JP5567313B2 - Three-dimensional shape conductive molded article and its manufacturing method - Google Patents

Three-dimensional shape conductive molded article and its manufacturing method Download PDF

Info

Publication number
JP5567313B2
JP5567313B2 JP2009249529A JP2009249529A JP5567313B2 JP 5567313 B2 JP5567313 B2 JP 5567313B2 JP 2009249529 A JP2009249529 A JP 2009249529A JP 2009249529 A JP2009249529 A JP 2009249529A JP 5567313 B2 JP5567313 B2 JP 5567313B2
Authority
JP
Japan
Prior art keywords
conductive
pattern layer
conductive pattern
nanofiber
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009249529A
Other languages
Japanese (ja)
Other versions
JP2011096518A (en
Inventor
吉秀 稲子
富士男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissha Printing Co Ltd
Original Assignee
Nissha Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissha Printing Co Ltd filed Critical Nissha Printing Co Ltd
Priority to JP2009249529A priority Critical patent/JP5567313B2/en
Publication of JP2011096518A publication Critical patent/JP2011096518A/en
Application granted granted Critical
Publication of JP5567313B2 publication Critical patent/JP5567313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

この発明は、基材の表面にバインダー樹脂と導電性ナノファイバーからなる導電パターン層等を形成する立体形状導電性成形品に関する。   The present invention relates to a three-dimensional conductive molded article in which a conductive pattern layer composed of a binder resin and conductive nanofibers is formed on the surface of a substrate.

従来、基材の表面にバインダー樹脂と極細導電繊維(導電性ナノファイバー)からなる導電層を形成して導電性成形体(導電性成形品)を製造する方法として、特許文献1の発明があった。該発明のバインダー樹脂は、透明な熱可塑性樹脂(ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリメチルメタクリレート、ニトロセルロース、塩素化ポリエチレン、塩素化ポリプロピレン、弗化ビニリデン)、熱や紫外線や電子線や放射線で硬化する透明な硬化性樹脂(メラミンアクリレート、ウレタンアクリレート、エポキシ樹脂、ポリイミド樹脂、アクリル変性シリケートなどのシリコーン樹脂)が使用され、バインダー樹脂を揮発性溶剤に溶解した溶液に極細導電繊維を分散させた塗液を、基材表面に塗布し、この塗布塗液を乾燥して、前記基材表面に、一部が前記バインダー樹脂からなる層を介して前記基材に固定されていた。   Conventionally, as a method for producing a conductive molded body (conductive molded article) by forming a conductive layer made of a binder resin and ultrafine conductive fibers (conductive nanofibers) on the surface of a substrate, there has been the invention of Patent Document 1. It was. The binder resin of the present invention is a transparent thermoplastic resin (polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorinated polypropylene, vinylidene fluoride), heat, ultraviolet rays, A transparent curable resin (silicone resin such as melamine acrylate, urethane acrylate, epoxy resin, polyimide resin, acrylic modified silicate) that is cured by electron beam or radiation is used, and ultra-fine conductivity in a solution in which binder resin is dissolved in volatile solvent The coating liquid in which the fibers are dispersed is applied to the surface of the base material, the coating liquid is dried, and a part of the coating liquid is fixed to the base material via the layer made of the binder resin. It was.

特公表2006−519712号公報Japanese Patent Publication No. 2006-519712

しかしながら、上記透明な熱可塑性樹脂では耐熱性や耐摩耗性が十分に得られないため長期に渡って使用すると極細導電繊維が導電層から脱落したり破壊されたりして導電性が低下する問題があった。また、透明な硬化性樹脂では可とう性がないために、立体形状部において導電層が断裂して導電性が低下したり、クラックが生じる問題があった。また、導電層をパターンで形成した場合、そのパターンが外観から丸見えになるため、見栄えが悪く意匠性の乏しい成形体になり、セキュリティ上の問題もあった。   However, since the above-mentioned transparent thermoplastic resin does not provide sufficient heat resistance and wear resistance, there is a problem that when used for a long period of time, the fine conductive fibers fall off from the conductive layer or are destroyed and the conductivity is lowered. there were. In addition, since a transparent curable resin is not flexible, there is a problem that the conductive layer is torn in the three-dimensionally shaped portion and the conductivity is lowered or a crack is generated. Further, when the conductive layer is formed as a pattern, the pattern becomes completely visible from the appearance, resulting in a molded article with poor appearance and poor design, and there is also a security problem.

上記課題を解決するために、この発明は、立体形状面を有する成形体と、少なくとも前記立体形状面の上に形成され、樹脂バインダーに導電性ナノファイバーが分散され、その導電性ナノファイバーを介して導通する導電パターン層とを備え、樹脂バインダーが後硬化タイプの電離放射線硬化性樹脂からなる、立体形状導電性成形品である。又、導電性ナノファイバーは銀ナノワイヤであってもよい。又、導電パターン層は、目視で認識することができない大きさの複数の微小ピンホールを含にでいてもよい。   In order to solve the above-described problems, the present invention provides a molded body having a three-dimensional surface and at least the three-dimensional surface, wherein conductive nanofibers are dispersed in a resin binder, and the conductive nanofibers are interposed therebetween. And a conductive pattern layer that is electrically conductive, and a resin binder made of a post-curing type ionizing radiation curable resin. The conductive nanofiber may be a silver nanowire. The conductive pattern layer may include a plurality of minute pinholes having a size that cannot be visually recognized.

更に、この発明は、導電パターン層に連続するように形成され、樹脂バインダーに導電性ナノファイバーが分散され、導電パターン層から絶縁された絶縁パターン層を更に備えた立体形状導電性成形品であってもよい。又、絶縁パターン層は、導電性ナノファイバーが断線することにより導電パターン層から絶縁されていてもよい。又、絶縁パターン層は、目視で認識することができない幅の狭小溝を含み、その狭小溝により、導電パターン層から絶縁されると共に、複数の島状に形成されていてもよい。   Furthermore, the present invention is a three-dimensional conductive molded article further comprising an insulating pattern layer formed so as to be continuous with the conductive pattern layer, in which conductive nanofibers are dispersed in a resin binder and insulated from the conductive pattern layer. May be. Further, the insulating pattern layer may be insulated from the conductive pattern layer by disconnecting the conductive nanofiber. The insulating pattern layer may include a narrow groove having a width that cannot be visually recognized. The insulating pattern layer may be insulated from the conductive pattern layer by the narrow groove and may be formed into a plurality of islands.

