JP2015019561A - 車載用電動機制御装置 - Google Patents

車載用電動機制御装置 Download PDF

Info

Publication number
JP2015019561A
JP2015019561A JP2014078363A JP2014078363A JP2015019561A JP 2015019561 A JP2015019561 A JP 2015019561A JP 2014078363 A JP2014078363 A JP 2014078363A JP 2014078363 A JP2014078363 A JP 2014078363A JP 2015019561 A JP2015019561 A JP 2015019561A
Authority
JP
Japan
Prior art keywords
voltage
vehicle
capacitor
motor
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014078363A
Other languages
English (en)
Other versions
JP6187369B2 (ja
Inventor
智行 鷲見
Satoyuki Washimi
智行 鷲見
拓司 天野
Takuji Amano
拓司 天野
酒井 剛志
Tsuyoshi Sakai
剛志 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014078363A priority Critical patent/JP6187369B2/ja
Priority to DE112014002815.0T priority patent/DE112014002815T5/de
Priority to PCT/JP2014/002916 priority patent/WO2014199587A1/ja
Publication of JP2015019561A publication Critical patent/JP2015019561A/ja
Application granted granted Critical
Publication of JP6187369B2 publication Critical patent/JP6187369B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0007Measures or means for preventing or attenuating collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/526Operating parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

【課題】車両の衝突後において、モータの制御のロバスト性を高めることができる車載用電動機制御装置を提供する。
【解決手段】CPU・制御回路65は、高電圧部に印加された平滑コンデンサ電圧から生成された電源電圧に基づいて動作する。また、CPU・制御回路65は、車両の衝突が発生したことによりモータ64の回転数が低下すると共に平滑コンデンサ電圧が低下した場合、還流モードと回生モードとを交互に切り替える。還流モードはスイッチング素子群63とモータ64との間で電流を還流させることにより平滑コンデンサ電圧を低下させるモードであり、回生モードはモータ64からスイッチング素子群63を介して入力コンデンサ62及び平滑コンデンサ50に電流を流すことにより平滑コンデンサ電圧を上昇させるモードである。これにより、CPU・制御回路65は自身が動作可能な電源電圧を維持する。
【選択図】図2

Description

従来より、車両の衝突時に電動機を脱調させることで車両の安全性を確保するように構成された制御装置が、例えば特許文献1で提案されている。具体的には、制御装置は、車両の衝突が検出された場合、主電源からインバータへの直流電力の供給を遮断しつつ、周波数指令値を交流モータにおいて脱調が発生する周波数に設定する。そして、制御装置は、インバータの入力側に接続されたコンデンサの電力が交流モータで消費されるようにインバータを制御する。これにより、電動機を成り行きで停止させていた。
特開2010−183676号公報
しかしながら、上記従来の技術では、車両の衝突時に、電動機の停止前のモータの駆動状態や回転数等によってモータの惰性回転が長時間継続してしまうことや、モータの逆回転が発生してコンデンサ側へ電力の回生が発生してしまうこと等の問題がある。このため、車両の衝突時に、モータの回転によって充電されるコンデンサ電圧を早く所定電圧まで下げられない可能性がある。したがって、早く車両の安全性を確保したいという要望を満たすことができない可能性がある。
