JP2015023276A - 光学的に透明な窓枠及び外部くさびを有する原子センサ物理パッケージ - Google Patents

光学的に透明な窓枠及び外部くさびを有する原子センサ物理パッケージ Download PDF

Info

Publication number
JP2015023276A
JP2015023276A JP2014104876A JP2014104876A JP2015023276A JP 2015023276 A JP2015023276 A JP 2015023276A JP 2014104876 A JP2014104876 A JP 2014104876A JP 2014104876 A JP2014104876 A JP 2014104876A JP 2015023276 A JP2015023276 A JP 2015023276A
Authority
JP
Japan
Prior art keywords
light
vacuum chamber
light source
mirror
window frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2014104876A
Other languages
English (en)
Other versions
JP2015023276A5 (ja
Inventor
クリスティナ・マリー・ショーバー
Marie Schober Christina
ジェームズ・エイ・ヴェセーラ
A Vescera James
ジェニファー・エス・ストラブリー
Jennifer S Strabley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of JP2015023276A publication Critical patent/JP2015023276A/ja
Publication of JP2015023276A5 publication Critical patent/JP2015023276A5/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/045Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/142Multiple part housings
    • G01L19/144Multiple part housings with dismountable parts, e.g. for maintenance purposes or for ensuring sterile conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Semiconductor Lasers (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

【課題】高性能で小型の原子物理パッケージを提供する。【解決手段】物理パッケージ100は、真空チャンバを囲む光学的に透明な材料の複数の窓枠102と、1又は複数の窓枠の外面に取り付けられた1又は複数のくさび118と、を備える。物理パッケージは、1又は複数のくさびに取り付けられた、少なくとも1つの光源110、光センサ116、又は、ミラー112、を備え、前記光源は真空チャンバへの入力光ビームを生成するようになっており、光センサは真空チャンバからの出力光ビームを検出するようになっており、ミラーは真空チャンバからの光ビームを真空チャンバへ戻すように反射するようになっており、くさびは、光源、光センサ、又は、ミラーにそれぞれ対応する光ビームが、対応する窓枠に対して鋭角に窓枠を伝送するように、光源、光センサ、又は、ミラーを方向づける。【選択図】図1B

