前記デバイス層がチャネル層およびバリア層を含む、請求項1〜9のいずれかに記載の半導体積層構造。 The semiconductor multilayer structure according to claim 1, wherein the device layer includes a channel layer and a barrier layer. 前記チャネル層がi‐GaN、前記バリア層がi‐AlGa1−XN(0.1≦X≦0.3)あるいはi‐InAl1−XN(0.1≦X≦0.3)である、請求項10に記載の半導体積層構造。 The channel layer is i-GaN and the barrier layer is i-Al X Ga 1-X N (0.1 ≦ X ≦ 0.3) or i-In X Al 1-X N (0.1 ≦ X ≦ 0) The semiconductor multilayer structure according to claim 10, which is .3). 前記デバイス層が、第1の導電型半導体層、活性層、および第1の導電型と反対の第2の導電型半導体層を順次積層してなる受発光層である請求項1〜9のいずれかに記載の半導体積層構造。 10. The light emitting / receiving layer according to claim 1, wherein the device layer is a light emitting / receiving layer formed by sequentially laminating a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer opposite to the first conductive type. A semiconductor laminated structure according to claim 1. 前記基板がSi単結晶である請求項1〜12のいずれかに記載の半導体積層構造。 The semiconductor multilayer structure according to claim 1, wherein the substrate is a Si single crystal. 請求項10または11の半導体積層構造にソース電極、ゲート電極、およびドレイン電極を形成したHEMT素子。 A HEMT device in which a source electrode, a gate electrode, and a drain electrode are formed on the semiconductor multilayer structure according to claim 10. 請求項12の半導体積層構造にカソード電極およびアノード電極を形成した受発光素子。
A light emitting and receiving element comprising a cathode and an anode formed on the semiconductor multilayer structure according to claim 12.
JP2013156638A 2013-07-29 2013-07-29 Semiconductor laminated structure and semiconductor element using the same Active JP6265328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013156638A JP6265328B2 (en) 2013-07-29 2013-07-29 Semiconductor laminated structure and semiconductor element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013156638A JP6265328B2 (en) 2013-07-29 2013-07-29 Semiconductor laminated structure and semiconductor element using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017202448A Division JP6512669B2 (en) 2017-10-19 2017-10-19 Semiconductor laminated structure and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2015026770A true JP2015026770A (en) 2015-02-05
JP6265328B2 JP6265328B2 (en) 2018-01-24

Family

ID=52491185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013156638A Active JP6265328B2 (en) 2013-07-29 2013-07-29 Semiconductor laminated structure and semiconductor element using the same

Country Status (1)