本発明は上記点に鑑み、車両の衝突後において、モータの制御のロバスト性を高め、早く車両の安全性を確保することができる車載用電動機制御装置を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、スイッチング素子群(63)を駆動することによってモータ(64)を回転させることにより、スイッチング素子群(63)の入力側に接続されたコンデンサ(50、62)を備え、コンデンサ(50、62)にコンデンサ電圧を充電する車載用電動機制御装置であって、以下の点を特徴としている。
まず、コンデンサ電圧が印加される高電圧部と、外部からコンデンサ電圧よりも低い外部電圧が印加される低電圧部と、を有し、高電圧部に印加されたコンデンサ電圧から生成された電源電圧及び低電圧部に印加された外部電圧から生成された電源電圧のいずれかに基づいて動作する制御手段(65)を備えている。
そして、制御手段(65)は、車両の衝突が発生したことによりモータ(64)の回転数が低下すると共に前記コンデンサ電圧が低下した場合、スイッチング素子群(63)を駆動することにより、当該制御手段(65)が動作可能な電源電圧を維持することを特徴とする。
これによると、車両の衝突時に制御手段(65)が動作可能な電源電圧を維持するように動作するので、車両の衝突後も制御手段(65)によるスイッチング素子群(63)の制御を継続して行うことができる。したがって、車両の衝突後において、モータ(64)の制御のロバスト性を高めることができ、ひいては早く車両の安全性を確保することができる。
また、請求項13に記載の発明では、コンデンサ電圧が印加される高電圧部と、外部装置(70)からコンデンサ電圧よりも低い外部電圧が印加される低電圧部と、を有し、低電圧部に印加された外部電圧から生成された電源電圧に基づいて動作する制御手段(65)を備えている。
そして、制御手段(65)は、車両の衝突が発生したことによりモータ(64)の回転数が低下すると共にコンデンサ電圧が低下した場合、スイッチング素子群(63)とモータ(64)との間で電流を還流させることによりコンデンサ電圧を低下させるようにスイッチング素子群(63)を駆動することを特徴とする。
これによると、車両の衝突が起こったとしても制御手段(65)は外部装置(70)から供給された外部電圧によって動作するので、車両の衝突後も制御手段(65)によってコンデンサ(50、62)を放電し続けることができる。したがって、モータ(64)の制御のロバスト性を高めることができ、ひいては早く車両の安全性を確保することができる。
なお、この欄及び特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
本発明の第1実施形態に係るシステム全体の回路図である。 図1に示されたCPU・制御回路の動作を説明するためのタイミングチャートである。 スイッチング素子群を還流モードで制御したときの電流経路を示した回路図である。 スイッチング素子群を回生モードで制御したときの電流経路を示した回路図である。 モータの回転が停止している場合のCPU・制御回路の動作を説明するためのタイミングチャートである。 第4実施形態におけるCPU・制御回路の動作の内容を示したフローチャートである。 第4実施形態において、モータの誘起電圧と衝突判定電圧(V1)とを示したフローチャートである。 弱め界磁停止制御を説明するための図であり、モータの電流と誘起電圧との関係を示した図である。 本発明の第5実施形態に係るシステム全体の回路図である。 図9に示された電動機が車両に搭載される位置を示した図である。 車両に高電圧配線が取り回された模式図である。 図9に示されたシステムにおいて高電圧配線のみが切断されるケースをしめした図である。 図9に示されたシステムにおいて低電圧配線のみが切断されるケースを示した図である。 図9に示されたシステムにおいて高電圧配線と低電圧配線との両方が切断されるケースを示した図である。 第5実施形態におけるCPU・制御回路の動作の内容を示したフローチャートである。 第5実施形態において、車両衝突後の放電制御の一例を示したタイミングチャートである。 第5実施形態において、車両衝突後の放電制御の一例を示したタイミングチャートである。 第6実施形態において、CPU・制御回路の制御内容を示したフローチャートである。 第7実施形態において、CPU・制御回路の制御内容を示したフローチャートである。 第8実施形態において、CPU・制御回路の制御内容を示したフローチャートである。 第9実施形態において、CPU・制御回路の制御内容を示したフローチャートである。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
以下、本発明の第1実施形態について図を参照して説明する。本実施形態に係る車載用電動機制御装置は、車載用電動コンプレッサの電動機の制御回路に適用される。
図1に示されるように、本実施形態に係るシステムは、高電圧バッテリ10、システムメインリレー20と、放電用スイッチ30、放電用抵抗40、平滑コンデンサ50、電動機60、及び上位ECU70(Electrical Control Unit)を含んでいる。
高電圧バッテリ10は、電動機60を駆動するための直流電源である。高電圧バッテリ10が発生させる電圧は車両毎に異なっている。本実施形態では、例えば300V程度である。