Description

[0001]本発明は、DARPAによって認められたW31P4Q−09−C−0348の政府支援によってなされた。
[0002]冷原子雲をセンサ素子として利用する原子クロック及び他のセンサを含む原子センサの、サイズ及び実装を縮小するために努力がなされてきた。これを実現するために、原子センサの物理パッケージのサイズ縮小に努力が向けられてきた。物理パッケージの一例は、超高真空を維持するために機械加工されシールされたガラスブロックである。ある態様では、ガラスブロックは、その外側の複数の面と、光パスを捉え、冷却し、冷原子サンプルを操作する、複数の角度が付けられた穴と、を備える。ミラーと窓は、物理パッケージをシールするために、光パス穴の外側の開口を覆って取り付けられる。キャビティ排気構造(例えば、真空ポンプポート)は、物理パッケージの初期真空排気を行う手段として取り付けられる。サンプルリザーバ(例えば、アルカリ材料のためのリザーバ)は、センサで用いられる原子を供給するために取り付けられる。サンプルリザーバは、真空プロセスの後に、バックグラウンドの蒸気を解放するために、破壊される又は活性化される。バックグラウンドの蒸気に含まれる原子は、光ビームによって冷却され、一般的に磁気光学トラップ(MOT)と呼ばれる態様で磁界によって、又は磁界なしに光学モラセスによって捕捉される。バックグラウンド蒸気からの原子を冷却する際に、MOTで補足された原子の数は、物理パッケージ内で使用される光学ビームのサイズの4次パワーに調整する。基本的な制限では、原子センサの信号対ノイズは、センサの信号対ノイズ及び光学ビームサイズを基本的に調整するために、補足された原子の平方根として調整する。大きい光ビームを許容し、複数ビーム構成の柔軟性を追加した、小容量の物理パッケージを開発することは、高性能で小型の原子物理パッケージを開発することと同じである。複数ビームMOT構成は柔軟性があり、ピラミッドトラップのようなシングルビーム構成は柔軟性がない。柔軟性は、例えば、正確な状態準備のために光学ポンピングが求められる原子センサ又は原子クロック、干渉性の原子操作又は原子”ビームスプリッタ”のための光学パルス、又は、光ビームを選択的なシャッタを介した光学散乱の減少、を考慮するために、必要である。
[0003]一実施形態は、原子センサの物理パッケージに向けられる。物理パッケージは、真空チャンバを取り囲む光学的に透明材料の複数の窓枠と、1又は複数の前記窓枠の外面に取り付けられた1又は複数のくさびと、を備える。物理パッケージは、前記1又は複数のくさびに取り付けられた少なくとも1つの光源、光センサ、又は、ミラーであって、前記光源は、前記真空チャンバへの入力光ビームを生成するようになっており、前記光センサは、前記真空チャンバからの出力光ビームを検出するようになっており、前記ミラーは、前記真空チャンバからの光ビームを前記真空チャンバへ戻すように反射するようになっている、少なくとも1つの光源、光センサ、又は、ミラー、を備え、前記くさびは、前記光源、前記光センサ、又は、前記ミラーにそれぞれ対応する光ビームが、対応する窓枠に対して鋭角に前記窓枠を伝送するように、前記光源、前記光センサ、又は、前記ミラーを方向づける。
[0004]図面は、単に実施形態を説明するためだけに使用され、発明の範囲を制限するものではないと理解され、実施形態は図面を用いて詳細に説明される。
[0005]図1Aは、原子センサ装置の物理パッケージの実施形態の斜視図である。 [0006]図1Bは、図1Aの原子センサ装置の物理パッケージの実施形態の分解図である。 [0007]図2は、原子センサ装置の物理パッケージの他の実施形態の斜視図である。 [0008]図3は、原子センサ装置の物理パッケージのさらに他の実施形態の斜視図である。 [0009]図4は、図1A〜図3のいずれかの原子センサ装置の物理パッケージの形成方法の実施形態のフローチャートである。
[0010]共通の慣習にしたがって、実施形態に関する様々な構成は、特徴構成を強調して描くために、実際の角度又はスケールでは描かれていない。
[0011]上述のガラスブロックのサイズをさらに小さくすると、ガラスは、ブロックを通る複数のビーム穴を形成するために、脆くなり、その結果、ガラスブロックに穴を形成する際に、壊れ、破砕され、及び/又は、欠けることになる。蒸気からレーザ冷却原子を使用するセンサにおいて、この問題は、大きな光ビームに適応するために出来るだけ大きなサイズの穴を形成するという要望によって大きくなる。
[0012]ここで記載される主題は、光学的に透明な材料(例えば、ガラス)の窓枠を簡潔な形状に配置した物理パッケージと、窓枠の外面に取り付けられた、1又は複数の光源、光センサ、及び/又は、ミラー、を提供することによって、これらの問題を解決することができる。プリズムは、光ビームを所望の方向に向けるために、いくつかの、又は、全部の光源、光センサ、及び/又はミラー、及びそれぞれの窓枠、の間に配置され、物理的に接着することができる。光源、光センサ、ミラー、及び/又は、プリズムは、組み立て後の調整を可能とするために、真空チャンバを組み立てた後に取り付けられ得る。したがって、プリズムは、窓枠に入射する光パス及び窓枠から出射する光パスを、窓枠に対して鋭角に方向付けることができる。これらの特性により、真空チャンバはとても強固な形状に組み立てられる一方、大きな光ビーム及び大きな真空チャンバを許容し、さらに、物理パッケージは、性能を損なうおそれがなく、操作に柔軟性があり、小さいサイズを実現することができる。
[0013]図1Aは、原子センサ装置の物理パッケージ100の実施形態の斜視図であり、図1Bは、原子センサ装置の物理パッケージ100の実施形態の分解立体図である。図示のとおり、物理パッケージ100は、真空チャンバを取り囲む光学的に透明材料の複数の窓枠102を備える。この実施形態では、複数の窓枠102は、矩形直方体、特に、立方体を形成するために配置される。複数の窓枠102は、真空チャンバを規定する密封シールされた容器を形成するために相互に固定取り付けされる。他の実施形態では、複数の窓枠102は、ピラミッド状など他の形状の内部に配置される。
[0014]複数の窓枠102の各窓枠102は、平らな内面及び外面を有する平坦構造である。複数の窓枠102は、相互に直接結合することによって、及び/又は、図1Bに示すようにフレーム104に対して結合することによって、相互に固定取り付けされる。複数の窓枠012は、溶融法又はゾルゲル法を用いて、相互に、又は、フレームに、結合される。
[0015]クロックの場合、原子エネルギーレベルは、外部オシレータの周波数出力と原子の内部エネルギーレベルとを比較して統制するために、光又はマイクロ波領域によって分光的に調べられる。物理パッケージ100は、調べられた原子を含む真空シールチャンバを規定する。実施形態では、原子は、ラジウム(例えば、Rb−87)又はセシウムのようなアルカリ金属原子であり、真空シールチャンバは、ゲッタ剤を有する又は有さない受動真空である。ここで記載される物理パッケージ100は、異なる角度から物理パッケージ100の内部の同じ領域で交差する複数の光パス106,107,108を可能にする。
[0016]原子(例えば、原子雲)は、物理パッケージ100の内部で遅くなり冷却され、ビームの好転を集める。レーザからの光ビームは、原子雲を交差するために、複数の光パス106,107,108に沿って伝搬する。これらの光ビームは、原子を冷却するのに用いられる光ビームを含むことができ、センサ動作に依存し、原子を調べる又はさらに操作するために用いられる光ビームを含むことができる。
[0017]図1A及び図1Bに示された実施形態では、3つの光波106,107,108のそれぞれは、独立した光源110によって生成される。本例のような1つの実施形態では、各光源110は、異なる窓枠102に取り付けられ、各光源110は、それぞれの窓枠を介して垂直に光ビームを向けるようになっている。各光ビームは、3つの交差する光パス106,107,108の1つに対応する。各光ビームは、それぞれの光源110から伝搬され、それぞれの窓枠102を介して送られ、それぞれの光パス106,107,108を通る。各光ビームは、対応する光源110が取り付けられた窓枠102の反対側の窓枠102に入射され、光ビームは原子雲を通って対応する光源110へ向けて逆反射する。本例のような1つの実施形態では、窓枠102は、ガラスで構成され、外部逆反射ミラー112は、各光ビームを光源110へ戻すために、光源110の反対側の窓枠102に取り付けられる。入射光波は、光源110と第1透過窓枠102との間において外部4分の1波長板114によって環状に偏光される。追加の外部4分の1波長板114は、逆反射光ビームの偏光を回転するために、各逆反射ミラー112と対応する窓枠102との間に配置される。
