JP2014219652A - Method for manufacturing laminate - Google Patents

Method for manufacturing laminate Download PDF

Info

Publication number
JP2014219652A
JP2014219652A JP2013215611A JP2013215611A JP2014219652A JP 2014219652 A JP2014219652 A JP 2014219652A JP 2013215611 A JP2013215611 A JP 2013215611A JP 2013215611 A JP2013215611 A JP 2013215611A JP 2014219652 A JP2014219652 A JP 2014219652A
Authority
JP
Japan
Prior art keywords
mold
substrate
curable composition
cured
curable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013215611A
Other languages
Japanese (ja)
Inventor
山木 宏
Hiroshi Yamaki
宏 山木
貴子 野口
Takako Noguchi
貴子 野口
栄一 大野
Eiichi Ono
栄一 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2013215611A priority Critical patent/JP2014219652A/en
Publication of JP2014219652A publication Critical patent/JP2014219652A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a product having a fine concavo-convex shape integrated with a substrate with high productivity, by which degradation of transfer accuracy of a molded shape caused by shrinkage of a curable composition is decreased and a fine concavo-convex shape can be molded on a substrate comprising various raw materials including a resin and having various shapes including a curved surface by using a simple molding process and an easily available mold raw material.SOLUTION: A method for manufacturing a laminate of a cured product and a substrate is provided, which includes the steps of: (A) filling a space between a mold that can supply a curing material and a substrate with a curable composition comprising a curable raw material that is cured by contacting the curing material; (B) curing the curable composition by the curing material supplied from the die to obtain a cured product; and (C) releasing the mold from the cured product on the substrate.

Description

本発明は、硬化物と基材との積層体を製造する方法、基材と凝集物との積層体を製造する方法、及びこれらの方法により製造された積層体に関する。   The present invention relates to a method for producing a laminate of a cured product and a substrate, a method for producing a laminate of a substrate and an aggregate, and a laminate produced by these methods.

無機素材からなる微細構造体を基板上に賦形する方法として、回折格子や記録媒体の製造において、ゾルゲル素材などの硬化性組成物と型を用いて、型形状を転写、複製する方法が、古くから知られている(以下の特許文献1、特許文献2参照)。
型を用いて微細構造体を基板上に賦形する方法としては、以下のものが挙げられる。
(1)金属アルコキシド、溶剤、水、及び触媒からなる溶液中で金属アルコキシドの加水分解を進め、加水分解物の溶液を基板へ塗布し、溶媒を除去し重縮合を進めたところで、型を押付け加熱硬化後離型する方法;
(2)型に前記加水分解と縮合を進めた溶液を塗布し、溶剤を除去し硬化後、接着剤を介し基板へ転写する方法;
(3)型に前記加水分解と縮合を進めた溶液を塗布し、ゲル化させ、基板へ押し当て加熱し硬化させ、離型する方法;
(4)柔軟なシート又はフィルム状の型を用い、前記加水分解と縮合を進めた溶液を、型と基材で挟み、加熱し硬化後離型する方法。
As a method of shaping a microstructure made of an inorganic material on a substrate, a method of transferring and replicating a mold shape using a curable composition such as a sol-gel material and a mold in the production of a diffraction grating or a recording medium, It has been known for a long time (see Patent Document 1 and Patent Document 2 below).
Examples of a method for forming a fine structure on a substrate using a mold include the following.
(1) Metal alkoxide, solvent, water, and catalyst are hydrolyzed in a solution consisting of metal alkoxide, the hydrolyzate solution is applied to the substrate, the solvent is removed, and polycondensation is advanced. Method of releasing after heat curing;
(2) A method of applying the hydrolysis and condensation solution to the mold, removing the solvent and curing, and then transferring it to the substrate through an adhesive;
(3) A method in which the solution subjected to hydrolysis and condensation is applied to a mold, gelled, pressed against a substrate, heated and cured, and then released;
(4) A method of using a flexible sheet or film-like mold, sandwiching the hydrolysis and condensation solution between the mold and a substrate, heating and releasing the mold after curing.

また、硬化性組成物としては、ゾルゲル素材以外に、比較的低温で硬化できるポリシラザン、溶剤、及び触媒からなる素材も知られており、以下の特許文献3では、かかる素材が、プラズマディスプレイの隔壁の作製に用いられている。
以下の特許文献4では、ポリシラザンを用い反射防止構造を作製している。
また、以下の特許文献5では、有機ケイ素化合物に高屈折率微粒子を配合してコーティング液を作製している。
一方、無機微粒子の分散液を用い、分散媒を除去しながら型で賦形することは、以下の特許文献6に記載されるように、スリップキャスティングとして古くから知られているが、基板上の被膜形成に応用されることはなかった。近年になって、以下の特許文献7に開示されるように、ポリマー溶液と通気性のあるシリコーン樹脂型を用いて、経皮吸収シートに用いるニードルシートを成形する方法が開発されている。
In addition to the sol-gel material, a material comprising polysilazane, a solvent, and a catalyst that can be cured at a relatively low temperature is also known as the curable composition. In Patent Document 3 below, such a material is a partition wall of a plasma display. It is used for the production of
In Patent Document 4 below, an antireflection structure is produced using polysilazane.
In Patent Document 5 below, a coating liquid is prepared by blending high refractive index fine particles with an organosilicon compound.
On the other hand, using a dispersion of inorganic fine particles and shaping with a mold while removing the dispersion medium has been known for a long time as slip casting, as described in Patent Document 6 below. It was never applied to film formation. In recent years, as disclosed in Patent Document 7 below, a method for forming a needle sheet used for a transdermal absorption sheet using a polymer solution and a breathable silicone resin mold has been developed.

特開昭60−21215号公報JP 60-21215 A 特開平2−83226号公報Japanese Patent Laid-Open No. 2-83226 特許第3660449号公報Japanese Patent No. 3660449 特開2011−28229号公報JP 2011-28229 A 特許第4673664号公報Japanese Patent No. 4673664 特開昭62−104704号公報Japanese Patent Laid-Open No. 62-104704 特開2011−245055号公報JP 2011-245055 A

ゾルゲル素材などの硬化性組成物は、一般に希薄な溶液状であり、硬化過程における体積収縮も大きいことから、収縮を低減させ賦形形状の転写精度を向上させる必要があった。このため前記したように、予め加水分解と縮合を進めておいた縮合物を賦形したり、あるいは硬化性組成物に無機微粒子を添加したりするなどの手法が使われてきた。
しかしながら、一般に、加水分解と縮合を進めた縮合物や無機微粒子添加物は粘度が高く、賦形に大きな圧力が必要になり、型素材として金属やガラスなどの無機素材が必要とされることが多い。また、硬化後も多くの場合、数百〜千数百度程度の高温で焼結して硬化物をガラス状にする必要があり、焼結により形状が大きく収縮し、基材として樹脂が使用できないなどの問題があった。
A curable composition such as a sol-gel material is generally a dilute solution and has a large volume shrinkage in the curing process. Therefore, it is necessary to reduce the shrinkage and improve the transfer accuracy of the shaped shape. For this reason, as described above, methods such as shaping a condensate that has been subjected to hydrolysis and condensation in advance, or adding inorganic fine particles to the curable composition have been used.
However, in general, condensates and inorganic fine particle additives that have undergone hydrolysis and condensation have high viscosity, and a large pressure is required for shaping, and an inorganic material such as metal or glass is required as a mold material. Many. Further, in many cases, it is necessary to sinter at a high temperature of about several hundred to several hundreds of degrees after curing, so that the cured product becomes glassy, and the shape is greatly shrunk by sintering, and the resin cannot be used as a base material. There were problems such as.

一方、従来のゾルゲル素材などの硬化性組成物は、ゾルの中に無機微粒子を分散させるために、予め微粒子表面を金属アルコキシドにより表面修飾し、ゾル中に分散させているが、表面修飾により微粒子の持つ高い屈折率など重要な性質が損なわれることが多く、従来技術ではチタニアを用いても屈折率1.8を超えることは難しかった。
また、チタニアを有機樹脂バインダ中に分散させ被膜を形成しても、チタニアの持つ光触媒作用により、紫外線の当たる環境ではバインダが酸化、分解し、被膜の寿命が短くなり、信頼性が低下するといった問題があった。
On the other hand, curable compositions such as conventional sol-gel materials have fine particle surfaces previously modified with metal alkoxide and dispersed in the sol in order to disperse inorganic fine particles in the sol. Often, important properties such as the high refractive index of the material are impaired, and it has been difficult for the prior art to exceed the refractive index of 1.8 even when titania is used.
In addition, even when titania is dispersed in an organic resin binder to form a coating, the photocatalytic action of titania causes the binder to oxidize and decompose in an environment exposed to ultraviolet rays, shortening the life of the coating and reducing reliability. There was a problem.

これらの問題に鑑み、本発明が解決しようとする課題は、硬化性組成物の収縮に基づく賦形形状の転写精度低下を低減し、簡便な賦形工程と入手が容易な型素材を用いることで、樹脂を含む種々の素材で構成され曲面を含む種々の形状を有する基材上に微細な凹凸形状を賦形することを可能とし、微細な凹凸形状が基材と一体となった製品を、生産性良く製造する方法を提供することである。また、本発明が解決しようとする課題は、硬化性組成物の収縮に基づく賦形形状の転写精度低下を低減しながら、最小限の修飾又は表面修飾のない微粒子が高充填された硬化物が、基材上に形成された積層体を製造する方法を提供することでもある。   In view of these problems, the problem to be solved by the present invention is to reduce a decrease in the transfer accuracy of a shaped shape based on the shrinkage of the curable composition, and to use a mold material that is easy to obtain and easy to obtain. It is possible to form a fine uneven shape on a substrate composed of various materials including a resin and have various shapes including a curved surface, and a product in which the fine uneven shape is integrated with the substrate. It is to provide a method for manufacturing with good productivity. In addition, the problem to be solved by the present invention is that a cured product that is highly filled with fine particles without a minimum modification or surface modification while reducing a decrease in transfer accuracy of a shaped shape based on shrinkage of the curable composition. It is also providing the method of manufacturing the laminated body formed on the base material.

本発明者らは、かかる課題を解決すべく、鋭意検討し実験を重ねた結果、型を構成する素材と硬化性組成物の組成を特定の組み合わせとすることで、硬化性組成物を型表面から順次硬化させ、硬化収縮に基づく賦形形状の転写精度低下を低減できることを見出し、完成するに至った。また、型内で硬化性組成物が硬化しつつ型形状が転写される工程に着目し、微粒子同士が特定の距離以下に近づくと凝集し固化すること、型を構成する素材と硬化性組成物の組成を特定の組み合わせとすることで、硬化性組成物を型表面から順次硬化させ、硬化収縮に基づく賦形形状の転写精度低下を低減できることを見出し、本発明を完成するに至った。
すなわち、本発明は以下のとおりのものである。
As a result of intensive investigations and repeated experiments, the present inventors have determined that the curable composition can be removed from the surface of the mold by combining the material constituting the mold and the curable composition in a specific combination. It was cured sequentially, and it was found that it was possible to reduce a decrease in the transfer accuracy of the shaped shape based on curing shrinkage. Also, paying attention to the process in which the mold shape is transferred while the curable composition is cured in the mold, it aggregates and solidifies when the fine particles are below a specific distance, and the material constituting the mold and the curable composition It was found that by making the composition in a specific combination, the curable composition was sequentially cured from the mold surface, and the transfer accuracy of the shaped shape based on curing shrinkage could be reduced, and the present invention was completed.
That is, the present invention is as follows.

[1]以下の工程:
(A)硬化素材と接触することで硬化する硬化性原料を含む硬化性組成物を、該硬化素材を供給することができる型と、基材との間の空間に充填する工程、
(B)該型から供給される該硬化素材により、該硬化性組成物を硬化させて硬化物を得る工程、及び
(C)該型を、該基材上の該硬化物から剥離する工程、
を含む、硬化物と基材との積層体の製造方法。
[1] The following steps:
(A) a step of filling a space between a mold capable of supplying the curable material and a substrate with a curable composition containing a curable raw material that is cured by contact with the curable material;
(B) a step of obtaining a cured product by curing the curable composition with the curing material supplied from the mold; and (C) a step of peeling the mold from the cured product on the substrate.
The manufacturing method of the laminated body of hardened | cured material and a base material containing this.

[2]前記型が、表面に平均ピッチ10nm〜0.1mm、高さ/ピッチ比が0.1〜5の微細凹凸構造を有する、前記[1]に記載の方法。   [2] The method according to [1], wherein the mold has a fine concavo-convex structure having an average pitch of 10 nm to 0.1 mm and a height / pitch ratio of 0.1 to 5 on the surface.

[3]前記硬化素材が水であり、かつ、前記硬化性原料が金属アルコキシドである、前記[1]又は[2]に記載の方法。   [3] The method according to [1] or [2], wherein the curable material is water and the curable raw material is a metal alkoxide.

[4]前記型の水の透過量が5×10−5g・m−2・s−1以上である及び/又は前記型の大気平衡における含水量が0.5質量%以上20質量%以下である、前記[3]に記載の方法。 [4] The water permeation amount of the mold is 5 × 10 −5 g · m −2 · s −1 or more and / or the water content in the atmospheric equilibrium of the mold is 0.5 mass% or more and 20 mass% or less. The method according to [3], wherein

[5]前記[1]〜[4]のいずれかに記載の方法で製造された硬化物と基材との積層体。   [5] A laminate of a cured product and a substrate produced by the method according to any one of [1] to [4].

[6]以下の工程:
(A’)硬化素材と接触することで硬化する硬化性原料中に微粒子が分散した硬化性組成物を、該硬化素材を供給することができる型と、基材との間の空間に充填する工程、
(B’)該型から供給される該硬化素材により、該硬化性組成物を硬化させて硬化物を得る工程、及び
(C’)該型を、該基材上の該硬化物から剥離する工程、
を含む、硬化物と基材との積層体の製造方法。
[6] The following steps:
(A ′) Filling the space between the mold capable of supplying the curable material and the substrate with the curable composition in which the fine particles are dispersed in the curable raw material that is cured by contact with the curable material. Process,
(B ′) a step of obtaining a cured product by curing the curable composition with the cured material supplied from the mold, and (C ′) peeling the mold from the cured product on the substrate. Process,
The manufacturing method of the laminated body of hardened | cured material and a base material containing this.

[7]前記硬化性組成物が、前記微粒子を分散させるための溶媒をさらに含む、前記[6]に記載の方法。   [7] The method according to [6], wherein the curable composition further comprises a solvent for dispersing the fine particles.

[8]前記型が、前記溶媒を吸収することができる、前記[7]に記載の方法。   [8] The method according to [7], wherein the mold can absorb the solvent.