システムメインリレー20は、電動機60に高電圧を印加するときに電動機60に突入電流が流れないようにするための機能を有している。このため、システムメインリレー20は、高電圧バッテリ10の正極に接続されたスイッチ21と、高電圧バッテリ10の負極に接続されたスイッチ22と、を有している。
また、システムメインリレー20はスイッチ23及び抵抗24を有している。これらスイッチ23及び抵抗24の直列接続がスイッチ22に並列に接続されている。例えば上位ECU70によってシステムの異常状態が検知された場合に各スイッチ21〜23は上位ECU70によって遮断される。
放電用スイッチ30及び放電用抵抗40は、電動機60や平滑コンデンサ50に蓄積された余分な電力を放電させる役割を果たすものである。すなわち、放電用スイッチ30がオンされると、放電用抵抗40に電流が流れることで余分な電力を熱に変換して消費させる。放電用スイッチ30は、上位ECU70によって制御される。
平滑コンデンサ50は、高電圧バッテリ10から印加される電圧のうち高電圧範囲で電気を充電し、高電圧バッテリ10から印加される電圧のうち低電圧範囲で電気を放電するコンデンサである。これにより、平滑コンデンサ50は電動機60に印加する電圧を平滑にする役割を果たす。平滑コンデンサ50は放電用スイッチ30及び放電用抵抗40の直列接続に対して並列に接続されている。また、平滑コンデンサ50は車両駆動用インバータに設けられている。
電動機60は、車両に搭載された図示しない圧縮機構を駆動するための駆動手段である。圧縮機構は、例えば冷凍サイクル等に適用される。この電動機60は、コイル61、入力コンデンサ62、スイッチング素子群63、モータ64、及びCPU・制御回路65を備えている。
コイル61はシステムメインリレー20のスイッチ21とスイッチング素子群63のハイ側とを接続している。入力コンデンサ62は、高電圧バッテリ10に並列に接続されている。コイル61及び入力コンデンサ62は、高電圧バッテリ10から電動機60に入力されるサージ電圧を吸収することによりスイッチング素子群63を保護する役割を果たす。
スイッチング素子群63は、高電圧バッテリ10の直流電圧を交流電圧に変換するように構成され、U相、V相、W相の3相の交流の電圧及び電流を発生させて高電圧のモータ64を駆動する回路部である。スイッチング素子群63は、いわゆるインバータである。スイッチング素子群63は、U相アーム63aと、V相アーム63bと、W相アーム63cと、を備えている。これら各アーム63a〜63cは、電源ラインとグランドラインとの間に並列に接続されている。
各アーム63a〜63cは直列に接続された2つのスイッチング素子63dで構成され、各スイッチング素子63dのコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオード素子63eがそれぞれ接続されている。また、各アーム63a〜63cの中間点は、モータ64の各相コイルの各相端に接続されている。なお、各スイッチング素子63dは例えばIGBT(Insulated Gate Bipolar Transistor)であり、各ダイオード素子63eはFWD(Free Wheeling Diode)である。
モータ64は、U相、V相、W相の3つのコイルの一端が中点に共通接続されて構成された高電圧用のものである。モータ64のU相コイルの他端がスイッチング素子群63のU相アーム63aの各スイッチング素子63dの中間点に接続されている。V相コイル及びW相コイルについても同様である。これにより、モータ64はスイッチング素子群63から供給される3相電力に基づいて動作する。モータ64は、図示しない連結機構を介して圧縮機構に連結されている。圧縮機構は、モータ64によって駆動されることにより例えば冷媒を圧縮する。
CPU・制御回路65は、上位ECU70からの指令や要求に応じてスイッチング素子群63の各スイッチング素子63dを動作させる回路部である。CPU・制御回路65は、図示しない高電圧部及び低電圧部を有している。
高電圧部は、図示しない電圧センサによってインバータへの入力電圧をモニタし、モータ64が所定のトルクを出力するようにスイッチング素子群63を駆動する回路部である。このため、高電圧部は、モータ64を駆動するために必要な電動機60の入力電圧や電流の検出、スイッチング信号の出力、及び各種制御演算等を実行する。また、本実施形態では、高電圧部はインバータの入力電圧を降圧して低電圧系駆動電源を生成する。これにより、CPU・制御回路65は電源電圧を確保することができ、動作可能となる。
低電圧部は、高電圧部とは動作電圧が異なるCPU、メモリ、処理回路、発振器等の低電圧部品を動作させる回路部である。例えば、この低電圧部が上位ECU70との間で通信を行う。