Country Link
JP (1) JP6265328B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159614A1 (en) * 2015-03-31 2016-10-06 Seoul Viosys Co., Ltd. Uv light emitting device
JP2018067712A (en) * 2017-10-19 2018-04-26 国立大学法人 名古屋工業大学 Semiconductor laminate structure and semiconductor element using the same
CN109155241A (en) * 2016-04-05 2019-01-04 埃克斯甘公司 Semiconductor structure bodies comprising III-N material
WO2020111789A3 (en) * 2018-11-30 2020-07-16 한국산업기술대학교산학협력단 Method for manufacturing aluminum nitride-based transistor
JP2020136595A (en) * 2019-02-25 2020-08-31 日本電信電話株式会社 Semiconductor device
CN113725296A (en) * 2017-02-22 2021-11-30 晶元光电股份有限公司 Nitride semiconductor epitaxial stacked structure and power element thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003110197A (en) * 2001-09-28 2003-04-11 Toshiba Corp Nitride semiconductor light emission device, nitride semiconductor device and method for manufacturing the same
JP2008072029A (en) * 2006-09-15 2008-03-27 Sumitomo Chemical Co Ltd Manufacturing method of semiconductor epitaxial crystal substrate
JP2010225703A (en) * 2009-03-19 2010-10-07 Sanken Electric Co Ltd Semiconductor wafer, semiconductor element and method of manufacturing the same
WO2011136051A1 (en) * 2010-04-28 2011-11-03 日本碍子株式会社 Epitaxial substrate and method for producing epitaxial substrate
JP2011243644A (en) * 2010-05-14 2011-12-01 Sumitomo Electric Ind Ltd Group iii nitride semiconductor electronic device, and method of manufacturing group iii nitride semiconductor electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003110197A (en) * 2001-09-28 2003-04-11 Toshiba Corp Nitride semiconductor light emission device, nitride semiconductor device and method for manufacturing the same
JP2008072029A (en) * 2006-09-15 2008-03-27 Sumitomo Chemical Co Ltd Manufacturing method of semiconductor epitaxial crystal substrate
JP2010225703A (en) * 2009-03-19 2010-10-07 Sanken Electric Co Ltd Semiconductor wafer, semiconductor element and method of manufacturing the same
WO2011136051A1 (en) * 2010-04-28 2011-11-03 日本碍子株式会社 Epitaxial substrate and method for producing epitaxial substrate
JP2011243644A (en) * 2010-05-14 2011-12-01 Sumitomo Electric Ind Ltd Group iii nitride semiconductor electronic device, and method of manufacturing group iii nitride semiconductor electronic device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10374123B2 (en) 2015-03-31 2019-08-06 Seoul Viosys Co., Ltd. UV light emitting device
CN111129239B (en) * 2015-03-31 2024-04-02 首尔伟傲世有限公司 Ultraviolet light-emitting element
WO2016159614A1 (en) * 2015-03-31 2016-10-06 Seoul Viosys Co., Ltd. Uv light emitting device
CN111129239A (en) * 2015-03-31 2020-05-08 首尔伟傲世有限公司 Ultraviolet light emitting element
CN109155241B (en) * 2016-04-05 2023-08-25 埃克斯甘公司 Semiconductor structure comprising III-N material
JP2019516254A (en) * 2016-04-05 2019-06-13 エグザガン Semiconductor structure comprising III-N material
CN109155241A (en) * 2016-04-05 2019-01-04 埃克斯甘公司 Semiconductor structure bodies comprising III-N material
CN113725296A (en) * 2017-02-22 2021-11-30 晶元光电股份有限公司 Nitride semiconductor epitaxial stacked structure and power element thereof
CN113725296B (en) * 2017-02-22 2024-04-02 晶元光电股份有限公司 Nitride semiconductor epitaxial lamination structure and power element thereof
JP2018067712A (en) * 2017-10-19 2018-04-26 国立大学法人 名古屋工業大学 Semiconductor laminate structure and semiconductor element using the same
WO2020111789A3 (en) * 2018-11-30 2020-07-16 한국산업기술대학교산학협력단 Method for manufacturing aluminum nitride-based transistor
JP2020136595A (en) * 2019-02-25 2020-08-31 日本電信電話株式会社 Semiconductor device
JP7338166B2 (en) 2019-02-25 2023-09-05 日本電信電話株式会社 semiconductor equipment

Also Published As

Publication number Publication date
JP6265328B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
JP4592742B2 (en) Semiconductor material, method for manufacturing semiconductor material, and semiconductor element
JP6638033B2 (en) Semiconductor substrate and method of manufacturing semiconductor substrate
US8680509B2 (en) Nitride semiconductor device and method of producing the same
JP5309451B2 (en) Semiconductor wafer, semiconductor device, and manufacturing method
JP5309452B2 (en) Semiconductor wafer, semiconductor device, and manufacturing method
JP6265328B2 (en) Semiconductor laminated structure and semiconductor element using the same
US8928000B2 (en) Nitride semiconductor wafer including different lattice constants
JP6512669B2 (en) Semiconductor laminated structure and semiconductor device using the same
US9202873B2 (en) Semiconductor wafer for semiconductor device having a multilayer
US8969891B2 (en) Nitride semiconductor device, nitride semiconductor wafer and method for manufacturing nitride semiconductor layer
WO2011024754A1 (en) Group iii nitride laminated semiconductor wafer and group iii nitride semiconductor device
JP4883931B2 (en) Manufacturing method of semiconductor laminated substrate
US9401402B2 (en) Nitride semiconductor device and nitride semiconductor substrate
JP2014022685A (en) Semiconductor laminate structure and semiconductor element using the same
US8994032B2 (en) III-N material grown on ErAIN buffer on Si substrate
EP2525417A2 (en) Nitride semiconductor device, nitride semiconductor wafer and method for manufacturing nitride semiconductor layer
JP6226627B2 (en) Group III nitride semiconductor epitaxial substrate and manufacturing method thereof
JP5824814B2 (en) Semiconductor wafer, semiconductor element, and manufacturing method thereof
JP2014003056A (en) Semiconductor laminate structure and semiconductor element using the same
KR101972045B1 (en) Heterostructure semiconductor device
JP6205497B2 (en) Manufacturing method of nitride semiconductor
JP2014192246A (en) Semiconductor substrate and semiconductor element using the same
KR101850537B1 (en) Semiconductor device
JP6654409B2 (en) Substrate for group III nitride semiconductor device and method of manufacturing the same
KR20120128088A (en) Nitride semiconductor device, nitride semiconductor wafer and method for manufacturing nitride semiconductor layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171212

R150 Certificate of patent or registration of utility model

Ref document number: 6265328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250