更に、この発明は、基体シート上に、未硬化又は半硬化の樹脂バインダーに導電性ナノファイバーが分散された導電パターン層を形成して導電性ナノファイバーシートを作製する工程と、導電性ナノファイバーシートを、立体形状面を有する成形体の少なくとも立体形状面に接着させる工程と、成形体に接着した導電性ナノファイバーシートの導電パターン層に電離放射線を照射して、未硬化又は半硬化の樹脂バインダーを硬化させる工程とを備えた、立体形状導電性成形品の製造方法である。又、この発明は、基体シート上に、未硬化又は半硬化の樹脂バインダーに導電性ナノファイバーが分散された導電パターン層と、導電パターン層から絶縁された絶縁パターン層とを形成して導電性ナノファイバーシートを作製する工程と、導電性ナノファイバーシートを、立体形状面を有する成形体の少なくとも立体形状面に接着させる工程と、成形体に接着した前記導電性ナノファイバーシートの導電パターン層に電離放射線を照射して、未硬化又は半硬化の樹脂バインダーを硬化させる工程とを備えた、立体形状導電性成形品の製造方法である。   Furthermore, the present invention provides a process for producing a conductive nanofiber sheet by forming a conductive pattern layer in which conductive nanofibers are dispersed in an uncured or semi-cured resin binder on a base sheet, and a conductive nanofiber. A step of adhering the sheet to at least the three-dimensional surface of the molded body having a three-dimensional surface, and irradiating the conductive pattern layer of the conductive nanofiber sheet adhered to the molded body with ionizing radiation, thereby uncured or semi-cured resin And a step of curing the binder. The present invention also provides a conductive pattern layer in which conductive nanofibers are dispersed in an uncured or semi-cured resin binder and an insulating pattern layer insulated from the conductive pattern layer. A step of producing a nanofiber sheet, a step of adhering the conductive nanofiber sheet to at least a three-dimensional surface of a molded body having a three-dimensional surface, and a conductive pattern layer of the conductive nanofiber sheet adhered to the molded body And a step of curing an uncured or semi-cured resin binder by irradiating with ionizing radiation.

この発明で得られる立体形状導電性成形品は、導電パターン層あるいは導電パターン層と絶縁パターン層の樹脂バインダーが後硬化タイプの電離放射線硬化性樹脂からなる。したがって、硬化させる前の立体形状導電性成形品を得るまでは、立体形状部に追随し可とう性に優れた性質を持ち、硬化後には強靭で耐熱性および耐摩耗性に優れる性質を持つ樹脂バインダーで導電性ナノファイバーが固定されているため、外表面に曝されて度重なる磨耗下においても導電性を維持できるという効果がある。   In the three-dimensional conductive molded article obtained in the present invention, the conductive pattern layer or the resin binder of the conductive pattern layer and the insulating pattern layer is made of a post-curing type ionizing radiation curable resin. Therefore, until obtaining a three-dimensional shape conductive molded product before curing, it has a property that follows the three-dimensional shape portion and has excellent flexibility, and after curing, a resin that has strength, heat resistance, and wear resistance properties Since the conductive nanofibers are fixed by the binder, there is an effect that the conductivity can be maintained even under repeated wear due to exposure to the outer surface.

またこの発明の立体形状導電性成形品は、前記導電性ナノファイバーが銀ナノワイヤからなる。また、前記導電パターン層に目視で認識することができない大きさの微小ピンホールが形成されている。したがって、導電パターン層が無色透明に近くでき、また微小ピンホールを設けることによって導電パターン層以外の箇所との光線透過率の差を小さくすることができる。また、この発明で得られる立体形状導電性成形品は、前記絶縁パターン層に含まれる導電性ナノファイバーが、断線した導電性ナノファイバーである。したがって、導電パターン層と絶縁パターン層との色相、光学特性の差をほとんど無くすことができる。また、この発明で得られる立体形状導電性成形品は、前記絶縁パターン層に目視で認識することができない幅の狭小溝が形成され、その狭小溝により絶縁パターン層が複数の島状に形成されている。したがって、導電性ナノファイバーを含んでいても、導電パターン層と同様の外観の絶縁パターン層が得ることができる。以上より、導電パターンを目立たなくすることができ、他に美麗な加飾層を設けることによって意匠性に優れた成形品とすることができ、セキュリティ上の問題も解決できる効果がある。   Moreover, as for the three-dimensionally shaped electroconductive molded article of this invention, the said electroconductive nanofiber consists of silver nanowire. In addition, a minute pinhole having a size that cannot be visually recognized is formed in the conductive pattern layer. Therefore, the conductive pattern layer can be nearly colorless and transparent, and by providing the minute pinholes, the difference in light transmittance with respect to portions other than the conductive pattern layer can be reduced. In addition, the three-dimensional conductive molded product obtained in the present invention is a conductive nanofiber in which the conductive nanofiber included in the insulating pattern layer is disconnected. Accordingly, the difference in hue and optical characteristics between the conductive pattern layer and the insulating pattern layer can be almost eliminated. Further, in the three-dimensional conductive molded product obtained in the present invention, narrow grooves having a width that cannot be visually recognized are formed in the insulating pattern layer, and the insulating pattern layers are formed into a plurality of islands by the narrow grooves. ing. Therefore, an insulating pattern layer having the same appearance as the conductive pattern layer can be obtained even if the conductive nanofiber is included. As described above, the conductive pattern can be made inconspicuous, and by providing a beautiful decorative layer, it is possible to obtain a molded product having excellent design properties, and there is an effect that a security problem can be solved.

さらに、この発明で得られる立体形状導電性成形品の製造方法は、基体シート上に、導電性ナノファイバーと、未硬化または半硬化の樹脂バインダーとを含む導電パターン層あるいは導電パターン層と絶縁パターン層を形成して、導電性ナノファイバーシートを作製し、該導電性ナノファイバーシートを成形体上に接着させて立体形状導電性成形品を得た後、電離放射線を照射して、前記未硬化または半硬化の樹脂バインダーを硬化させる。したがって、立体形状部において導電層が断裂して導電性が低下したり、クラックが生じることなく、強靭で耐熱性や耐摩耗性に優れた立体形状導電性成形品を製造できるという効果がある。   Furthermore, the manufacturing method of the three-dimensional shape electroconductive molded article obtained by this invention is a conductive pattern layer or a conductive pattern layer and an insulating pattern containing conductive nanofibers and an uncured or semi-cured resin binder on a base sheet. A layer is formed to produce a conductive nanofiber sheet, and the conductive nanofiber sheet is adhered onto the molded body to obtain a three-dimensional conductive molded article. Alternatively, a semi-cured resin binder is cured. Therefore, there is an effect that it is possible to produce a solid three-dimensional conductive molded article that is tough and excellent in heat resistance and wear resistance without tearing the conductive layer in the three-dimensional shape portion and lowering the conductivity or generating cracks.