さらに、CPU・制御回路65は、車両の衝突が発生した場合、平滑コンデンサ50や入力コンデンサ62に充電された充電電圧を所定時間内に所定電圧まで下げる放電機能を有している。放電機能は、CPU・制御回路65の電源電圧を確保するため、インバータの入力電圧が所定電圧未満であり、かつ、CPU・制御回路65の動作が可能な動作下限電圧以上となるように、CPU・制御回路65がスイッチング素子群63を制御する機能である。これにより、CPU・制御回路65は車両の衝突後も電動機60の制御が可能になっている。「所定電圧」は、例えば車両の安全を確保するための上限電圧に設定される。
上位ECU70は、車両に搭載されたエンジンECUやエアコンECU等のECUである。上位ECU70は通信線を介して電動機60のCPU・制御回路65に接続されている。そして、上位ECU70はCPU・制御回路65との間でエンジン制御やエアコン制御に必要な情報のやりとりを行う。以上が、本実施形態に係る電動機60を含んだシステムの全体構成である。
次に、CPU・制御回路65の具体的な制御について、図2〜図5を参照して説明する。まず、電動機60のモータ64はCPU・制御回路65のスイッチング素子群63の制御によって所定の回転数で動作する。この場合、例えばモータ64の回転数が8600rpm、モータ64の誘起電圧が288V、低電圧系駆動電源がON、平滑コンデンサ電圧(入力コンデンサ電圧)の電圧が288Vとなっている。図2において、「インバータ動作」は、電動機60におけるスイッチング素子群63の動作状態を表している。
なお、「誘起電圧」は、電動機60のモータ64の誘起電圧を表している。電動機60に使用されるモータ64は、回転すると磁界を発生し、その磁界によってモータ64のコイルに逆起電力が発生し、その逆起電力が誘起電圧としてモータのUVW端子間に発生する。また、「低電圧系駆動電源」は、CPU・制御回路65に電源が供給される状態を「ON」、供給されない状態を「OFF」としている。本実施形態では、42Vを下回るとCPU・制御回路65がOFFする。さらに、「平滑コンデンサ電圧(入力コンデンサ電圧)」は、インバータへの入力電圧である入力コンデンサ62や平滑コンデンサ50のコンデンサ電圧である。「低電圧系駆動電源」は、このコンデンサ電圧から降圧して生成している。
ここで、通常、車両の全てのコンデンサが満充電され、放電制御開始後に新たに充電されることがない前提で、所定時間内に放電が完了するように、放電用抵抗40の抵抗値及び許容電力が設定されている。
そして、図2の時点T10で車両の衝突が発生したとする。この後、「放電制御」が実施される。放電制御は、システムメインリレー20がOFFされてから、放電用抵抗40で入力コンデンサ62や平滑コンデンサ50に蓄えられた電力を熱に変換して消費する制御である。車両では、「衝突発生」から少し遅れた時点T11から、CPU・制御回路65の放電制御が開始される。なお、時点10から時点T11までの時間は車両毎に異なる。
時点T11から平滑コンデンサ電圧が低下し始め、時点T12で平滑コンデンサ電圧がモータ制御可能な下限電圧(例えば100V)に達する。時点T12までは、CPU・制御回路65にモータ制御可能な下限電圧が印加されているので、平滑コンデンサの電圧が低下したとしても100Vを下回る直前まではCPU・制御回路65は通常動作を継続する。
時点T12を過ぎると、平滑コンデンサ電圧がモータ制御可能な下限電圧を下回る。これにより、CPU・制御回路65はモータ64の制御が難しくなる。したがって、CPU・制御回路65は、所定時間内に平滑コンデンサ電圧を所定電圧である60V以下にするため、図3に示された還流モード(A)でスイッチング素子群63を制御する。還流モード(A)は、スイッチング素子群63とモータ64との間で電流を還流させることにより平滑コンデンサ電圧を低下させるモードである。
具体的には、CPU・制御回路65は、各アーム63a〜63cの上アームの各スイッチング素子63dをOFFし、各アーム63a〜63cの下アームの各スイッチング素子63dをONする。これにより、スイッチング素子群63とモータ64との間で電流が流れるので、入力コンデンサ62や平滑コンデンサ50に電流が流れ込まない。このため、入力コンデンサ62及び平滑コンデンサ50は充電されずに放電を行う。したがって、平滑コンデンサ電圧は継続して低下し、所定時間内に所定電圧である60Vを下回る。CPU・制御回路65は42V以上で動作するので、時点T12を経過しても低電圧系駆動電源はONの状態を継続する。
なお、時点T11から時点T12までの通常動作では電動機60の回転数及びモータ64の誘起電圧は成り行きで低下する。一方、時点T12後の還流モードでは電動機60の回転数及びモータ64の誘起電圧はCPU・制御回路65によって制御されるので、時点T12後は電動機60の回転数及びモータ64の誘起電圧は所定のレートで低下する。
そして、時点T13では、平滑コンデンサ電圧は動作下限電圧に達する。平滑コンデンサ電圧が動作下限電圧を下回ると、CPU・制御回路65が電源電圧を維持できずに動作不能になる。CPU・制御回路65は、平滑コンデンサ電圧を動作下限電圧である42V以上に維持するため、図4に示された回生モード(B)でスイッチング素子群63を制御する。回生モード(B)は、モータ64からスイッチング素子群63を介して入力コンデンサ62及び平滑コンデンサ50に電流を流して充電させることによりコンデンサ電圧を上昇させるモードである。