[0018]他の実施形態の図2に示された物理パッケージ200において、窓枠102は、外部4分の1波長板114の必要を除去するために、サファイヤなどの自然複屈折部材で構成される。この実施形態では、窓枠102の厚みは、窓枠102を介した正確な偏光回転を提供するために、精密に制御される。さらに、この実施形態では、逆反射ミラー112は、光源110の反対側の窓枠102の反射コーティングによって形成されていてもよい。例えば、1または複数の窓枠102の内面は、真空チャンバ内部で光を反射することができるミラーを形成するために、反射フィルムで被覆されていてもよい。1つの実施形態では、窓枠102の全体の内面が反射フィルムで被覆されてもよい。他の実施形態では、光パスの内部又は隣接した箇所の光ビームを被覆し得る限られた領域の窓枠102の内面のみが反射フィルムで被覆されてもよい。反射フィルムは、単一層又は複数層の金属又は誘電体の積層コーティングであってもよい。サファイヤの窓枠102であること、及び、4分の1波長板114が不要であること、を除いて、物理パッケージ200は、図1A及び図1Bに示した物理パッケージ100と同様である。
[0019]上述の通り、光源110は、原子を冷却する及び/又は調べるための光ビームを生成するために、それぞれの窓枠102に取り付けられる。例の通り、光源110は、垂直キャビティ面発光レーザ(VCSEL)、分布フィードバックレーザ、又は、エッジ発光レーザ、のような半導体レーザを備えることができる。
[0020]いくつかの実施形態では、光源110は、光源110の周波数を絶対的に安定させるために、ラジウム又はセシウムなどのアルカリ金属を含む微細加工された蒸気セルを備え得る。アルカリ金属を含む蒸気セルは、光源110からアルカリ金属の所定の原子遷移への出力の周波数安定性のために用いられる。物理パッケージを含む原子センサは、原子センサの動作において、必要に応じて、原子をMOTに制限するための用いられる磁界を生成するために、ヘルムホルツコイル及びアンチヘルムホルツコイルのような複数の磁界コイルを備えることができる。
[0021]原子センサがマイクロ波原子クロックである実施形態では、マイクロ波クリスタルオシレータは、アルカリ金属の原子遷移クロックにおいてマイクロ波信号を生成するのに使用することができる。アンテナ又は同様の構成(例えば導波管)は、物理パッケージ100のアルカリ金属原子の分光法を実行するために、マイクロ波信号をローカルオシレータから伝達するのに用いられる。
[0022]真空チャンバの外部に配置され1又は複数の窓枠102に取り付けられた、1又は複数の光源110、光センサ116、及び/又はミラー112、は、それぞれの窓枠を介して鋭角に伝送される光を入力し、検出し、反射する。図1A、図1B、図2に示した実施形態では、光センサ116は、それぞれの窓枠102を介して鋭角に伝送される光を検出するようになっている。光センサ116は、原子センサの使用目的に応じて、蛍光検出、又は、吸収検出をできるようになっている。鋭角の光ビームを正確に検出するために、光センサ116は、窓枠102に結合されたくさび118に結合されている。くさび118は、プリズムのように光学的に透明で固い構造であり、光はこの構造を介して伝搬する。くさび118は、中空構造であってもよく、光は、くさびの中空中央を介して伝搬する。くさび118は、窓枠102に取り付けた後に機械的に取り付け調整を行うことによって光センサ116の角度を調整できるように、機械的に調整可能になっている。機械的な取り付け調整は、くさびを窓枠、光センサ116又は他の部品(例えば、光源110、ミラー112)に取り付けた後にそれぞれの取り付け角度を調整可能にする。
[0023]物理パッケージ100は、1又は複数の窓枠102に取り付けられた、サンプルリザーバ120及び真空チャンバ排気構造122を備える。サンプルリザーバ120及び真空チャンバ排気構造122は、1又は複数の窓枠102のそれぞれの開口124上に取り付けられる。サンプルリザーバ120及び真空チャンバ排気構造122は、溶融法又はゾルゲル法を用いて1又は複数の窓枠102に取り付けられ得る。サンプルリザーバ120は、物理パッケージ100内における調査用に真空チャンバ内へ原子を解放するために用いられるアルカリサンプルを保持し得る。実施形態において、例えばリザーバ120がアルカリサンプルを解放するために破壊された場合に破壊されたガラスの大きいかたまりを除去するために、ろ過網は、サンプルリザーバ120が取り付けられる窓枠102の開口124と交差して配置される。真空チャンバ排気構造122は、真空チャンバへ連通する開口を有する中空構造である。真空チャンバ排気構造122は、真空チャンバを超高真空状態にするための初期排気を行うために用いられる。真空チャンバの排気の後、真空チャンバ排気構造122は、真空チャンバをシールするために閉じられ得る。実施形態では、真空チャンバ排気構造122は、真空チャンバ排気構造122をピンチングする(つまむ)ことによって閉じられ得る。真空チャンバ排気構造122及びサンプルリザーバ120は、物理パッケージ100の放電洗浄、及び、ポンプダウンとベークダウンの強化、のためのプラズマを形成する電極を備える。
[0024]1又は複数の窓枠102の一部分又は全部は、光ビームの不要な反射を抑止するために反射防止膜が被覆されている。反射防止膜は、窓枠102の内面及び/又は外面に被膜される。実施形態では、窓枠102の内面及び/又は外面の全体が反射防止膜で被膜される。他の実施形態では、真空チャンバの内部及び/又は外部へ光ビームを伝送する窓枠102の一部分126にのみ反射防止膜が被膜され得る。
[0025]ある実施形態では、窓枠102の内面の第1部分は反射膜が被膜され、窓枠102の内面の第2部分は反射防止膜が被膜され得る。第1部分は、光パスが入射して真空チャンバへ反射させる窓枠102の一部分に対応する。すなわち、反射膜は、ミラーの機能を有する部分に被膜される。反射防止膜は、ミラーの機能を有さず、及び/又は、光を真空チャンバの内部へ及び/又は外部へ伝送する、窓枠の一部分に被膜される。
[0026]ある実施形態では、偏光光学部が光源110、光センサ116、又は外部ミラー112の間に備えられてもよい。
[0027]ある実施形態では、各窓枠102は、ガラスセラミック(例えば、Zerodur(登録商標))などのガラス、光学ガラス(例えば、BK−7)、又は、サファイヤなどの他の透明材料、によって構成される。一般的には、窓枠102は、以下真空気密、水素又はヘリウムに対して非浸透性、真空チャンバへ導入された材料に対して非反応、透過性窓枠、対象物の波長の低損失、という特性を有するべきである。他の特性としては、アルゴンなどのような不活性ガスに対して低浸透性、溶融結合に対して適合性があること、などが含まれる。ある実施形態では、各窓枠102は、例えば、窓枠102の光学特性を変更しない非浸透性被膜を強化する浸透性材料(又は非浸透性材料)で構成されてもよい。
[0028]ある実施形態の物理パッケージ100は、いくつかのガス(例えば、水素)に部分的に圧力が加わるのを制限するために、シールされた真空チャンバ内部にゲッタ剤を備えることができる。例えば、スパッタリング又は焼結を利用して、反射又は透過に用いられない窓枠102の内面に組み立て前にゲッタ膜を適用することができる。適切な活性化温度を提供する材料を使用し、物理パッケージ100の外部からレーザ加熱することによって、ゲッタは、組み立てられた後に活性化される。個々の被膜、ゲッタ被膜、反射膜、浸透膜、防止膜、及び/又は、他の被膜は、個々の窓枠102に適用される。ここで示される実施形態では、ゲッタリザーバ128は、窓枠102の1つに取り付けられる。ゲッタリザーバ128は、窓枠102の所定の開口124に取り付けられる。ゲッタリザーバ128は、溶融法又はゾルゲル法を用いて窓枠102に取り付けられる。ゲッタリザーバ128は、バリウムなどの物理的なゲッタをゲッタ皿に保持する。ゲッタ皿は、スナップリングとともに円筒ガラスチャンバの内部に保持される。ゲッタリザーバ128は、真空チャンバに連通する開口を提供する中空構造である。
[0029]図1Bに示されたある実施形態では、1又は複数の窓枠102は、フレーム104に取り付けられる。フレーム104は、3次元構造で相互に延伸する複数の細い支持部材を含む剛構造である。フレーム104は、真空チャンバの全体又は一部を取り囲み、真空チャンバを形成するために、真空チャンバの物理的な外装(例えば、1又は複数の窓枠102)を適所に保持し得る。フレーム104は、1又は複数の窓枠102のために構造的な枠組みを提供し得る。すなわち、フレーム104は、他の部品(例えば、1又は複数の窓枠102)が取り付けられる構造として働き、かつ、部品が取り付けられた際の物理的な結び付きを規定することができる。
[0030]図3は、他の実施形態の物理パッケージ300の斜視図である。物理パッケージ300は、図1の物理パッケージ100と同様の部品を備え、これらの同様の部品は同じ符号が付される。物理パッケージ300は、2つの光源110のみを用いて3つの交差する光ビームを生成するようになっている。これを行うには、1つの光源110からの光ビームは、複数(2つ)の光パス107,108に沿って物理パッケージの周りを反射する。第3光パス106は、図1Aに関して説明されたのと同様に第2光源110からの光ビームとともに生成される。光源110からの光ビームを物理パッケージに周りで反射するために、折り畳みミラー302、及び/又は、再帰反射ミラー112は、それらが搭載される窓枠102に対して斜めに搭載される。