[9]前記型の、前記溶媒の透過量が1×10−3g・m−2・s−1以上である、前記[8]に記載の方法。 [9] The method according to [8] above, wherein the permeation amount of the solvent of the mold is 1 × 10 −3 g · m −2 · s −1 or more.

[10]前記型が、表面に平均ピッチ10nm〜0.1mm、高さ/ピッチ比が0.1〜5の微細凹凸構造を有する、前記[6]〜[9]のいずれかに記載の方法。   [10] The method according to any one of [6] to [9], wherein the mold has a fine uneven structure having an average pitch of 10 nm to 0.1 mm and a height / pitch ratio of 0.1 to 5 on the surface. .

[11]前記微粒子の平均粒径が100nm以下である、前記[6]〜[10]のいずれかに記載の方法。   [11] The method according to any one of [6] to [10], wherein the average particle size of the fine particles is 100 nm or less.

[12]前記硬化素材が水であり、かつ、前記硬化性原料が金属アルコキシドである、前記[6]〜[11]のいずれかに記載の方法。   [12] The method according to any one of [6] to [11], wherein the curable material is water and the curable raw material is a metal alkoxide.

[13]前記型の、水の透過量が5×10−5g・m−2・s−1以上である、前記[12]に記載の方法。 [13] The method according to [12], wherein the mold has a water permeation amount of 5 × 10 −5 g · m −2 · s −1 or more.

[14]前記型の大気平衡における含水量が0.5重量%以上20重量%以下である、前記[12]又は[13]に記載の方法。   [14] The method according to [12] or [13], wherein the moisture content in the atmospheric equilibrium of the mold is 0.5% by weight or more and 20% by weight or less.

[15]前記[6]〜[14]のいずれかに記載の方法で製造された硬化物と基材との積層体。   [15] A laminate of a cured product and a base material produced by the method according to any one of [6] to [14].

[16]前記硬化物の屈折率が1.75〜2.20である、前記[15]に記載の積層体。   [16] The laminate according to [15], wherein the cured product has a refractive index of 1.75 to 2.20.

[17]前記硬化物の屈折率が1.20〜1.40である、前記[15]に記載の積層体。   [17] The laminate according to [15], wherein the cured product has a refractive index of 1.20 to 1.40.

[18]以下の工程:
(A’’)微粒子が溶媒中に分散した分散液を、該溶媒を吸収することができる型と、基材との間の空間に充填する工程、
(B’’)該型が該溶媒を吸収することにより、該分散液中の該微粒子を凝集させて凝集物を得る工程、及び
(C’’)該型を、該基材上の該凝集物から剥離する工程、
を含む、基材と凝集物との積層体の製造方法。
[18] The following steps:
(A ″) a step of filling a dispersion in which fine particles are dispersed in a solvent into a space between a mold capable of absorbing the solvent and a base material;
(B '') the mold absorbs the solvent to agglomerate the fine particles in the dispersion to obtain an agglomerate; and (C '') the agglomerate on the substrate. A process of peeling from the object,
The manufacturing method of the laminated body of a base material and an aggregate containing this.

[19](D)(C’’)工程で得られた基材上の凝集物を、焼結して構造を固定する工程、
をさらに含む、前記[18]に記載の方法。
[19] A step of sintering the aggregate on the substrate obtained in the steps (D) and (C ″) to fix the structure,
The method according to [18], further comprising:

[20]前記微粒子の表面が、該微粒子よりも融点の低い材料でコーティングされている、前記[18]又は[19]に記載の方法。   [20] The method according to [18] or [19], wherein the surface of the fine particles is coated with a material having a melting point lower than that of the fine particles.

[21]前記[18]〜[20]のいずれかに記載の方法で製造された積層体。   [21] A laminate produced by the method according to any one of [18] to [20].

[22]以下の工程:
(A’’’)含有する溶媒の量を低減することで硬化する硬化性組成物を、該溶媒を吸収することができる型と、基材との間の空間に充填する工程、
(B’’’)該型に該溶媒を吸収することにより、該硬化性組成物を硬化させて硬化物を得る工程、及び
(C’’’)該型を、該基材上の該硬化物から剥離する工程、
を含む、硬化物と基材との積層体の製造方法。
[22] The following steps:
(A ′ ″) a step of filling a space between a mold capable of absorbing the solvent and a substrate with a curable composition that is cured by reducing the amount of the solvent contained;
(B ′ ″) a step of absorbing the solvent into the mold to cure the curable composition to obtain a cured product; and (C ′ ″) the mold on the substrate. A process of peeling from the object,
The manufacturing method of the laminated body of hardened | cured material and a base material containing this.

[23]前記硬化性組成物に微粒子が分散した、前記[22]に記載の方法。   [23] The method according to [22] above, wherein fine particles are dispersed in the curable composition.

[24]前記型の、前記溶媒の透過量が1×10−3g・m−2・s−1以上である、前記[22]又は[23]に記載の方法。 [24] The method according to [22] or [23], wherein the permeation amount of the solvent of the mold is 1 × 10 −3 g · m −2 · s −1 or more.

[25]前記型が、表面に平均ピッチ10nm〜0.1mm、高さ/ピッチ比が0.1〜5の微細凹凸構造を有する、前記[22]〜[24]のいずれかに記載の方法。   [25] The method according to any one of [22] to [24], wherein the mold has a fine concavo-convex structure having an average pitch of 10 nm to 0.1 mm and a height / pitch ratio of 0.1 to 5 on the surface. .

[26]前記[21]〜[25]のいずれかに記載の方法で製造された硬化物と基材との積層体。   [26] A laminate of a cured product and a substrate produced by the method according to any one of [21] to [25].

本発明の製造方法によれば、樹脂を含む種々の素材で構成され、曲面を含む種々の形状を有する基材表面上に、微細な凹凸形状を高い転写精度で賦形することが可能となる。また、硬化性組成物の収縮に基づく賦形形状の転写精度低下を低減しながら、最小限の修飾又は表面修飾のない微粒子が高充填された硬化物が、基材上に形成された積層体を製造することができる。   According to the production method of the present invention, it is possible to form a fine uneven shape with high transfer accuracy on a substrate surface composed of various materials including a resin and having various shapes including a curved surface. . In addition, a laminate in which a cured product that is highly filled with fine particles without minimal modification or surface modification is formed on a base material while reducing a decrease in transfer accuracy of a shaped shape based on shrinkage of the curable composition Can be manufactured.

微細形状を有する硬化物の表面反射率を示すグラフである。It is a graph which shows the surface reflectance of the hardened | cured material which has a fine shape. ガラス表面に賦形したモスアイ構造体の電子顕微鏡写真である。It is an electron micrograph of the moth-eye structure formed on the glass surface. 本発明の、基材の表面に微細形状を有する硬化物を付与する方法の工程を説明する概略図である。It is the schematic explaining the process of the method of providing the hardened | cured material which has a fine shape on the surface of a base material of this invention.

以下、本発明の一実施の形態(以下、「実施の形態」と略記する。)について、詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
本実施の形態の第一の実施形態に係る積層体の製造方法は、以下の工程:
(A)硬化素材と接触することで硬化する硬化性原料を含む硬化性組成物を、該硬化素材を供給することができる型と、基材との間の空間に充填する工程、
(B)該型から供給される該硬化素材により、該硬化性組成物を硬化させて硬化物を得る工程、及び
(C)該型を、該基材上の該硬化物から剥離する工程、
を含む、硬化物と基材との積層体の製造方法である。
Hereinafter, an embodiment of the present invention (hereinafter abbreviated as “embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
The manufacturing method of the laminated body which concerns on 1st embodiment of this Embodiment is the following processes:
(A) a step of filling a space between a mold capable of supplying the curable material and a substrate with a curable composition containing a curable raw material that is cured by contact with the curable material;
(B) a step of obtaining a cured product by curing the curable composition with the curing material supplied from the mold; and (C) a step of peeling the mold from the cured product on the substrate.
Is a method for producing a laminate of a cured product and a substrate.

本実施の形態の第二の実施形態に係る積層体の製造方法は、以下の工程:
(A’)硬化素材と接触することで硬化する硬化性原料中に微粒子が分散した硬化性組成物を、該硬化素材を供給することができる型と、基材との間の空間に充填する工程、
(B’)該型から供給される該硬化素材により、該硬化性組成物を硬化させて硬化物を得る工程、及び
(C’)該型を、該基材上の該硬化物から剥離する工程、
を含む、硬化物と基材との積層体の製造方法である。
The manufacturing method of the laminated body which concerns on 2nd embodiment of this Embodiment is the following processes:
(A ′) Filling the space between the mold capable of supplying the curable material and the substrate with the curable composition in which the fine particles are dispersed in the curable raw material that is cured by contact with the curable material. Process,
(B ′) a step of obtaining a cured product by curing the curable composition with the cured material supplied from the mold, and (C ′) peeling the mold from the cured product on the substrate. Process,
Is a method for producing a laminate of a cured product and a substrate.

本実施の形態の第三の実施形態に係る積層体の製造方法は、以下の工程:
(A’’)微粒子が溶媒中に分散した分散液を、該溶媒を吸収することができる型と、基材との間の空間に充填する工程、
(B’’)該型が該溶媒を吸収することにより、該分散液中の該微粒子を凝集させて凝集物を得る工程、及び
(C’’)該型を、該基材上の該凝集物から剥離する工程、
を含む、基材と凝集物との積層体の製造方法である。
The manufacturing method of the laminated body according to the third embodiment of the present embodiment includes the following steps:
(A ″) a step of filling a dispersion in which fine particles are dispersed in a solvent into a space between a mold capable of absorbing the solvent and a base material;
(B '') the mold absorbs the solvent to agglomerate the fine particles in the dispersion to obtain an agglomerate; and (C '') the agglomerate on the substrate. A process of peeling from the object,
It is a manufacturing method of the laminated body of a base material and an aggregate containing.

そして、本実施の形態の第四の実施形態に係る積層体の製造方法は、以下の工程:
(A’’’)含有する溶媒の量を低減することで硬化する硬化性組成物を、該溶媒を吸収することができる型と、基材との間の空間に充填する工程、
(B’’’)該型に該溶媒を吸収することにより、該硬化性組成物を硬化させて硬化物を得る工程、及び
(C’’’)該型を、該基材上の該硬化物から剥離する工程、
を含む、硬化物と基材との積層体の製造方法である。
And the manufacturing method of the laminated body which concerns on 4th embodiment of this Embodiment is the following processes:
(A ′ ″) a step of filling a space between a mold capable of absorbing the solvent and a substrate with a curable composition that is cured by reducing the amount of the solvent contained;
(B ′ ″) a step of absorbing the solvent into the mold to cure the curable composition to obtain a cured product; and (C ′ ″) the mold on the substrate. A process of peeling from the object,
Is a method for producing a laminate of a cured product and a substrate.

本実施の形態の第一の実施形態に係る積層体の製造方法においては、硬化素材が供給されることにより硬化することができる硬化性組成物を、該硬化素材を供給することができる型と、基材の間に充填し、硬化性組成物に硬化素材を型から拡散供給することにより硬化性組成物を型から離型できるまで硬化させ、型を剥離することで、基材表面に硬化物を付与することを特徴とする。   In the method for manufacturing a laminate according to the first embodiment of the present embodiment, a curable composition that can be cured by supplying a curing material, a mold that can supply the curing material, and The curable composition is filled between the substrates, and the curable composition is hardened until it can be released from the mold by diffusing and supplying the curable composition from the mold to the curable composition. It is characterized by giving a thing.

本実施の形態の第二の実施形態に係る積層体の製造方法においては、表面に最小限の修飾をした又は表面修飾のない微粒子を、該微粒子のバインダとなる硬化性原料中に分散させ、この微粒子分散液の硬化性原料を硬化させながら型に沿った形状に賦形することで、微粒子を高充填した緻密な被膜を形成することができる。   In the method for manufacturing a laminate according to the second embodiment of the present embodiment, fine particles with a minimal modification on the surface or without surface modification are dispersed in a curable raw material serving as a binder for the fine particles, By curing the curable raw material of this fine particle dispersion into a shape along the mold, a dense film highly filled with fine particles can be formed.

本実施の形態の第三の実施形態に係る積層体の製造方法においては、表面に最小限の修飾をした又は表面修飾のない微粒子を、溶媒中に分散させ、この微粒子分散液の溶媒を型に吸収させながら型に沿った形状に凝集させて賦形することで、微粒子が高密度に凝集した被膜を形成することができる。   In the method for producing a laminate according to the third embodiment of the present embodiment, fine particles with a minimal modification on the surface or without surface modification are dispersed in a solvent, and the solvent of the fine particle dispersion is used as a mold. It is possible to form a film in which fine particles are aggregated at a high density by agglomerating into a shape along the mold while being absorbed.

本実施の形態の第四の実施形態に係る積層体の製造方法においては、含有する溶媒が低減することにより硬化することができる硬化性組成物を、該溶媒を吸収することができる型と、基材の間に充填し、硬化性組成物に含まれる溶媒を型に吸収させることにより硬化性組成物を型から離型できるまで硬化させ、型を剥離することで、基材表面に硬化物を付与することを特徴とする。   In the method for producing a laminate according to the fourth embodiment of the present embodiment, a curable composition that can be cured by reducing the solvent contained therein, a mold that can absorb the solvent, Filled between the base materials, the solvent contained in the curable composition is absorbed in the mold, the curable composition is cured until it can be released from the mold, and the mold is peeled off, and the cured product is formed on the surface of the base material. It is characterized by giving.

[微粒子]
本実施の形態に用いる微粒子は、粒子間距離が特定値以下になることで凝集する特性を持つことが必要であり、粒径が100nm以下の微粒子を使うことが好ましい。これは、粒径が100nm以下になると、溶媒に分散した場合でも溶媒分子の吸着による粒子間の反発作用が減少し、また、同じ粒子含有量でも粒子間距離が近くなり凝集しやすくなるためである。特に光学用途に用いる場合は、被膜の透明性が求められることが多く、粒径としては50nm以下が好ましく、より好ましくは30nm以下、さらに好ましくは10nm以下である。
[Fine particles]
The fine particles used in this embodiment are required to have a property of aggregating when the interparticle distance becomes a specific value or less, and it is preferable to use fine particles having a particle size of 100 nm or less. This is because when the particle size is 100 nm or less, the repulsion between particles due to adsorption of solvent molecules is reduced even when dispersed in a solvent, and the distance between particles becomes close to each other and the particles tend to aggregate even with the same particle content. is there. In particular, when used for optical applications, transparency of the coating is often required, and the particle size is preferably 50 nm or less, more preferably 30 nm or less, and even more preferably 10 nm or less.