具体的には、CPU・制御回路65は、各アーム63a〜63cのうちU相の上アームのスイッチング素子63dをONし、下アームのスイッチング素子63dをOFFする。また、CPU・制御回路65は、各アーム63a〜63cのうちV相及びW相の上アームのスイッチング素子63dをOFFし、下アームのスイッチング素子63dをONする。このように、本実施形態では、CPU・制御回路65は、還流モード(A)と回生モード(B)との切り替えを、U相アーム63aを構成する各スイッチング素子63dのON/OFFの切り替えで行う。
回生モード(B)への切り替えにより、モータ64の逆起電力で入力コンデンサ62及び平滑コンデンサ50が充電される。したがって、図2に示されるように、時点T13後の平滑コンデンサ電圧は所定のレートで上昇する。回生モード(B)における平滑コンデンサ電圧の上昇レートが還流モード(A)における平滑コンデンサ電圧の下降レートよりも大きいのは、CPU・制御回路65が還流モード(A)で平滑コンデンサ電圧を使って動作しているからである。
時点T14では、平滑コンデンサ電圧が所定電圧に達する。このため、CPU・制御回路65は、スイッチング素子群63を還流モード(A)で制御する。この後、時点T15では平滑コンデンサ電圧が動作下限電圧に達するので、CPU・制御回路65はスイッチング素子群63を回生モード(B)で制御する。なお、時点T16では時点T14と同じ動作が行われ、時点T17では時点T15と同じ動作が行われる。
そして、時点T18では、衝突後から所定時間が経過する。所定時間は、車両の安全を確保できる時間であり、例えば数秒である。この時点T18では既に平滑コンデンサ電圧は所定電圧以下になっている。上述のように、スイッチング素子群63の制御が始まった時点T11から時点T18までが放電制御実施区間に該当する。所定時間経過後は「放電制御」が終了しているので、放電用抵抗40の過熱や焼損は発生しない。
放電制御実施区間が経過した後の時点T19から時点T20まで、CPU・制御回路65は平滑コンデンサ電圧が動作下限電圧以上であって所定電圧未満となるように、すなわち42V以上60V未満を維持するようにスイッチング素子群63を制御して還流モード(A)と回生モード(B)とを交互に切り替える。これにより、CPU・制御回路65は当該CPU・制御回路65が動作可能な電源電圧を維持する。また、モータ64の回転数及びモータ64の誘起電圧が低下していく。
時点T20後、CPU・制御回路65は回生モード(B)に切り替える。しかしながら、時点T21でモータ64の誘起電圧が60Vを下回る。CPU・制御回路65が回生モード(B)を継続しても、電動機60の回転数の低下によりモータ64の誘起電圧が60Vを下回ると、入力コンデンサ62や平滑コンデンサ50の充電を続けても平滑コンデンサ電圧の低下が継続する。このため、時点T21後は入力コンデンサ62及び平滑コンデンサ50を60V以上に充電することはできないので、平滑コンデンサ電圧は所定電圧である60V未満となる。したがって、平滑コンデンサ電圧は所定電圧まで上昇せずにモータ64の誘起電圧の低下と共に低下していく。
続いて、時点T22では、電動機60の回転数が所定の回転数に達し、モータ64の誘起電圧が42Vを下回る。すなわち、平滑コンデンサ電圧が動作下限電圧未満となる。このため、CPU・制御回路65は電源電圧を確保できずに動作不能となり、低電圧系駆動電源がOFFする。この時点T22後は電動機60も停止する。こうして、CPU・制御回路65の制御は終了する。
次に、もともと電動機60が動作していない場合、すなわちモータ64の回転が停止していた場合について説明する。図5に示されるように、車両の衝突前では、システムメインリレー20はONしているので、CPU・制御回路65は高電圧バッテリ10の電圧を降圧することにより動作する。したがって、低電圧系駆動電源はONになっている。また、モータ64は回転していないので、電動機60の回転数は0rpmであり、モータ64の誘起電圧は0Vである。もちろん、スイッチング素子群63の制御も停止している(図5の「SW停止中」)。
そして、時点T23で車両の衝突が発生したとする。CPU・制御回路65は、時点T24から放電制御実施区間が開始し、放電制御がスタートする。すなわち、システムメインリレー20がOFFされ、入力コンデンサ62及び平滑コンデンサ50への電源供給が停止する。このため、平滑コンデンサ電圧は所定のレートで低下し、所定電圧である60V未満となる。
時点T25では、平滑コンデンサ電圧が動作下限電圧未満となる。したがって、低電圧系駆動電源がOFFし、CPU・制御回路65は動作不能となる。もちろん、インバータも停止する。また、時点T26では、放電制御実施区間が終了し、所定時間が経過する。この時点で平滑コンデンサ電圧は0Vとなる。
上記の場合は入力コンデンサ62及び平滑コンデンサ50の充電電圧を放電用抵抗40で放電するため、モータ64の回転が停止している場合は所定時間内に平滑コンデンサ電圧が所定電圧未満となるような仕様の放電用抵抗40が採用される。