この発明の立体形状導電性成形品の構成を示した概略断面図であり、その(1)は導電パターン層の樹脂バインダーが後硬化タイプの電離放射線硬化性樹脂からなり、導電パターン層に目視で認識することができない大きさの微小ピンホールが形成されている形成した場合を示し、その(2)は導電パターン層および絶縁パターン層の樹脂バインダーが後硬化タイプの電離放射線硬化性樹脂からなり、絶縁パターン層に含まれる導電性ナノファイバーが、断線した導電性ナノファイバーである場合を示し、その(3)は導電パターン層および絶縁パターン層の樹脂バインダーが後硬化タイプの電離放射線硬化性樹脂からなり、絶縁パターン層に目視で認識することができない幅の狭小溝が形成され、狭小溝により絶縁パターン層が複数の島状に形成されている場合を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic sectional drawing which showed the structure of the solid-shaped electroconductive molded article of this invention, The (1) is that the resin binder of an electroconductive pattern layer consists of a post-curing type ionizing radiation curable resin, and an electroconductive pattern layer is visually observed. A case where a pinhole of a size that cannot be recognized is formed is shown. (2) shows that the resin binder of the conductive pattern layer and the insulating pattern layer is made of a post-curing type ionizing radiation curable resin, The case where the conductive nanofiber contained in the insulating pattern layer is a disconnected conductive nanofiber is shown. (3) shows that the resin binder of the conductive pattern layer and the insulating pattern layer is a post-curing type ionizing radiation curable resin. Thus, a narrow groove having a width that cannot be visually recognized is formed in the insulating pattern layer, and the insulating pattern layer is formed into a plurality of islands by the narrow groove. It shows the case to have. この発明の立体形状導電性成形品の製造方法を示した概略断面図であり、その(1)は基体シート上に、導電性ナノファイバーと、未硬化または半硬化の樹脂バインダーとを含む導電パターン層を形成した工程を示し、その(2)は該導電パターン層にレーザーを照射して前記導電パターン層の一部分のバインダー樹脂を焼き切って微小ピンホールを形成するとともに、導電パターン層の他の一部分の含まれる導電性ナノファイバーの一部を断線させ絶縁パターン層が形成した工程を示し、その(3)は作製した導電性ナノファイバーシートを成形体上に接着させて立体形状導電性成形品を得た工程を示し、その(4)は得た立体形状導電性成形品に電離放射線を照射して、導電パターン層および絶縁パターン層の未硬化または半硬化の樹脂バインダーを硬化させた工程を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic sectional drawing which showed the manufacturing method of the solid-shaped electroconductive molded article of this invention, The (1) is a conductive pattern which contains conductive nanofiber and an uncured or semi-cured resin binder on a base sheet (2) shows a process of forming a layer, and (2) irradiates the conductive pattern layer with a laser to burn out a binder resin in a part of the conductive pattern layer to form a fine pinhole, A process of forming an insulating pattern layer by disconnecting a part of conductive nanofibers included in part is shown. (3) is a three-dimensional conductive molded product by bonding the prepared conductive nanofiber sheet on a molded body. (4) irradiates the obtained three-dimensional shape conductive molded article with ionizing radiation, and uncured or semi-cured resin binder of the conductive pattern layer and the insulating pattern layer. It shows a-cured process. この発明の立体形状導電性成形品の製造方法を示した概略断面図であり、その(1)は基体シート上に、導電性ナノファイバーと、未硬化または半硬化の樹脂バインダーとを含む導電パターン層を形成して、導電性ナノファイバーシートを作製した工程を示し、その(2)は作製した導電性ナノファイバーシートを成形体上に接着させて基体シートを剥離除去して立体形状導電性成形品を得た工程を示し、その(3)は得た立体形状導電性成形品の導電パターン層にレーザーを照射して目視で認識することができない幅の狭小溝を設けて、複数の島状の絶縁パターン層を形成した工程を示し、その(4)は、その立体形状導電性成形品に電離放射線を照射して、導電パターン層および絶縁パターン層の未硬化または半硬化の樹脂バインダーを硬化させた工程を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic sectional drawing which showed the manufacturing method of the solid-shaped electroconductive molded article of this invention, The (1) is a conductive pattern which contains conductive nanofiber and an uncured or semi-cured resin binder on a base sheet The process of forming a conductive nanofiber sheet by forming a layer is shown. (2) shows the three-dimensional conductive molding by removing the substrate sheet by bonding the prepared conductive nanofiber sheet onto the molded body. The process of obtaining the product is shown, and (3) shows a plurality of island-like shapes in which a narrow groove having a width that cannot be visually recognized by irradiating a laser on the conductive pattern layer of the obtained three-dimensionally shaped conductive molded product. Shows the process of forming the insulating pattern layer, and (4) irradiates the solid conductive molded article with ionizing radiation to cure the uncured or semi-cured resin binder of the conductive pattern layer and the insulating pattern layer. Let It shows the degree.

以下、この発明の立体形状導電性成形品について説明する。この発明の立体形状導電性成形品1は、成形体8上に導電パターン層6あるいは導電パターン層6と絶縁パターン層7とが形成され、それらの層の樹脂バインダー33が後硬化タイプの電離放射線硬化性樹脂からなり、導電性ナノファイバー3を含んでいる(図1、図2、図3参照)。成形体8の表面は、平面と立体形状面とから構成されている。そして、導電パターン層6は、少なくともその立体形状面の上に形成されている。導電パターン層6又は絶縁パターン層7は、立体形状面のみに形成されていてもよい。導電パターン層6又は絶縁パターン層7の形成部分にあたる成形体8の表面がすべて立体形状面で構成されていてもよい。   Hereinafter, the three-dimensional conductive molded article of the present invention will be described. In the three-dimensional shape conductive molded article 1 of the present invention, the conductive pattern layer 6 or the conductive pattern layer 6 and the insulating pattern layer 7 are formed on the molded body 8, and the resin binder 33 of these layers is a post-curing type ionizing radiation. It consists of curable resin and contains the conductive nanofiber 3 (refer FIG.1, FIG.2, FIG.3). The surface of the molded body 8 is composed of a flat surface and a three-dimensional surface. The conductive pattern layer 6 is formed on at least the three-dimensional surface. The conductive pattern layer 6 or the insulating pattern layer 7 may be formed only on the three-dimensional surface. The surface of the molded body 8 corresponding to the portion where the conductive pattern layer 6 or the insulating pattern layer 7 is formed may be configured by a three-dimensional surface.

成形体8の構成材料である成形樹脂としては、ポリエチレン、ポリプロピレン、環状ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメチルメタクリレート、ポリメチルアクリレート、ポリスチレン、ニトロセルロース、トリアセチルセルロース、ポリカーボネート、ポリエチレンテレフタレート、ポリジメチルシクロヘキサンテレフタレート、ABS樹脂、ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリビニルアセタール、ポリエーテルケトン、ポリウレタン、これらの樹脂の共重合体樹脂、これらの樹脂の混合樹脂などが挙げられる。尚、成形体8の構成材料は、成形体8上に導電パターン層6及び絶縁パターン層を形成することができれば、ゴム、金属、木、ガラス、陶磁器等、他の構成材料であってもよい。   As the molding resin that is a constituent material of the molded body 8, polyethylene, polypropylene, cyclic polyolefin, polyvinyl chloride, polyvinylidene chloride, polymethyl methacrylate, polymethyl acrylate, polystyrene, nitrocellulose, triacetyl cellulose, polycarbonate, polyethylene terephthalate, Examples thereof include polydimethylcyclohexane terephthalate, ABS resin, polyamide, polyimide, polyethersulfone, polysulfone, polyvinyl acetal, polyetherketone, polyurethane, copolymer resins of these resins, and mixed resins of these resins. The constituent material of the molded body 8 may be other constituent materials such as rubber, metal, wood, glass, ceramics and the like as long as the conductive pattern layer 6 and the insulating pattern layer can be formed on the molded body 8. .

後硬化タイプの電離放射線硬化性樹脂とは、熱処理や微量の電離放射線(紫外線、電子線など)によって未硬化または反硬化の可とう性に優れた皮膜を造膜でき、再度の電離放射線40によって強靭な皮膜へと硬化させることができる性質の樹脂であればいずれでもよく、その材質および組成は特に限定されない。そのような性質の樹脂の例としては、ビニル系樹脂からなる有機高分子と金属系化合物を含有する有機−無機複合体や、ポリエステルアクリレート系、トリアジンアクリレート系、グリシジルアクリレート系などのポリマーと多官能イソシアネートおよび紫外線吸収剤を含有する硬化性樹脂組成物などを挙げることができる。   The post-curing type ionizing radiation curable resin can form a film having excellent flexibility of uncured or anti-cured by heat treatment or a small amount of ionizing radiation (ultraviolet ray, electron beam, etc.). Any resin can be used as long as it has a property that can be cured into a tough film, and the material and composition thereof are not particularly limited. Examples of resins having such properties include organic-inorganic composites containing organic polymers and metal compounds composed of vinyl resins, polyester acrylates, triazine acrylates, glycidyl acrylates, and other polymers and polyfunctionals. Examples thereof include a curable resin composition containing an isocyanate and an ultraviolet absorber.