微粒子の素材としては特に制限はなく、主に無機物の金属、金属酸化物などであり、金属としては金、白金、パラジウム、銀、銅、ニッケル、クロム、チタン及びこれらの合金などが挙げられ、金属酸化物としてはマグネシウム(Mg)、アルミニウム(Al)、亜鉛(Zn)、珪素(Si)、チタン(Ti)、バリウム(Ba)、ジルコニウム(Zr)、スズ(Sn)、タングステン(W)、イットリウム(Y)、インジウム(In)、銅(Cu)などの金属の酸化物及びこれらの混合物が挙げられる。微粒子は均質な構造だけでなく、2種以上の素材が濃度勾配をもって機能する構造や、粒子の安定性や保護のためにコーティングを有するものでも構わない。また、微粒子表面は金属アルコキシドとの結合を容易にするために、水酸基など金属アルコキシドと反応しやすい官能基を有することが好ましい。   There are no particular restrictions on the material of the fine particles, mainly inorganic metals, metal oxides, etc., examples of metals include gold, platinum, palladium, silver, copper, nickel, chromium, titanium, and alloys thereof. Examples of metal oxides include magnesium (Mg), aluminum (Al), zinc (Zn), silicon (Si), titanium (Ti), barium (Ba), zirconium (Zr), tin (Sn), tungsten (W), Examples thereof include oxides of metals such as yttrium (Y), indium (In), copper (Cu), and mixtures thereof. The fine particles may not only have a homogeneous structure, but may have a structure in which two or more kinds of materials function with a concentration gradient, or may have a coating for the stability and protection of the particles. The surface of the fine particles preferably has a functional group that easily reacts with the metal alkoxide, such as a hydroxyl group, in order to facilitate bonding with the metal alkoxide.

[微粒子分散液、及び溶媒]
微粒子分散液は、上記の微粒子を溶媒に分散したものであり、分散媒(溶媒)としては微粒子が安定に分散するものであればよく、水以外の溶媒としてはメタノール、エタノール、イソプロパノールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類のほか各種エステル類などが挙げられ、後述する型素材を溶解や分解せず、型素材に適当量吸収され型素材内を拡散・透過するものの中から適宜選択する。
微粒子の濃度としては、微粒子が安定して分散できる濃度の中から選択され、通常は粒子や分散媒の種類によるが、数〜60質量%程度である。
下記の硬化性組成物と混合して用いる場合は、基本的に水以外の分散媒を用いる。
[Fine particle dispersion and solvent]
The fine particle dispersion is obtained by dispersing the above fine particles in a solvent, and the dispersion medium (solvent) may be any material as long as the fine particles are stably dispersed, and the solvent other than water is an alcohol such as methanol, ethanol, isopropanol or the like. In addition to ketones such as acetone and methyl ethyl ketone, various esters are listed, and the appropriate amount is absorbed from the mold material and diffused and permeated through the mold material without being dissolved or decomposed. To do.
The concentration of the fine particles is selected from concentrations at which the fine particles can be stably dispersed, and is usually about several to 60% by mass depending on the kind of the particles and the dispersion medium.
When mixed with the following curable composition, a dispersion medium other than water is basically used.

[硬化性組成物]
本実施の形態に用いる硬化性組成物は、硬化性原料、例えば、金属アルコキシド、及び硬化触媒を含むもので、上記の微粒子を含んでもよい。硬化物は、無機素材を含む硬化性組成物が硬化して固体状になったものであり、硬化反応が完全に進行せず一部に有機官能基が残っていてもよい。所望の期間、硬化反応が顕著に進まず安定に存在できる程度であれば、硬化性組成物中に水を含んでもよい。
[Curable composition]
The curable composition used in the present embodiment includes a curable raw material such as a metal alkoxide and a curing catalyst, and may include the above-described fine particles. The cured product is obtained by curing a curable composition containing an inorganic material into a solid state, and the curing reaction may not proceed completely, and an organic functional group may partially remain. Water may be included in the curable composition as long as the curing reaction does not proceed significantly for a desired period and can exist stably.

[硬化性原料]
本発明においては、硬化性原料は、硬化素材により硬化することができる材料である限り、特に限定されないが、例えば、金属アルコキシドであることができる。
[Curing material]
In the present invention, the curable raw material is not particularly limited as long as it is a material that can be cured by a curing material, and can be, for example, a metal alkoxide.

[金属アルコキシド]
金属アルコキシドの金属としては、マグネシウム(Mg)、アルミニウム(Al)、亜鉛(Zn)、珪素(Si)、チタン(Ti)、バリウム(Ba)、ジルコニウム(Zr)などが挙げられ、とりわけ、珪素(Si)とアルミニウム(Al)は、比較的容易に無機素材を形成することができるため、好ましい。
金属アルコキシドは、一般式MR (ORn−mで表され、式中、Mは酸化数nの金属、mは0〜(n−1)の整数を表す。ORは、メトキシ基、エトキシ基、プロポキシ基のようなアルコキシ基、ヒドロキシ基、フェノキシ基、アセトキシ基などが挙げられ、Rとしては、フェニル基又はその誘導体、その他のアリール基、水素、メチル基、エチル基等のアルキル基、ビニル基のような付加反応性を持つ基、エポキシ基のような開環反応性を持つ基、アルコキシ基等が挙げられる。アルコキシ基の中では、メトキシ基、エトキシ基など鎖の短いもののほうが、反応性の高さや収縮量の低さ、また固化時に発生するアルコールの型素材への浸透、拡散性の点から好ましく、安定性を考慮しながら適宜選定することができ、例えば、珪素のアルコキシド(アルコシシシラン)としてテトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)は好適といえる。
珪素のアルコキシドの場合、シランカップリング剤として種々の特性基を持つものが知られており、これらを混合することにより、得られる表面に種々の特性を付与することができ、例えば、Rとしてフッ化アルキル基を導入することで撥水、防汚性などを付与できる。また、複数の金属アルコキシドを混合することは、反応性を高めるために好ましい。金属アルコキシドの2〜10量体程度の低縮合物も、粘度が許容できる場合は使用可能であり、硬化性組成物の固形分濃度を増すために有効である。
[Metal alkoxide]
Examples of the metal of the metal alkoxide include magnesium (Mg), aluminum (Al), zinc (Zn), silicon (Si), titanium (Ti), barium (Ba), zirconium (Zr) and the like. Si) and aluminum (Al) are preferable because inorganic materials can be formed relatively easily.
The metal alkoxide is represented by the general formula MR 2 m (OR 1 ) nm , where M is a metal having an oxidation number n and m is an integer of 0 to (n−1). OR 1 includes an alkoxy group such as a methoxy group, an ethoxy group, and a propoxy group, a hydroxy group, a phenoxy group, an acetoxy group, and the like, and R 2 includes a phenyl group or a derivative thereof, other aryl groups, hydrogen, methyl, and the like. Group, an alkyl group such as ethyl group, a group having addition reactivity such as vinyl group, a group having ring-opening reactivity such as epoxy group, and an alkoxy group. Among alkoxy groups, those with short chains, such as methoxy groups and ethoxy groups, are preferred and stable because of their high reactivity and low shrinkage, as well as the penetration of alcohol generated during solidification into the mold material and diffusibility. For example, tetramethoxysilane (TMOS) and tetraethoxysilane (TEOS) are preferable as the silicon alkoxide (alkoxysilane).
In the case of silicon alkoxides, those having various characteristic groups are known as silane coupling agents. By mixing these, various characteristics can be imparted to the resulting surface, for example, as R 2 By introducing a fluorinated alkyl group, water repellency and antifouling properties can be imparted. Moreover, mixing a plurality of metal alkoxides is preferable in order to increase the reactivity. A low condensate of about 2 to 10 mer of metal alkoxide can be used if the viscosity is acceptable, and is effective for increasing the solid content concentration of the curable composition.

[硬化素材]
本明細書中、「硬化素材」とは、前記した硬化性組成物又は硬化原料を硬化させる材料であり、硬化性原料が金属アルコキシドの場合には、水であることができる。
[Curing material]
In the present specification, the “curing material” is a material for curing the above-described curable composition or curing material. When the curable material is a metal alkoxide, it can be water.

[硬化触媒]
金属アルコキシドの硬化触媒としては、よく知られる塩酸、アンモニアなどの酸又は塩基の他、過塩素酸アンモニウム、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、酢酸ナトリウムに代表される過塩素酸塩、塩酸塩、硫酸塩、カルボン酸塩などの酸、金属塩、亜鉛、コバルト、スズ、チタン、アルミなどの有機金属化合物などが用いられる。なかでも、スズ又は有機スズのジカルボン酸エステルは硬化速度、硬化反応率ともに高く好ましい。具体的には、ビスネオデカン酸錫、ジオクチル錫ジアセテートが挙げられる。
[Curing catalyst]
As a curing catalyst for metal alkoxide, in addition to the well-known acids or bases such as hydrochloric acid and ammonia, perchlorates, hydrochlorides, sulfates represented by ammonium perchlorate, ammonium chloride, ammonium sulfate, ammonium nitrate, sodium acetate Acids such as carboxylates, metal salts, and organometallic compounds such as zinc, cobalt, tin, titanium, and aluminum are used. Among these, tin or organotin dicarboxylic acid ester is preferable because of its high curing rate and curing reaction rate. Specific examples include tin bisneodecanoate and dioctyltin diacetate.

[溶媒などの添加]
微粒子分散液に含まれる分散媒以外にも、被膜厚みや転写形状を調整するために、微粒子や硬化性組成物の濃度調整用として溶媒を加えることができる。溶媒の種類としては微粒子の分散に悪影響を与えず、硬化性組成物と相溶する、型に吸収されるなどの条件から選択される。微粒子の分散媒が使用できる場合は、同じ分散媒を使用すると微粒子の分散状態が安定になることが多く好ましい。
なお、硬化性組成物に含まれる水の量は、調合から保管、硬化性組成物の塗布や、型と基材との間に充填するまでの工程において、含有水による自己硬化が実質的に問題とならない量以下であることが必要である。
硬化性組成物に微粒子を含む場合など、溶媒を適量加えることにより、硬化に十分な量の水が硬化性組成物に含まれていても自己硬化せず、長期間安定な硬化性組成物を得ることができる。この場合、型により溶媒を吸収し、溶媒量を低減することで硬化性組成物を硬化させることができる(前記第四の実施形態参照)。
硬化性組成物は、基材表面に対する濡れ性が良いことが好ましく、硬化後に基材と強固に接着することが必要であり、濡れ性や接着性を改良するために界面活性剤や水を含まない溶媒を加えることもできる。
[Addition of solvent, etc.]
In addition to the dispersion medium contained in the fine particle dispersion, a solvent can be added for adjusting the concentration of the fine particles and the curable composition in order to adjust the film thickness and the transfer shape. The type of the solvent is selected from the conditions such as being compatible with the curable composition without being adversely affected by the dispersion of the fine particles and being absorbed into the mold. When a fine particle dispersion medium can be used, it is often preferable to use the same dispersion medium because the dispersion state of the fine particles becomes stable.
In addition, the amount of water contained in the curable composition is such that self-curing by the contained water is substantially in the process from preparation to storage, application of the curable composition, and filling between the mold and the substrate. It must be below the amount that does not matter.
By adding an appropriate amount of solvent, such as when the curable composition contains fine particles, even if a sufficient amount of water is contained in the curable composition, the curable composition does not self-cure and is stable for a long time. Can be obtained. In this case, the curable composition can be cured by absorbing the solvent with the mold and reducing the amount of the solvent (see the fourth embodiment).
The curable composition preferably has good wettability with respect to the substrate surface, and needs to be firmly adhered to the substrate after curing, and contains a surfactant and water to improve wettability and adhesion. It is also possible to add a non-solvent.

[型]
本実施の形態における型は、型表面に接触した硬化性組成物に硬化素材を供給し、型表面から硬化性組成物を順次硬化させる、あるいは同時に、硬化性組成物の濃度や安定性の調整用の溶媒を硬化性組成物から吸収し、型表面から硬化性組成物を硬化させる機能、及び/又は微粒子分散液中の無機微粒子を分散させるための溶媒(分散媒)を微粒子分散液から吸収して微粒子を凝集させる、あるいは同時に、型表面に接触した硬化性組成物に硬化素材を供給し、型表面から硬化性組成物を順次硬化させる機能を有する。
具体的には、第一の実施形態に関しては、型表面に接触した硬化性組成物に硬化素材を供給し、型表面から硬化性組成物を順次硬化させる機能を有する。第二の実施形態に関しては、型表面に接触した微粒子分散液中の無機微粒子を分散させるための溶媒(分散媒)を微粒子分散液から吸収して微粒子を凝集させ、同時に、型表面に接触した硬化性組成物に硬化素材を供給し、型表面から硬化性組成物を順次硬化させる機能を有する。第三の実施形態に関しては、型表面に接触した微粒子分散液中の無機微粒子を分散させるための溶媒(分散媒)を微粒子分散液から吸収して微粒子を凝集させる機能を有する。第四の実施形態に関しては、型表面に接触した硬化性組成物中の溶媒を硬化性組成物から吸収して、型表面から硬化性組成物を順次硬化させる機能を有する。
このため、型は、分散媒を適度に吸収、透過する、もしくは同時に、適度な量の硬化素材を保有し及び/又は透過させる性質を有することが必要である。
型として、分散媒を吸収、透過するために必要となる溶媒の透過量は、数分〜数時間で微粒子を凝集させるために、通常1×10−3g・m−2・s−1以上が好ましく、大きい方が微粒子を早く凝集、固化できることから、より好ましくは5×10−3g・m−2・s−1以上である。
[Type]
The mold in the present embodiment supplies a curable material to the curable composition in contact with the mold surface and sequentially cures the curable composition from the mold surface, or at the same time, adjusts the concentration and stability of the curable composition. Absorbs the solvent for curable composition from the curable composition and cures the curable composition from the mold surface and / or absorbs the solvent (dispersion medium) for dispersing the inorganic fine particles in the fine particle dispersion from the fine particle dispersion. Then, the fine particles are aggregated, or at the same time, a curing material is supplied to the curable composition in contact with the mold surface, and the curable composition is sequentially cured from the mold surface.
Specifically, the first embodiment has a function of supplying a curable material to the curable composition in contact with the mold surface and sequentially curing the curable composition from the mold surface. Regarding the second embodiment, the solvent (dispersion medium) for dispersing the inorganic fine particles in the fine particle dispersion in contact with the mold surface is absorbed from the fine particle dispersion to aggregate the fine particles, and at the same time, contacted with the mold surface. It has a function of supplying a curable material to the curable composition and sequentially curing the curable composition from the mold surface. The third embodiment has a function of aggregating fine particles by absorbing from the fine particle dispersion a solvent (dispersion medium) for dispersing inorganic fine particles in the fine particle dispersion in contact with the mold surface. The fourth embodiment has a function of absorbing the solvent in the curable composition in contact with the mold surface from the curable composition and sequentially curing the curable composition from the mold surface.
For this reason, the mold needs to have a property of appropriately absorbing and transmitting the dispersion medium, or simultaneously holding and / or transmitting an appropriate amount of the curing material.
As a mold, the permeation amount of the solvent necessary for absorbing and permeating the dispersion medium is usually 1 × 10 −3 g · m −2 · s −1 or more in order to aggregate the fine particles in several minutes to several hours. It is more preferable that the larger particle size is 5 × 10 −3 g · m −2 · s −1 or more because fine particles can be aggregated and solidified faster.

