JP2015020410A - Laminate and production method thereof - Google Patents

Laminate and production method thereof Download PDF

Info

Publication number
JP2015020410A
JP2015020410A JP2013152599A JP2013152599A JP2015020410A JP 2015020410 A JP2015020410 A JP 2015020410A JP 2013152599 A JP2013152599 A JP 2013152599A JP 2013152599 A JP2013152599 A JP 2013152599A JP 2015020410 A JP2015020410 A JP 2015020410A
Authority
JP
Japan
Prior art keywords
mold
convex
fine
substrate
curable composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013152599A
Other languages
Japanese (ja)
Inventor
山木 宏
Hiroshi Yamaki
宏 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2013152599A priority Critical patent/JP2015020410A/en
Publication of JP2015020410A publication Critical patent/JP2015020410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an imprint method for producing a laminate having substantially no residual film or a residual film of remarkably small thickness.SOLUTION: A production method of the laminate comprising a cured product and a base material comprises the steps of: packing a curable composition containing curable raw materials in the space between the base material and a die, which has a finely-rugged structure on the surface thereof and in which from at least a protrusion part of the finely-rugged structure, the curable raw materials can be sucked; and contacting the tip part of the protrusion part of the die with the surface of the base material since the curable raw materials are sucked from at least the protrusion part of the finely-rugged structure on the surface of the die and the volume of the curable composition in the recessed part of the die becomes smaller. The laminate produced by this method is characterized in that the finely-rugged structure is transferred to the surface of the base material and the thickness of the residual film in a portion corresponding to the protrusion part of the die, when the finely-rugged structure is transferred, is made equal to or thinner than the escape thickness of the Auger electron.

Description

本発明は、積層体及び積層体の製造方法に関する。より詳しくは、本発明は、実質的に残膜のないか又は著しく残膜厚みが薄い積層体を製造するためのインプリント方法及び該方法により製造された積層体に関する。   The present invention relates to a laminate and a method for producing the laminate. More specifically, the present invention relates to an imprint method for producing a laminate having substantially no residual film or a remarkably thin residual film, and a laminate produced by the method.

インプリント・リソグラフィは、微細なパタンを高い生産性で得るための手法として知られている。インプリント法では、転写用素材に型を押しつけることで凹凸パタンを転写するが、基材と型の間の転写用素材は、高い圧力で型を押しつけても厚みが薄くなるだけで型と基材を接触させることができないことから、転写物で最も膜厚が薄くなる凹部においても必ず薄い皮膜が存在する。このため、残膜と呼ばれるこの凹部の膜は後工程で取り除く必要があった。光硬化性樹脂とフォト・マスクを使用した光リソグラフィにおいては、残膜が生じないことから、この残膜の低減はインプリント・リソグラフィにおける長年の課題といえる。   Imprint lithography is known as a technique for obtaining fine patterns with high productivity. In the imprint method, the concave / convex pattern is transferred by pressing the mold against the transfer material, but the transfer material between the substrate and the mold is only thinned even if the mold is pressed with a high pressure. Since the material cannot be brought into contact, a thin film always exists even in the concave portion where the film thickness is the thinnest in the transferred material. For this reason, it is necessary to remove the film of the concave portion called a residual film in a subsequent process. In photolithography using a photo-curable resin and a photo mask, no residual film is formed, and thus reduction of the residual film is a long-standing problem in imprint lithography.

以下の特許文献1には、残膜を低減するインプリント法としては、型の凸部に遮光層を設けて光硬化性樹脂の硬化を阻害することで転写物の凹部を固化させずに後工程で除去する方法が開示されている。
また、以下の特許文献2には、解重合性ポリマを用いて型の凸部と接触する部分の樹脂を分解して除去する方法が開示されている。
さらに、以下の特許文献3には、ポリイミドの硬質な凸部とPDMSで構成される型を硬度の低い硬化性樹脂薄膜に押し付け硬化する方法が開示されている。
In Patent Document 1 below, as an imprint method for reducing the residual film, a light-shielding layer is provided on the convex portion of the mold to inhibit the curing of the photocurable resin, thereby preventing the concave portion of the transferred material from solidifying. A method of removing in a process is disclosed.
Further, Patent Document 2 below discloses a method of decomposing and removing a resin in a portion in contact with a convex portion of a mold using a depolymerizable polymer.
Further, Patent Document 3 below discloses a method of pressing and curing a mold composed of a hard convex portion of polyimide and PDMS on a curable resin thin film having low hardness.

特開2004−304097号公報JP 2004-304097 A 特開2007−220797号公報JP 2007-220797 A 特開2010−192702号公報JP 2010-192702 A

しかしながら、特許文献1に記載されるインプリント方法においては、微細な型に部分的な遮光性を設けることは、マスクを用いた従来の露光法に比べ型の作製が難しいという問題がある。また、特許文献2に記載されるインプリント方法におけるように解重合性ポリマを用いたとしても、微細な型の接触により分解部を選択的に加熱することは難しいなど、手法として実用化が困難である。また、特許文献3に記載されるインプリント方法におけるように、硬質の型を軟質の樹脂に大きな力で押し付けても、型の凸部先端と基材表面間の距離が数〜数十nmに近づくと、型と基材表面付近にファンデルワールス力で付着した樹脂などの相互作用により、樹脂の見かけ粘度が著しく上昇することから、実用的な方法では残膜となる部分の厚みをなくすことは非常に困難である。   However, in the imprint method described in Patent Document 1, there is a problem that providing a partial light-shielding property to a fine mold makes it difficult to produce a mold as compared with a conventional exposure method using a mask. Moreover, even if a depolymerizable polymer is used as in the imprint method described in Patent Document 2, it is difficult to put it into practical use as a method, such as it is difficult to selectively heat the decomposition part by contact with a fine mold. It is. In addition, as in the imprint method described in Patent Document 3, even if a hard mold is pressed against a soft resin with a large force, the distance between the convex tip of the mold and the substrate surface is several to several tens of nm. As you approach, the apparent viscosity of the resin increases significantly due to the interaction between the mold and the resin adhering to the vicinity of the substrate surface due to van der Waals force. Is very difficult.

このように、従来技術の残膜を低減するインプリント法にはいずれも、上記のように複雑な構造の型の作製が難しい、手法として実用的な実施が難しいなどの問題があった。
これらの従来技術の問題に鑑み、本発明が解決しようとする課題は、実質的に残膜のない又は著しく残膜厚みが薄い積層体を製造するためのインプリント方法及び該方法により製造された積層体を提供することである。
As described above, all of the imprint methods for reducing the remaining film of the prior art have problems that it is difficult to produce a mold having a complicated structure as described above, and that it is difficult to implement practically as a technique.
In view of these problems of the prior art, the problem to be solved by the present invention is an imprint method for producing a laminate having substantially no residual film or a remarkably thin residual film, and has been produced by the method. It is to provide a laminate.

本発明者らは、かかる課題を解決すべく、鋭意検討し実験を重ねた結果、残膜部分となる硬化性組成物を充填〜硬化工程中に除去する方法に着目し、硬化性組成物の組成と型を構成する素材を特定の組み合わせとすることで、型の凸部先端から硬化性組成物を吸収することで残膜厚みを著しく低減又はなくすことができることを見出し、本発明を完成するに至ったものである。
すなわち、本発明は以下のとおりのものである。
As a result of intensive studies and experiments to solve such problems, the present inventors focused on a method of removing the curable composition that becomes the remaining film portion during the filling to curing process, and By making the composition and the material constituting the mold into a specific combination, it is found that the residual film thickness can be remarkably reduced or eliminated by absorbing the curable composition from the tip of the convex portion of the mold, and the present invention is completed. Has been reached.
That is, the present invention is as follows.

[1]硬化物と基材との積層体の製造方法であって、以下の工程:
表面に微細凹凸形状を有し、型表面の微細凹凸構造の少なくとも凸部から硬化性原料を吸収することができる型と、基材との間の空間に、該硬化性原料を含む硬化性組成物を、充填する工程
を含み、該硬化性原料が、該型の表面の微細凹凸構造の少なくとも凸部から吸収されて、該型の凹部容積内の該硬化性組成物の容積が小さくなることで、該型の凸部頂部が該基材の表面に接触する、前記方法。
[1] A method for producing a laminate of a cured product and a substrate, the following steps:
A curable composition having a fine concavo-convex shape on the surface and containing the curable raw material in a space between the mold and the substrate capable of absorbing the curable raw material from at least the convex portion of the fine concavo-convex structure on the mold surface Including a step of filling the product, wherein the curable raw material is absorbed from at least the convex portions of the fine concavo-convex structure on the surface of the mold, and the volume of the curable composition in the concave volume of the mold is reduced. Wherein the top of the convex portion of the mold contacts the surface of the substrate.

[2]前記型の凸部頂部が前記基材の表面に接触したときに、該凸部頂部が該基材表面に沿って変形して該基材に密着する、前記[1]に記載の方法。   [2] The above-mentioned [1], wherein when the top of the convex portion of the mold comes into contact with the surface of the base material, the top of the convex portion deforms along the surface of the base material and adheres to the base material. Method.