導電パターン層6の厚みは0.2〜500μmの範囲で適宜設定可能である。0.2μm未満では硬化させた電離放射線硬化性樹脂であっても層としての強度が不足気味となり、500μmを越える厚みでは未硬化または反硬化の皮膜を造膜することが困難となる。   The thickness of the conductive pattern layer 6 can be appropriately set in the range of 0.2 to 500 μm. If it is less than 0.2 μm, even the cured ionizing radiation curable resin is insufficient in strength as a layer, and if it exceeds 500 μm, it becomes difficult to form an uncured or anti-cured film.

導電性ナノファイバー3の例としては、カーボンナノファイバーのほか、金、銀、白金、銅、パラジウムなどの金属イオンを担持した前駆体表面にプローブの先端部から印加電圧又は電流を作用させ連続的にひき出して作製した金属ナノワイヤや、基板上に原料ガスを導入しCVD法により作製したグラファイトナノファイバー、ペプチド又はその誘導体が自己組織化的に形成したナノファイバーに金粒子を付加してなるペプチドナノファイバーなどが挙げられる。ただし、導電パターン層6を無色透明に近くすることができ、十分な導電性を得るには銀ナノワイヤが最も好ましい。   Examples of the conductive nanofiber 3 include a carbon nanofiber and a continuous surface by applying an applied voltage or current from the tip of the probe to the surface of a precursor carrying metal ions such as gold, silver, platinum, copper, palladium, and the like. A metal nanowire produced by pulling into a metal, or a peptide formed by adding gold particles to a nanofiber formed by self-organizing graphite nanofiber, peptide or its derivative produced by introducing a source gas onto a substrate and using a CVD method Examples include nanofibers. However, the silver nanowire is most preferable in order to make the conductive pattern layer 6 nearly colorless and transparent and to obtain sufficient conductivity.

なお、導電パターン層6には目視で認識することができない大きさの微小ピンホール5を形成してもよい(図1(1)参照)。導電パターン層6に設ける多くの微小ピンホール5は、目視で認識することができない面積1μm〜10000μm程度の大きさのピンホールが好ましく、導電パターン層6における微小ピンホール5の占有面積の割合を20%〜80%にするよう設けるのが好ましい。ピンホールの面積を1μm未満にすることは技術的に難しくこれより小さいと光線の透過がしにくくなるからである。また、微小ピンホールの占有面積の割合が20%未満であれば光線透過率の向上やヘイズ値を低下の程度が少なくなり、80%を超えれば導電パターン層6の表面抵抗値が高くなり導電性に問題が生じる場合があるからである。 In addition, you may form the minute pinhole 5 of the magnitude | size which cannot be recognized visually in the conductive pattern layer 6 (refer FIG. 1 (1)). Many small pinholes 5 provided on the conductive pattern layer 6 is preferably an area 1μm 2 ~10000μm 2 a size of approximately pinholes that can not be recognized visually, the conductive pattern layer 6 of the area occupied by the minute pinholes 5 It is preferable that the ratio is 20% to 80%. This is because it is technically difficult to make the area of the pinhole less than 1 μm 2, and if it is smaller than this, it is difficult to transmit light. Further, if the proportion of the area occupied by the minute pinholes is less than 20%, the degree of improvement in light transmittance and the decrease in the haze value are reduced, and if it exceeds 80%, the surface resistance value of the conductive pattern layer 6 is increased and the conductivity is increased. This is because there may be a problem with sex.

微小ピンホール5の形状は、円形状のほか、多角形状、楕円状、円弧状、直線状のいずれでもよく、これらの異なる形状のピンホールが混ざっているようなものであっても構わない。微小ピンホール5の形成方法としては、成形体8上に導電性ナノファイバー3を含む導電パターン層6を全面に形成し、該導電パターン層6の一部にスポット径数十μmの炭酸ガスレーザーなどのエネルギー線50を照射して導電パターン層6のバインダー樹脂33を焼き切ることにより形成する方法があげられる。   The shape of the minute pinhole 5 may be a circular shape, a polygonal shape, an elliptical shape, an arc shape, or a linear shape, or may be a mixture of pinholes having different shapes. As a method of forming the minute pinhole 5, a conductive pattern layer 6 including the conductive nanofiber 3 is formed on the entire surface of the molded body 8, and a carbon dioxide gas laser having a spot diameter of several tens of μm is formed on a part of the conductive pattern layer 6. A method of forming the conductive pattern layer 6 by burning the binder resin 33 by irradiating the energy beam 50 is used.

また、別の微小ピンホール5の形成方法としては、成形体8上に導電性ナノファイバー3を含む導電パターン層6を全面に形成し、該導電パターン層6の一部に塗装やインクジェットなどの方法でエッチングレジスト層を形成後、全面をエッチングして、エッチングレジスト層が形成されていない部分の導電パターン層6のバインダー樹脂33を除去させることにより形成する方法があげられる。   As another method for forming the minute pinhole 5, the conductive pattern layer 6 including the conductive nanofibers 3 is formed on the entire surface of the molded body 8, and a part of the conductive pattern layer 6 is coated or ink-jetted. Examples of the method include forming the etching resist layer by the method, and then etching the entire surface to remove the binder resin 33 of the conductive pattern layer 6 in the portion where the etching resist layer is not formed.

使用するエッチングレジスト層としては光硬化性の樹脂などが挙げられ、エッチャントとして導電パターン層6のバインダー樹脂33を除去できるケトン、芳香族炭化水素などの有機溶剤等が好ましい。   Examples of the etching resist layer to be used include a photocurable resin, and an organic solvent such as a ketone or an aromatic hydrocarbon that can remove the binder resin 33 of the conductive pattern layer 6 as an etchant is preferable.

絶縁パターン層7は、一部の導電パターン層6の導電性ナノファイバー3を断線させるか、または目視で認識することができない幅の狭小溝12を形成することにより得ることができる(図1の(2)(3)参照)。したがって、材質的にはバインダー樹脂33や導電性ナノファイバー3など導電パターン層6と何ら変わりがなく、厚みが同等ならば導電パターン層6とほぼ同等の光線透過率やヘイズ値を呈する。したがって、光線透過率およびヘイズ値において導電パターン層6との差が非常に小さいため、結果的に目立ちにくい導電パターン層6を形成できることになる。   The insulating pattern layer 7 can be obtained by disconnecting the conductive nanofibers 3 of some of the conductive pattern layers 6 or by forming narrow grooves 12 having a width that cannot be visually recognized (FIG. 1). (See (2) and (3)). Therefore, the material is not different from the conductive pattern layer 6 such as the binder resin 33 and the conductive nanofiber 3, and if the thickness is equal, the light transmittance and haze value are almost the same as those of the conductive pattern layer 6. Therefore, the difference between the light transmittance and the haze value from the conductive pattern layer 6 is very small, and as a result, the conductive pattern layer 6 that is hardly noticeable can be formed.