また、硬化性組成物を硬化させるために型から供給する硬化素材の量としては、所望の時間内に離型できる程度に硬化できるものであればよく、硬化性組成物の硬化性、硬化時の温度や湿度などの環境条件、転写する微細形状、基材と硬化性組成物との接着性から適宜選定される。一般的な被膜の厚みと硬化時間から、硬化素材の透過量は、通常5×10−5g・m−2・s−1以上が好ましく、大きい方が早く固化できることから、より好ましくは1×10−4g・m−2・s−1以上である。硬化性組成物の厚みが薄い場合は、型の内部に含有する硬化素材だけで硬化性組成物を十分硬化できることもあり、型素材の硬化素材透過性だけでなく、型素材が硬化素材を保有できる量の観点から選択することもできる。この場合、型素材の含水量は、大気平衡において含水量が0.5質量%以上であることが好ましく、より好ましくは1.0質量%以上である。上限は吸水により素材が膨潤して剛性が大きく低下し、型が変形しない限りにおいて限定されないが、一般的には、20質量%以下、好ましくは10質量%以下である。
溶媒及び硬化素材の透過量は、型を形成する素材の透過性と型の厚みにより決まることから、型素材の透過性に応じて型の厚みを選ぶことで、種々の組み合わせが可能となる。
硬化性原料に金属アルコキシドを使用した場合、金属アルコキシドの縮合により生成するアルコールを含む溶媒により溶解や分解しないことが必要で、分子構造として適度な架橋点を持つことが好ましい。具体的にはPDMS(シリコーンゴム)やポリウレタン樹脂が挙げられ、耐薬品性が高いだけでなく、溶媒を吸収、透過しやすく、透湿性も大きいことから、硬化に適した素材といえる。但し、素材の種類によっては硬化物と接着しやすく離型が難しい場合もあり、表面改質が必要となることもある。
Further, the amount of the curing material supplied from the mold for curing the curable composition may be anything that can be cured to such an extent that it can be released within a desired time. The temperature is selected appropriately from the environmental conditions such as temperature and humidity, the fine shape to be transferred, and the adhesion between the substrate and the curable composition. From the thickness of a general film and the curing time, the amount of permeation of the cured material is usually preferably 5 × 10 −5 g · m −2 · s −1 or more, and more preferably 1 × because it can be solidified faster. 10 −4 g · m −2 · s −1 or more. When the thickness of the curable composition is thin, the curable composition may be sufficiently cured using only the curable material contained in the mold, and not only the curable material permeability of the mold material but also the mold material possesses the curable material. It can also be selected in terms of the amount that can be achieved. In this case, the moisture content of the mold material is preferably 0.5% by mass or more, more preferably 1.0% by mass or more in atmospheric equilibrium. The upper limit is not limited as long as the material swells due to water absorption, the rigidity is greatly reduced, and the mold is not deformed.
Since the permeation amounts of the solvent and the curing material are determined by the permeability of the material forming the mold and the thickness of the mold, various combinations are possible by selecting the thickness of the mold according to the permeability of the mold material.
When a metal alkoxide is used as the curable raw material, it must be dissolved or not decomposed by a solvent containing an alcohol generated by condensation of the metal alkoxide, and preferably has an appropriate crosslinking point as a molecular structure. Specific examples include PDMS (silicone rubber) and polyurethane resin, which are not only high in chemical resistance, but also easily absorb and permeate solvents and have high moisture permeability, and thus can be said to be materials suitable for curing. However, depending on the type of material, it may be easily adhered to the cured product and may be difficult to release, and surface modification may be required.

また、硬化素材としての水を供給する型素材としては、一般的には親水性の素材が挙げられ、親水性の素材としては、TAC(トリアセチルセルロース)などのセルロースを原料とするアセチルセルロース系素材、ナイロン6、ナイロン66などのポリアミド系素材、PMMAやアクリル系紫外線硬化樹脂などのアクリル系樹脂、ポリウレタン樹脂、エチレン酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、ポリビニルアルコールなどがある。また、ポリエステル(PET)も使用しうる場合がある。
具体的には、これらの素材の中から、溶媒や水に対する耐性、透過性や厚みに基づく作業性を考慮して、材質と厚みを選定する。
In addition, as a mold material for supplying water as a curing material, a hydrophilic material is generally mentioned, and as a hydrophilic material, an acetylcellulose-based material using cellulose such as TAC (triacetylcellulose) as a raw material. Materials include polyamide materials such as nylon 6 and nylon 66, acrylic resins such as PMMA and acrylic UV curable resins, polyurethane resins, ethylene vinyl acetate copolymers, ethylene-vinyl alcohol copolymers, and polyvinyl alcohol. Polyester (PET) may also be used.
Specifically, the material and thickness are selected from these materials in consideration of resistance to solvents and water, workability based on permeability and thickness.

型表面は平滑であっても微細形状を有していてもよい。型表面に微細形状を形成する方法としては、金属やガラス、シリコン、樹脂などの基板表面に微細形状を予め形成し、その微細形状の上にガラス転移温度や融点以上に加熱した型素材を押し付け加圧下で冷却する熱転写法、微細形状の上に型素材の溶液を塗り溶媒を除去することで転写する方法、微細形状の上に紫外線硬化樹脂、熱硬化性樹脂などの反応性樹脂を塗り紫外線や熱で樹脂を反応硬化させて転写する方法などが挙げられる。この中で、反応性樹脂を用いる方法は、連続処理が容易で、シリンダ状の型を用いて、長尺のフィルム素材の上に連続的に微細形状を転写でき、長尺で連続した型を作製することができる。型表面の微細形状は、硬化性組成物中の分散媒を型で吸収することにより生じる寸法変化を予め考慮して作製することが必要である。
型の表面には必要に応じ、表面の溶媒や水の供給が著しく阻害されない程度に、フッ素やシリコーン系の離型処理をしてもよく、素材自体に離型成分を含ませてもよい。
The mold surface may be smooth or have a fine shape. As a method of forming a fine shape on the mold surface, a fine shape is formed in advance on the surface of a substrate such as metal, glass, silicon, or resin, and a mold material heated to a glass transition temperature or a melting point or higher is pressed on the fine shape. A thermal transfer method that cools under pressure, a method of transferring a mold material solution on a fine shape and transferring the solvent by removing the solvent, an ultraviolet curable resin, a thermosetting resin, or other reactive resin on the fine shape. For example, the resin may be cured by reaction curing with heat. Among them, the method using a reactive resin is easy to continuously process, and can use a cylindrical mold to continuously transfer a fine shape onto a long film material. Can be produced. The fine shape of the mold surface needs to be prepared in consideration of the dimensional change caused by absorbing the dispersion medium in the curable composition with the mold.
If necessary, the surface of the mold may be subjected to a fluorine or silicone mold release treatment to such an extent that the supply of solvent or water on the surface is not significantly hindered, or a mold release component may be included in the material itself.

[硬化・賦形工程]
賦形工程では、微粒子分散液や硬化性組成物(以下、転写液体ともいう。)を、上記の型と基材の間に充填し、転写液体を賦形しながら、微粒子を含有する場合は微粒子を凝集させ、硬化性組成物を硬化させる。本実施の形態では、転写液体の凝集、収縮に基づく賦形形状の転写精度低下を低減するために、型表面から微粒子の分散媒や溶媒を吸収し、硬化性組成物を順次硬化させることが重要である。これは、微粒子分散液の凝集や硬化性組成物の硬化に伴う体積収縮分を、基板面側の未凝集や未硬化の液体より供給しながら、転写すべき型の微細形状部分を最初に硬化することで、転写形状の精度を高めるためである。この凝集、硬化順序を実現する意味からは、基材としては水を吸収しにくいガラスやポリエチレンテレフタレート(PET)、環状オレフィンポリマ(COP)、ポリスチレン(PS)などの素材が好ましいが、転写する形状や要求される形状精度に応じ、適宜、素材を選択することができる。
[Curing and shaping process]
In the shaping step, when a fine particle dispersion or a curable composition (hereinafter also referred to as a transfer liquid) is filled between the mold and the substrate and the fine particles are contained while shaping the transfer liquid. The fine particles are aggregated to cure the curable composition. In the present embodiment, in order to reduce a decrease in the transfer accuracy of the shaped shape based on aggregation and shrinkage of the transfer liquid, the dispersion medium and solvent of fine particles are absorbed from the mold surface, and the curable composition is sequentially cured. is important. This is because the volumetric shrinkage that accompanies the aggregation of the fine particle dispersion and the curing of the curable composition is supplied from the unagglomerated or uncured liquid on the substrate surface side, and the fine shape part of the mold to be transferred is first cured. This is to improve the accuracy of the transfer shape. From the viewpoint of realizing this aggregation and curing order, the base material is preferably glass, polyethylene terephthalate (PET), cyclic olefin polymer (COP), polystyrene (PS), or the like that hardly absorbs water. The material can be appropriately selected according to the required shape accuracy.

転写液体を、微細形状を有する型と基材の間に充填する方法としては、微細形状を有する型、基材、又は両方に転写液体を塗り、間に空気が入らないように合わせる方法や、微細形状を有する型又は基材の端部に転写液体を置き、端部からゴムローラなどで順次加圧することで、転写液体を、微細形状を有する型と基材の間に充填する方法などが挙げられる。この時、微細形状を有する型と基材の間に挟まれる転写液体の量としては、微細形状が転写でき凝集や硬化時の収縮を補える程度の最少量とすることが好ましく、量が多すぎると硬化後の皮膜全体の収縮量が大きくなりクラックを生じやすくなる。また、硬化性組成物を、微細形状を有する型の表面から順次に硬化させるためには、充填工程の雰囲気は乾燥雰囲気、具体的には露点−20℃以下の乾燥雰囲気であることが好ましく、露点−30℃以下の乾燥雰囲気であることがより好ましく、露点−40℃以下の乾燥雰囲気であることがさらに好ましい。
転写液体を、微細形状を有する型と基材の間に充填した後に、室温で放置してもよいが、40〜80℃程度に加熱すると、凝集や硬化反応が促進されることから、離型までの時間を短縮することができる。離型の時機は、離型後に硬化性組成物が形を保持できること、基材と凝集物や硬化物の接着力が離型力以上であること、離型力が十分に小さいことを満たす条件から、適宜、選択する。また、転写液体を充填後の初期は、型が分散媒により膨潤して寸法が大きくなり離型力が大きくなることから、分散媒が型表面から型内に拡散して、型が収縮したのちに離型することが好ましい。図3に、基材の表面に微細形状を有する硬化物を付与する方法の工程の一例を概略図で示す。
As a method of filling a transfer liquid between a mold having a fine shape and a substrate, a method of applying a transfer liquid to a mold having a fine shape, a substrate, or both, and adjusting so that air does not enter between them, Examples include a method of filling the transfer liquid between the mold having the fine shape and the substrate by placing the transfer liquid on the end of the mold having the fine shape or the substrate, and sequentially pressing from the end with a rubber roller or the like. It is done. At this time, the amount of the transfer liquid sandwiched between the mold having a fine shape and the substrate is preferably a minimum amount that can transfer the fine shape and compensate for shrinkage during aggregation and curing, and the amount is too large. And the shrinkage amount of the whole film after curing becomes large, and cracks are likely to occur. Further, in order to sequentially cure the curable composition from the surface of the mold having a fine shape, the atmosphere in the filling step is preferably a dry atmosphere, specifically a dry atmosphere having a dew point of −20 ° C. or less. A dry atmosphere having a dew point of −30 ° C. or lower is more preferable, and a dry atmosphere having a dew point of −40 ° C. or lower is more preferable.
The transfer liquid may be allowed to stand at room temperature after being filled between the mold having a fine shape and the substrate. However, when heated to about 40 to 80 ° C., the aggregation and curing reaction are promoted. Can be shortened. The time for mold release is that the curable composition can maintain its shape after mold release, the condition that the adhesive force between the substrate and the agglomerate or cured product is more than the mold release force, and the mold release force is sufficiently small To select as appropriate. Also, in the initial stage after filling with the transfer liquid, the mold swells with the dispersion medium, increasing its size and increasing the release force. Therefore, after the dispersion medium diffuses from the mold surface into the mold, the mold shrinks. It is preferable to release the mold. In FIG. 3, an example of the process of the method of providing the hardened | cured material which has a fine shape on the surface of a base material is shown with a schematic diagram.

硬化性組成物を使用する場合は、型(以下、型フィルムともいう。)を使用時まで剥がさずに保護フィルムとして兼用することもできる。
賦形は、型を剥離できる程度にまで硬化性組成物を硬化した後、型を剥離し、空気中など外部雰囲気の水分により硬化性組成物を十分に硬化させることが、型を再使用するまでの時間を短縮し、硬化性組成物の硬化条件を選択するために好ましい。硬化性組成物の硬化においては、基材に悪影響のない範囲で、十分な水分、温度を与え、雰囲気を撹拌することが好ましく、場合によってはスチームを吹き付けることもできる。
基材が曲面形状である場合、円筒側面のように型フィルムが追従できる場合は、上記の方法で平面と同様に賦形が可能であるが、球面状のように平面状フィルムが追従できない曲面の場合は、型フィルムを熱成形などで基材曲面に合わせて予め成形する方法や、伸縮性のある素材で型フィルムを構成し、型フィルムを引っ張ることで基材曲面に沿わせる方法などで賦形をすることができる。
When using the curable composition, the mold (hereinafter, also referred to as a mold film) can be used as a protective film without being peeled off until use.
For shaping, after the curable composition is cured to such an extent that the mold can be peeled off, the mold is peeled off and the curable composition is sufficiently cured by moisture in an external atmosphere such as in the air. This is preferable in order to shorten the time until the selection and the curing conditions of the curable composition. In the curing of the curable composition, it is preferable to give sufficient moisture and temperature within a range that does not adversely affect the substrate and to stir the atmosphere, and in some cases, steam can be sprayed.
When the substrate has a curved shape, if the mold film can follow the cylindrical side, it can be shaped in the same way as a flat surface using the above method, but the curved surface cannot be followed by a flat film, such as a spherical shape. In this case, the mold film is pre-molded by thermoforming to match the curved surface of the substrate, or the mold film is made of a stretchable material, and the mold film is pulled along the curved surface of the substrate. It can be shaped.