[0031]第1窓枠102に対して斜めに向いた光源110からの光ビームを伝搬するために、くさび118は、光源110と第1窓枠102との間に配置される。くさび118は、光源110及び第1窓枠102に合わせて角度を付けられた面を備える。光源110は、くさび118に取り付けられ、くさび118は、第1窓枠102の外面に取り付けられる。光源110は、したがって、プリズムを介して第1窓枠102に固定取り付けされる。
[0032]くさび118は、折り畳みミラー302及び/又は再帰反射ミラー112の間に、これらが斜めに窓枠102に搭載し得るように配置される。図1に記載したように、くさび118は、プリズム、中空くさび、又は、機械的に調整可能な台を備える。光源110、折り畳みミラー302、及び、再帰反射ミラー112、の角度を適切に選択することによって、光ビームは、所望の光パスに沿って向けられる(例えば、両方の光パス107,108を単一の光ビームにする)。折り畳みミラー302及び/又は再帰反射ミラー112は、くさび118に取り付けられ、くさび118は、それぞれ窓枠102に取り付けられる。
[0033]ミラー112,302は真空チャンバの外部に配置されているので、ミラー112,302によって反射された光ビームは、窓枠102を通って伝送され、ミラー112,302に入射される。ミラー112,302によって反射された後、光ビームは真空チャンバの方向へ向き、窓枠102の方向へ伝送され、真空チャンバへ入射する。真空チャンバの外部のミラー112,302を使用することによって、真空チャンバを形成するためにミラー112,302を窓枠102に固定取り付けした後にミラー112,302の位置合わせを行うことができる点が有利である。実施形態では、ミラー112,302は、窓枠102に直接取り付けられる。他の実施形態では、ミラー112,302は、くさび118、及び/又は、窓枠102に取り付けられる4分の1波長板114、に取り付けられ得る。くさび118は、窓枠102に対してミラー112,302の角度を適正にするために角度調整された面を備える。外部ミラー112,302の反射面は、光ビームを必要に応じて調整できるように平面又は曲面とすることができる。上述のように、窓枠102の内面の反射膜は、もし窓枠102がサファイヤなどのような複屈折材料で構成されている場合には、再帰反射ミラー112の代わりに使用することができる。
[0034]光源110、光センサ116、ミラー112,302、及び/又は、くさび118、は、溶融法又はゾルゲル法を用いてそれぞれの窓枠102に取り付けられ得る。仮に光源110、光センサ116、ミラー112,302、及び/又は、くさび118、が真空チャンバのための真空シールの材料でない場合には、光源110、光センサ116、ミラー112,302、及び/又は、くさび118、は、溶融法、ゾルゲル法、機械的手段、UVエポキシ、又は他の接着剤によって取り付けられる。光源110、光センサ116、又は、ミラー112,302、は、くさび118に対して、溶融法、ゾルゲル法、機械的手段、UVエポキシ、又は他の接着剤を用いて取り付けられ得る。
[0035]1又は複数の光源110、光センサ116、及び/又はミラー112,302は、くさび118の使用を介して、窓枠102に対して角度を付けて搭載されるので、窓枠102の形状は、それを伝搬する光パスによって制限され難い。特に、各窓枠102の向き及び配置は、各光パスが対応する窓枠102に対して垂直に真空チャンバに出入りするという要求によって制限されない。これに対して、光パスは、窓枠102に対して鋭角に真空チャンバに出入りすることができる。窓枠102によって形成される形状により柔軟性を持たせることができ、特に、使用される形状の強度が増し、製造がより簡単になる。実施形態では、真空チャンバは、6個又はより少ない窓枠102によって形成される。したがって、図1A、図2、及び、図3に示すような立方体のような形状を使用し得る。
[0036]外部ミラー112,302及び光源110の配置及び向きは、真空チャンバ内に所望の光パスを提供するようになっている。例えば、外部ミラー112,302及び光源110の配置及び向きは、物理パッケージ100の真空チャンバ内で交差する3つの光パス106,107,108を提供するようになっている。1つの実施形態では、3つの光パス106,107,108は、約90度の角度で交差するが、これは全ての実施形態で求められるものではない。図3の実施形態では、2つの光ビームは、3つの光パス106,107,108に沿って集団的に伝搬するようになっている。他の実施形態では、単一の光源110からの単一の入射光ビームは、3つの光パス106,107,108に沿って伝搬するために周囲に反射し得る。
[0037]図4は、原子センサ装置100,200,300のための物理パッケージ100を形成するための一例の方法400のフローチャートである。ある実施形態では、再帰反射膜、及び/又は、反射膜は、1又は複数の窓枠102の内面、及び/又は外面、に配置され得る(ブロック402)。再帰反射膜、及び/又は、反射膜、は、適当な薄膜堆積プロセスを用いて、1又は複数の窓枠102に配置され得る。再帰反射膜、及び/又は、反射膜、を面の所定の部分にのみ配置するために、再帰反射膜、及び/又は、反射膜、を堆積する前にマスクが配置され得る。第1マスクは、再帰反射膜、又は、反射膜、が堆積する部分を覆わない。第1マスクが配置されたら、再帰反射膜、又は、反射膜、は、窓枠面の第1マスクによって露出している部分に堆積される。その後マスクは取り除かれる。第1部分に反射膜が堆積され、他の部分に再帰反射膜が堆積される、面を実現する場合には、2ステップマスクプロセスが使用され得る。第1マスクが配置され、反射膜が堆積されるべき部分は第1マスクによって覆われない。反射膜は、窓枠面上の第1マスクによって露出している部分に堆積される。第1マスクは取り除かれる。次に、第2マスクが配置され、再帰反射膜が堆積されるべき部分は第2マスクによって覆われない。おそらく、第2マスクは、再帰反射膜が反射膜の上に堆積されないように、反射膜が堆積された部分を覆う。再帰反射膜は、窓枠面上の第2マスクによって露出している部分に堆積される。第2マスクは取り除かれる。2ステッププロセスは、再帰反射膜が最初に堆積され、反射膜が次に堆積される反対の順番で実行されてもよい。再帰反射膜及び/又は反射膜の配置位置は、上述のように、窓枠102の光ビームが通る又は反射する場所として選択可能である。ある実施形態では、窓枠102の内面に堆積される再帰反射膜及び/又は反射膜は、窓枠10を固定取り付けする前に堆積され(ブロック408)、窓枠102の外面に堆積される再帰反射膜及び/又は反射膜は、窓枠102を固定取り付けした後に堆積され得る。他の実施形態では、窓枠102の外面上の再帰反射膜及び/又は反射膜は、窓枠102を機械結合する前に窓枠102に堆積され得る。
[0038]1又は複数の開口124は、サンプルリザーバ120、真空チャンバ排気構造122、及び/又は、ゲッタリザーバ128のために、1又は複数の窓枠102に形成される(ブロック404)開口124は、窓枠102を固定取り付けする前又は固定取り付けした後に形成され得る。開口124は、カッティング又はエッチングなどの適切な方法を用いて形成され得る。
[0039]1又は複数の窓枠102は、機械加工又はエッチングによって所望の形状及び/又はサイズに形成される(ブロック406)。実施形態では、各窓枠102は、図1A、図1B、図2、図3に示すように、概略矩形形状に機械加工又はエッチングされる。他の実施形態では、他の形状を使用し得る。窓枠102は、光ビームの伝送における歪み及び散乱を抑制するために、表面あらさを研磨によって除去することができる。ここで記載される窓枠102の簡素な形状によって表面を容易に研磨することができる。
[0040]複数の窓枠102は、真空チャンバを形成するために共に固定取り付けされる(ブック408)。複数の窓枠102は、矩形直方体(例えば、立方体)などのような所望の形状を形成するために相互に固定取り付けされる。他の実施形態では、他の形状を用いることもできる。実施形態において、複数の窓枠102は、窓枠102を互いに直接結合することによって、共に固定取り付けすることができる。他の実施形態では、複数の窓枠102は、複数の窓枠102をフレーム104に結合することによって、共に固定取り付けすることができる。さらに他の実施形態では、複数の窓枠102は、他の窓枠102に結合された端部と、フレーム104に結合された他の端部と、を備え得る。溶融シール又はゾルゲル法などの適切な結合技術を用いることができる。窓枠102は、真空チャンバを強力に真空シールすることができる方法によって相互に固定取り付けされる。適切な窓枠102(例えば、再帰反射膜126、反射膜、及び/又は、開口124、を特定の場所に有する窓枠)は、所望の光パス及び真空チャンバ構成を得るために、適切な場所に配置され得る。