絶縁パターン層7を導電性ナノファイバー3の断線により形成する場合、形成の際に、導電パターン層6と絶縁パターン層7との光線透過率の差が10%以下でヘイズ値の差が5%以下になるよう、厳重に光線透過率およびヘイズ値を測定管理して形成し、絶縁パターン層7の厚みはできる限り導電パターン層6の厚みと同等にするのが好ましい。   When the insulating pattern layer 7 is formed by disconnection of the conductive nanofiber 3, the difference in light transmittance between the conductive pattern layer 6 and the insulating pattern layer 7 is 10% or less and the difference in haze value is 5%. It is preferable to strictly measure and manage the light transmittance and haze value so that the thickness is as follows, and the thickness of the insulating pattern layer 7 is preferably as equal to the thickness of the conductive pattern layer 6 as possible.

導電性ナノファイバー3を断線させる方法としては、エネルギー線50として数十μmのスポット径のYAGレーザーなどを使い、導電性ナノファイバー3に適度のエネルギー(熱)を加えることによって導電性ナノファイバー3の一部を焼き切る方法や、酸やアルカリの水溶液などのエッチャントに浸すことにより、エッチングレジスト層が形成されていない部分の導電性ナノファイバー3の一部を腐食させる方法などがあげられる。   As a method for disconnecting the conductive nanofiber 3, a YAG laser having a spot diameter of several tens of μm is used as the energy line 50, and by applying appropriate energy (heat) to the conductive nanofiber 3, the conductive nanofiber 3 And a method of corroding a part of the conductive nanofibers 3 where the etching resist layer is not formed by immersing them in an etchant such as an acid or alkali aqueous solution.

絶縁パターン層7を目視で認識することができない幅の狭小溝12により形成する場合、形成の際に、絶縁パターン層7における溝の占有面積の割合を、できる限り導電パターン層6における微小ピンホール5の占有面積の割合と同等にし、絶縁パターン層7の厚みはできる限り導電パターン層6の厚みと同等にするのが好ましい。   When the insulating pattern layer 7 is formed by the narrow groove 12 having a width that cannot be visually recognized, the proportion of the occupied area of the groove in the insulating pattern layer 7 is set to the minute pinhole in the conductive pattern layer 6 as much as possible. It is preferable that the thickness of the insulating pattern layer 7 be as equal to the thickness of the conductive pattern layer 6 as much as possible.

狭小溝12は、目視で認識することができない0.1μm〜150μm程度の幅が好ましい。狭小溝12の幅を0.1μm未満にすることは技術的に難しいだけでなく、トンネル電流によりスパークすることがあるからである。また、150μmを超える幅にすると照明で照らされた場合に溝が光って見えてしまう場合があるからである。狭小溝12を形成する方法は、微小ピンホール5の形成方法と同じでよい。   The narrow groove 12 preferably has a width of about 0.1 μm to 150 μm that cannot be visually recognized. This is because it is not only technically difficult to make the width of the narrow groove 12 less than 0.1 μm, but sparking may occur due to a tunnel current. In addition, if the width exceeds 150 μm, the groove may appear shining when illuminated with illumination. The method for forming the narrow groove 12 may be the same as the method for forming the minute pinhole 5.

狭小溝12の形状は、格子状のほか、ハニカム状、ランダム状、その他の形状いずれでもよく、これらの異なる形状の溝が混ざっているようなものであっても構わない。また、狭小溝12によって囲まれて形成される絶縁パターン層7の島状パターンは、円形状のほか、多角形状、楕円状、円弧状のいずれでもよく、これらの異なる形状が混ざっているようなものであっても構わない。島状パターンの大きさは、ナノオーダーからミリオーダーのいずれでもよく、これらの異なる大きさの形状が混ざっているようなものであっても構わない。   The shape of the narrow groove 12 may be a lattice shape, a honeycomb shape, a random shape, or any other shape, and may be a mixture of grooves having different shapes. Further, the island pattern of the insulating pattern layer 7 formed by being surrounded by the narrow grooves 12 may be any of a polygonal shape, an elliptical shape, and an arc shape in addition to a circular shape, and these different shapes are mixed. It doesn't matter. The size of the island pattern may be any of nano-order to millimeter-order, and may be a mixture of these different sizes.

なお、立体形状導電性成形品1の製造方法としては、導電パターン層6を基体シート10上に形成し、エネルギー線50を照射して微小ピンホール5を形成したり、狭小溝12を形成または導電性ナノファイバー3を一部断線させたりして絶縁パターン層7を形成し、導電性ナノファイバーシート2を作製し、この導電性ナノファイバーシート2を成形体8上に接着させて立体形状導電性成形品1を得た後、電離放射線40を照射する方法(図2参照)のほか、導電パターン層6を基体シート10上に形成して導電性ナノファイバーシート2を作製し、この導電性ナノファイバーシート2を成形体8上に接着させて立体形状導電性成形品1を得た後、電離放射線40を照射する前に、エネルギー線50を照射して上記の微小ピンホール5や狭小溝12を形成したり、導電性ナノファイバー3を一部断線させ絶縁パターン層7を形成する方法(図3参照)も挙げられる。   In addition, as a manufacturing method of the three-dimensionally shaped conductive molded article 1, the conductive pattern layer 6 is formed on the base sheet 10, and the energy ray 50 is irradiated to form the minute pinhole 5, or the narrow groove 12 is formed. The conductive nanofiber 3 is partially disconnected to form the insulating pattern layer 7 to produce the conductive nanofiber sheet 2. The conductive nanofiber sheet 2 is adhered onto the molded body 8 to form a three-dimensionally conductive material. In addition to a method of irradiating ionizing radiation 40 (see FIG. 2), the conductive nanofiber sheet 2 is produced by forming the conductive pattern layer 6 on the base sheet 10 after obtaining the conductive molded article 1. After the nanofiber sheet 2 is adhered on the molded body 8 to obtain the three-dimensional conductive molded article 1, before the ionizing radiation 40 is irradiated, the energy rays 50 are irradiated and the above-described minute pinholes 5 and narrow portions are formed. Or forming a groove 12, a method of forming an insulating pattern layer 7 is broken partially conductive nano fibers 3 (see FIG. 3) can be mentioned.

導電パターン層6や絶縁パターン層7を形成する方法としては、グラビア印刷、オフセット印刷、スクリーン印刷等の汎用の各種印刷手法やコーターなどによる方法以外に、塗装やインクジェットなどの方法などが挙げられる。   Examples of the method for forming the conductive pattern layer 6 and the insulating pattern layer 7 include various printing methods such as gravure printing, offset printing, and screen printing, methods such as coating, and methods such as coating and inkjet.

基体シート10の材質としては、アクリル、ポリカーボネート、ポリエステル、ポリブチレンテレフタレート、ポリプロピレン、ポリアミド、ポリウレタン、ポリ塩化ビニル、ポリフッ化ビニルなどの樹脂フィルムが挙げられる。基体シート10の厚みは5〜800μmの範囲で適宜設定可能である。5μm未満では、シートとしての強度が不足して剥離する際に破れたりするので取り扱いが困難となり、800μmを越える厚みでは、基体シート10に剛性がありすぎて加工が困難となる。なお、導電性ナノファイバーシート2を転写シートとして活用する場合には、上記樹脂フィルム上にシリコン、メラミン、アクリルなどの樹脂を塗布して離型性のある基体シート10としておくのが好ましい(図3の(2)参照)。   Examples of the material of the base sheet 10 include resin films such as acrylic, polycarbonate, polyester, polybutylene terephthalate, polypropylene, polyamide, polyurethane, polyvinyl chloride, and polyvinyl fluoride. The thickness of the base sheet 10 can be appropriately set within a range of 5 to 800 μm. If the thickness is less than 5 μm, the strength as a sheet is insufficient and the sheet is torn when it is peeled off, making it difficult to handle. If the thickness exceeds 800 μm, the base sheet 10 is too rigid and difficult to process. In the case where the conductive nanofiber sheet 2 is used as a transfer sheet, it is preferable to apply a resin such as silicon, melamine, or acrylic on the resin film to form a substrate sheet 10 having releasability (FIG. 3 (2)).