[硬化物の表面形状]
本実施の形態では、型から転写された硬化物の表面は平滑であっても、微細形状(微細凹凸形状)を有していてもよい。転写される微細形状は、転写方法に起因する寸法の制限は特にないが、型形状の再現性、転写に要する時間などから、平均ピッチ10nm〜0.1mm以下で高さ/ピッチ比が0.1〜5の形状が好ましく、規則性の有無によらない。微細形状は断面の形状が矩形、台形、サイン波などで構成され、基本的には型が抜ける形状であることが好ましいが、PDMSなど柔軟な型を使用する場合は、型や転写物が破壊しない程度の変形で抜けるアンダーカット形状を含んでもよい。
具体的な微細形状は所望の用途に応じて適宜選択することができる。例えば、ワイヤグリッド偏光板基材用途には、ピッチ100〜150nm、高さが80〜150nm程度、ライン幅がピッチの0.1〜0.4倍のラインアンドスペース構造、反射防止用途には、モスアイ構造と呼ばれるピッチ100〜300nm程度で高さ/ピッチ比が0.8〜1.5程度の円錐〜円錐台形状が密に並んだ構造、LED、OLEDの光取出し用途には、ピッチ0.8〜2μm、高さ/ピッチ比が0.8〜1.5程度の円錐台形状が密に並んだ構造、熱光発電用の赤外線エミッタ用途には、開口幅と深さが放出赤外線の波長の約1/2の穴が密に並んだ構造、光の拡散や集光の用途には、ピッチ1〜20μm、高さ/ピッチ比が0.2〜2程度のレンズ、プリズムなどの各種凹凸構造、細菌、細胞や微生物の付着・繁殖性制御用途には、ピッチ0.1〜20μm、高さ/ピッチ比が0.2〜2程度の円柱、円錐台やラインアンドスペースなどの各種凹凸構造が挙げられる。
また、型表面に微細形状を形成せず平滑にすることで、基材表面に平滑な無機被膜を付与することもでき、硬質で緻密な被膜による耐傷性、バリア性の向上だけでなく、広い範囲で屈折率を変えることにより光学的な損失防止などが可能となり、型を使うことで部分的に膜厚を変えることも容易となる。
[Surface shape of cured product]
In this Embodiment, the surface of the hardened | cured material transcribe | transferred from the type | mold may be smooth, or may have a fine shape (fine uneven | corrugated shape). The fine shape to be transferred is not particularly limited in size due to the transfer method, but from the reproducibility of the mold shape and the time required for transfer, the average pitch is 10 nm to 0.1 mm or less and the height / pitch ratio is 0. The shape of 1-5 is preferable and does not depend on the presence or absence of regularity. The fine shape has a cross-sectional shape of a rectangle, trapezoid, sine wave, etc., and is preferably a shape that allows the mold to be removed. However, when a flexible mold such as PDMS is used, the mold or the transcript is destroyed. It may include an undercut shape that can be removed with a degree of deformation.
A specific fine shape can be appropriately selected according to a desired application. For example, for a wire grid polarizer base material application, a pitch of 100 to 150 nm, a height of about 80 to 150 nm, a line and space structure having a line width of 0.1 to 0.4 times the pitch, and an antireflection application, For light extraction applications of LEDs and OLEDs having a pitch of about 100 to 300 nm and a cone-to-conical shape having a height / pitch ratio of about 0.8 to 1.5, which is called a moth-eye structure, the pitch is 0. A structure in which frustoconical shapes with a height of 8 to 2 μm and a height / pitch ratio of about 0.8 to 1.5 are densely arranged. For infrared emitters for thermophotovoltaic power generation, the aperture width and depth are the wavelengths of emitted infrared rays. For the purpose of light diffusion and condensing, a lens with a pitch of about 1 to 20 μm and a height / pitch ratio of about 0.2 to 2, various irregularities such as prisms Structure, bacteria, cell and microorganism adhesion / reproduction control Applications include various concavo-convex structures such as a cylinder having a pitch of 0.1 to 20 μm and a height / pitch ratio of about 0.2 to 2, a truncated cone and a line and space.
In addition, by smoothing without forming a fine shape on the mold surface, it is possible to give a smooth inorganic coating on the surface of the substrate, and not only improve scratch resistance and barrier properties by a hard and dense coating, but also wide By changing the refractive index within the range, it is possible to prevent optical loss and the like, and it becomes easy to partially change the film thickness by using a mold.

[硬化物の屈折率]
本発明で得られる硬化物は、最小限の修飾又は表面修飾のない無機微粒子の分散液から型により溶媒などを吸収することで無機微粒子を高い密度で充填でき、また場合によっては無機微粒子どうしの電気的な反発により粒子間距離を大きく保ったまま賦形できることから、非常に広い範囲の屈折率とすることができる。
高い屈折率を得るためには、高い屈折率を有するチタニアなどの微粒子の分散液を用いて、そのまま型により賦形して焼結するか、微粒子どうしをつなぎ合わせることのできる最小限の金属アルコキシドなどを加えて型内で賦形、固化することで、硬化物中のチタニア量を最大限に高めた被膜を得ることができる。後者の方法は、微粒子の表面修飾と結合固化を同時に実施する方法ともいえる。チタニアを使用した場合、被膜の屈折率は約1.5から約2.2程度まで調整可能で、特に1.75以上、さらには1.8以上の屈折率を得るために、本発明の方法は好適である。
低い屈折率を得るためには、微粒子どうしの電気的な反発により粒子間距離を大きく保った安定状態を硬化性組成物内で形成し、そのまま型で賦形固化する。シリカなどの低い屈折率を有する微粒子は金属アルコキシドなどを適量加えると、微小な凝集体を形成し凝集体どうしが空間を保ったまま固化することで低い屈折率の被膜が得られ、被膜の屈折率は約1.45から約1.20程度まで調整可能であり、特に1.40以下、さらには1.35以下の屈折率を得るために、本発明の方法は好適である。
[Refractive index of cured product]
The cured product obtained according to the present invention can be filled with inorganic fine particles at a high density by absorbing a solvent or the like from a dispersion of inorganic fine particles without minimal modification or surface modification, depending on the type. Since repulsion can be performed while maintaining a large interparticle distance by electrical repulsion, a very wide range of refractive index can be obtained.
In order to obtain a high refractive index, the minimum metal alkoxide that can be shaped and sintered by a mold as it is using a dispersion of fine particles such as titania having a high refractive index, or fine particles can be connected together By adding such as above, shaping and solidifying in the mold, it is possible to obtain a film in which the amount of titania in the cured product is maximized. The latter method can also be said to be a method of simultaneously performing surface modification and bonding solidification of fine particles. When titania is used, the refractive index of the coating can be adjusted from about 1.5 to about 2.2, and in order to obtain a refractive index of 1.75 or more, more preferably 1.8 or more, the method of the present invention. Is preferred.
In order to obtain a low refractive index, a stable state in which the distance between the particles is kept large by electrical repulsion between the fine particles is formed in the curable composition, and the solid is shaped and solidified as it is. When an appropriate amount of a metal alkoxide or the like is added to a fine particle having a low refractive index such as silica, a fine aggregate is formed, and the aggregate is solidified while maintaining a space, thereby obtaining a low refractive index coating film. The index can be adjusted from about 1.45 to about 1.20, and the method of the present invention is suitable for obtaining a refractive index of 1.40 or less, more preferably 1.35 or less.

以下、本発明について、実施例に基づき具体的に説明するが、これらは説明のために記述されるものであって、本発明の範囲が下記実施例に限定されるものではない。
[型]
型を作製するためのPDMS(シリコーンゴム)材料として、旭化成ワッカーシリコーン社製ELASTOSIL−RT601、及び紫外線硬化性材料として、三官能以上のアクリレート化合物単量体であるトリメチロールプロパントリアクリレート33部、N−ビニル化合物単量体としてN−ビニル−2−ピロリドン33部、その他の単量体として1,9−ノナンジオールジアクリレート33部、シリコーンジアクリレート0.5部、光重合開始剤として2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシド2部を混合して、紫外線硬化性樹脂組成物Aを作製した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, these are described for description and the range of this invention is not limited to the following Example.
[Type]
As a PDMS (silicone rubber) material for producing the mold, ELASTOSIL-RT601 manufactured by Asahi Kasei Wacker Silicone Co., and as an ultraviolet curable material, 33 parts of trimethylolpropane triacrylate which is a trifunctional or higher acrylate compound monomer, N -33 parts of N-vinyl-2-pyrrolidone as the vinyl compound monomer, 33 parts of 1,9-nonanediol diacrylate as the other monomer, 0.5 part of silicone diacrylate, 2.4 as the photopolymerization initiator 2,6-trimethylbenzoyldiphenylphosphine oxide 2 parts was mixed to prepare an ultraviolet curable resin composition A.

[PDMS型の作製]
2液型のPDMSは2液を混合した後、平らなバット内に置いた下記サブミクロン突起形状、及び下記ミクロン突起形状を有するNi型の突起形状の上に約1mmの厚みで流し、真空チャンバ内で減圧して液状のPDMSを3分間脱泡した後に、大気圧下室温3時間で硬化した。PDMSの硬化後、型から剥離し、150℃の熱風乾燥機内で30分間、後硬化させPDMS型(以下、サブミクロン突起形状PDMS型、ミクロン突起形状PDMS型とも記す。)とした。それぞれの突起形状は以下のとおりであり、Ni製の型は突起形状を有していた。
・サブミクロン突起形状:直径700nm、高さ700nmで先の丸い円錐台状突起を平面上に最密充填で並べたもの
・ミクロン突起形状:直径9μm、高さ5.5μmの半球状凸レンズ形状を平面上に細密充填で並べたもの。
また、作製したPDMS型は、23℃、50%RHの環境下に保存した。
上記のNi製の型以外に、平滑な被膜を作る型として、平滑なガラス板を型として使用し、上記の方法で平滑PDMS型を作製した。
[Production of PDMS type]
After mixing the two liquids, the two-part PDMS is flowed at a thickness of about 1 mm onto the following sub-micron projection shape placed in a flat bat and the Ni-type projection shape having the following micron projection shape, The liquid PDMS was degassed for 3 minutes under reduced pressure, and then cured under atmospheric pressure at room temperature for 3 hours. After the PDMS was cured, it was peeled off from the mold and post-cured in a hot air dryer at 150 ° C. for 30 minutes to obtain a PDMS type (hereinafter also referred to as a submicron protrusion-shaped PDMS type or a micron protrusion-shaped PDMS type). Each projection shape was as follows, and the Ni mold had a projection shape.
・ Submicron protrusion shape: 700 nm in diameter and 700 nm in height and rounded truncated cone-shaped protrusions arranged in a close-packed manner on a flat surface ・ Micron protrusion shape: hemispherical convex lens shape with a diameter of 9 μm and a height of 5.5 μm Lined up with fine packing on a flat surface.
The produced PDMS mold was stored in an environment of 23 ° C. and 50% RH.
In addition to the Ni mold, a smooth glass plate was used as a mold for forming a smooth film, and a smooth PDMS mold was produced by the above method.

[TAC型の作製]
基材として厚み80μmのTAC(トリアセチルセルロースフィルム)を用い、この表面に前記紫外線硬化性樹脂組成物Aを0.8μmとなるよう塗布し、離型処理を施した下記モスアイ形状を有する上記Ni製の型を押付け、前記トリアセチルセルロースフィルム側から可視光を含む紫外光を露光(3J/cm)して硬化させた後、離型し、モスアイ形状を反転転写したTAC型(以下、モスアイ形状TAC型とも記す。)とした。PDMSと同様に平滑なガラス板を型として、平滑TAC型も作製した。モスアイ形状の詳細は次のとおり。
・モスアイ形状:ピッチ280nm、高さ300nmで先の丸い円錐台状突起を平面上に最密充填で並べたもの。
[Production of TAC type]
Using the TAC (triacetyl cellulose film) having a thickness of 80 μm as a base material, the above-mentioned Ni having the following moth-eye shape was applied to the surface so that the ultraviolet curable resin composition A was 0.8 μm and subjected to a release treatment. A TAC mold (hereinafter referred to as a moth eye) in which a mold made by pressing, ultraviolet light containing visible light from the side of the triacetyl cellulose film was exposed (3 J / cm 2 ) and cured, then released, and the moth eye shape was transferred in reverse. Also referred to as shape TAC type.). A smooth TAC type was also produced using a smooth glass plate as a mold in the same manner as PDMS. The details of the moth-eye shape are as follows.
-Moss eye shape: A round cone-shaped projection with a pitch of 280 nm and a height of 300 nm arranged on a plane in a close-packed manner.

[PET型の作製]
型の材料として用いるフィルムを、厚み16μm及び250μmのPETフィルムへ変更し、TAC型と同様にモスアイ形状を転写して、厚み16μm及び250μmのPET型(以下、モスアイ形状PET型とも記す。)を作製した。
[Preparation of PET mold]
The film used as a mold material is changed to a PET film having a thickness of 16 μm and 250 μm, and a moth-eye shape is transferred in the same manner as the TAC type, and a PET type having a thickness of 16 μm and 250 μm (hereinafter also referred to as a moth-eye shape PET type). Produced.

[型の水、溶剤(溶媒)透過量の測定]
作製した型について、水及び溶剤(溶媒)透過量を測定した。測定は金属製の蓋のついたガラス密封容器の蓋部分に10cmの孔をあけ、透過性を測定する型で孔を覆い、容器内に室温のメタノール(MeOH)又は水を入れ、蓋を下向きにして型の容器内側が液体で覆われた状態で室温下に放置し、容器全体の質量量減少速度を測定し透過量を求めた。なお、水の透過量測定においては、容器の周囲を露点−40℃の室温の乾燥空気とした。各種の型のメタノール及び水の透過量を以下の表1に示す。
[Measurement of mold water and solvent (solvent) permeation amount]
About the produced type | mold, water and a solvent (solvent) permeation | transmission amount were measured. For measurement, open a 10 cm 2 hole in the lid of a glass sealed container with a metal lid, cover the hole with a mold for measuring permeability, put room temperature methanol (MeOH) or water in the container, and cover the lid. The mold was placed in the downward direction and the container was covered with liquid at room temperature, and the mass reduction rate of the entire container was measured to determine the amount of permeation. In the measurement of water permeation, the surroundings of the container were dry air at room temperature with a dew point of −40 ° C. The permeation amounts of various types of methanol and water are shown in Table 1 below.