以上説明したように、本実施形態では、車両の衝突後、CPU・制御回路65は還流モード(A)と回生モード(B)とを交互に切り替ることが特徴となっている。これにより、CPU・制御回路65は動作可能な電源電圧を維持することができる。したがって、CPU・制御回路65は車両の衝突後もスイッチング素子群63を駆動することができるので、入力コンデンサ62及び平滑コンデンサ50の放電に要する時間や平滑コンデンサ電圧のロバスト性を保つことができる。
また、放電制御開始後にモータ64からの回生によって入力コンデンサ62及び平滑コンデンサ50が充電されるが、還流モード(A)への切り替えにより平滑コンデンサ電圧を低下させることができる。このため、例えば北米の車両の衝突時の高電圧の法規に「FMVSS305」というものがあり、「衝突から5秒以内に60V以下」にするという条件を満足することができる。
すなわち、回生モード(B)を維持すると、平滑コンデンサ電圧が上がりすぎて法規等に抵触するので、平滑コンデンサ電圧が所定電圧(FMVSS法規に従うと60V)に達したら回生モード(B)から還流モード(A)に切り替える。こうして、平滑コンデンサ電圧が必要以上に上がらないように制御する。以後、還流モード(A)と回生モード(B)とを繰り返し、60V未満で低電圧系駆動電源がOFFしない平滑コンデンサ電圧を維持することにより、モータ64からの回生による電圧上昇を防止し、ロバスト性の高い安全な電動機60の制御を行うことができる。この制御は、車両の衝突によってシステムメインリレー20と電動機60との間のワイヤハーネスが切断されたとしても、CPU・制御回路65が単独で行うことができる。
なお、本実施形態の記載と特許請求の範囲の記載との対応関係については、入力コンデンサ62及び平滑コンデンサ50が特許請求の範囲の「コンデンサ」に対応し、CPU・制御回路65が特許請求の範囲の「制御手段」に対応する。また、平滑コンデンサ電圧が特許請求の範囲の「コンデンサ電圧」に対応し、上位ECU70が特許請求の範囲の「外部装置」に対応する。
(第2実施形態)
本実施形態では、第1実施形態と異なる部分について説明する。本実施形態では、CPU・制御回路65は、上位ECU70との通信によって供給される12V程度の電圧に基づいて動作する構成となっている。CPU・制御回路65は、低電圧部で自身が動作するための電源電圧を生成して動作する。
このような構成において、車両の衝突が発生した場合、CPU・制御回路65は平滑コンデンサ電圧を所定電圧以下に維持できるように、還流モード(A)を維持する。すなわち、入力コンデンサ62及び平滑コンデンサ50の充電電圧を継続して放電させる。言い換えると、CPU・制御回路65は高電圧部によって自身が動作するための電源電圧を生成していないので、回生モード(B)を実施して平滑コンデンサ電圧を動作下限電圧以上に維持する必要がない。
本実施形態では、スイッチング素子群63の下アームに電流が集中するので、スイッチング素子群63としてより冷却可能な構造もしくは大電流に耐えうるパワーデバイスを採用することが好ましい。
以上により、入力コンデンサ62や平滑コンデンサ50側へのモータ64の誘起電圧による回生を防止することができる。なお、車両の衝突時にCPU・制御回路65と上位ECU70との間の通信線は切断されないとする。
(第3実施形態)
本実施形態では、第1、第2実施形態と異なる部分について説明する。本実施形態では、上位ECU70は車両の衝突の検出機能と、車両が衝突したことを示す衝突信号の送信機能を有するように構成されている。したがって、上位ECU70は車両の衝突を検出し、これに伴って衝突信号をCPU・制御回路65に送信する。
また、CPU・制御回路65は、車両の衝突発生時に上位ECU70から衝突信号を受信する。これにより、CPU・制御回路65は、当該CPU・制御回路65が動作可能な電源電圧を維持するための制御を開始する。すなわち、CPU・制御回路65は、より正確に還流モード(A)の制御を開始することができる。
(第4実施形態)
本実施形態では、第1〜第3実施形態と異なる部分について説明する。本実施形態では、モータ64の誘起電圧が所定の低下レートで低下した場合、それに応じてモータ64の回転数を減少させ、弱め界磁領域を抜けるように制御することが特徴となっている。ここで、「弱め界磁領域の制御」とは、車両の衝突前において、モータ64の高速回転時にモータ64に発生する誘起電圧を低下させるように、界磁が発生させる磁界を弱める制御である。
電動機60が最大電力制御を行う弱め界磁領域で運転している場合、モータ64の高回転域でインバータ制御を停止すると、惰性で回転しているモータ64で入力電圧より高い誘起電圧が発生し、この誘起電圧が入力コンデンサ62側へ回生する。このため、入力コンデンサ62や平滑コンデンサ50が充電される。
そこで、図6に示されるように、モータ64の仕様下限電圧(100V)よりも高い電圧閾値(例えば150V)を衝突判定電圧V1として設定する。そして、所定以上の下降レートでモータ64の誘起電圧が低下していると共にモータ64の誘起電圧が衝突判定電圧V1を下回った場合、弱め界磁領域を脱するようにモータ64の回転数を低下させる。これにより、「回生モード」時の入力電圧のバッテリ電圧以上の電圧上昇を防止することができる。