[3]前記型の凸部先端付近の形状が、対向する基材表面に対して傾斜した面から構成される、前記[1]又は[2]に記載の方法。   [3] The method according to [1] or [2] above, wherein the shape near the tip of the convex portion of the mold is composed of a surface inclined with respect to the opposing substrate surface.

[4]前記型の凸部頂部がゴム状の素材で構成される、前記[1]〜[3]のいずれかに記載の方法。   [4] The method according to any one of [1] to [3], wherein the top of the convex portion of the mold is made of a rubber-like material.

[5]前記型の素材がシリコーンゴムである、前記[4]に記載の方法。   [5] The method according to [4], wherein the material of the mold is silicone rubber.

[6]前記硬化性原料が金属アルコキシドである、前記[1]〜[5]のいずれかに記載の方法。   [6] The method according to any one of [1] to [5], wherein the curable raw material is a metal alkoxide.

[7]前記金属アルコキシドの金属が珪素である、前記[6]に記載の方法。   [7] The method according to [6], wherein the metal of the metal alkoxide is silicon.

[8]前記[1]〜[7]のいずれかに記載の方法により製造された積層体。   [8] A laminate produced by the method according to any one of [1] to [7].

[9]基材表面に微細凹凸構造が転写された積層体であって、転写時に型の凸部に対応する部分の残膜厚みがオージェ電子の脱出厚み以下である積層体。   [9] A laminate in which a fine concavo-convex structure is transferred to the surface of a substrate, and the remaining film thickness of the portion corresponding to the convex portion of the mold at the time of transfer is not more than the escape thickness of Auger electrons.

[10]前記微細凹凸構造が無機物で構成される、前記[9]に記載の積層体。   [10] The laminate according to [9], wherein the fine uneven structure is made of an inorganic material.

[11]前記無機物が金属又は金属酸化物である、前記[10]に記載の積層体。   [11] The laminate according to [10], wherein the inorganic substance is a metal or a metal oxide.

[12]前記金属が珪素である、前記[11]に記載の積層体。   [12] The laminate according to [11], wherein the metal is silicon.

[13]前記微細凹凸構造がガラス質を含む、前記[9]〜[12]のいずれかに記載の積層体。   [13] The laminate according to any one of [9] to [12], wherein the fine uneven structure includes glass.

[14]前記微細凹凸構造が粒径10nm以下の無機微粒子を含む、前記[9]〜[13]のいずれかに記載の積層体。   [14] The laminate according to any one of [9] to [13], wherein the fine concavo-convex structure includes inorganic fine particles having a particle size of 10 nm or less.

[15]硬化物と基材との積層体の製造方法であって、以下の工程:
表面に微細凹凸形状を有し、型表面の微細凹凸構造の少なくとも凸部から微粒子分散媒を吸収することができる型と、基材との間の空間に、該微粒子分散媒と微粒子とを含む微粒子分散液を、充填する工程
を含み、該微粒子分散媒が、該型の表面の微細凹凸構造の少なくとも凸部から吸収されて、該型の凹部容積内の該硬化性組成物の容積が小さくなることで、該型の凸部頂部が該基材の表面に接触する、前記方法。
[15] A method for producing a laminate of a cured product and a substrate, the following steps:
The space between the substrate having a fine irregular shape on the surface and capable of absorbing the fine particle dispersion medium from at least the convex portion of the fine irregular structure on the mold surface and the fine particle dispersion medium and the fine particles are included. Including a step of filling the fine particle dispersion, wherein the fine particle dispersion medium is absorbed from at least the convex portions of the fine concavo-convex structure on the surface of the mold, and the volume of the curable composition in the concave volume of the mold is small. The method, wherein the top of the convex portion of the mold contacts the surface of the substrate.

本発明のインプリント方法によれば、残膜厚みを著しく低減し又は実質的に残膜をなくすことができる。   According to the imprint method of the present invention, the residual film thickness can be significantly reduced or the residual film can be substantially eliminated.

凸のレンズ形状が転写されたシリコーン樹脂型表面の顕微鏡写真。The photomicrograph of the silicone resin type surface where the convex lens shape was transferred. 凸のレンズ形状が転写されたシリコーン樹脂型表面の顕微鏡写真。The photomicrograph of the silicone resin type surface where the convex lens shape was transferred. 凹のレンズ形状が転写されたシリコーン樹脂型表面の顕微鏡写真。A photomicrograph of the surface of the silicone resin mold onto which the concave lens shape was transferred. 凹型を用いた場合、賦形された凸レンズ形状の凸部頂部が直径約7μmのレンズとして形成されているものの、凸部の下部はV字型の谷は形成されず基板の平面部となっていたことを示す構造体の顕微鏡写真。When the concave mold is used, the top of the convex part of the shaped convex lens is formed as a lens having a diameter of about 7 μm, but the lower part of the convex part is not formed with a V-shaped valley and is a flat part of the substrate. The micrograph of the structure which shows that. 比較例1において、凹型を用いた場合、賦形された凸レンズ形状の凸部頂部から凸部の下部のV字型の谷も完全に形成されており基板の平面部は確認できなかったことを示す構造体の顕微鏡写真。In Comparative Example 1, when a concave mold was used, the V-shaped valley at the bottom of the convex part was completely formed from the convex part top of the shaped convex lens, and the flat part of the substrate could not be confirmed. A photomicrograph of the structure shown.

以下、本発明の一実施の形態(以下、「実施の形態」と略記する。)について、詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
本実施の形態に係る製造方法は、表面に微細凹凸形状を有し、型表面の微細凹凸構造の少なくとも凸部から硬化性原料を吸収することができる型と、基材との間の空間に、該硬化性原料を含む硬化性組成物を、充填する工程を含む、硬化物と基材との積層体の製造方法であって、該硬化性原料が、該型の表面の微細凹凸構造の少なくとも凸部から吸収されて、該型の凹部容積内の該硬化性組成物の容積が小さくなることで、該型の凸部頂部が該基材の表面に接触する、前記方法である。
Hereinafter, an embodiment of the present invention (hereinafter abbreviated as “embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
The manufacturing method according to the present embodiment has a fine concavo-convex shape on the surface, and a space between the base and the mold that can absorb the curable raw material from at least the convex part of the fine concavo-convex structure on the mold surface. A method for producing a laminate of a cured product and a substrate, comprising a step of filling the curable composition containing the curable raw material, wherein the curable raw material has a fine concavo-convex structure on the surface of the mold. In this method, the top of the convex portion of the mold comes into contact with the surface of the substrate by being absorbed from at least the convex portion and reducing the volume of the curable composition in the concave volume of the mold.

[硬化性組成物]
本実施の形態に用いる硬化性組成物は、硬化性原料、例えば、金属アルコキシド、及び硬化触媒を含むもので、微粒子を含んでもよい。硬化物は、硬化性組成物が硬化して固体状になったものであり、硬化反応が完全に進行せず一部に有機官能基が残っていてもよい。硬化性組成物としてはポリシラザン及び硬化触媒を含むものであってもよい。所望の期間、硬化反応が顕著に進まず安定に存在できる程度であれば、硬化性組成物中に水を含んでもよい。
[Curable composition]
The curable composition used in the present embodiment includes a curable raw material such as a metal alkoxide and a curing catalyst, and may include fine particles. The cured product is obtained by curing the curable composition into a solid state, and the curing reaction may not proceed completely, and an organic functional group may remain in part. The curable composition may contain polysilazane and a curing catalyst. Water may be included in the curable composition as long as the curing reaction does not proceed significantly for a desired period and can exist stably.