また、導電パターン層6や絶縁パターン層7と基体シート10との間に、剥離層やアンカー層等を設けてもよいし、導電パターン層6や絶縁パターン層7上にアンカー層や接着層等を設けてもよい。さらに、基体シート10上には、例えば3〜10mm角くらいの大きさの位置検知パターンを形成するのが好ましい。この位置検知パターンを光学的方法により読み取れば、基体シート10上の所定の位置に微小ピンホール5をや絶縁パターン層7を形成できるからである。   Further, a release layer, an anchor layer, or the like may be provided between the conductive pattern layer 6 or the insulating pattern layer 7 and the base sheet 10, and an anchor layer, an adhesive layer, or the like is provided on the conductive pattern layer 6 or the insulating pattern layer 7. May be provided. Furthermore, it is preferable to form a position detection pattern having a size of, for example, about 3 to 10 mm square on the base sheet 10. This is because if the position detection pattern is read by an optical method, the minute pinhole 5 or the insulating pattern layer 7 can be formed at a predetermined position on the base sheet 10.

上記導電性ナノファイバーシート2を用いて立体形状導電性成形品1を製造する方法としては、例えば次のような成形同時加飾法が挙げられる。すなわち、導電性ナノファイバーシート2を可動型と固定型とからなる射出成形金型内にセットして型締めし、溶融した成形体8を射出成形金型内に充填し、冷却後、前記射出成形金型を開いて立体形状導電性成形品1を取り出す方法である。   Examples of a method for producing the three-dimensional conductive molded article 1 using the conductive nanofiber sheet 2 include the following simultaneous molding and decorating method. That is, the conductive nanofiber sheet 2 is set in an injection mold composed of a movable mold and a fixed mold and clamped, and the molten molded body 8 is filled in the injection mold, cooled, and then injected. In this method, the molding die is opened and the three-dimensionally shaped conductive molded product 1 is taken out.

あるいは、次のような熱接着(熱転写)法が挙げられる。すなわち、導電性ナノファイバーシート2を成形体8の上面にセットし、シリコンラバーからなる熱ロールを備えた転写機を用いて基体シート10の背面から温度80〜260℃程度、圧力50〜200kg/m程度の条件で押圧する方法である。 Alternatively, the following thermal bonding (thermal transfer) method can be mentioned. That is, the conductive nanofiber sheet 2 is set on the upper surface of the molded body 8, and a temperature of about 80 to 260 ° C. and a pressure of 50 to 200 kg / from the back surface of the base sheet 10 using a transfer machine equipped with a heat roll made of silicon rubber. a method of pressing in m 2 about conditions.

基体シートとして厚さ100μmの二軸延伸ポリエチレンテレフタレートフィルムの片面にメラミン樹脂からなるインキで剥離層を形成し、ウレタン樹脂からなるインキで5mm角の位置検知パターンを形成した。   A release layer was formed with ink made of melamine resin on one side of a biaxially stretched polyethylene terephthalate film having a thickness of 100 μm as a base sheet, and a 5 mm square position detection pattern was formed with ink made of urethane resin.

次いで、平均直径0.2μm、平均長さ10μmの銀ナノワイヤからなる導電性ナノファイバーをシリル基含有のビニル系樹脂と珪素およびジルコニウムキレート化合物を含有する有機−無機複合体からなるバインダー樹脂中に分散させたインキを用いてグラビア印刷をし、熱風乾燥して厚さ2μmの半硬化状態の導電パターン層を形成した。次いで位置検知パターンを光学的方法により読み取って所望の位置に炭酸ガスレーザー照射機の先端を配置し、レーザー照射光により熱を加えて一部の導電パターン層のバインダー樹脂を焼き切り、多数の微小ピンホールからなる導電パターン層と、狭小溝を有する絶縁パターン層とを含む導電性ナノファイバーシートを形成した。   Next, conductive nanofibers made of silver nanowires having an average diameter of 0.2 μm and an average length of 10 μm are dispersed in a binder resin made of an organic-inorganic composite containing a silyl group-containing vinyl resin, silicon, and a zirconium chelate compound. Gravure printing was performed using the ink thus prepared, and hot-air drying was performed to form a semi-cured conductive pattern layer having a thickness of 2 μm. Next, the position detection pattern is read by an optical method, the tip of the carbon dioxide laser irradiator is placed at the desired position, heat is applied by the laser irradiation light, and the binder resin of some of the conductive pattern layers is burned out, and a number of micro pins A conductive nanofiber sheet including a conductive pattern layer made of holes and an insulating pattern layer having narrow grooves was formed.

この得られた導電性ナノファイバーシートを用い、位置決め機構を有する送り装置を使用して、可動型と固定型とからなる射出成形金型内にセットして型締めした。型締め後、溶融したアクリル系樹脂からなる透明射出成形樹脂を射出成形金型内に充填した。成形条件は、樹脂温度240℃、金型温度55℃、樹脂圧力約300kg/cmとした。冷却後、前記射出成形金型を開いて樹脂成形品を取り出し、基体シートを剥離した後、120W/cm、2灯、ランプ高さ10cmの条件で紫外線を照射して導電パターン層と絶縁パターン層を硬化させたところ、強靭で耐熱性および耐摩耗性に優れた導電パターン層および絶縁パターン層からなる立体形状導電性成形品が得られた。 Using the obtained conductive nanofiber sheet, using a feeding device having a positioning mechanism, it was set in an injection mold consisting of a movable mold and a fixed mold and clamped. After mold clamping, an injection mold was filled with a transparent injection molding resin made of a molten acrylic resin. The molding conditions were a resin temperature of 240 ° C., a mold temperature of 55 ° C., and a resin pressure of about 300 kg / cm 2 . After cooling, the injection mold is opened, the resin molded product is taken out, the base sheet is peeled off, and then the conductive pattern layer and the insulating pattern layer are irradiated with ultraviolet rays under the conditions of 120 W / cm, two lamps, and a lamp height of 10 cm. As a result of curing, a three-dimensional conductive molded article composed of a conductive pattern layer and an insulating pattern layer that were tough and excellent in heat resistance and wear resistance was obtained.

得られた立体形状導電性成形品は、曲面でのクラックの発生もなく、層間密着性試験(1mm角で100×100にクロスカットした後、ニチバン製セロファンテープにより90度剥離試験)でも剥離はなかった。また、導電パターン層および絶縁パターン層は充分な耐熱性や耐摩耗性を有しており、長期に渡って使用しても導電性ナノファイバーが脱落したり破壊されることもなかった。   The resulting three-dimensional shape conductive molded article does not generate cracks on the curved surface, and even in the interlayer adhesion test (90 mm peel test with Nichiban cellophane tape after cross-cutting to 100 × 100 at 1 mm square) There wasn't. In addition, the conductive pattern layer and the insulating pattern layer have sufficient heat resistance and wear resistance, and the conductive nanofibers were not dropped or broken even when used for a long time.