なお、図6において、モータ64の誘起電圧は仕様下限電圧(V0)と仕様上限電圧との間にある。仕様下限電圧は、モータ制御可能な下限電圧(例えば100V)である。仕様上限電圧は、例えば高電圧バッテリ10の電源電圧である。
具体的に、CPU・制御回路65は図7に示されたフローチャートに従って制御を行う。まず、ステップ100では、モータ64の誘起電圧の下降レートが算出される。下降レートは、例えば図8に示されたモータ64の誘起電圧の傾きから算出される。
ステップ110では、ステップ100で算出された下降レートが所定値以上であるか否かが判定される。モータ64の誘起電圧の下降レートが所定値以上ではない場合、本フローチャートは終了する。すなわち、衝突後は第1実施形態と同様に還流モードと回生モードの切り替えを繰り返す制御が行われる。一方、ステップ110でモータ64の誘起電圧の下降レートが所定値以上であると判定されると、ステップ120に進む。
ステップ120では、衝突判定電圧がV1未満であるか否かが判定される。ステップ120において、モータ64の誘起電圧が衝突判定電圧V1以上であると判定された場合、本フローチャートは終了し、第1実施形態と同様の制御が行われる。一方、ステップ120で衝突判定電圧がV1未満であると判定されると、ステップ130に進む。
ステップ130では、弱め界磁停止制御が行われる。すなわち、図6に示されるように、モータ64の誘起電圧が下がっていくと、電流を増やしながら出力が一定に維持されようとするが、この制御が停止される。このモータ64の誘起電圧の低下に伴ってモータ64の回転数が短時間に小さくなる。言い換えると、モータ64の誘起電圧の下降レートが上がるので、本実施形態では例えば図2の時点T11から時点T12までの時間が短縮される。したがって、より早く還流モードと回生モードを繰り返す制御が開始され、第1実施形態よりも早くモータ64の誘起電圧が小さくなる。
以上のように、車両の衝突後にモータ64の誘起電圧が所定のレートで低下した場合はCPU・制御回路65によって弱め界磁制御を停止することができる。これにより、入力コンデンサ62及び平滑コンデンサ50に余分な充電が行われないようにすることができる。
(第5実施形態)
本実施形態では、主に上記各実施形態と異なる部分について詳しく説明する。本実施形態では、車両の衝突が発生した後、コンデンサ電圧を早く所定電圧まで低下させるために複数の放電手段を備えたことが特徴となっている。
図9に示されるように、本実施形態に係るシステムでは、高電圧バッテリ10、システムメインリレー20、平滑コンデンサ50、電気装置51、電動機60、CPU・制御回路65、上位ECU70、及び圧縮部80を含んでいる。
なお、圧縮部80は、電動機60を構成するモータ64によって駆動される圧縮機構である。圧縮部80は連結部81を介してモータ64に連結されている。また、図9において各構成を繋ぐ実線は電力線を示し、矢印付きの実線は信号線を示している。
システムメインリレー20は、スイッチ21と、スイッチ22、スイッチ23、及び抵抗24とが高電圧バッテリ10の正極側と負極側とで入れ替わっている。このような接続においても、システムメインリレー20は、電動機60に高電圧を印加するときに突入電流が流れないようにする機能を持ち、異常状態が検知された場合には上位ECU70によって切断される機能は上記各実施形態を同じである。
平滑コンデンサ50は、上記各実施形態で示された平滑コンデンサ50と同じものである。電気装置51は、平滑コンデンサ50の近辺を分岐点とする他の装置である。電気装置51は、例えば、車両走行用インバータ、降圧用のDC/DCコンバータ、高電圧ヒータ等である。
電動機60は、コイル61、入力コンデンサ62、放電用スイッチ66、放電用抵抗67、スイッチング素子群63、及びモータ64を備えている。放電用スイッチ66は、CPU・制御回路65によって制御されることで放電用抵抗67に電流を流すことにより余分な電力を熱に変換して消費させる役割を果たす。
CPU・制御回路65は、マイクロコンピュータ65a(以下、マイコン65aという)、駆動ドライバ65b、通信回路部65c、絶縁トランス電源部65d、及び絶縁通信部65eを備えている。
マイコン65aは、上位ECU70との通信、スイッチング素子群63への駆動信号の出力、及び各種検出信号をA/D変換して入力する等の機能を有している。
駆動ドライバ65bは、マイコン65aからの駆動信号に基づいてスイッチング素子群63の各スイッチング素子63dを動作させるためのスイッチング信号を生成するものである。
通信回路部65cは、マイコン65aが上位ECU70との間で通信を行うための回路である。通信回路部65cは、シリアル通信、LIN通信、CAN通信等の通信方式での通信が可能になっている。