[硬化性原料]
本実施の形態においては、硬化性原料は、硬化素材により硬化することができる材料である限り、特に限定されないが、例えば、金属アルコキシドを用いることができる。
[金属アルコキシド]
金属アルコキシドの金属としては、マグネシウム(Mg)、アルミニウム(Al)、亜鉛(Zn)、珪素(Si)、チタン(Ti)、バリウム(Ba)、ジルコニウム(Zr)などが挙げられ、とりわけ、珪素(Si)とアルミニウム(Al)は、比較的容易に無機素材を形成することができるため、好ましい。
金属アルコキシドは、一般式MR (ORn−mで表され、式中、Mは酸化数nの金属、mは0〜(n−1)の整数を表す。ORは、メトキシ基、エトキシ基、プロポキシ基のようなアルコキシ基、ヒドロキシ基、フェノキシ基、アセトキシ基などが挙げられ、Rとしては、フェニル基又はその誘導体、その他のアリール基、水素、メチル基、エチル基等のアルキル基、ビニル基のような付加反応性を持つ基、エポキシ基のような開環反応性を持つ基、アルコキシ基等が挙げられる。アルコキシ基の中では、メトキシ基、エトキシ基など鎖の短いもののほうが、反応性の高さや収縮量の低さ、また固化時に発生するアルコールの型素材への浸透、拡散性の点から好ましく、安定性を考慮しながら適宜選定することができ、例えば、珪素のアルコキシド(アルコシシシラン)としてテトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)は好適といえる。
珪素のアルコキシドの場合、シランカップリング剤として種々の特性基を持つものが知られており、これらを混合することにより、得られる表面に種々の特性を付与することができ、例えば、Rとしてフッ化アルキル基を導入することで撥水、防汚性などを付与できる。また、複数の金属アルコキシドを混合することは、反応性を高めるために好ましい。金属アルコキシドの2〜10量体程度の低縮合物も、粘度が許容できる場合は使用可能であり、硬化性組成物の固形分濃度を増すために有効である。
[Curing material]
In the present embodiment, the curable raw material is not particularly limited as long as it is a material that can be cured by a curing material. For example, a metal alkoxide can be used.
[Metal alkoxide]
Examples of the metal of the metal alkoxide include magnesium (Mg), aluminum (Al), zinc (Zn), silicon (Si), titanium (Ti), barium (Ba), zirconium (Zr) and the like. Si) and aluminum (Al) are preferable because inorganic materials can be formed relatively easily.
The metal alkoxide is represented by the general formula MR 2 m (OR 1 ) nm , where M is a metal having an oxidation number n and m is an integer of 0 to (n−1). OR 1 includes an alkoxy group such as a methoxy group, an ethoxy group, and a propoxy group, a hydroxy group, a phenoxy group, an acetoxy group, and the like, and R 2 includes a phenyl group or a derivative thereof, other aryl groups, hydrogen, methyl, and the like. Group, an alkyl group such as ethyl group, a group having addition reactivity such as vinyl group, a group having ring-opening reactivity such as epoxy group, and an alkoxy group. Among alkoxy groups, those with short chains, such as methoxy groups and ethoxy groups, are preferred and stable because of their high reactivity and low shrinkage, as well as the penetration of alcohol generated during solidification into the mold material and diffusibility. For example, tetramethoxysilane (TMOS) and tetraethoxysilane (TEOS) are preferable as the silicon alkoxide (alkoxysilane).
In the case of silicon alkoxides, those having various characteristic groups are known as silane coupling agents. By mixing these, various characteristics can be imparted to the resulting surface, for example, as R 2 By introducing a fluorinated alkyl group, water repellency and antifouling properties can be imparted. Moreover, mixing a plurality of metal alkoxides is preferable in order to increase the reactivity. A low condensate of about 2 to 10 mer of metal alkoxide can be used if the viscosity is acceptable, and is effective for increasing the solid content concentration of the curable composition.

[硬化素材]
本明細書中、「硬化素材」とは、前記した硬化性組成物又は硬化原料を硬化させる材料であり、硬化性原料が金属アルコキシドの場合には、水であることができる。
[Curing material]
In the present specification, the “curing material” is a material for curing the above-described curable composition or curing material. When the curable material is a metal alkoxide, it can be water.

[硬化触媒]
金属アルコキシドの硬化触媒としては、よく知られる塩酸、アンモニアなどの酸又は塩基の他、過塩素酸アンモニウム、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、酢酸ナトリウムに代表される過塩素酸塩、塩酸塩、硫酸塩、カルボン酸塩などの酸、金属塩、亜鉛、コバルト、スズ、チタン、アルミなどの有機金属化合物などが用いられる。なかでも、スズ又は有機スズのジカルボン酸エステルは硬化速度、硬化反応率ともに高く好ましい。具体的には、ビスネオデカン酸錫、ジオクチル錫ジアセテートなどが挙げられる。
硬化触媒としては前記各種の硬化触媒の一種又は二種以上を併用して用いてもよく、添加量は、硬化性原料に対して0.05〜5質量%であることが好ましい。
[Curing catalyst]
As a curing catalyst for metal alkoxide, in addition to the well-known acids or bases such as hydrochloric acid and ammonia, perchlorates, hydrochlorides, sulfates represented by ammonium perchlorate, ammonium chloride, ammonium sulfate, ammonium nitrate, sodium acetate Acids such as carboxylates, metal salts, and organometallic compounds such as zinc, cobalt, tin, titanium, and aluminum are used. Among these, tin or organotin dicarboxylic acid ester is preferable because of its high curing rate and curing reaction rate. Specific examples include tin bisneodecanoate and dioctyltin diacetate.
As the curing catalyst, one or two or more of the above various curing catalysts may be used in combination, and the addition amount is preferably 0.05 to 5% by mass with respect to the curable raw material.

[溶剤などの添加]
微粒子分散液に含まれる分散媒以外にも、被膜厚みや転写形状を調整するために、微粒子や硬化性組成物の濃度調整用として溶剤を加えることができる。溶剤の種類は、微粒子の分散に悪影響を与えず、硬化性組成物と相溶する、型に吸収されるなどの条件から選択される。微粒子の分散媒が使用できる場合は、同じ分散媒を使用すると微粒子の分散状態が安定になることが多く好ましい。
なお、硬化性組成物に含まれる水の量は、調合から保管、硬化性組成物の塗布や、型と基材との間に充填するまでの工程において、含有水による自己硬化が実質的に問題とならない量以下であることが必要である。
硬化性組成物は、基材表面に対する濡れ性が良いことが好ましく、硬化後に基材と強固に接着することが必要であり、濡れ性や接着性を改良するために界面活性剤や水を含まない溶剤を加えることもできる。
[Addition of solvents, etc.]
In addition to the dispersion medium contained in the fine particle dispersion, a solvent can be added for adjusting the concentration of the fine particles and the curable composition in order to adjust the film thickness and the transfer shape. The type of the solvent is selected from the conditions such as being compatible with the curable composition without being adversely affected by the dispersion of the fine particles and being absorbed into the mold. When a fine particle dispersion medium can be used, it is often preferable to use the same dispersion medium because the dispersion state of the fine particles becomes stable.
In addition, the amount of water contained in the curable composition is such that self-curing by the contained water is substantially in the process from preparation to storage, application of the curable composition, and filling between the mold and the substrate. It must be below the amount that does not matter.
The curable composition preferably has good wettability with respect to the substrate surface, and needs to be firmly adhered to the substrate after curing, and contains a surfactant and water to improve wettability and adhesion. It is also possible to add no solvent.

[微粒子]
本実施の形態に用いる微粒子は、粒子間距離が特定値以下になることで凝集する特性を持つことが好ましく、粒径が100nm以下の微粒子を使うことが好ましい。これは、粒径が100nm以下になると、溶媒に分散した場合でも溶媒分子の吸着による粒子間の反発作用が減少し、また、同じ粒子含有量でも粒子間距離が近くなり凝集しやすくなるためである。特に光学用途に用いる場合は、被膜の透明性が求められることが多く、粒径としては50nm以下が好ましく、より好ましくは30nm以下、さらに好ましくは10nm以下である。
微粒子の素材としては特に制限はなく、主に無機物の金属、金属酸化物などであり、金属としては金、白金、パラジウム、銀、銅、ニッケル、クロム、チタン及びこれらの合金などが挙げられ、金属酸化物としてはマグネシウム(Mg)、アルミニウム(Al)、亜鉛(Zn)、珪素(Si)、チタン(Ti)、バリウム(Ba)、ジルコニウム(Zr)、スズ(Sn)、タングステン(W)、イットリウム(Y)、インジウム(In)、銅(Cu)などの金属の酸化物及びこれらの混合物が挙げられる。微粒子は均質な構造だけでなく、2種以上の素材が濃度勾配をもって機能する構造や、粒子の安定性や保護のためにコーティングを有するものでも構わない。また、微粒子表面は金属アルコキシドとの結合を容易にするために、水酸基など金属アルコキシドと反応しやすい官能基を有することが好ましい。
[Fine particles]
The fine particles used in this embodiment preferably have the property of aggregating when the inter-particle distance becomes a specific value or less, and it is preferable to use fine particles having a particle size of 100 nm or less. This is because when the particle size is 100 nm or less, the repulsion between particles due to adsorption of solvent molecules is reduced even when dispersed in a solvent, and the distance between particles becomes close to each other and the particles tend to aggregate even with the same particle content. is there. In particular, when used for optical applications, transparency of the coating is often required, and the particle size is preferably 50 nm or less, more preferably 30 nm or less, and even more preferably 10 nm or less.
There are no particular restrictions on the material of the fine particles, mainly inorganic metals, metal oxides, etc., examples of metals include gold, platinum, palladium, silver, copper, nickel, chromium, titanium, and alloys thereof. Examples of metal oxides include magnesium (Mg), aluminum (Al), zinc (Zn), silicon (Si), titanium (Ti), barium (Ba), zirconium (Zr), tin (Sn), tungsten (W), Examples thereof include oxides of metals such as yttrium (Y), indium (In), copper (Cu), and mixtures thereof. The fine particles may not only have a homogeneous structure, but may have a structure in which two or more kinds of materials function with a concentration gradient, or may have a coating for the stability and protection of the particles. The surface of the fine particles preferably has a functional group that easily reacts with the metal alkoxide, such as a hydroxyl group, in order to facilitate bonding with the metal alkoxide.