[0041]光源110、光センサ116、及び/又は、ミラー112,302は、くさび118とともに、1又は複数の窓枠102に取り付けられる(ブロック410)。光源110、光センサ116、及び/又は、ミラー112,302をくさび118とともに取り付けることは、光源110、光センサ116、及び/又は、ミラー112,302を、1又は複数の窓枠102に直接取り付けることを含む。光源110、光センサ116、及び/又は、ミラー112,302を、くさび118とともに1又は複数の窓枠102に取り付けることは、1又は複数のくさび118をそれぞれの光源110、光センサ116、及び/又は、ミラー112,302に取り付け、くさび118を1又は複数の窓枠102に取り付けることを含む。
[0042]光源110、光センサ116、及び/又は、ミラー112,302を、くさび118とともに取り付けることは、所望の角度及び/又は他の基準に基づいて、光源110、光センサ116、及び/又は、ミラー112,302をくさび118とともに調整する。この調整は、所望の光パスを得るために、1又は複数の窓枠102の外面に、適正な角度及び適正な配置位置で、光源110、光センサ116、及び/又は、ミラー112,302をくさび118とともに取り付けることを含む。光源110、光センサ116、及び/又は、ミラー112,302をくさび118とともに調整することは、所望の光パスを得るために、再帰反射膜又は反射膜を有する窓枠の一部分とともに調整することを含む。光源110、光センサ116、及び/又は、ミラー112,302は、くさび118とともに、溶融法、ゾルゲル法、機械的手段、UVエポキシ、又は、他の接着剤などの適切な結合技術を用いて取り付けられ得る。ある実施形態では、1又は複数の光源110、光センサ116、及び/又は、ミラー112,302は、溶融法、ゾルゲル法、機械的手段、UVエポキシ、又は、他の接着剤などを用いて、くさび118に取り付けられ得る。
[0043]サンプルリザーバ120、チャンバ排気構造122、及び/又は、ゲッタリザーバ128は、1又は複数の窓枠102のそれぞれの開口上に取り付けられ得る(ブロック412)。サンプルリザーバ120、チャンバ排気構造122、及び/又は、ゲッタリザーバ128は、溶融法又はゾルゲル法のような適切な結合技術を用いて、に取り付けられ得る。サンプルリザーバ120、チャンバ排気構造122、及び/又は、ゲッタリザーバ128は、真空チャンバを強力に真空シールすることができる方法によって取り付けられ得る。
[0044]例1の原子センサの物理パッケージは、真空チャンバを取り囲む光学的に透明材料の複数の窓枠と、1又は複数の前記窓枠の外面に取り付けられた1又は複数のくさびと、前記1又は複数のくさびに取り付けられた少なくとも1つの光源、光センサ、又は、ミラーであって、前記光源は、前記真空チャンバへの入力光ビームを生成するようになっており、前記光センサは、前記真空チャンバからの出力光ビームを検出するようになっており、前記ミラーは、前記真空チャンバからの光ビームを前記真空チャンバへ戻すように反射するようになっている、少なくとも1つの光源、光センサ、又は、ミラーと、を備え、前記くさびは、光源、光センサ、又は、ミラーのそれぞれに対応する光ビームが、対応する窓枠に対して窓枠を鋭角に伝送するように方向づけられるようになっている。
[0045]例2の物理パッケージは、例1の物理パッケージを備え、前記複数の窓枠は、6又はそれより少ない窓枠を含む。
[0046]例3の物理パッケージは、例2の物理パッケージを備え、前記複数の窓枠は、矩形の直方体形状に配置される。
[0047]例4の物理パッケージは、例1〜3のいずれか1つの物理パッケージを備え、1又は複数の窓枠は、窓枠の内面又は外面に再帰反射コーティングを備える。
[0048]例5の物理パッケージは、例1〜4のいずれか1つの物理パッケージを備え、1又は複数の窓枠は、窓枠の内面又は外面に反射コーティングを備える。
[0049]例6の物理パッケージは、例1〜5のいずれか1つの物理パッケージを備え、前記1又は複数のくさびは、プリズムを備える。
[0050]例7の物理パッケージは、例1〜5のいずれか1つの物理パッケージを備え、前記1又は複数のくさびは、中空のくさびを備え、対応する光ビームは前記中空のくさびの中空中央を通って伝搬するようになっている。
[0051]例8の物理パッケージは、例1〜5のいずれか1つの物理パッケージを備え、前記1又は複数のくさびは、機械的に調整可能な台を備え、前記機械的に調整可能な台が調整されたら、台に搭載された部品の角度が窓枠に対して変えられるようになっている。
[0052]例9の物理パッケージは、例1〜8のいずれか1つの物理パッケージを備え、前記複数の窓枠は、フレームに結合されるか、及び、相互に結合されるか、の少なくとも一方である。
[0053]例10の物理パッケージは、例1〜9のいずれか1つの物理パッケージを備え、前記複数の窓枠は、ガラス、ガラスセラミック、光学ガラス、又は、サファイヤ、によって構成される。
[0054]例11の物理パッケージは、例1〜10のいずれか1つの物理パッケージを備え、1又は複数の窓枠は、サンプルリザーバ、排気構造、又は、ゲッタリザーバ、の取り付けのための開口を備える。
[0055]例12の物理パッケージの形成方法は、真空チャンバを形成するために、光学的に透明な材料の複数の窓枠を共に固定取り付けするステップと、1又は複数のくさびを1又は複数の窓枠の外面に取り付けるステップと、少なくとも1つの光源、光センサ、又は、ミラー、を前記1又は複数のくさびに取り付けるステップであって、前記光源は、前記真空チャンバへの入力光ビームを生成するようになっており、前記光センサは、前記真空チャンバからの出力光ビームを検出するようになっており、前記ミラーは、前記真空チャンバからの光ビームを前記真空チャンバへ戻すように反射するようになっている、少なくとも1つの光源、光センサ、又は、ミラー、を前記1又は複数のくさびに取り付けるステップと、を備え、前記1又は複数のくさびの取り付けステップ、及び、前記少なくとも1つの光源、光センサ、又は、ミラー、の前記1又は複数のくさびへの取り付けステップ、は、1又は複数の光ビームが前記真空チャンバに入射し、前記真空チャンバ内で交差する3つの光パスを形成するために反射し、少なくとも1つの光パスが窓枠に対して鋭角に窓枠を伝送するように、前記1又は複数のくさび及び前記少なくとも1つの光源、光センサ、又は、ミラー、を調整することを備える。
[0056]例13の方法は、例12の方法を備え、前記複数の窓枠を共に固定取り付けすることは、前記複数の窓枠を矩形の直方体形状に形成することを含む。
[0057]例14の方法は、例12又は例13の方法を備え、前記複数の窓枠を共に固定取り付けすることは、窓枠をフレームに結合すること、及び、窓枠を相互に結合すること、の少なくとも一方を含む。
[0058]15の方法は、例12〜14のいずれか1つの方法を備え、前記複数の窓枠の少なくとも1つの、内面又は外面の少なくとも1つに、再帰反射膜を被覆するステップをさらに備える。
[0059]16の方法は、例12〜15のいずれか1つの方法を備え、前記1又は複数のくさびは、プリズムを備える。
[0060]17の方法は、例12〜15のいずれか1つの方法を備え、前記1又は複数のくさびは、中空のくさびを備え、対応する光ビームは、前記中空のくさびの中空中央を通って伝搬するようになっている。
[0061]例18の原子センサの物理パッケージは、矩形の直方体形状に配置されて真空チャンバを形成する光学的に透明な材料の複数の窓枠と、1又は複数の窓枠の外面に取り付けられた1又は複数のくさびと、前記1又は複数のくさびに取り付けられた、少なくとも1つの光源、光センサ、又は、ミラーであって、前記光源は、前記真空チャンバへの入力光ビームを生成するようになっており、前記光センサは、前記真空チャンバからの出力光ビームを検出するようになっており、前記ミラーは、前記真空チャンバからの光ビームを前記真空チャンバへ戻すように反射するようになっており、前記少なくとも1つの光源、光センサ、又は、ミラー、及び、1又は複数のプリズムは、1又は複数の光ビームが前記真空チャンバに入射し、前記真空チャンバ内で交差する3本の光パスを形成すために反射し、少なくとも1つの光パスが前記窓枠に対して鋭角に窓枠を伝送するように、配置されている、少なくとも1つの光源、光センサ、又は、ミラーと、前記複数の窓枠のうちの第1窓枠に形成された開口を覆って前記第1窓枠に取り付けられたゲッタリザーバと、前記複数の窓枠の端部に設けられ、前記真空チャンバを密封シールする溶融又はゾルゲルと、を備える。
[0062]例19の物理パッケージは、例18の物理パッケージを備え、前記1又は複数のくさびは、プリズムを備える。
[0063]例20の物理パッケージは、例18の物理パッケージを備え、前記1又は複数のくさびは、中空のくさびを備え、対応する光ビームは、前記中空のくさびの中空中央を通って伝搬するようになっている。