[微粒子分散液]
微粒子分散液には、チタニア分散液として堺化学製チタニア分散液SRD−M(メタノール中にチタニア粒子を15質量%含有、D50粒子径約9nm)及びSRD−K(メチルエチルケトン中にチタニア粒子を15質量%含有、D50粒子径約14nm)、ジルコニア分散液として日産化学工業製ジルコニア分散液ナノユースOZ−S30M(メタノール中に酸化スズでコートしたジルコニア粒子を30質量%含有、散乱法粒子径約30nm)、シリカ分散液として日産化学工業製メタノールシリカゾル(メタノール中にシリカ粒子を30質量%含有、BET法粒子径10〜20nm)を用いた。
[Fine particle dispersion]
In the fine particle dispersion, titania dispersion SRD-M (containing 15% by mass of titania particles in methanol, D50 particle diameter of about 9 nm) and SRD-K (15% of titania particles in methyl ethyl ketone) as titania dispersions. Zirconia dispersion nanouse OZ-S30M manufactured by Nissan Chemical Industries as a zirconia dispersion (containing 30% by mass of zirconia particles coated with tin oxide in methanol, scattering method particle diameter of about 30 nm), Methanol silica sol (manufactured by Nissan Chemical Industries, containing 30% by mass of silica particles and having a BET particle diameter of 10 to 20 nm) was used as the silica dispersion.

[硬化性組成物原料]
金属アルコキシド化合物としてテトラメトキシシラン(TMOS)又はテトラエトキシシラン(TEOS)、硬化触媒としてビスネオデカン酸錫又はジオクチル錫ジアセテートを用いた。
[Curing composition raw material]
Tetramethoxysilane (TMOS) or tetraethoxysilane (TEOS) was used as the metal alkoxide compound, and tin bisneodecanoate or dioctyltin diacetate was used as the curing catalyst.

[微細構造の賦形]
微細構造を賦形する基板として、硼珪酸ガラス板(150×150×0.7mm)の表面を紫外線オゾン洗浄したガラス基板を用いた。
[Shaping the microstructure]
As a substrate for shaping the microstructure, a glass substrate obtained by cleaning the surface of a borosilicate glass plate (150 × 150 × 0.7 mm) with ultraviolet ozone was used.

[実施例1]
ガラス基板の端部にチタニアのメタノール分散液(TiO/MeOH)を基板端部の辺に沿い直線状に滴下し、サブミクロン突起形状PDMS型の構造体が形成された面の一端を、チタニア分散液を供給した場所へ押付け、PDMS型の背面よりロールで押し、チタニア分散液を型と基板の間へ押し広げ基板へ密着させ、室温で60分放置後にPDMS型を剥離しガラス基板上へ構造体を作製した。
また、平滑PDMS型を用いてガラス基板上に平滑な被膜も作製した。同様にジルコニア分散液についても、モスアイ形状TAC型を用いて基板上へ構造体及び平滑な被膜を作製した。
転写した構造体は、エタノールをつけた紙製クリーンワイパでこすると溶解した。SEMを用いた観察で、構造体はいずれの型を用いた場合においても型形状の約90%の高さで転写していた。平滑な被膜についてエリプソメータを用いて屈折率を測定したところ、波長633nmの光に対する屈折率は、チタニアで2.02、ジルコニアで1.67であった。また、基板上の構造体を約1400℃のガストーチ火炎で約2分間加熱したところ、ガラス基板は熱で変形したものの構造体は形状を保持し、エタノールをつけた紙製クリーンワイパでこすっても、構造体が剥離や溶解することはなかった。加熱後の平滑被膜の波長633nmの光に対する屈折率は、チタニアで2.10、ジルコニアで1.70であった。
[Example 1]
A titania methanol dispersion (TiO 2 / MeOH) was dropped linearly along the edge of the substrate on the edge of the glass substrate, and one end of the surface on which the submicron protrusion-shaped PDMS structure was formed was titania. Pressed to the location where the dispersion was supplied, pressed with a roll from the back of the PDMS mold, spread the titania dispersion between the mold and the substrate, adhered to the substrate, allowed to stand at room temperature for 60 minutes, peeled off the PDMS mold and onto the glass substrate A structure was produced.
A smooth film was also produced on a glass substrate using a smooth PDMS mold. Similarly, for the zirconia dispersion, a structure and a smooth coating were produced on the substrate using a moth-eye TAC type.
The transferred structure was dissolved by rubbing with a paper clean wiper with ethanol. In the observation using the SEM, the structure was transferred at a height of about 90% of the mold shape regardless of which mold was used. When the refractive index of the smooth film was measured using an ellipsometer, the refractive index for light having a wavelength of 633 nm was 2.02 for titania and 1.67 for zirconia. In addition, when the structure on the substrate was heated with a gas torch flame of about 1400 ° C. for about 2 minutes, the glass substrate was deformed by heat, but the structure retained its shape and could be rubbed with a paper clean wiper with ethanol attached. The structure did not peel or dissolve. The refractive index of the smooth coating after heating with respect to light having a wavelength of 633 nm was 2.10 for titania and 1.70 for zirconia.

[実施例2]
チタニアのメタノール分散液8部にTMOS2部と硬化触媒ジオクチル錫ジアセテート0.1部の混合液を撹拌しながら滴下し、硬化性組成物Aを作製した。硬化性組成物Aは、チタニア分散液と同様にわずかに白濁しているもののほぼ透明であった。実施例1と同様の方法でミクロン突起形状PDMS型、サブミクロン突起形状PDMS型、モスアイ形状TAC型、及び平滑PDMS型と硬化性組成物Aを用いてガラス基板上へ構造体及び平滑な被膜を作製し、湿度50%の室温環境で10日間放置した。
転写した構造体はエタノールをつけた紙製クリーンワイパでこすっても、剥離や溶解することはなく、SEMを用いた観察で、構造体はいずれの型を用いた場合においても型形状の約90%の高さで転写していた。平滑な被膜は透明であり、エリプソメータを用いて屈折率を測定したところ、波長633nmの光に対する屈折率は、1.91であった。
[Example 2]
A mixture of 2 parts of TMOS and 0.1 part of the curing catalyst dioctyltin diacetate was added dropwise to 8 parts of a titania methanol dispersion with stirring to prepare a curable composition A. Although the curable composition A was slightly cloudy like the titania dispersion, it was almost transparent. Using the same method as in Example 1, a structure and a smooth coating are formed on a glass substrate using a micron-projection-shaped PDMS type, a submicron-projection-shaped PDMS type, a moth-eye-shaped TAC type, and a smooth PDMS type and a curable composition A. It was prepared and left for 10 days in a room temperature environment with a humidity of 50%.
Even if the transferred structure is rubbed with a paper clean wiper with ethanol, it does not peel off or dissolve, and the structure is approximately 90 times the shape of the mold when using any mold. It was transferred at a height of%. The smooth coating was transparent, and the refractive index was measured using an ellipsometer. The refractive index for light having a wavelength of 633 nm was 1.91.

[実施例3]
微粒子分散液にジルコニア分散液を使用した以外は、実施例2と同様の方法でモスアイ形状TAC型を使用して被膜を作製した。
転写した構造体はエタノールをつけた紙製クリーンワイパでこすっても、剥離や溶解することはなく、SEMを用いた観察で、構造体は型形状の約90%の高さで転写していた。平滑な被膜は透明であり、エリプソメータを用いて屈折率を測定したところ、波長633nmの光に対する屈折率は、1.65であった。
[Example 3]
A film was prepared using a moth-eye TAC type in the same manner as in Example 2 except that a zirconia dispersion was used as the fine particle dispersion.
Even if the transferred structure was rubbed with a paper clean wiper with ethanol, it did not peel off or dissolve, and the structure was transferred at a height of about 90% of the mold shape by observation using SEM. . The smooth coating was transparent, and the refractive index was measured using an ellipsometer. The refractive index for light having a wavelength of 633 nm was 1.65.

[実施例4]
シリカ分散液4部にTEOS6部とメタノール1部の混合液を穏やかに撹拌しながら滴下し、1時間室温で放置して、混合液aを作製した。ジルコニア分散液1部とメタノール1部の混合液に混合液aを激しく撹拌しながら滴下し混合した後、さらに硬化触媒ビスネオデカン酸錫0.1部を激しく撹拌しながら滴下し混合し、硬化性組成物Bを作製した。実施例2と同様の方法でモスアイ形状TAC型と硬化性組成物Bを用いてガラス基板上へ構造体及び平滑な被膜を作製し、湿度50%の室温環境で10日間放置した。
転写した構造体はエタノールをつけた紙製クリーンワイパでこすっても、剥離や溶解することはなく、SEMを用いた観察で、構造体は型形状の約90%の高さで転写していた。平滑な被膜は透明であり、エリプソメータを用いて屈折率を測定したところ、波長633nmの光に対する屈折率は、1.50であった。
[Example 4]
A mixed solution of 6 parts of TEOS and 1 part of methanol was added dropwise to 4 parts of the silica dispersion with gentle stirring, and the mixture was allowed to stand at room temperature for 1 hour to prepare a mixed solution a. Mixture a was added dropwise to a mixture of 1 part of zirconia dispersion and 1 part of methanol with vigorous stirring and mixed, and then 0.1 part of tin bisneodecanoate curing catalyst was added dropwise with vigorous stirring and mixed. Composition B was prepared. A structure and a smooth coating were produced on a glass substrate using the moth-eye TAC type and the curable composition B in the same manner as in Example 2, and left for 10 days in a room temperature environment with a humidity of 50%.
Even if the transferred structure was rubbed with a paper clean wiper with ethanol, it did not peel off or dissolve, and the structure was transferred at a height of about 90% of the mold shape by observation using SEM. . The smooth coating was transparent, and the refractive index was measured using an ellipsometer. The refractive index for light having a wavelength of 633 nm was 1.50.

[実施例5]
微粒子分散液にシリカ分散液を使用した以外は、実施例2と同様の方法でモスアイ形状TAC型を使用して被膜を作製した。
転写した構造体はエタノールをつけた紙製クリーンワイパでこすっても、剥離や溶解することはなく、SEMを用いた観察から、SEMを用いた観察で、構造体は型形状の約90%の高さで転写していた。平滑な被膜は透明であり、エリプソメータを用いて屈折率を測定したところ、波長633nmの光に対する屈折率は、1.44であった。
[Example 5]
A film was prepared using a moth-eye TAC type in the same manner as in Example 2 except that a silica dispersion was used as the fine particle dispersion.
Even if the transferred structure is rubbed with a clean wiper made of ethanol, it does not peel off or dissolve. From observation using the SEM, the structure is about 90% of the mold shape. Transcripted at height. The smooth coating was transparent, and the refractive index was measured using an ellipsometer. The refractive index for light having a wavelength of 633 nm was 1.44.

[実施例6]
シリカ分散液3部にTEOS7部とメタノール1部の混合液を穏やかに撹拌しながら滴下し混合した後、さらに硬化触媒ビスネオデカン酸錫0.1部を激しく撹拌しながら滴下し混合し、硬化性組成物Cを作製した。実施例2と同様の方法でモスアイ形状TAC型と硬化性組成物Cを用いてガラス基板上へ構造体及び平滑な被膜を作製し、湿度50%の室温環境で10日間放置した。
転写した構造体はエタノールをつけた紙製クリーンワイパでこすっても、剥離や溶解することはなく、SEMを用いた観察で、構造体は型形状の約90%の高さで転写していた。平滑な被膜は透明であり、エリプソメータを用いて屈折率を測定したところ、波長633nmの光に対する屈折率は、1.24であった。
[Example 6]
A mixture of 7 parts of TEOS and 1 part of methanol was added dropwise and mixed with 3 parts of silica dispersion with gentle stirring, and then 0.1 part of tin bisneodecanoate curing catalyst was added dropwise with vigorous stirring and mixed. Composition C was prepared. A structure and a smooth coating were prepared on a glass substrate using the moth-eye TAC type and the curable composition C in the same manner as in Example 2, and left for 10 days in a room temperature environment with a humidity of 50%.
Even if the transferred structure was rubbed with a paper clean wiper with ethanol, it did not peel off or dissolve, and the structure was transferred at a height of about 90% of the mold shape by observation using SEM. . The smooth coating was transparent, and the refractive index was measured using an ellipsometer. The refractive index for light having a wavelength of 633 nm was 1.24.

[実施例7]
チタニアのメチルエチルケトン(MEK)分散液(TiO/MEK)を用いた以外は実施例2と同様に、サブミクロン突起形状PDMS型を用いてガラス基板上へ構造体及び平滑な被膜を作製した。
転写した構造体はエタノールをつけた紙製クリーンワイパでこすっても、剥離や溶解することはなく、SEMを用いた観察で、構造体は型形状の約90%の高さで転写していた。平滑な被膜は透明であり、エリプソメータを用いて屈折率を測定したところ、波長633nmの光に対する屈折率は、1.89であった。
[Example 7]
A structure and a smooth coating were prepared on a glass substrate using a submicron-protrusion-shaped PDMS mold in the same manner as in Example 2 except that titania methyl ethyl ketone (MEK) dispersion (TiO 2 / MEK) was used.
Even if the transferred structure was rubbed with a paper clean wiper with ethanol, it did not peel off or dissolve, and the structure was transferred at a height of about 90% of the mold shape by observation using SEM. . The smooth coating was transparent, and the refractive index was measured using an ellipsometer. The refractive index for light with a wavelength of 633 nm was 1.89.

[実施例8]
厚み16μmのモスアイ形状PET型を使用し、放置時間を24時間とした以外は実施例3と同様に被膜を作製した。
転写した構造体はエタノールをつけた紙製クリーンワイパでこすっても、剥離や溶解することはなく、SEMを用いた観察で、構造体は型形状の約90%の高さで転写していた。平滑な被膜は透明であり、エリプソメータを用いて屈折率を測定したところ、波長633nmの光に対する屈折率は、1.66であった。
[Example 8]
A coating film was prepared in the same manner as in Example 3 except that a moth-eye PET mold having a thickness of 16 μm was used and the standing time was 24 hours.
Even if the transferred structure was rubbed with a paper clean wiper with ethanol, it did not peel off or dissolve, and the structure was transferred at a height of about 90% of the mold shape by observation using SEM. . The smooth coating was transparent, and the refractive index was measured using an ellipsometer. The refractive index for light having a wavelength of 633 nm was 1.66.