[微粒子分散液]
微粒子分散液は、上記の微粒子を溶媒に分散したものであり、分散媒としては微粒子が安定に分散するものであればよく、水以外の溶媒としてはメタノール、エタノール、イソプロパノールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類のほか各種エステル類などが挙げられ、後述する型素材を溶解や分解せず、型素材に適当量吸収され型素材内を拡散・透過するものの中から適宜選択する。
微粒子の濃度としては、微粒子が安定して分散できる濃度の中から選択され、通常は粒子や分散媒の種類によるが、数〜60質量%程度である。
下記の硬化性組成物と混合して用いる場合は、基本的に水以外の分散媒を用いる。
[Fine particle dispersion]
The fine particle dispersion is obtained by dispersing the above fine particles in a solvent, and the dispersion medium may be any material in which the fine particles are stably dispersed. Examples of the solvent other than water include alcohols such as methanol, ethanol and isopropanol, acetone. In addition to ketones such as methyl ethyl ketone, various esters may be mentioned, and the material is appropriately selected from those which are absorbed in the mold material and diffused and permeated through the mold material without dissolving or decomposing the mold material described later.
The concentration of the fine particles is selected from concentrations at which the fine particles can be stably dispersed, and is usually about several to 60% by mass depending on the kind of the particles and the dispersion medium.
When mixed with the following curable composition, a dispersion medium other than water is basically used.

[型]
本実施の形態における型は、硬化性原料や、微粒子分散液中の無機微粒子を分散させるための溶媒(分散媒)を微粒子分散液から吸収して微粒子を凝集させる、あるいは同時に、型表面に接触した硬化性組成物に硬化素材を供給し、型表面から硬化性組成物を順次硬化させる機能を有する。このため、型は、硬化性原料及び分散媒を適度に吸収、透過する、もしくは同時に、適度な量の硬化素材を保有し及び/又は透過させる性質を有することが好ましい。
本発明においては、型の表面の微細凹凸構造の少なくとも凸部は、硬化性原料や微粒子分散媒を吸収できることが、残膜厚みを著しく低減し又は実質的になくすために必要である。
[Type]
The mold in the present embodiment absorbs a curable raw material and a solvent (dispersion medium) for dispersing inorganic fine particles in the fine particle dispersion from the fine particle dispersion to aggregate the fine particles, or simultaneously contacts the mold surface. The cured material is supplied to the cured composition and has a function of sequentially curing the curable composition from the mold surface. For this reason, it is preferable that a type | mold has a property which absorbs and permeate | transmits a sclerosing | hardenable raw material and a dispersion medium moderately, or hold | maintains and / or permeate | transmits an appropriate amount of hardening materials simultaneously.
In the present invention, at least the convex portions of the fine concavo-convex structure on the surface of the mold must be able to absorb the curable raw material and the fine particle dispersion medium in order to significantly reduce or substantially eliminate the residual film thickness.

型として、分散媒を吸収、透過するために必要となる溶媒の透過量は、数分〜数時間で微粒子を凝集させるために、通常1×10−3g・m−2・s−1以上が好ましく、大きい方が微粒子を早く凝集、固化できることから、より好ましくは5×10−3g・m−2・s−1以上である。同様に、型の硬化性原料に対する透過量も、大きいことが好ましいが、硬化性組成物が硬化するまでに型の凸部と基材間の硬化性原料が吸収できる程度であればよい。
また、硬化性組成物を硬化させるために型から供給する硬化素材の量としては、所望の時間内に離型できる程度に硬化できるものであればよく、硬化性組成物の硬化性、硬化時の温度や湿度などの環境条件、転写する微細形状、基材と硬化性組成物との接着性から適宜選定される。一般的な被膜の厚みと硬化時間から、硬化素材の透過量は、通常5×10−5g・m−2・s−1以上が好ましく、大きい方が早く固化できることから、より好ましくは1×10−4g・m−2・s−1以上である。硬化性組成物の厚みが薄い場合は、型の内部に含有する硬化素材だけで硬化性組成物を十分硬化できることもあり、型素材の硬化素材透過性だけでなく、型素材が硬化素材を保有できる量の観点から選択することもできる。
溶媒及び硬化素材の透過量は、型を形成する素材の透過性と型の厚みにより決まることから、型素材の透過性に応じて型の厚みを選ぶことで、種々の組み合わせが可能となる。
As a mold, the permeation amount of the solvent necessary for absorbing and permeating the dispersion medium is usually 1 × 10 −3 g · m −2 · s −1 or more in order to aggregate the fine particles in several minutes to several hours. It is more preferable that the larger particle size is 5 × 10 −3 g · m −2 · s −1 or more because fine particles can be aggregated and solidified faster. Similarly, the permeation amount of the mold with respect to the curable raw material is preferably large, but it is sufficient that the curable raw material between the convex portion of the mold and the substrate can be absorbed before the curable composition is cured.
Further, the amount of the curing material supplied from the mold for curing the curable composition may be anything that can be cured to such an extent that it can be released within a desired time. The temperature is selected appropriately from the environmental conditions such as temperature and humidity, the fine shape to be transferred, and the adhesion between the substrate and the curable composition. From the thickness of a general film and the curing time, the amount of permeation of the cured material is usually preferably 5 × 10 −5 g · m −2 · s −1 or more, and more preferably 1 × because it can be solidified faster. 10 −4 g · m −2 · s −1 or more. When the thickness of the curable composition is thin, the curable composition may be sufficiently cured using only the curable material contained in the mold, and not only the curable material permeability of the mold material but also the mold material possesses the curable material. It can also be selected in terms of the amount that can be achieved.
Since the permeation amounts of the solvent and the curing material are determined by the permeability of the material forming the mold and the thickness of the mold, various combinations are possible by selecting the thickness of the mold according to the permeability of the mold material.

硬化性原料に金属アルコキシドを使用した場合、金属アルコキシドの縮合により生成するアルコールを含む溶媒により溶解や分解しないことが必要で、分子構造として適度な架橋点を持つことが好ましい。具体的には、PDMS(シリコーンゴム)やポリウレタン樹脂が挙げられ、耐薬品性が高いだけでなく、溶媒を吸収、透過しやすく、透湿性も大きいことから、硬化に適した素材といえる。但し、素材の種類によっては硬化物と接着しやすく離型が難しい場合もあり、表面改質が必要となることもある。   When a metal alkoxide is used as the curable raw material, it must be dissolved or not decomposed by a solvent containing an alcohol generated by condensation of the metal alkoxide, and preferably has an appropriate crosslinking point as a molecular structure. Specific examples include PDMS (silicone rubber) and polyurethane resin, which not only have high chemical resistance, but also easily absorb and permeate solvents and have high moisture permeability. However, depending on the type of material, it may be easily adhered to the cured product and may be difficult to release, and surface modification may be required.

また、硬化素材としての水を供給する型素材としては、一般的には親水性の素材が挙げられ、親水性の素材としては、TAC(トリアセチルセルロース)などのセルロースを原料とするアセチルセルロース系素材、ナイロン6、ナイロン66などのポリアミド系素材、PMMAやアクリル系紫外線硬化樹脂などのアクリル系樹脂、ポリウレタン樹脂、エチレン酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、ポリビニルアルコールなどがある。また、ポリエステル(PET)も使用しうる場合がある。
具体的には、これらの素材の中から、溶媒や水に対する耐性、透過性や厚みに基づく作業性を考慮して、材質と厚みを選定する。
In addition, as a mold material for supplying water as a curing material, a hydrophilic material is generally mentioned, and as a hydrophilic material, an acetylcellulose-based material using cellulose such as TAC (triacetylcellulose) as a raw material. Materials include polyamide materials such as nylon 6 and nylon 66, acrylic resins such as PMMA and acrylic UV curable resins, polyurethane resins, ethylene vinyl acetate copolymers, ethylene-vinyl alcohol copolymers, and polyvinyl alcohol. Polyester (PET) may also be used.
Specifically, the material and thickness are selected from these materials in consideration of resistance to solvents and water, workability based on permeability and thickness.

型表面は微細凹凸構造を有し、型表面に微細凹凸構造を付与する方法としては、金属やガラス、シリコン、樹脂などの基板表面に微細凹凸構造を予め形成し、その微細凹凸構造の上にガラス転移温度や融点以上に加熱した型素材を押し付け加圧下で冷却する熱転写法、微細凹凸構造の上に型素材の溶液を塗り溶剤を除去することで転写する方法、微細凹凸構造の上に紫外線硬化樹脂、熱硬化性樹脂などの反応性樹脂を塗り紫外線や熱で樹脂を反応硬化させて転写する方法などが挙げられる。この中で、反応性樹脂を用いる方法は、連続処理が容易で、シリンダ状の型を用いて、長尺のフィルム素材の上に連続的に微細凹凸構造を転写でき、長尺で連続した型を作製することができる点で好ましい。型表面の微細凹凸構造は、硬化性組成物中の分散媒を型で吸収することにより生じる寸法変化を予め考慮して作製することが好ましい。   The mold surface has a fine concavo-convex structure. As a method for imparting a fine concavo-convex structure to the mold surface, a fine concavo-convex structure is previously formed on a substrate surface of metal, glass, silicon, resin, etc., and the fine concavo-convex structure is formed on the fine concavo-convex structure. Thermal transfer method in which mold material heated above glass transition temperature and melting point is pressed and cooled under pressure, method of transferring mold material solution on fine concavo-convex structure and removing solvent, ultraviolet light on fine concavo-convex structure Examples thereof include a method in which a reactive resin such as a curable resin or a thermosetting resin is applied and the resin is reacted and cured by ultraviolet rays or heat and transferred. Among these, the method using a reactive resin is easy to continuously process, and can use a cylindrical mold to continuously transfer a fine concavo-convex structure on a long film material. Is preferable in that it can be manufactured. The fine concavo-convex structure on the mold surface is preferably prepared in consideration of the dimensional change caused by absorbing the dispersion medium in the curable composition with the mold.