Claims (3)

  1. 原子センサの物理パッケージ(100,200,300)であって、
    真空チャンバを取り囲む光学的に透明材料の複数の窓枠(102)と、
    1又は複数の前記窓枠(102)の外面に取り付けられた1又は複数のくさび(118)と、
    前記1又は複数のくさび(118)に取り付けられた少なくとも1つの光源(110)、光センサ(116)、又は、ミラー(112)であって、前記光源(110)は、前記真空チャンバへの入力光ビームを生成するようになっており、前記光センサ(116)は、前記真空チャンバからの出力光ビームを検出するようになっており、前記ミラー(112)は、前記真空チャンバからの光ビームを前記真空チャンバへ戻すように反射するようになっている、少なくとも1つの光源(110)、光センサ(116)、又は、ミラー(112)と、を備え、
    前記くさび(118)は、前記光源(110)、前記光センサ(116)、又は、前記ミラー(112)にそれぞれ対応する光ビームが、対応する窓枠(102)に対して鋭角に前記窓枠(102)を伝送するように、前記光源(110)、前記光センサ(116)、又は、前記ミラー(112)を方向づけ、
    前記複数の窓枠(102)は、6又はそれより少ない窓枠(102)を含み、矩形の直方体形状に配置される、
    物理パッケージ。
  2. 請求項1の物理パッケージにおいて、
    前記1又は複数のくさび(118)は、プリズム及び中空のくさびを備え、対応する光ビームは前記中空のくさびの中空中央を通って伝搬するようになっている、
    物理パッケージ。
  3. 物理パッケージの形成方法(400)であって、
    真空チャンバを形成するために、光学的に透明な材料の複数の窓枠を共に固定取り付けするステップ(408)と、
    1又は複数のくさびを1又は複数の窓枠の外面に取り付けるステップ(410)と、
    少なくとも1つの光源、光センサ、又は、ミラー、を前記1又は複数のくさびに取り付けるステップ(410)であって、前記光源は、前記真空チャンバへの入力光ビームを生成するようになっており、前記光センサは、前記真空チャンバからの出力光ビームを検出するようになっており、前記ミラーは、前記真空チャンバからの光ビームを前記真空チャンバへ戻すように反射するようになっている、少なくとも1つの光源、光センサ、又は、ミラー、を前記1又は複数のくさびに取り付けるステップ(410)と、を備え、
    前記1又は複数のくさびの取り付けステップ(410)、及び、前記少なくとも1つの光源、光センサ、又は、ミラー、の前記1又は複数のくさびへの取り付けステップ、は、1又は複数の光ビームが前記真空チャンバに入射し、前記真空チャンバ内で交差する3つの光パスを形成するために反射し、少なくとも1つの光パスが窓枠に対して鋭角に窓枠を伝送するように、前記1又は複数のくさび及び前記少なくとも1つの光源、光センサ、又は、ミラー、を調整することを備える、
    物理パッケージの形成方法。
JP2014104876A 2013-07-22 2014-05-21 光学的に透明な窓枠及び外部くさびを有する原子センサ物理パッケージ Ceased JP2015023276A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/947,633 2013-07-22
US13/947,633 US9410885B2 (en) 2013-07-22 2013-07-22 Atomic sensor physics package having optically transparent panes and external wedges