また、得られた立体形状導電性成形品の導電パターン層の一部の部分に形成された微小ピンホールは円形状で、平均の面積が180μm程度で外観上存在が判別できない大きさであり、導電パターン層の総面積の35%程度を占有していて、光線透過率が91%、ヘイズ値も3%と良好であり、微小ピンホールを形成しない場合に比べて光線透過率が2%向上し、ヘイズ値も2%低下することができた。一方、表面抵抗値の上昇は2割程度に留まっていた。また、得られた立体形状導電性成形品の絶縁パターン層7の部分に形成された狭小溝はピッチ35μmの格子状で、平均の幅が6μm程度で外観上存在が判別できない幅であり、絶縁パターン層の総面積の40%程度を占有していて、光線透過率が93%、ヘイズ値も3%と良好であり、狭小溝を形成しない場合に比べて光線透過率が3%向上し、ヘイズ値も2%低下することができた。一方、絶縁抵抗は十分であった。 In addition, the minute pinholes formed in a part of the conductive pattern layer of the obtained three-dimensionally shaped conductive molded product are circular and have an average area of about 180 μm 2 and the size cannot be distinguished from the appearance. It occupies about 35% of the total area of the conductive pattern layer, has a light transmittance of 91% and a haze value of 3%, and has a light transmittance of 2% compared to the case where no minute pinhole is formed. The haze value was reduced by 2%. On the other hand, the increase in the surface resistance value remained at about 20%. In addition, the narrow grooves formed in the insulating pattern layer 7 portion of the obtained three-dimensionally shaped conductive molded product are in a lattice shape with a pitch of 35 μm, the average width is about 6 μm, and the width cannot be determined from appearance. Occupies about 40% of the total area of the pattern layer, the light transmittance is 93%, the haze value is also good at 3%, and the light transmittance is improved by 3% compared to the case where no narrow groove is formed, The haze value could also be reduced by 2%. On the other hand, the insulation resistance was sufficient.

導電性ナノファイバーシートの作成において、導電パターン層の厚さを5μmに変え、バインダー樹脂としてグリシジルアクリレートポリマー、多官能イソシアネート、及びビスベンゾトリアゾール系紫外線吸収剤を有効成分として含有する硬化性組成物を用いた他は実施例1と同様にして導電性ナノファイバーシートを作成し、立体形状導電性成形品を得た。   In the production of the conductive nanofiber sheet, a thickness of the conductive pattern layer was changed to 5 μm, and a curable composition containing glycidyl acrylate polymer, polyfunctional isocyanate, and bisbenzotriazole-based UV absorber as active ingredients as a binder resin A conductive nanofiber sheet was prepared in the same manner as in Example 1 except that it was used to obtain a three-dimensionally shaped conductive molded product.

この方法によって得られた立体形状導電性成形品も実施例1と同様に導電パターン層および絶縁パターン層は充分な耐熱性や耐摩耗性を有しており、長期に渡って使用しても導電性ナノファイバーが脱落したり破壊されることもなかった。また、成形品曲面でのクラックの発生もなく、層間密着性試験でも剥離はなかった。また、絶縁パターン層の光線透過率は92%であり、ヘイズ値が4%と、光線透過率およびヘイズ値の差がほとんどなかった。   Similarly to Example 1, the three-dimensional shape conductive molded product obtained by this method has sufficient heat resistance and wear resistance, so that even when used for a long time, the conductive pattern layer and the insulating pattern layer are conductive. Nanofibers were not dropped or destroyed. In addition, no cracks occurred on the curved surface of the molded product, and no peeling occurred in the interlayer adhesion test. The insulating pattern layer had a light transmittance of 92%, a haze value of 4%, and there was almost no difference between the light transmittance and the haze value.

導電性ナノファイバーシートの作成において、位置検知パターンを光学的方法により読み取って所望の位置にYAGレーザー照射機の先端を配置し、レーザー照射光により熱を加えて、導電性ナノファイバーの一部を焼き切り、導電パターン層の一部を絶縁パターン層に変化させた他は実施例1と同様にして導電性ナノファイバーシートを作成し、立体形状導電性成形品を得た。   In making the conductive nanofiber sheet, the position detection pattern is read by an optical method, the tip of the YAG laser irradiator is placed at the desired position, heat is applied by the laser irradiation light, and a part of the conductive nanofiber is removed. A conductive nanofiber sheet was prepared in the same manner as in Example 1 except that it was burned out and a part of the conductive pattern layer was changed to the insulating pattern layer to obtain a three-dimensional conductive molded article.

この方法によって得られた立体形状導電性成形品も実施例1と同様に導電パターン層および絶縁パターン層は充分な耐熱性や耐摩耗性を有しており、長期に渡って使用しても導電性ナノファイバーが脱落したり破壊されることもなかった。また、成形品曲面でのクラックの発生もなく、層間密着性試験でも剥離はなかった。また、絶縁パターン層の光線透過率は90%であり、ヘイズ値が3%と、光線透過率およびヘイズ値の差がほとんどなかった。   Similarly to Example 1, the three-dimensional shape conductive molded product obtained by this method has sufficient heat resistance and wear resistance, so that even when used for a long time, the conductive pattern layer and the insulating pattern layer are conductive. Nanofibers were not dropped or destroyed. In addition, no cracks occurred on the curved surface of the molded product, and no peeling occurred in the interlayer adhesion test. The insulating pattern layer had a light transmittance of 90%, a haze value of 3%, and there was almost no difference between the light transmittance and the haze value.

導電性ナノファイバーシートの作成において、半硬化導電パターン層を形成してレーザー照射をせずに導電性ナノファイバーシートとした他は実施例1と同様にして立体形状導電性成形品を得た。そして、得られた立体形状導電性成形品の所望の位置に炭酸ガスレーザー照射機の先端を配置し、レーザー照射光により熱を加えて半硬化導電パターン層のバインダー樹脂を焼き切り、多数の微小ピンホールからなる導電パターン層と狭小溝を有する絶縁パターン層を形成した。   A three-dimensional conductive molded article was obtained in the same manner as in Example 1 except that a semi-cured conductive pattern layer was formed and a conductive nanofiber sheet was formed without laser irradiation in the preparation of the conductive nanofiber sheet. Then, the tip of the carbon dioxide laser irradiator is placed at a desired position of the obtained three-dimensional conductive molded product, and heat is applied by the laser irradiation light to burn out the binder resin of the semi-cured conductive pattern layer, and a number of micro pins A conductive pattern layer made of holes and an insulating pattern layer having narrow grooves were formed.

この方法によって得られた立体形状導電性成形品も実施例1と同様に導電パターン層および絶縁パターン層は充分な耐熱性や耐摩耗性を有しており、長期に渡って使用しても導電性ナノファイバーが脱落したり破壊されることもなかった。また、成形品曲面でのクラックの発生もなく、層間密着性試験でも剥離はなかった。また、絶縁パターン層の光線透過率は91%であり、ヘイズ値が3%と、光線透過率およびヘイズ値の差がほとんどなかった。   Similarly to Example 1, the three-dimensional shape conductive molded product obtained by this method has sufficient heat resistance and wear resistance, so that even when used for a long time, the conductive pattern layer and the insulating pattern layer are conductive. Nanofibers were not dropped or destroyed. In addition, no cracks occurred on the curved surface of the molded product, and no peeling occurred in the interlayer adhesion test. The insulating pattern layer had a light transmittance of 91%, a haze value of 3%, and there was almost no difference between the light transmittance and the haze value.