型の表面には必要に応じ、表面の溶媒や水の供給が著しく阻害されない程度に、フッ素やシリコーン系の離型処理をしてもよく、素材自体に離型成分を含ませてもよい。
型の凸部と基材との間の硬化性組成物を効率的に排除し、型の凹部に硬化性組成物を選択的に集めるために、型の凸部の形状は、基材と接触する際に徐々に接触面積が増すように基材に対して傾斜していることが好ましい。すなわち、型の凸部先端付近の形状は、対向する基材表面に対して傾斜した面から構成されることが好ましい。微細凹凸構造の型の凸部側面を傾斜させるには、金属やガラス、シリコン、樹脂などの基板表面に微細凹凸構造を付与する際に側面に予め傾斜を形成する方法以外にも、微細凹凸構造を付与した後にアルゴンプラズマ粒子を衝突させて型基材を削る方法や酸素プラズマでアッシングするなどの方法を採用することができる。
If necessary, the surface of the mold may be subjected to a fluorine or silicone mold release treatment to such an extent that the supply of solvent or water on the surface is not significantly hindered, or a mold release component may be included in the material itself.
In order to efficiently eliminate the curable composition between the convex part of the mold and the substrate and selectively collect the curable composition in the concave part of the mold, the shape of the convex part of the mold is in contact with the substrate. It is preferable to incline with respect to a base material so that a contact area may increase gradually. That is, the shape in the vicinity of the tip of the convex portion of the mold is preferably composed of a surface inclined with respect to the opposing substrate surface. In order to incline the convex side surface of a mold having a fine concavo-convex structure, in addition to the method of forming an incline on the side surface in advance when a fine concavo-convex structure is provided on the substrate surface of metal, glass, silicon, resin, etc., the fine concavo-convex structure It is possible to employ a method of scraping the mold base material by impinging argon plasma particles after applying ashing or a method of ashing with oxygen plasma.

[硬化・賦形工程]
賦形工程では、硬化性組成物(以下、転写液体ともいう。)を、上記の型と基材の間に充填し、転写液体を賦形しながら硬化性組成物を硬化させる。本実施の形態では、転写液体の凝集、収縮に基づく賦形形状の転写精度低下を低減するために、型表面の少なくとも凸部から硬化性原料や微粒子の分散媒を吸収し、硬化性組成物を順次硬化させることが重要である。これは、微粒子分散液の凝集や硬化性組成物の硬化に伴う体積収縮分を、基板面側の未凝集や未硬化の転写液体より供給しながら、転写すべき型の微細形状部分を最初に硬化することで、転写形状の精度を高めるためである。この凝集、硬化順序を実現する意味からは、基材としては水を吸収しにくいガラスやポリエチレンテレフタレート(PET)、環状オレフィンポリマ(COP)、ポリスチレン(PS)などの素材が好ましいが、転写する形状や要求される形状精度に応じ、適宜、素材を選択することができる。
[Curing and shaping process]
In the shaping step, a curable composition (hereinafter also referred to as transfer liquid) is filled between the mold and the substrate, and the curable composition is cured while shaping the transfer liquid. In the present embodiment, in order to reduce transfer accuracy deterioration of the shaped shape based on aggregation and shrinkage of the transfer liquid, the curable raw material and the fine particle dispersion medium are absorbed from at least the convex portion of the mold surface, and the curable composition is obtained. It is important to cure the layers sequentially. This is because the volume shrinkage due to the aggregation of the fine particle dispersion and the curing of the curable composition is supplied from the unaggregated or uncured transfer liquid on the substrate surface side, while the fine shape portion of the mold to be transferred is first This is because the accuracy of the transfer shape is increased by curing. From the viewpoint of realizing this aggregation and curing order, the base material is preferably glass, polyethylene terephthalate (PET), cyclic olefin polymer (COP), polystyrene (PS), or the like that hardly absorbs water. The material can be appropriately selected according to the required shape accuracy.

転写液体を、微細凹凸構造を有する型と基材の間に充填する方法としては、微細凹凸構造を有する型、基材、又は両方に転写液体を塗り、間に空気が入らないように合わせる方法や、微細凹凸構造を有する型又は基材の端部に転写液体を置き、端部からゴムローラなどで順次加圧することで、転写液体を、微細形状を有する型と基材の間に充填する方法などが挙げられる。この時、微細凹凸構造を有する型と基材の間に挟まれる転写液体の量としては、微細凹凸構造が転写でき凝集や硬化時の収縮を補える程度の最少量とすることが好ましく、量が多すぎると硬化後の皮膜全体の収縮量が大きくなりクラックを生じやすくなる。また、硬化性組成物を、微細凹凸構造を有する型の表面から順次に硬化させるためには、充填工程の雰囲気は乾燥雰囲気、具体的には露点−20℃以下の乾燥雰囲気であることが好ましく、露点−30℃以下の乾燥雰囲気であることがより好ましく、露点−40℃以下の乾燥雰囲気であることがさらに好ましい。   As a method of filling the transfer liquid between the mold having the fine concavo-convex structure and the base material, the transfer liquid is applied to the mold having the fine concavo-convex structure, the base material, or both so that air does not enter between them. Or a method of filling the transfer liquid between the mold having a fine shape and the substrate by placing the transfer liquid on the end of the mold or substrate having a fine concavo-convex structure and sequentially pressing from the end with a rubber roller or the like. Etc. At this time, it is preferable that the amount of the transfer liquid sandwiched between the mold having the fine concavo-convex structure and the substrate is a minimum amount that can transfer the fine concavo-convex structure and compensate for shrinkage during aggregation and curing. If the amount is too large, the amount of shrinkage of the entire film after curing increases and cracks are likely to occur. Further, in order to sequentially cure the curable composition from the surface of the mold having a fine concavo-convex structure, the atmosphere in the filling step is preferably a dry atmosphere, specifically a dry atmosphere having a dew point of −20 ° C. or less. More preferably, the drying atmosphere has a dew point of −30 ° C. or lower, and still more preferably the drying atmosphere has a dew point of −40 ° C. or lower.

転写液体の溶媒含有量及び充填量は、最終的に型表面から転写液体中の溶媒や硬化性原料が吸収され、型の凹部容積内の硬化性組成物の容積が小さくなることで、型の凸部が基材と接触する量であることが必要である。ここで、型の凹部容積とは、微細凹凸構造を有する型が基材と接触を開始するときの該型と該基材との間の空間の容積を意味する。型の凸部が基材と接触するためには、具体的には、転写液体中の溶媒量により調整することが可能で、溶媒量を増すと型表面から吸収される液体量が増し、型の凸部が基材と接触しやすくなる。また、転写液体を型と基材の間に充填する際の転写液体量を制御することも再現性を高めるために好ましい。   The solvent content and filling amount of the transfer liquid are such that the solvent and the curable raw material in the transfer liquid are finally absorbed from the mold surface, and the volume of the curable composition in the recess volume of the mold is reduced. It is necessary that the amount of protrusions is in contact with the substrate. Here, the concave portion volume of the mold means a volume of a space between the mold and the base material when the mold having the fine concavo-convex structure starts to contact the base material. In order for the convex part of the mold to come into contact with the base material, specifically, it can be adjusted by the amount of the solvent in the transfer liquid. When the amount of the solvent is increased, the amount of liquid absorbed from the mold surface increases. It becomes easy to contact the convex part of the substrate. It is also preferable to control the amount of transfer liquid when the transfer liquid is filled between the mold and the substrate in order to improve reproducibility.

転写液体を、微細凹凸構造を有する型と基材の間に充填した後に、室温で放置してもよいが、40〜80℃程度に加熱すると、凝集や硬化反応が促進されることから、離型までの時間を短縮することができる。離型の時期は、離型後に硬化性組成物が形を保持できること、基材と凝集物や硬化物の接着力が離型力以上であること、離型力が十分に小さいことを満たす条件から、適宜、選択する。また、転写液体を充填後の初期は、型が分散媒により膨潤して寸法が大きくなり離型力が大きくなることから、分散媒が型表面から型内に拡散して、型が収縮したのちに離型することが好ましい。   The transfer liquid may be allowed to stand at room temperature after being filled between the mold having the fine concavo-convex structure and the base material. However, heating to about 40 to 80 ° C. promotes aggregation and curing reaction. The time to mold can be shortened. The time of mold release is a condition that satisfies the condition that the curable composition can retain its shape after mold release, that the adhesive force between the substrate and the agglomerate or cured product is greater than or equal to the mold release force, and that the mold release force is sufficiently small To select as appropriate. Also, in the initial stage after filling with the transfer liquid, the mold swells with the dispersion medium, increasing its size and increasing the release force. Therefore, after the dispersion medium diffuses from the mold surface into the mold, the mold shrinks. It is preferable to release the mold.