Publications (2)

Publication Number Publication Date
JP2015023276A true JP2015023276A (ja) 2015-02-02
JP2015023276A5 JP2015023276A5 (ja) 2018-09-20

Family

ID=50678034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014104876A Ceased JP2015023276A (ja) 2013-07-22 2014-05-21 光学的に透明な窓枠及び外部くさびを有する原子センサ物理パッケージ

Country Status (4)

Country Link
US (1) US9410885B2 (ja)
EP (1) EP2829925B1 (ja)
JP (1) JP2015023276A (ja)
CN (1) CN104330590B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183706A (ja) * 2016-02-19 2017-10-05 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. 温度にわたって位置的に安定な磁気光学トラップのためのシステム及び方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9285249B2 (en) 2012-10-04 2016-03-15 Honeywell International Inc. Atomic sensor physics package with metal frame
FR3051042B1 (fr) * 2016-05-04 2019-08-30 Institut D'optique Installation optique sous vide et procede d'obtention d'une installation optique sous vide
WO2019060298A1 (en) 2017-09-19 2019-03-28 Neuroenhancement Lab, LLC METHOD AND APPARATUS FOR NEURO-ACTIVATION
FR3072791B1 (fr) 2017-10-23 2019-10-18 Thales Horloge atomique a pompage optique et procede de fabrication associe
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
GB2570441B (en) * 2017-12-21 2022-03-09 Teledyne Uk Ltd Vacuum chamber, parts therefor and method for manufacturing the same
US11318277B2 (en) 2017-12-31 2022-05-03 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
US10684591B1 (en) 2018-06-27 2020-06-16 The Government Of The United States Of America As Represent By The Secretary Of The Air Force Optical rubidium atomic frequency standard
CN108983591B (zh) * 2018-08-30 2020-04-03 中国科学院上海光学精密机械研究所 集激光冷却、选态和原子探测的微波腔
CA3112564A1 (en) 2018-09-14 2020-03-19 Neuroenhancement Lab, LLC System and method of improving sleep
US11467330B1 (en) 2018-10-23 2022-10-11 Government Of The United States As Represented By The Secretary Of The Air Force One beam mirror magneto-optical trap chamber
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
US11402241B2 (en) 2019-06-04 2022-08-02 Honeywell International Inc. Systems and methods for an integrated optical atomic sensor
DE102021203674A1 (de) * 2021-04-14 2022-10-20 Robert Bosch Gesellschaft mit beschränkter Haftung Dampfzelleneinrichtung für eine Sensorvorrichtung und Verfahren zum Herstellen einer Dampfzelleneinrichtung für eine Sensorvorrichtung
CN117091628B (zh) * 2023-10-18 2024-02-20 华中光电技术研究所(中国船舶集团有限公司第七一七研究所) 双磁光阱发散激光对准装调系统

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS479897Y1 (ja) * 1968-08-21 1972-04-13
JPS6127359U (ja) * 1984-07-24 1986-02-18 日本電気株式会社 ルビジウム原子発振器用ケ−ス
JPH01153939A (ja) * 1987-12-11 1989-06-16 Sumitomo Electric Ind Ltd レーザービーム偏向角測定装置の較正方法
JPH03101419A (ja) * 1989-09-14 1991-04-26 Nippon Telegr & Teleph Corp <Ntt> 光トラップ方式原子発振器
JPH05508969A (ja) * 1990-06-01 1993-12-09 リサーチ コーポレーション テクノロジー 光学的に冷却された原子の原子流を用いた改善型周波数原器
JPH06112551A (ja) * 1992-09-25 1994-04-22 Nippon Telegr & Teleph Corp <Ntt> 低速原子ビーム生成法およびその装置
JP2004058225A (ja) * 2002-07-30 2004-02-26 Inst Of Physical & Chemical Res クラスタおよび異元素内包クラスタの生成方法および生成装置
JP2005518066A (ja) * 2001-11-02 2005-06-16 ハネウェル・インターナショナル・インコーポレーテッド 後部照明用中空楔形状光ガイド
JP2010062554A (ja) * 2008-08-11 2010-03-18 Honeywell Internatl Inc 低温原子微小一次標準器
JP2010103483A (ja) * 2008-08-11 2010-05-06 Honeywell Internatl Inc 冷却原子一次周波数標準器のための物理パッケージ
JP2010109525A (ja) * 2008-10-29 2010-05-13 Epson Toyocom Corp 原子発振器の物理部
JP2011519053A (ja) * 2008-04-03 2011-06-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 制御可能な光角度選択器
WO2012090134A2 (en) * 2010-12-29 2012-07-05 Eni S.P.A. An absolute gravimetric measurement device by atomic interferometry for geophysical applications particularly for monitoring hydrocarbon reservoirs
JP2012529034A (ja) * 2009-06-04 2012-11-15 デパートメント オブ スペース,インディアン スペース リサーチ オーガニゼーション(アイエスアールオー) 光ファイバー式液体レベル検出器
US20130061655A1 (en) * 2011-09-13 2013-03-14 Honeywell International Inc. Systems and methods for gettering an atomic sensor

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144613A (ja) 1984-12-18 1986-07-02 Fujitsu Ltd 光学部品の固着方法
US4817112A (en) 1985-05-10 1989-03-28 Honeywell Inc. Low cost ring laser angular rate sensor
GB8807385D0 (en) 1988-03-29 1988-05-05 British Telecomm Semiconductor device assembly
US5010251A (en) * 1988-08-04 1991-04-23 Hughes Aircraft Company Radiation detector array using radiation sensitive bridges
DE3830149A1 (de) 1988-09-05 1990-03-15 Siemens Ag Optische linse zum hermetischen dichten verschliessen von gehaeusen
US4983844A (en) * 1989-10-17 1991-01-08 Thermo Electron Technologies Corp. Fast atomic line filter
US5528028A (en) 1990-06-01 1996-06-18 Chu; Steven Frequency standard using an atomic stream of optically cooled atoms
US5327105A (en) 1991-12-31 1994-07-05 Westinghouse Electric Corp. Gas cell for a miniaturized atomic frequency standard
WO1993022699A1 (en) * 1992-04-24 1993-11-11 Depth Enhancement Inc Three-dimensional visualization by altered multiple two-dimensional perspective imagery
US6303928B1 (en) 1998-12-21 2001-10-16 The Aerospace Corporation Continuous cold atom beam atomic system
US6215366B1 (en) 1999-05-05 2001-04-10 Kernco, Inc. Metallic cell for optically activated atomic frequency standards
US6406578B1 (en) 1999-10-19 2002-06-18 Honeywell Inc. Seal and method of making same for gas laser
US6837075B1 (en) 2000-10-27 2005-01-04 Bookham Technology, Plc. Glass fiber fixative and fixing process
US6570459B1 (en) 2001-10-29 2003-05-27 Northrop Grumman Corporation Physics package apparatus for an atomic clock
JP3689737B2 (ja) 2002-01-21 2005-08-31 国立大学法人 東京大学 微小距離投げ上げ式絶対重力計
US6900702B2 (en) 2002-08-14 2005-05-31 Honeywell International Inc. MEMS frequency standard for devices such as atomic clock
US20040040658A1 (en) * 2002-08-29 2004-03-04 Tatehito Usui Semiconductor fabricating apparatus and method and apparatus for determining state of semiconductor fabricating process
US7323941B1 (en) 2004-02-18 2008-01-29 Princeton University Method and system for operating a laser self-modulated at alkali-metal atom hyperfine frequency
FR2868558B1 (fr) 2004-03-30 2006-06-30 Centre Nat Rech Scient Cnrse Procede de generation d'un signal d'horloge atomique a piegeage coherent de population et horloge atomique correspondante
WO2006017345A2 (en) 2004-07-13 2006-02-16 The Charles Stark Draper Laboratory, Inc. Apparatus for suspending a chip-scale device and atomic clock system
US20060022761A1 (en) 2004-07-16 2006-02-02 Abeles Joseph H Chip-scale atomic clock (CSAC) and method for making same
KR20060104584A (ko) * 2005-03-31 2006-10-09 삼성에스디아이 주식회사 전자 방출 소자
US7666485B2 (en) 2005-06-06 2010-02-23 Cornell University Alkali metal-wax micropackets for alkali metal handling
US7379486B2 (en) 2005-07-22 2008-05-27 Honeywell International Inc. Technique for optically pumping alkali-metal atoms using CPT resonances
US7549866B2 (en) * 2005-12-15 2009-06-23 Kimberly-Clark Worldwide, Inc. Mannequin with more skin-like properties
JP4292583B2 (ja) 2005-12-21 2009-07-08 セイコーエプソン株式会社 原子周波数取得装置および原子時計
US7468637B2 (en) 2006-04-19 2008-12-23 Sarnoff Corporation Batch-fabricated, RF-interrogated, end transition, chip-scale atomic clock
US7619485B2 (en) 2007-01-31 2009-11-17 Teledyne Scientific & Imaging, Llc Compact optical assembly for chip-scale atomic clock
US7786808B2 (en) 2007-01-31 2010-08-31 Teledyne Scientific & Imaging, Llc Micro-structured optic apparatus
WO2009025893A2 (en) 2007-05-18 2009-02-26 The Regents Of The University Of Colorado, A Body Corporate Ultracold-matter systems
US7707891B2 (en) * 2008-06-27 2010-05-04 Inficon Gmbh Optical interferometric pressure sensor
US8071019B2 (en) 2008-10-31 2011-12-06 Honeywell International Inc. Methods for introduction of a reactive material into a vacuum chamber
US7884938B2 (en) * 2009-01-29 2011-02-08 Honeywell International Inc. Multiple beam wide band CRDS cavity sensor and detector
US8854146B2 (en) 2012-01-31 2014-10-07 Honeywell International Inc. Systems and methods for external frit mounted components
US9285249B2 (en) 2012-10-04 2016-03-15 Honeywell International Inc. Atomic sensor physics package with metal frame