[比較例1]
標準的なゾルゲル被膜原料として、TEOS10部、水7部、エタノール4.4部、36%塩酸1部を混合し撹拌しながら60℃で2時間反応させ硬化性組成物Dを作製した。反応物の重量平均分子量をGPCで測定したところ3300であった。
モスアイ形状TAC型と硬化性組成物Dを用いて放置時間を24時間とした以外は、実施例1と同様に基板上へ構造体被膜を作製し、湿度50%の室温環境で10日間放置した。転写した構造体はエタノールをつけた紙製クリーンワイパでこすっても、剥離や溶解することはなく、SEMを用いた観察で、構造体は型形状の約60%の高さで転写していた。
実施例2と同様のシリカ成分の組成とするために、チタニアのメタノール分散液8部に6.2部の硬化性組成物Dを撹拌しながら滴下して硬化性組成物Eを作製した。モスアイ形状用TAC型と硬化性組成物Eを用いて放置時間を24時間とした以外は、実施例1と同様に基板上へ構造体被膜を作製し、湿度50%の室温環境で10日間放置した。
転写した構造体はエタノールをつけた紙製クリーンワイパでこすると、すべて剥離してしまい実用的な被膜は得られなかった。
[Comparative Example 1]
As a standard sol-gel coating material, 10 parts of TEOS, 7 parts of water, 4.4 parts of ethanol, and 1 part of 36% hydrochloric acid were mixed and reacted at 60 ° C. for 2 hours with stirring to prepare a curable composition D. It was 3300 when the weight average molecular weight of the reaction material was measured by GPC.
A structural film was prepared on the substrate in the same manner as in Example 1 except that the standing time was 24 hours using the moth-eye shape TAC type and the curable composition D, and was left to stand for 10 days in a room temperature environment with a humidity of 50%. . Even if the transferred structure was rubbed with a clean paper wiper with ethanol, it was not peeled off or dissolved, and the structure was transferred at a height of about 60% of the mold shape by observation using SEM. .
In order to obtain the same composition of the silica component as in Example 2, 6.2 parts of the curable composition D was dropped into 8 parts of a titania methanol dispersion while stirring to prepare a curable composition E. A structural film was produced on the substrate in the same manner as in Example 1 except that the TAC type for moth-eye shape and the curable composition E was used and the standing time was 24 hours. did.
When the transferred structure was rubbed with a paper clean wiper with ethanol, it was completely peeled off and a practical film could not be obtained.

[比較例2]
厚み250μmのモスアイ形状PET型を用いて放置時間を72時間とした以外は、実施例2と同様にガラス基板上へ構造体の作製を試みたが、硬化性組成物Aは硬化せず、構造体は作製できなかった。
結果を以下の表2に示す。
[Comparative Example 2]
Except that a moth-eye-shaped PET mold having a thickness of 250 μm was used and the standing time was set to 72 hours, an attempt was made to produce a structure on a glass substrate in the same manner as in Example 2, but the curable composition A was not cured and the structure The body could not be made.
The results are shown in Table 2 below.

[実施例9]
[型素材]
型を作製するための紫外線硬化性材料として、三官能以上のアクリレート化合物単量体であるトリメチロールプロパントリアクリレート33部、N−ビニル化合物単量体としてN−ビニル−2−ピロリドン33部、その他の単量体として1,9−ノナンジオールジアクリレート33部、シリコーンジアクリレート0.5部、光重合開始剤として2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシド2部を混合して、紫外線硬化性樹脂組成物Aを作製した。
[Example 9]
[Mold material]
As UV curable material for producing mold, 33 parts of trimethylolpropane triacrylate which is trifunctional or higher acrylate compound monomer, 33 parts of N-vinyl-2-pyrrolidone as N-vinyl compound monomer, etc. UV curing by mixing 33 parts of 1,9-nonanediol diacrylate, 0.5 part of silicone diacrylate and 2 parts of 2,4,6-trimethylbenzoyldiphenylphosphine oxide as a photoinitiator. Resin composition A was produced.

[型の作製]
基材として厚み80μmのトリアセチルセルロースフィルム(TAC)を用い、この表面に前記紫外線硬化性樹脂組成物(1)を0.8μmとなるよう塗布し、離型処理を施したモスアイ形状を有するNi製の型を押付け、前記トリアセチルセルロースフィルム側から紫外線光を露光(3J/cm)して硬化させた後、離型し、モスアイ形状を反転転写した型Aとした。モスアイ形状は高さ300nmで先の丸い円錐状突起が平面上にピッチ280nmで最密充填したものでNi製の型は円錐状突起を有する。また、作製した型Aは、23℃、50%RHの環境下に保存した。
[Mold making]
Ni having a moth-eye shape obtained by using a triacetyl cellulose film (TAC) having a thickness of 80 μm as a base material, applying the UV curable resin composition (1) to the surface so as to have a thickness of 0.8 μm, and performing a release treatment. The mold was pressed, and ultraviolet light was exposed (3 J / cm 2 ) from the triacetylcellulose film side to be cured, and then released to obtain a mold A in which the moth-eye shape was transferred by reversal. The moth-eye shape has a height of 300 nm and round cone-shaped protrusions that are closely packed on a plane at a pitch of 280 nm. The Ni mold has a conical protrusion. The produced mold A was stored in an environment of 23 ° C. and 50% RH.

[硬化性組成物]
金属アルコキシド化合物として、テトラメトキシシラン8部、トリメトキシメチルシラン2部、ジブチル錫ジアセテート0.2部、酢酸0.06部を混合し、硬化性組成物Fを作製した。
[Curable composition]
As a metal alkoxide compound, 8 parts of tetramethoxysilane, 2 parts of trimethoxymethylsilane, 0.2 part of dibutyltin diacetate and 0.06 part of acetic acid were mixed to prepare curable composition F.

[微細構造の賦形]
微細構造を賦形する基板として、硼珪酸ガラス板(150×150×0.7mm)の表面を紫外線オゾン洗浄したものを用いた。まず、基板の端部に硬化性組成物Fを基板端部の辺に沿い直線状に滴下し、型Aの構造体が形成された面の一端を、硬化性組成物Fを供給した場所へ押付け、型Aの背面よりロールで樹脂型を押し、硬化性組成物Fを型と基板の間へ押し広げ基板へ密着させ、20分後に型Aを剥離し基板上へ構造体を作製した。型Aの剥離後、基板を1週間放置し、硬化を進めた。この賦形作業は23℃、50%RHの環境下で実施した。
得られたモスアイ構造体つき硼珪酸ガラス板について、可視光に対する反射率を測定した。結果を図1に示す。また、表面の電子顕微鏡写真を図2に示す。
[Shaping the microstructure]
As a substrate for shaping the fine structure, a borosilicate glass plate (150 × 150 × 0.7 mm) whose surface was cleaned with ultraviolet ozone was used. First, the curable composition F is dropped linearly along the edge of the substrate at the edge of the substrate, and one end of the surface on which the structure of the mold A is formed is placed to the place where the curable composition F is supplied. The resin mold was pressed with a roll from the back side of the mold A, and the curable composition F was spread between the mold and the substrate so as to adhere to the substrate. After 20 minutes, the mold A was peeled off to produce a structure on the substrate. After the mold A was peeled off, the substrate was left for one week to proceed with curing. This shaping operation was performed in an environment of 23 ° C. and 50% RH.
About the obtained borosilicate glass plate with a moth-eye structure, the reflectance with respect to visible light was measured. The results are shown in FIG. Also, an electron micrograph of the surface is shown in FIG.

[実施例10]
実施例9において、硬化性組成物Fを型と基板の間へ押し広げ基板へ密着させた後、60℃のオーブン内に5分間放置後、型Aを剥離した以外は、実施例9と同様に基板上へ構造体を作製した。
[Example 10]
In Example 9, the curable composition F was spread between the mold and the substrate, adhered to the substrate, then left in an oven at 60 ° C. for 5 minutes, and then the mold A was peeled off. A structure was fabricated on the substrate.

[実施例11]
硬化性組成物Gとして、テトラメトキシシラン7部、信越化学工業社製リン酸系硬化触媒X−40−2039A3部を混合したものを作製した。硬化性組成物Gを用いた以外は実施例9と同様の型を用い、硬化性組成物Gを型と基板の間へ押し広げ基板へ密着させ、10分後に樹脂型を剥離した以外は、実施例9と同様にして基板上へ構造体を作製した。
[Example 11]
As curable composition G, a mixture of 7 parts of tetramethoxysilane and 3 parts of phosphoric acid-based curing catalyst X-40-2039A manufactured by Shin-Etsu Chemical Co., Ltd. was prepared. Except for using the curable composition G, except that the mold similar to Example 9 was used, the curable composition G was spread between the mold and the substrate, adhered to the substrate, and the resin mold was peeled off after 10 minutes. A structure was fabricated on the substrate in the same manner as in Example 9.

[実施例12]
硬化性組成物Hとして、テトラメトキシシランの4量体4部、信越化学工業社製リン酸系硬化触媒X−40−2039A6部を混合したものを作製した。硬化性組成物Hを用いた以外は実施例9と同様の型を用い、硬化性組成物Hを型と基板の間へ押し広げ基板へ密着させ、30分後に樹脂型を剥離した以外は、実施例9と同様にして基板上へ構造体を作製した。
[Example 12]
As curable composition H, a mixture of 4 parts of tetramethoxysilane tetramer and 6 parts of phosphoric acid-based curing catalyst X-40-2039A manufactured by Shin-Etsu Chemical Co., Ltd. was prepared. Except for using the curable composition H, except that the mold similar to Example 9 was used, the curable composition H was spread between the mold and the substrate and adhered to the substrate, and the resin mold was peeled off after 30 minutes. A structure was fabricated on the substrate in the same manner as in Example 9.

[実施例13]
型を作製するための紫外線硬化性材料として、三官能以上のアクリレート化合物単量体であるトリメチロールプロパンEO変性トリアクリレート(東亞合成製アロニックスM−350)100部、光重合開始剤としてBASF製イルガキュア184 5部、2−(パーフロロヘキシル)エチルメタクリレート5部を混合し、紫外線硬化性樹脂組成物Bとして実施例9と同様に、型Bを作製した。型Bを用いた以外は、実施例9と同様に基板上へ構造体を作製した。
[Example 13]
100 parts of trimethylolpropane EO-modified triacrylate (Aronix M-350 manufactured by Toagosei Co., Ltd.), a trifunctional or higher acrylate compound monomer as an ultraviolet curable material for producing a mold, and BASF Irgacure as a photopolymerization initiator 184 parts by weight and 5 parts of 2- (perfluorohexyl) ethyl methacrylate were mixed, and a mold B was prepared as the ultraviolet curable resin composition B in the same manner as in Example 9. A structure was fabricated on the substrate in the same manner as in Example 9 except that the mold B was used.

[実施例14]
型の材料として厚み125μmのPMMAフィルムを使用し、モスアイ形状を有するNi製の型を用いて140℃、2MPaで5分加圧後、圧力を保持したまま室温まで冷却し、PMMAフィルム表面にモスアイ形状を反転転写した型Cを作製した。この型Cを用いた以外は、実施例9と同様にして基板上へ構造体を作製した。
[Example 14]
Using a PMMA film with a thickness of 125 μm as the mold material, using a Ni mold having a moth-eye shape, pressurizing at 140 ° C. and 2 MPa for 5 minutes, then cooling to room temperature while maintaining the pressure, and the moth-eye on the PMMA film surface A mold C in which the shape was inverted and transferred was produced. A structure was fabricated on the substrate in the same manner as in Example 9 except that this mold C was used.

[実施例15]
型の材料として用いるフィルムを、厚み60μmのエチレン・ポリビニルアルコール共重合体(EVOH)フィルムへ変更した以外は、実施例9と同様にして基板上へ構造体を作製した。
[Example 15]
A structure was produced on a substrate in the same manner as in Example 9 except that the film used as the mold material was changed to an ethylene / polyvinyl alcohol copolymer (EVOH) film having a thickness of 60 μm.

[実施例16]
型の材料として用いるフィルムを、厚み100μmのポリアミド6(PA6)フィルムへ変更した以外は、実施例9と同様にして基板上へ構造体を作製した。
[Example 16]
A structure was produced on the substrate in the same manner as in Example 9 except that the film used as the mold material was changed to a polyamide 6 (PA6) film having a thickness of 100 μm.

[実施例17]
型の材料として用いるフィルムを、厚み16μmのPETフィルムへ変更し、硬化性組成物Gを用いて硬化性組成物Gを型と基板の間へ押し広げ基板へ密着させ、3時間後に樹脂型を剥離した以外は、実施例9と同様にして基板上へ構造体を作製した。
[Example 17]
The film used as the mold material is changed to a PET film with a thickness of 16 μm, and the curable composition G is spread between the mold and the substrate by using the curable composition G, and is closely adhered to the substrate. A structure was produced on the substrate in the same manner as in Example 9 except for peeling.

[実施例18]
型の材料として厚み200μmの熱可塑性ポリウレタン樹脂(TPU)フィルムを使用し、モスアイ形状を有するNi製の型を用いて140℃、2MPaで5分加圧後、圧力を保持したまま室温まで冷却し、TPUフィルム表面にモスアイ形状を反転転写した型Dを作製した。この型Dを用いた以外は、実施例9と同様にして基板上へ構造体を作製した。
[Example 18]
Using a 200 μm thick thermoplastic polyurethane resin (TPU) film as the mold material, pressurizing at 140 ° C. and 2 MPa for 5 minutes using a Ni mold having a moth-eye shape, and then cooling to room temperature while maintaining the pressure Then, a mold D in which the moth-eye shape was inverted and transferred to the TPU film surface was produced. A structure was produced on the substrate in the same manner as in Example 9 except that this mold D was used.

[実施例19]
硬化性組成物Iとして、新技術創造研究所製SIRAGUSITAL−B4373(C)(有機変性シリコーン、テトラエトキシシラン、ジブチル錫ジアセテート、溶剤としてイソプロピルアルコール、メタノールを含む組成物)を用いた以外は実施例9と同様の素材を用い、硬化性組成物Iを型と基板の間へ押し広げ基板へ密着させ、20時間後に樹脂型を剥離した以外は、実施例9と同様にして基板上へ構造体を作製した。
[Example 19]
Implemented except that SIRAGUSITAL-B4373 (C) (composition containing organically modified silicone, tetraethoxysilane, dibutyltin diacetate, isopropyl alcohol and methanol as solvents) manufactured by New Technology Creation Laboratory was used as curable composition I Using the same material as in Example 9, the curable composition I was spread between the mold and the substrate, closely adhered to the substrate, and the resin mold was peeled off after 20 hours. The body was made.

[実施例20]
硬化性組成物Jとして、用いる金属アルコキシドの金属をAlに変えたアルミニウムトリ−sec−ブトキシド2.5部を用い、溶剤としてイソプロピルアルコール2部、安定剤としてエチルアセテート0.5部、ジブチル錫ジアセテート0.1部を加えた以外は実施例9と同様の素材を用い、実施例9と同様の方法で基板上へ構造体を作製した。
[Example 20]
As the curable composition J, 2.5 parts of aluminum tri-sec-butoxide in which the metal of the metal alkoxide used was changed to Al, 2 parts of isopropyl alcohol as a solvent, 0.5 part of ethyl acetate as a stabilizer, dibutyltin didioxide A structure was produced on the substrate in the same manner as in Example 9 using the same material as in Example 9 except that 0.1 part of acetate was added.