硬化性組成物を使用する場合は、型(以下、型フィルムともいう。)を使用時まで剥がさずに保護フィルムとして兼用することもできる。
賦形は、型を剥離できる程度にまで硬化性組成物を硬化した後、型を剥離し、空気中など外部雰囲気の水分により硬化性組成物を十分に硬化させることが、型を再使用するまでの時間を短縮し、硬化性組成物の硬化条件を選択するために好ましい。硬化性組成物の硬化においては、基材に悪影響のない範囲で、十分な水分、温度を与え、雰囲気を撹拌することが好ましく、場合によってはスチームを吹き付けることもできる。
尚、硬化性組成物中に硬化性原料を含まない微粒子分散液だけでも、微粒子の凝集性により微細凹凸構造を賦形することも可能である。この場合、型の表面の微細凹凸構造の少なくとも凸部は、微粒子分散媒を吸収できることが、残膜厚みを著しく低減し又は実質的になくすために必要である。また、型の剥離後に微粒子を強固に結合するために焼結をすることが好ましい。
When using the curable composition, the mold (hereinafter, also referred to as a mold film) can be used as a protective film without being peeled off until use.
For shaping, after the curable composition is cured to such an extent that the mold can be peeled off, the mold is peeled off and the curable composition is sufficiently cured by moisture in an external atmosphere such as in the air. This is preferable in order to shorten the time until the selection and the curing conditions of the curable composition. In the curing of the curable composition, it is preferable to give sufficient moisture and temperature within a range that does not adversely affect the substrate and to stir the atmosphere, and in some cases, steam can be sprayed.
In addition, it is also possible to shape a fine concavo-convex structure only by a fine particle dispersion containing no curable raw material in the curable composition due to agglomeration of fine particles. In this case, at least the convex portions of the fine concavo-convex structure on the surface of the mold must be able to absorb the fine particle dispersion medium in order to significantly reduce or substantially eliminate the residual film thickness. In addition, it is preferable to perform sintering in order to firmly bond the fine particles after peeling of the mold.

基材が曲面形状である場合、円筒側面のように型フィルムが追従できる場合は、上記の方法で平面と同様に賦形が可能であるが、球面状のように平面状フィルムが追従できない曲面の場合は、型フィルムを熱成形などで基材曲面に合わせて予め成形する方法や、伸縮性のある素材で型フィルムを構成し、型フィルムを引っ張ることで基材曲面に沿わせる方法などで賦形をすることができる。
また、PDMSのように柔軟な型を用いることにより、複数回の賦形により種々の形状を重ね合わせて賦形することも可能であり、例えば、ミクロンサイズの形状の上にサブミクロンサイズの形状を賦形することや、サブミクロンサイズの形状の上にミクロンサイズの形状を賦形することもできる。
When the substrate has a curved shape, if the mold film can follow the cylindrical side, it can be shaped in the same way as a flat surface using the above method, but the curved surface cannot be followed by a flat film, such as a spherical shape. In this case, the mold film is pre-molded by thermoforming to match the curved surface of the substrate, or the mold film is made of a stretchable material, and the mold film is pulled along the curved surface of the substrate. It can be shaped.
In addition, by using a flexible mold such as PDMS, it is possible to superimpose various shapes by a plurality of shaping, for example, a submicron size shape on a micron size shape. Or a micron-sized shape can be formed on a submicron-sized shape.

[硬化物の表面形状]
本実施の形態では、転写される微細形状又は凹凸構造は、転写方法に起因する寸法の制限は特にないが、型形状の再現性、転写に要する時間などから、平均ピッチ10nm〜0.1mm以下で高さ/ピッチ比が0.1〜5の形状が好ましく、規則性の有無によらない。微細形状又は凹凸構造は断面の形状が矩形、台形、サイン波などで構成され、基本的には型が抜ける形状であることが好ましいが、PDMSなど柔軟な型を使用する場合は、型や転写物が破壊しない程度の変形で抜けるアンダーカット形状を含んでいてもよい。
具体的な微細形状又は凹凸構造は所望の用途に応じて適宜選択することができる。例えば、ワイヤグリッド偏光板基材用途には、ピッチ100〜150nm、高さが80〜150nm程度、ライン幅がピッチの0.1〜0.4倍のラインアンドスペース構造、反射防止用途には、モスアイ構造と呼ばれるピッチ100〜300nm程度で高さ/ピッチ比が0.8〜1.5程度の円錐〜円錐台形状が密に並んだ構造、LED、OLEDの光取出し用途には、ピッチ0.8〜2μm、高さ/ピッチ比が0.8〜1.5程度の円錐台形状が密に並んだ構造、熱光発電用の赤外線エミッタ用途には、開口幅と深さが放出赤外線の波長の約1/2の穴が密に並んだ構造、光の拡散や集光の用途には、ピッチ1〜20μm、高さ/ピッチ比が0.2〜2程度のレンズ、プリズムなどの各種凹凸構造、細菌、細胞や微生物の付着・繁殖性制御用途には、ピッチ0.1〜20μm、高さ/ピッチ比が0.2〜2程度の円柱、円錐台やラインアンドスペースなどの各種凹凸構造が挙げられる。
[Surface shape of cured product]
In the present embodiment, the fine shape or the concavo-convex structure to be transferred is not particularly limited in size due to the transfer method, but the average pitch is 10 nm to 0.1 mm or less from the reproducibility of the mold shape and the time required for transfer. And a shape having a height / pitch ratio of 0.1 to 5 is preferable, and does not depend on the presence or absence of regularity. The fine shape or the concavo-convex structure is preferably a shape in which the shape of the cross section is made of a rectangle, trapezoid, sine wave, etc., and basically a shape that can be removed from the mold, but when using a flexible mold such as PDMS, the mold or transfer It may include an undercut shape that can be removed by deformation that does not destroy the object.
A specific fine shape or concavo-convex structure can be appropriately selected according to a desired application. For example, for a wire grid polarizer base material application, a pitch of 100 to 150 nm, a height of about 80 to 150 nm, a line and space structure having a line width of 0.1 to 0.4 times the pitch, and an antireflection application, For light extraction applications of LEDs and OLEDs having a pitch of about 100 to 300 nm and a cone-to-conical shape having a height / pitch ratio of about 0.8 to 1.5, which is called a moth-eye structure, the pitch is 0. A structure in which frustoconical shapes with a height of 8 to 2 μm and a height / pitch ratio of about 0.8 to 1.5 are densely arranged. For infrared emitters for thermophotovoltaic power generation, the aperture width and depth are the wavelengths of emitted infrared rays. For the purpose of light diffusion and condensing, a lens with a pitch of about 1 to 20 μm and a height / pitch ratio of about 0.2 to 2, various irregularities such as prisms Structure, bacteria, cell and microorganism adhesion / reproduction control Applications include various concavo-convex structures such as a cylinder having a pitch of 0.1 to 20 μm and a height / pitch ratio of about 0.2 to 2, a truncated cone and a line and space.

以下、本発明について、実施例に基づき具体的に説明するが、これらは説明のために記述されるものであって、本発明の範囲が下記実施例に限定されるものではない。
[型の作製]
型を作製するための材料として、付加反応硬化型シリコーン樹脂として旭化成ワッカーシリコーン社製 ELASTOSIL RT601を用い、直径9μm、高さ5.5μmのHolotools社製マイクロレンズアレイ形状HT−MLA−09を微細構造として転写した。マイクロレンズアレイ形状にはシリコーン樹脂表面上に凸のレンズ形状が転写されたもの(以下凸型)と凸型の反転であるシリコーン樹脂表面上に凹のレンズ形状が転写されたもの(以下凹型)の2種を用意した。シリコーン樹脂表面上の転写形状を顕微鏡で観察したところ、凸型(図1、2)、凹型(図3)とも、良好な転写をしており、シリコーン樹脂型の凸部先端付近は先端付近がとがった球形で、基材表面に対し平行となる面は球面の先端を除き、ごくわずかであった。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, these are described for description and the range of this invention is not limited to the following Example.
[Mold making]
As a material for producing a mold, ELASTOSIL RT601 manufactured by Asahi Kasei Wacker Silicone Co. is used as an addition reaction curable silicone resin, and a microlens array shape HT-MLA-09 manufactured by Holoolols having a diameter of 9 μm and a height of 5.5 μm is microstructured. Transcribed as. The microlens array shape has a convex lens shape transferred on the silicone resin surface (hereinafter convex) and a concave lens shape transferred on the silicone resin surface that is the reverse of the convex shape (hereinafter concave). Two kinds of were prepared. When the transfer shape on the surface of the silicone resin was observed with a microscope, both the convex mold (Figs. 1 and 2) and the concave mold (Fig. 3) showed good transfer. A pointed sphere that was parallel to the surface of the substrate was negligible except for the tip of the sphere.