1 立体形状導電性成形品
2 導電性ナノファイバーシート
3 導電性ナノファイバー
5 微小ピンホール
6 導電パターン層
7 絶縁パターン層
8 成形体
9 狭小溝
10 基体シート
33 樹脂バインダー
40 電離放射線
50 エネルギー線
DESCRIPTION OF SYMBOLS 1 3D shape electroconductive molded article 2 Conductive nanofiber sheet 3 Conductive nanofiber 5 Minute pinhole 6 Conductive pattern layer 7 Insulating pattern layer 8 Molded body 9 Narrow groove 10 Base sheet 33 Resin binder 40 Ionizing radiation 50 Energy beam

Claims (5)

立体形状面を有する成形体と、
少なくとも前記立体形状面の上に形成され、樹脂バインダーに導電性ナノファイバーが分散され、その導電性ナノファイバーを介して導通する導電パターン層と、
前記導電性ナノファイバーのみを断線させることにより前記導電パターン層から絶縁された絶縁パターン層とを、備えた立体形状導電性成形品。
A molded body having a three-dimensional surface;
A conductive pattern layer formed on at least the three-dimensional surface, in which conductive nanofibers are dispersed in a resin binder, and conductive through the conductive nanofibers;
A three-dimensional conductive molded article comprising an insulating pattern layer insulated from the conductive pattern layer by disconnecting only the conductive nanofibers .
前記導電性ナノファイバーは銀ナノワイヤである、請求項1記載の立体形状導電性成形品。 The three-dimensionally shaped conductive molded article according to claim 1, wherein the conductive nanofiber is a silver nanowire . 基体シート上に、樹脂バインダーに導電性ナノファイバーが分散された導電パターン層と、前記導電性ナノファイバーのみを断線させることにより導電パターン層から絶縁された絶縁パターン層とを形成して導電性ナノファイバーシートを作製する工程と、前記導電性ナノファイバーシートを、立体形状面を有する成形体の少なくとも前記立体形状面に接着させる工程とを備えた、立体形状導電性成形品の製造方法 On the base sheet, a conductive pattern layer in which conductive nanofibers are dispersed in a resin binder and an insulating pattern layer insulated from the conductive pattern layer by disconnecting only the conductive nanofibers are formed to form the conductive nanolayer. A method for producing a three-dimensional conductive molded article, comprising: a step of producing a fiber sheet; and a step of adhering the conductive nanofiber sheet to at least the three-dimensional surface of a molded body having a three-dimensional surface . 基体シート上に、樹脂バインダーに導電性ナノファイバーが分散された導電パターン層と、前記導電性ナノファイバーのみを断線させることにより前記導電パターン層から絶縁された絶縁パターン層とが形成された導電性ナノファイバーシートConductivity in which a conductive pattern layer in which conductive nanofibers are dispersed in a resin binder and an insulating pattern layer insulated from the conductive pattern layer by disconnecting only the conductive nanofibers are formed on a base sheet . Nanofiber sheet . 前記導電性ナノファイバーは銀ナノワイヤである請求項4に記載の導電性ナノファイバーシート The conductive nanofiber sheet according to claim 4, wherein the conductive nanofiber is a silver nanowire .
JP2009249529A 2009-10-29 2009-10-29 Three-dimensional shape conductive molded article and its manufacturing method Active JP5567313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009249529A JP5567313B2 (en) 2009-10-29 2009-10-29 Three-dimensional shape conductive molded article and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009249529A JP5567313B2 (en) 2009-10-29 2009-10-29 Three-dimensional shape conductive molded article and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2011096518A JP2011096518A (en) 2011-05-12
JP5567313B2 true JP5567313B2 (en) 2014-08-06

Family

ID=44113229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009249529A Active JP5567313B2 (en) 2009-10-29 2009-10-29 Three-dimensional shape conductive molded article and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5567313B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4773589B1 (en) 2010-06-15 2011-09-14 日本碍子株式会社 Fuel cell
JP5538260B2 (en) * 2011-02-08 2014-07-02 信越ポリマー株式会社 Manufacturing method of conductive pattern forming substrate
JP5646433B2 (en) * 2011-10-31 2014-12-24 日本写真印刷株式会社 Conductive sheet and manufacturing method thereof
US20150064458A1 (en) * 2013-08-28 2015-03-05 Eaton Corporation Functionalizing injection molded parts using nanofibers
JP5750533B2 (en) * 2014-04-28 2015-07-22 信越ポリマー株式会社 Method for manufacturing conductive pattern forming substrate and conductive pattern forming substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4488825B2 (en) * 2004-07-29 2010-06-23 タキロン株式会社 Antistatic resin molding
JP5546763B2 (en) * 2005-08-12 2014-07-09 カンブリオス テクノロジーズ コーポレイション Transparent conductors based on nanowires
JP2007279819A (en) * 2006-04-03 2007-10-25 Sharp Corp Display device with touch panel
JP5431960B2 (en) * 2007-12-07 2014-03-05 大同塗料株式会社 Method for producing carbon nanotube-containing conductor

Also Published As

Publication number Publication date
JP2011096518A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
Nemani et al. Surface modification of polymers: methods and applications
KR101802952B1 (en) Transparent conductor and the Fabrication Method thereof
JP5567313B2 (en) Three-dimensional shape conductive molded article and its manufacturing method
JP6779253B2 (en) Conductive pattern manufacturing method and conductive pattern forming substrate
JP5259368B2 (en) Conductive nanofiber sheet and method for producing the same
JP5223221B2 (en) Transfer decorative sheet, method for producing decorative molded product, and decorative molded product
KR101685069B1 (en) Manufacturing method of patterned flexible transparent electrode
JP2018512302A (en) 3D printing of (oxidized) graphene composites
JP2016502227A (en) Method for producing flexible embedded electrode film using thermal fusion transfer
CN101177237A (en) Nanometer array and method for forming the same
JP5335534B2 (en) Conductive molded product and manufacturing method thereof
JP2010157400A (en) Conductive nanofiber sheet, and manufacturing method thereof
TW201220974A (en) Stencils for high-throughput micron-scale etching of substrates and processes of making and using the same
JP6356453B2 (en) Transparent conductive pattern forming substrate, transparent conductive pattern forming substrate, and method of manufacturing transparent conductive pattern forming substrate
JP6492904B2 (en) Compact
JP2013208749A (en) Method for manufacturing decorative molded body
EP3791247B1 (en) An electrically conductive multilayer film including a coating layer
JP5207958B2 (en) Conductive nanofiber sheet and method for producing the same
JP6059967B2 (en) Manufacturing method of resin molded products
TW201509673A (en) Transparent conductor
JP2015192990A5 (en)
KR101873206B1 (en) Manfacturing method of patterned flexible transparent electrode
KR101932584B1 (en) Structure-Integrated Flexible Transparent Electrode and Method for Manufacturing the Same
KR102234305B1 (en) Metal nanowire embedded transparent electrode having concavoconvex structure integrated on both sides and method for manufacturing the same
JP2016091986A (en) Manufacturing method of base material having transparent conductive film, base material having transparent conductive film, and touch panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140619

R150 Certificate of patent or registration of utility model

Ref document number: 5567313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250