[比較例3]
型の基材として用いるフィルムに、厚み250μmのPETフィルムを使用した以外は、実施例9と同様にして基板上へ構造体作製を試みたが、硬化性組成物Fを型と基板の間へ押し広げ基板へ密着させ、20時間後に型を剥離したが、硬化性組成物Fはほとんど硬化しておらず、基板上に構造体を作製することはできなかった。
実施例9〜20、及び比較例3の結果を以下の表3に示す。
[Comparative Example 3]
Except for using a PET film having a thickness of 250 μm as a film used as a mold base material, an attempt was made to produce a structure on a substrate in the same manner as in Example 9, but the curable composition F was placed between the mold and the substrate. Although the mold was peeled after 20 hours after being spread and closely adhered to the substrate, the curable composition F was hardly cured and a structure could not be produced on the substrate.
The results of Examples 9 to 20 and Comparative Example 3 are shown in Table 3 below.

本発明は、微細表面形状を有してもよい硬化物を基材の表面に付与するする方法であり、賦形形状の転写精度が高く、簡便で生産性の高い賦形工程と安価な型素材を使用できることから、基材上へ種々の形状の微細構造体を高い生産性で安価に製造することが可能となる。それゆえ、本発明は、微細な突起形状からなるモスアイ構造による反射防止膜、ワイヤグリッド偏光子、波長坂、フィルタや回折格子等の光学素子、LEDや有機ELなどの発光体の光取り出し効率向上のための構造体、光導波路、熱光発電用の赤外線エミッタ、太陽電池表面や内部の集光パタン、バイオチップ、マイクロリアクタチップ、記録メディアなどの部材として、特に、耐熱性、耐紫外線性、耐薬品性、耐エッチング製など有機材料の性能限界を超える能力を要求される用途に好適に利用可能であり、硬化物を構成する無機素材の表面特性と構造を組み合わせることで、超撥水又は超親水の部材用途に使用することもできる。   The present invention is a method for imparting a cured product that may have a fine surface shape to the surface of a substrate. The shaping process has a high transfer accuracy of the shaped shape, is simple and highly productive, and an inexpensive mold. Since a raw material can be used, it becomes possible to manufacture microstructures of various shapes on a substrate with high productivity and at low cost. Therefore, the present invention improves the light extraction efficiency of an antireflection film with a moth-eye structure having a fine protrusion shape, a wire grid polarizer, a wavelength slope, an optical element such as a filter or a diffraction grating, and a light emitter such as an LED or an organic EL. As a member for structures, optical waveguides, infrared emitters for thermophotovoltaic power generation, solar cell surface and internal light collection patterns, biochips, microreactor chips, recording media, etc., especially heat resistance, UV resistance, It can be suitably used for applications that require the ability to exceed the performance limits of organic materials such as chemical properties and etching resistance, and by combining the surface characteristics and structure of the inorganic material that constitutes the cured product, It can also be used for hydrophilic member applications.

Claims (26)

以下の工程:
(A)硬化素材と接触することで硬化する硬化性原料を含む硬化性組成物を、該硬化素材を供給することができる型と、基材との間の空間に充填する工程、
(B)該型から供給される該硬化素材により、該硬化性組成物を硬化させて硬化物を得る工程、及び
(C)該型を、該基材上の該硬化物から剥離する工程、
を含む、硬化物と基材との積層体の製造方法。
The following steps:
(A) a step of filling a space between a mold capable of supplying the curable material and a substrate with a curable composition containing a curable raw material that is cured by contact with the curable material;
(B) a step of obtaining a cured product by curing the curable composition with the curing material supplied from the mold; and (C) a step of peeling the mold from the cured product on the substrate.
The manufacturing method of the laminated body of hardened | cured material and a base material containing this.
前記型が、表面に平均ピッチ10nm〜0.1mm、高さ/ピッチ比が0.1〜5の微細凹凸構造を有する、請求項1に記載の方法。   The method according to claim 1, wherein the mold has a fine concavo-convex structure having an average pitch of 10 nm to 0.1 mm and a height / pitch ratio of 0.1 to 5 on the surface. 前記硬化素材が水であり、かつ、前記硬化性原料が金属アルコキシドである、請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the curable material is water and the curable raw material is a metal alkoxide. 前記型の水の透過量が5×10−5g・m−2・s−1以上である及び/又は前記型の大気平衡における含水量が0.5質量%以上20質量%以下である、請求項3に記載の方法。 The water permeation amount of the mold is 5 × 10 −5 g · m −2 · s −1 or more and / or the water content in the atmospheric equilibrium of the mold is 0.5 mass% or more and 20 mass% or less, The method of claim 3. 請求項1〜4のいずれか1項に記載の方法で製造された硬化物と基材との積層体。   The laminated body of the hardened | cured material manufactured by the method of any one of Claims 1-4, and a base material. 以下の工程:
(A’)硬化素材と接触することで硬化する硬化性原料中に微粒子が分散した硬化性組成物を、該硬化素材を供給することができる型と、基材との間の空間に充填する工程、
(B’)該型から供給される該硬化素材により、該硬化性組成物を硬化させて硬化物を得る工程、及び
(C’)該型を、該基材上の該硬化物から剥離する工程、
を含む、硬化物と基材との積層体の製造方法。
The following steps:
(A ′) Filling the space between the mold capable of supplying the curable material and the substrate with the curable composition in which the fine particles are dispersed in the curable raw material that is cured by contact with the curable material. Process,
(B ′) a step of obtaining a cured product by curing the curable composition with the cured material supplied from the mold, and (C ′) peeling the mold from the cured product on the substrate. Process,
The manufacturing method of the laminated body of hardened | cured material and a base material containing this.
前記硬化性組成物が、前記微粒子を分散させるための溶媒をさらに含む、請求項6に記載の方法。   The method according to claim 6, wherein the curable composition further comprises a solvent for dispersing the fine particles. 前記型が、前記溶媒を吸収することができる、請求項7に記載の方法。   The method of claim 7, wherein the mold is capable of absorbing the solvent. 前記型の、前記溶媒の透過量が1×10−3g・m−2・s−1以上である、請求項8に記載の方法。 The method according to claim 8, wherein the permeation amount of the solvent of the type is 1 × 10 −3 g · m −2 · s −1 or more. 前記型が、表面に平均ピッチ10nm〜0.1mm、高さ/ピッチ比が0.1〜5の微細凹凸構造を有する、請求項6〜9のいずれか1項に記載の方法。   The method according to any one of claims 6 to 9, wherein the mold has a fine concavo-convex structure having an average pitch of 10 nm to 0.1 mm and a height / pitch ratio of 0.1 to 5 on the surface. 前記微粒子の平均粒径が100nm以下である、請求項6〜10のいずれか1項に記載の方法。   The method according to any one of claims 6 to 10, wherein an average particle diameter of the fine particles is 100 nm or less. 前記硬化素材が水であり、かつ、前記硬化性原料が金属アルコキシドである、請求項6〜11のいずれか1項に記載の方法。   The method according to any one of claims 6 to 11, wherein the curable material is water, and the curable raw material is a metal alkoxide. 前記型の、水の透過量が5×10−5g・m−2・s−1以上である、請求項12に記載の方法。 The method according to claim 12, wherein the permeation amount of the mold is 5 × 10 −5 g · m −2 · s −1 or more. 前記型の大気平衡における含水量が0.5重量%以上20重量%以下である、請求項12又は請求項13に記載の方法。   The method according to claim 12 or 13, wherein the moisture content in the atmospheric balance of the mold is 0.5 wt% or more and 20 wt% or less. 請求項6〜14のいずれか1項に記載の方法で製造された硬化物と基材との積層体。   The laminated body of the hardened | cured material manufactured by the method of any one of Claims 6-14, and a base material. 前記硬化物の屈折率が1.75〜2.20である、請求項15に記載の積層体。   The laminate according to claim 15, wherein the cured product has a refractive index of 1.75 to 2.20. 前記硬化物の屈折率が1.20〜1.40である、請求項15に記載の積層体。   The laminated body of Claim 15 whose refractive index of the said hardened | cured material is 1.20-1.40. 以下の工程:
(A’’)微粒子が溶媒中に分散した分散液を、該溶媒を吸収することができる型と、基材との間の空間に充填する工程、
(B’’)該型が該溶媒を吸収することにより、該分散液中の該微粒子を凝集させて凝集物を得る工程、及び
(C’’)該型を、該基材上の該凝集物から剥離する工程、
を含む、基材と凝集物との積層体の製造方法。
The following steps:
(A ″) a step of filling a dispersion in which fine particles are dispersed in a solvent into a space between a mold capable of absorbing the solvent and a base material;
(B '') the mold absorbs the solvent to agglomerate the fine particles in the dispersion to obtain an agglomerate; and (C '') the agglomerate on the substrate. A process of peeling from the object,
The manufacturing method of the laminated body of a base material and an aggregate containing this.
(D)(C’’)工程で得られた基材上の凝集物を、焼結して構造を固定する工程、
をさらに含む、請求項18に記載の方法。
(D) a step of fixing the structure by sintering the aggregate on the base material obtained in the step (C ″),
The method of claim 18, further comprising:
前記微粒子の表面が、該微粒子よりも融点の低い材料でコーティングされている、請求項18又は19に記載の方法。   The method according to claim 18 or 19, wherein a surface of the fine particles is coated with a material having a melting point lower than that of the fine particles. 請求項18〜20のいずれか1項に記載の方法で製造された積層体。   The laminated body manufactured by the method of any one of Claims 18-20. 以下の工程:
(A’’’)含有する溶媒の量を低減することで硬化する硬化性組成物を、該溶媒を吸収することができる型と、基材との間の空間に充填する工程、
(B’’’)該型に該溶媒を吸収することにより、該硬化性組成物を硬化させて硬化物を得る工程、及び
(C’’’)該型を、該基材上の該硬化物から剥離する工程、
を含む、硬化物と基材との積層体の製造方法。
The following steps:
(A ′ ″) a step of filling a space between a mold capable of absorbing the solvent and a substrate with a curable composition that is cured by reducing the amount of the solvent contained;
(B ′ ″) a step of absorbing the solvent into the mold to cure the curable composition to obtain a cured product; and (C ′ ″) the mold on the substrate. A process of peeling from the object,
The manufacturing method of the laminated body of hardened | cured material and a base material containing this.
前記硬化性組成物に微粒子が分散した、請求項22に記載の方法。   The method according to claim 22, wherein fine particles are dispersed in the curable composition. 前記型の、前記溶媒の透過量が1×10−3g・m−2・s−1以上である、請求項22又は23に記載の方法。 The method according to claim 22 or 23, wherein the permeation amount of the solvent of the type is 1 × 10 −3 g · m −2 · s −1 or more. 前記型が、表面に平均ピッチ10nm〜0.1mm、高さ/ピッチ比が0.1〜5の微細凹凸構造を有する、請求項22〜24のいずれか1項に記載の方法。   The method according to any one of claims 22 to 24, wherein the mold has a fine concavo-convex structure having an average pitch of 10 nm to 0.1 mm and a height / pitch ratio of 0.1 to 5 on the surface. 請求項21〜25のいずれか1項に記載の方法で製造された硬化物と基材との積層体。   The laminated body of the hardened | cured material manufactured by the method of any one of Claims 21-25, and a base material.
JP2013215611A 2013-04-09 2013-10-16 Method for manufacturing laminate Pending JP2014219652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013215611A JP2014219652A (en) 2013-04-09 2013-10-16 Method for manufacturing laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013081386 2013-04-09
JP2013081386 2013-04-09
JP2013215611A JP2014219652A (en) 2013-04-09 2013-10-16 Method for manufacturing laminate

Publications (1)

Publication Number Publication Date
JP2014219652A true JP2014219652A (en) 2014-11-20

Family

ID=51938099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013215611A Pending JP2014219652A (en) 2013-04-09 2013-10-16 Method for manufacturing laminate

Country Status (1)

Country Link
JP (1) JP2014219652A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015071503A (en) * 2013-10-02 2015-04-16 独立行政法人産業技術総合研究所 Method of producing glass having uneven shape in surface and glass having uneven shape on surface produced by the method
JP2016104545A (en) * 2014-12-01 2016-06-09 大日本印刷株式会社 Antibacterial article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015071503A (en) * 2013-10-02 2015-04-16 独立行政法人産業技術総合研究所 Method of producing glass having uneven shape in surface and glass having uneven shape on surface produced by the method
JP2016104545A (en) * 2014-12-01 2016-06-09 大日本印刷株式会社 Antibacterial article

Similar Documents

Publication Publication Date Title
TWI760385B (en) Transparent substrate having antiglare property and antireflective property, and manufacturing method thereof
CN100480737C (en) Reflection preventing laminated body and optical member
TWI425009B (en) A photohardenable composition, a method for producing a fine pattern forming body, and an optical element
CN100343037C (en) Article having predetermined surface shape and method for preparing the same
TWI465466B (en) Hardened composition and hardened product thereof
WO2015104968A1 (en) Optical substrate, mold to be used in optical substrate manufacture, and light emitting element including optical substrate
KR20190087633A (en) An optical sheet for a light guide plate type liquid crystal display, a backlight unit for a light guide plate type liquid crystal display, and a light guide plate type liquid crystal display
TW201834845A (en) Transparent resin substrate
JP5551084B2 (en) Modeling method
JP7496444B2 (en) Light extraction material
CN111164140A (en) Void layer, laminate, method for producing void layer, optical member, and optical device
WO2021193591A1 (en) Optical laminate with double-sided adhesive layer, and optical device
JP2009138034A (en) Particles and method for manufacturing the same
KR102587273B1 (en) Optical laminate with double-sided adhesive layer
JP2014219652A (en) Method for manufacturing laminate
CN107140842A (en) The preparation method and anti-reflection structure of a kind of anti-reflection structure
JP5607988B2 (en) Method for manufacturing plastic lens or optical waveguide
WO2022064782A1 (en) Optical layered body
WO2021193789A1 (en) Optical member, and backlight unit and image display device using said optical member
TW201538576A (en) Polysiloxane core-shell microspheres and preparation method thereof
JP7479784B2 (en) Light extraction material
KR102013246B1 (en) Method for producing antireflection film, and antireflection film
Shin et al. Fabrication of contact lens containing high‐performance wire grid polarizer
JP2005015605A (en) Optical element and organic/inorganic composite material for making the optical element
JP2020064093A (en) Optical laminate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160404