[硬化性組成物]
金属アルコキシド化合物として、テトラメトキシシランに、ネオデカン酸スズ1質量%を加えた硬化性組成物A、硬化性組成物A1質量部に日産化学製シリカ微粒子分散液「メタノールシリカゾル」(シリカ微粒子30質量%含有メタノール分散液)1質量部とメタノール2質量部を加えた硬化性組成物Bを作製した。また、堺化学製ジルコニア微粒子分散液「SZR−M」(ジルコニア微粒子30質量%含有メタノール分散液)4質量部に硬化性組成物Aを1質量部とメタノール5質量部を加えた硬化性組成物Cを作製した。
[Curable composition]
As a metal alkoxide compound, a curable composition A obtained by adding 1% by mass of tin neodecanoate to tetramethoxysilane, a silica fine particle dispersion “Methanol silica sol” (30% by mass of silica fine particles) manufactured by Nissan Chemical Co., Ltd. Containing methanol dispersion) A curable composition B was prepared by adding 1 part by mass and 2 parts by mass of methanol. Further, a curable composition obtained by adding 1 part by mass of curable composition A and 5 parts by mass of methanol to 4 parts by mass of zirconia fine particle dispersion “SZR-M” (manufactured by Sakai Chemical Co., Ltd.). C was produced.

[微細構造の賦形]
微細構造を賦形する基板として、表面抵抗10Ω/sqのITO被膜付ガラス板(50×50×1.2mm)の表面を紫外線オゾン洗浄して用いた。
[Shaping the microstructure]
As a substrate for shaping the fine structure, the surface of an ITO-coated glass plate (50 × 50 × 1.2 mm) having a surface resistance of 10 Ω / sq was used after ultraviolet ozone cleaning.

[実施例1]
基板の端部に硬化性組成物Bを基板端部の辺に沿い直線状に滴下し、凹型の構造体が形成された面の一端を、硬化性組成物Bを供給した場所へ押付け、型の背面よりゴムロールで軽く押し、硬化性組成物Bを型と基板の間へ押し広げ基板へ密着させ、室温で60分放置後に型を剥離し基板上へ構造体を作製し、湿度50%の室温環境で10日間放置した。
また、同様に凸型を用いて基板上に構造体を作製した。
顕微鏡を用いた観察で、構造体は凹型を用いた場合、賦形された凸レンズ形状の凸部頂部が直径約7μmのレンズとして形成されているものの、凸部の下部はV字型の谷は形成されず基板の平面部となっていた(図4)。また、凸型を用いた場合、賦形された凹レンズ形状縁部の突起は形成されているものの、凹部の下部は球形のレンズ形状は形成されず基板の平面部となっていた。
[Example 1]
The curable composition B is dropped linearly along the edge of the substrate at the edge of the substrate, and one end of the surface on which the concave structure is formed is pressed against the place where the curable composition B is supplied, Gently push the curable composition B between the mold and the substrate by pressing it with a rubber roll from the back side of the substrate, and let it adhere to the substrate. After leaving at room temperature for 60 minutes, the mold is peeled off to produce a structure on the substrate, and the humidity is 50%. It was left for 10 days in a room temperature environment.
Similarly, a structure was produced on the substrate using a convex mold.
In the observation using a microscope, when a concave structure is used, the top of the convex part of the shaped convex lens is formed as a lens having a diameter of about 7 μm, but the lower part of the convex part is a V-shaped valley. It was not formed and was a plane part of the substrate (FIG. 4). In addition, when the convex type is used, the formed concave lens shape edge protrusion is formed, but the lower part of the concave portion is not formed with a spherical lens shape but is a flat portion of the substrate.

オージェ電子分光法により、これらの基板の平面部が観察された部位の元素分析をしたところ、いずれの箇所からもITOに基づくIn、Snが検出され、このことから基板上のSiO被膜は存在しても、オージェ電子の脱出深さ(数nm)以下であることがわかった。
凹型と凸型を用いて構造体を転写した基板は、エタノールをつけた紙製クリーンワイパでこすっても、構造体が剥離や溶解することはなく、導電性塗料を約20mm離して点状に2か所塗り、乾燥後この2点間の導通を1.5Vの電圧で測定したところ、凹型と凸型とも良好な導電性を示し、上記の基板の平面部が見えた部分は、電気的にも導通していることがわかった。
When elemental analysis of the portion where the planar portion of these substrates was observed by Auger electron spectroscopy, In and Sn based on ITO were detected from any portion, and thus there was a SiO 2 film on the substrate. Even so, it was found that the escape depth of Auger electrons was several nm or less.
The substrate on which the structure is transferred using the concave mold and the convex mold does not peel off or dissolve even when rubbed with a paper clean wiper with ethanol attached, and the conductive paint is separated by about 20 mm into dots. After coating and drying in two places, the conduction between these two points was measured at a voltage of 1.5 V. Both the concave and convex shapes showed good conductivity, and the portion where the flat portion of the substrate was visible was electrically It turned out to be conductive.

[実施例2]
硬化性組成物Aを用いて実施例1と同様に凹型を用いて基板上へ構造体を作製した。
顕微鏡を用いた観察で、構造体は賦形された凸レンズ形状の凸部頂部のみ約2μmの直径で形成され、凸部の下部はV字型の谷は形成されず基板の平面部となっていた。構造体を転写した基板は、エタノールをつけた紙製クリーンワイパでこすっても、構造体が剥離や溶解することはなく、導電性塗料を用いた導電性評価においても、基板の平面部が見える部分は、電気的に導通していることがわかった。
[Example 2]
Using the curable composition A, a structure was produced on the substrate using a concave mold in the same manner as in Example 1.
In the observation using a microscope, the structure is formed only at the top of the convex part of the shaped convex lens with a diameter of about 2 μm, and the lower part of the convex part is not formed with a V-shaped valley but is a flat part of the substrate. It was. Even if the substrate to which the structure is transferred is rubbed with a paper clean wiper with ethanol attached, the structure does not peel off or dissolve, and the planar portion of the substrate can be seen in the conductivity evaluation using a conductive paint. The part was found to be electrically conductive.

[実施例3]
硬化性組成物Cを用いて実施例1と同様に凹型を用いて基板上へ構造体を作製した。
顕微鏡を用いた観察で、構造体は賦形された凸レンズ形状の凸部頂部が直径約7μmのレンズとして形成されているものの、凸部の下部はV字型の谷は形成されず基板の平面部となっていた。構造体を転写した基板は、エタノールをつけた紙製クリーンワイパでこすっても、構造体が剥離や溶解することはなく、導電性塗料を用いた導電性評価においても、基板の平面部が見える部分は、電気的に導通していることがわかった。
[Example 3]
Using the curable composition C, a structure was produced on the substrate using a concave mold in the same manner as in Example 1.
In the observation using a microscope, the structure has a convex lens-shaped convex top portion formed as a lens having a diameter of about 7 μm, but the lower portion of the convex portion is not formed with a V-shaped valley, and the plane of the substrate It was a department. Even if the substrate to which the structure is transferred is rubbed with a paper clean wiper with ethanol attached, the structure does not peel off or dissolve, and the planar portion of the substrate can be seen in the conductivity evaluation using a conductive paint. The part was found to be electrically conductive.

[比較例1]
硬化性組成物A1部に日産化学製シリカ微粒子分散液「メタノールシリカゾル」(シリカ微粒子30質量%含有メタノール分散液)1部を加えた硬化性組成物Dを作製した。硬化性組成物Dを用いた以外は、実施例1と同様に凹型を用いて基板上へ構造体を作製した。顕微鏡を用いた観察で、構造体は賦形された凸レンズ形状の凸部頂部から凸部の下部のV字型の谷も完全に形成されており基板の平面部は確認できなかった(図5)。導電性塗料を用いた導電性評価では、電気的な導通はなく、構造体を転写した基板表面にはITOは露出しないことがわかった。
[Comparative Example 1]
A curable composition D was prepared by adding 1 part of a silica fine particle dispersion “methanol silica sol” (30% by mass of silica fine particles containing methanol dispersion) of Nissan Chemical Co. to 1 part of the curable composition A. A structure was produced on the substrate using a concave mold in the same manner as in Example 1 except that the curable composition D was used. In the observation using a microscope, the V-shaped valley at the bottom of the convex part was completely formed from the top of the convex part of the shaped convex lens, and the flat part of the substrate could not be confirmed (FIG. 5). ). Conductivity evaluation using a conductive paint revealed that there was no electrical continuity, and ITO was not exposed on the surface of the substrate onto which the structure was transferred.

[比較例2]
型を作製するための材料として、厚み188μmの易接着性PETフィルムと東洋合成工業製紫外線硬化樹脂PAK−01を用い、マイクロレンズアレイ形状をPETフィルム上に転写し凹型を作製した。このPETフィルム基材の凹型を用いた以外は、実施例1と同様にして基板上に構造体を作製することを試みたが、2日間室温で放置しても硬化性組成物Bは硬化せず、構造体は得られなかった。
[Comparative Example 2]
As a material for producing a mold, an easy-adhesive PET film having a thickness of 188 μm and an ultraviolet curable resin PAK-01 manufactured by Toyo Gosei Co., Ltd. were used, and a concave shape was produced by transferring the shape of the microlens array onto the PET film. An attempt was made to produce a structure on the substrate in the same manner as in Example 1 except that this PET film base was used, but the curable composition B was cured even when left at room temperature for 2 days. No structure was obtained.