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS479897Y1 (ja) * 1968-08-21 1972-04-13
JPS6127359U (ja) * 1984-07-24 1986-02-18 日本電気株式会社 ルビジウム原子発振器用ケ−ス
JPH01153939A (ja) * 1987-12-11 1989-06-16 Sumitomo Electric Ind Ltd レーザービーム偏向角測定装置の較正方法
JPH03101419A (ja) * 1989-09-14 1991-04-26 Nippon Telegr & Teleph Corp <Ntt> 光トラップ方式原子発振器
JPH05508969A (ja) * 1990-06-01 1993-12-09 リサーチ コーポレーション テクノロジー 光学的に冷却された原子の原子流を用いた改善型周波数原器
JPH06112551A (ja) * 1992-09-25 1994-04-22 Nippon Telegr & Teleph Corp <Ntt> 低速原子ビーム生成法およびその装置
JP2005518066A (ja) * 2001-11-02 2005-06-16 ハネウェル・インターナショナル・インコーポレーテッド 後部照明用中空楔形状光ガイド
JP2004058225A (ja) * 2002-07-30 2004-02-26 Inst Of Physical & Chemical Res クラスタおよび異元素内包クラスタの生成方法および生成装置
JP2011519053A (ja) * 2008-04-03 2011-06-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 制御可能な光角度選択器
JP2010062554A (ja) * 2008-08-11 2010-03-18 Honeywell Internatl Inc 低温原子微小一次標準器
JP2010103483A (ja) * 2008-08-11 2010-05-06 Honeywell Internatl Inc 冷却原子一次周波数標準器のための物理パッケージ
JP2010109525A (ja) * 2008-10-29 2010-05-13 Epson Toyocom Corp 原子発振器の物理部
JP2012529034A (ja) * 2009-06-04 2012-11-15 デパートメント オブ スペース,インディアン スペース リサーチ オーガニゼーション(アイエスアールオー) 光ファイバー式液体レベル検出器
WO2012090134A2 (en) * 2010-12-29 2012-07-05 Eni S.P.A. An absolute gravimetric measurement device by atomic interferometry for geophysical applications particularly for monitoring hydrocarbon reservoirs
US20130061655A1 (en) * 2011-09-13 2013-03-14 Honeywell International Inc. Systems and methods for gettering an atomic sensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KARL NELSON ET. AL.: "Cold Atom Mico Primary Standard (CAMPS)", PROCEEDINGS OF THE IEEE/ION POSITION LOCATION AND NAVIGATION SYMPOSIUM (PLANS), JPN6018016748, 2012, US, pages 1094 - 1098, ISSN: 0003793464 *
KEN SALIT ET. AL.: "Progress on the Cold Atom Micro Primary Standard (CAMPS)", FREQUENCY CONTROL SYMPOSIUM (FCS), 2012 IEEE INTENATIONAL, JPN6018016750, 19 July 2012 (2012-07-19), US, ISSN: 0003793465 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183706A (ja) * 2016-02-19 2017-10-05 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. 温度にわたって位置的に安定な磁気光学トラップのためのシステム及び方法
JP7011895B2 (ja) 2016-02-19 2022-02-10 ハネウェル・インターナショナル・インコーポレーテッド 温度にわたって位置的に安定な磁気光学トラップのためのシステム及び方法

Also Published As

Publication number Publication date
EP2829925B1 (en) 2018-07-18
CN104330590B (zh) 2019-01-08
US20150022816A1 (en) 2015-01-22
EP2829925A2 (en) 2015-01-28
CN104330590A (zh) 2015-02-04
EP2829925A3 (en) 2015-04-08
US9410885B2 (en) 2016-08-09

Similar Documents

Publication Publication Date Title
JP2015023276A (ja) 光学的に透明な窓枠及び外部くさびを有する原子センサ物理パッケージ
JP2015023276A5 (ja)
US9285249B2 (en) Atomic sensor physics package with metal frame
US7965147B2 (en) Physics package design for a cold atom primary frequency standard
US8526000B1 (en) Atomic sensor physics package with integrated transmissive and reflective portions along light paths
US20160010995A1 (en) Physical unit of chip-scale nmr gyroscope
TW201525626A (zh) 用於晶圓級原子鐘之系統及方法
CN112885496A (zh) 一种紧凑的二维磁光阱装置
US8829423B2 (en) Folded optics for batch fabricated atomic sensor
CN108027587B (zh) 用于原子传感器的激光束成形装置
CN107748368A (zh) 激光测距收发共光路的后向散射规避装置及方法
EP3211490B1 (en) Systems and methods for positionally stable magneto-optical trapping over temperature
CN109061889B (zh) 一种光学冷原子陷俘装置
FR2670622A1 (fr) Dispositif de montage de miroir dans un laser.
CN214541601U (zh) 一种紧凑的二维磁光阱装置
JPH1164902A (ja) 波長変換装置
Shah et al. A Miniature Cold Atom Frequency Standard
US11372134B2 (en) Peel-and-adhere photonic crystal
JP6232777B2 (ja) 原子発振器、電子機器、移動体、およびgpsモジュール
CN212011592U (zh) 紧凑啁啾脉冲压缩器
Haesler et al. Ceramic based flat form factor miniature atomic clock physics package (C-MAC)
JPWO2009001796A1 (ja) テラヘルツ帯デバイス用素子及びテラヘルツ帯デバイス用素子の製造方法
CN105024271A (zh) 一种光泵浦矢量光束固体激光器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180510

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20180806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190104

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20190524