本発明のインプリント方法によれば、残膜厚みを著しく低減し又は実質的に残膜をなくすことができる。したがって、本発明に係る積層体の製造方法は、微細なパタンを高い生産性で得るための手法として、ワイヤグリッド偏光板基材用途におけるラインアンドスペース構造、反射防止用途におけるモスアイ構造、LED、OLEDの光取出し用途における円錐台形状が密に並んだ構造、熱光発電用の赤外線エミッタ用途における構造、光の拡散や集光の用途における各種凹凸構造、細菌、細胞や微生物の付着・繁殖性制御用途における円柱、円錐台やラインアンドスペースなどの各種凹凸構造を有する積層体の製造に好適に利用可能である。   According to the imprint method of the present invention, the residual film thickness can be significantly reduced or the residual film can be substantially eliminated. Therefore, the method for producing a laminate according to the present invention includes a line-and-space structure in a wire grid polarizing plate substrate application, a moth-eye structure in an antireflection application, LED, and OLED as a method for obtaining a fine pattern with high productivity. Structure with closely arranged frustoconical shapes for light extraction applications, structures for infrared emitters for thermophotovoltaic power generation, various uneven structures for light diffusion and light collection applications, adhesion / reproduction control of bacteria, cells and microorganisms It can be suitably used for the production of a laminate having various uneven structures such as a cylinder, a truncated cone and a line and space.

Claims (15)

硬化物と基材との積層体の製造方法であって、以下の工程:
表面に微細凹凸形状を有し、型表面の微細凹凸構造の少なくとも凸部から硬化性原料を吸収することができる型と、基材との間の空間に、該硬化性原料を含む硬化性組成物を、充填する工程
を含み、該硬化性原料が、該型の表面の微細凹凸構造の少なくとも凸部から吸収されて、該型の凹部容積内の該硬化性組成物の容積が小さくなることで、該型の凸部頂部が該基材の表面に接触する、前記方法。
It is a manufacturing method of the laminated body of hardened | cured material and a base material, Comprising: The following processes:
A curable composition having a fine concavo-convex shape on the surface and containing the curable raw material in a space between the mold and the substrate capable of absorbing the curable raw material from at least the convex portion of the fine concavo-convex structure on the mold surface Including a step of filling the product, wherein the curable raw material is absorbed from at least the convex portions of the fine concavo-convex structure on the surface of the mold, and the volume of the curable composition in the concave volume of the mold is reduced. Wherein the top of the convex portion of the mold contacts the surface of the substrate.
前記型の凸部頂部が前記基材の表面に接触したときに、該凸部頂部が該基材表面に沿って変形して該基材に密着する、請求項1に記載の方法。   The method according to claim 1, wherein when the convex top portion of the mold contacts the surface of the base material, the convex top portion deforms along the base surface and adheres to the base material. 前記型の凸部先端付近の形状が、対向する基材表面に対して傾斜した面から構成される、請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the shape in the vicinity of the tip of the convex portion of the mold is composed of a surface inclined with respect to the opposing substrate surface. 前記型の凸部頂部がゴム状の素材で構成される、請求項1〜3のいずれか1項に記載の方法。   The method according to claim 1, wherein the top of the convex portion of the mold is made of a rubbery material. 前記型の素材がシリコーンゴムである、請求項4に記載の方法。   5. The method of claim 4, wherein the mold material is silicone rubber. 前記硬化性原料が金属アルコキシドである、請求項1〜5のいずれか1項に記載の方法。   The method according to claim 1, wherein the curable raw material is a metal alkoxide. 前記金属アルコキシドの金属が珪素である、請求項6に記載の方法。   The method of claim 6, wherein the metal of the metal alkoxide is silicon. 請求項1〜7のいずれか1項に記載の方法により製造された積層体。   The laminated body manufactured by the method of any one of Claims 1-7. 基材表面に微細凹凸構造が転写された積層体であって、転写時に型の凸部に対応する部分の残膜厚みがオージェ電子の脱出厚み以下である積層体。   A laminate in which a fine concavo-convex structure is transferred to the surface of a substrate, wherein the remaining film thickness of the portion corresponding to the convex portion of the mold at the time of transfer is equal to or less than the escape thickness of Auger electrons. 前記微細凹凸構造が無機物で構成される、請求項9に記載の積層体。   The laminate according to claim 9, wherein the fine concavo-convex structure is composed of an inorganic material. 前記無機物が金属又は金属酸化物である、請求項10に記載の積層体。   The laminated body of Claim 10 whose said inorganic substance is a metal or a metal oxide. 前記金属が珪素である、請求項11に記載の積層体。   The laminate according to claim 11, wherein the metal is silicon. 前記微細凹凸構造がガラス質を含む、請求項9〜12のいずれか1項に記載の積層体。   The laminated body of any one of Claims 9-12 in which the said fine concavo-convex structure contains glassy. 前記微細凹凸構造が粒径10nm以下の無機微粒子を含む、請求項9〜13のいずれか1項に記載の積層体。   The laminate according to any one of claims 9 to 13, wherein the fine uneven structure includes inorganic fine particles having a particle diameter of 10 nm or less. 硬化物と基材との積層体の製造方法であって、以下の工程:
表面に微細凹凸形状を有し、型表面の微細凹凸構造の少なくとも凸部から微粒子分散媒を吸収することができる型と、基材との間の空間に、該微粒子分散媒と微粒子とを含む微粒子分散液を、充填する工程
を含み、該微粒子分散媒が、該型の表面の微細凹凸構造の少なくとも凸部から吸収されて、該型の凹部容積内の該硬化性組成物の容積が小さくなることで、該型の凸部頂部が該基材の表面に接触する、前記方法。
It is a manufacturing method of the laminated body of hardened | cured material and a base material, Comprising: The following processes:
The space between the substrate having a fine irregular shape on the surface and capable of absorbing the fine particle dispersion medium from at least the convex portion of the fine irregular structure on the mold surface and the fine particle dispersion medium and the fine particles are included. Including a step of filling the fine particle dispersion, wherein the fine particle dispersion medium is absorbed from at least the convex portions of the fine concavo-convex structure on the surface of the mold, and the volume of the curable composition in the concave volume of the mold is small. The method, wherein the top of the convex portion of the mold contacts the surface of the substrate.
JP2013152599A 2013-07-23 2013-07-23 Laminate and production method thereof Pending JP2015020410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013152599A JP2015020410A (en) 2013-07-23 2013-07-23 Laminate and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013152599A JP2015020410A (en) 2013-07-23 2013-07-23 Laminate and production method thereof

Publications (1)

Publication Number Publication Date
JP2015020410A true JP2015020410A (en) 2015-02-02

Family

ID=52485299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013152599A Pending JP2015020410A (en) 2013-07-23 2013-07-23 Laminate and production method thereof

Country Status (1)

Country Link
JP (1) JP2015020410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019043090A (en) * 2017-09-06 2019-03-22 富士フイルム株式会社 Soft mold and imprint method using soft mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019043090A (en) * 2017-09-06 2019-03-22 富士フイルム株式会社 Soft mold and imprint method using soft mold

Similar Documents

Publication Publication Date Title
KR102337416B1 (en) Nanostructures for color-by-white oled devices
Byeon et al. Recent progress in direct patterning technologies based on nano-imprint lithography
US8323520B2 (en) Method for manufacturing fine concave-convex pattern and sheet for manufacturing fine concave-convex pattern
JP5567871B2 (en) Substrate with transparent conductive film and method for producing the same
KR102307788B1 (en) Nanostructures for oled devices
CN101627336B (en) Method to form a pattern of functional material on a substrate using a stamp having a surface modifying material
TW201637835A (en) Thermally-assisted self-assembly method of nanoparticles and nanowires within engineered periodic structures
US10022947B2 (en) Laminated structure manufacturing method, laminated structure, and electronic apparatus
CN105899359A (en) Lamination transfer films for forming embedded nanostructures
KR101919767B1 (en) Manufacturing method of transparent electrode
JP2011029099A (en) Substrate with transparent conductive film
WO2014041904A1 (en) Method for manufacturing laminate provided with uneven shape, and transfer film
WO2014190689A1 (en) Printing plate, scattering film layer and manufacturing methods thereof, and display device
WO2012115132A1 (en) Transfer film
KR101892919B1 (en) Transparent hybrid electrode and manufacturing method thereof
KR101291727B1 (en) Method for manufacturing implint resin and implinting method
JP6492904B2 (en) Compact
KR20160028554A (en) Nanowire touch sensor and manufacturing method thereof
JP5567313B2 (en) Three-dimensional shape conductive molded article and its manufacturing method
JP2015020410A (en) Laminate and production method thereof
KR20120020012A (en) Organic-inorganic hybrid material and stamp for nanoimprint manufactured from the same
KR101588290B1 (en) Method for fabrication pattern of nano material
KR101573052B1 (en) Method for fabrication pattern of nano material
JP2014219652A (en) Method for manufacturing laminate
JP2011029038A (en) Method of manufacturing base material with transparent conductive film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160404