絶縁トランス電源部65dは、駆動ドライバ65bやマイコン65aを動作させるための電源を生成するものである。具体的に、絶縁トランス電源部65dは、高電圧バッテリ10によって生成される高電圧または低電圧の電源71によって生成される低電圧を入力して、駆動ドライバ65bやマイコン65aを動作させるための電源を生成する。絶縁トランス電源部65dとして、例えばトランス型の電圧変換器が用いられる。
絶縁通信部65eは、通信回路部65cとマイコン65aとを電気的に絶縁して通信するための絶縁通信手段である。絶縁通信部65eとして、例えばフォトカプラや半導体アイソレータが用いられる。
ここで、マイコン65a、駆動ドライバ65b、絶縁トランス電源部65dの一部、及び絶縁通信部65eの一部は高電圧側に配置されている。これらは高電圧制御装置65fを構成している。一方、通信回路部65c、絶縁トランス電源部65dの一部、及び絶縁通信部65eの一部は低電圧側に配置されている。これらは低電圧制御装置65gを構成している。高電圧制御装置65fは第1実施形態の高電圧部に対応し、低電圧制御装置65gは第1実施形態の低電圧部に対応している。
外部ECU70は、12V等の低電圧の電源71から電源供給を受けることによって動作可能になっている。以上が、本実施形態に係るシステムの構成である。なお、図1では、矢印の経路は信号線を示しており、信号線以外は電力線を示している。
図9に示されたシステムのうちの電動機60は、図10に示されるように、車両のボンネットの内側に搭載される。このように、電動機60は車両の前方側に搭載される場合があり、電動機60に電力を供給しているハーネスが車両衝突時に切断されるケースも考えられる。その場合、安全を確保するため、高電圧電荷を放電する必要がある。
図11に示されるように、車両では高電圧配線が取り回されている。図11は車両の天井側から車両を見た平面図である。車両には上述の電動機の他に走行用のモータや発電用のモータが搭載されている。また、これらを駆動する駆動装置も搭載されている。高電圧配線は、100V〜200Vに充電される充電部分、300V〜400V程度の電池、電圧変換を行うDC/DCコンバータ等に接続されている。例えば、車両の右前方に衝突が起こった場合、高電圧配線が切断してしまうことが考えられる。
具体的には、車両衝突時に、図12に示されるように高電圧配線のみが切断されるケース、図13に示されるように低電圧配線のみが切断されるケース、さらには図14に示されるように高電圧配線と低電圧配線との両方が切断されるケースがある。なお、図12〜図14では、切断箇所を「×」で示している。
図12に示されるケースでは、高電圧バッテリ10や平滑コンデンサ50から電動機60に電力が供給されなくなるので、入力コンデンサ62の放電は比較的速やかに実行可能である。放電効果の大きい放電制御を行うと、衝突後のコンデンサ電圧は急減少する。
また、図13に示されるケースでは、高電圧バッテリ10や平滑コンデンサ50から電動機60に電力が供給されるので、入力コンデンサ62の放電初期では比較的遅い放電になる。
また、平滑コンデンサ50の静電容量の大小によっては蓄積エネルギーが異なる。このため、平滑コンデンサ50の静電容量が大きい場合には比較的速やかな放電制御を実行する必要があり、平滑コンデンサ50の静電容量が小さい場合には、比較的緩やかな放電制御を実行する必要がある。
さらに、図14に示されるケースでは、高電圧バッテリ10や平滑コンデンサ50から電力が供給されなくなるので、入力コンデンサ62の放電は比較的速やかに実行可能である。また、図12のケースと比較し、低電圧電源からの電力供給もなくなるので、放電開始が遅くなったり、車両制御との通信ができなくなるケースがある。
このように、車両衝突時にどの配線が切断されたかによって入力コンデンサ62の放電の状況が異なっている。したがって、本実施形態では、車両の状態及び電動機60の状態に応じた放電制御を行う。このため、CPU・制御回路65のマイコン65aは、図15に示された制御内容に従って放電制御を行う。図15に示されたフローチャートはマイコン65aに電源が供給されると開始し、その後は繰り返し演算が行われる。また、制御周期によりコールされて実行される。
まず、車両に衝突が発生していない場合について説明する。ステップ200では、放電制御中であるか否かが判定される。本ステップにおける「放電制御」は、車両に衝突が発生して既に実行されている放電制御を指す。本ステップで放電制御中ではないと判定されるとステップ210に進む。
ステップ210では、衝突フラグが取得される。衝突フラグは、車両に衝突が発生した場合に上位ECU70で生成される。したがって、通信回路部65cを介して上位ECU70から衝突フラグが取得される。
なお、上位ECU70では衝撃圧センサ等からの信号に基づいて車両の衝突の有無が判定される。また、CPU・制御回路65は上位ECU70から衝突フラグを取得するのではなく、電圧の変化等に基づいて衝突状態を検出しても良い。
ステップ220では、低電圧電源の電圧値が検出される。すなわち、絶縁トランス電源部65dからマイコン65aに供給されている低電圧の値が取得される。
ステップ230では、コンデンサ電圧が検出される。すなわち、入力コンデンサ62のコンデンサ電圧が取得される。以下、入力コンデンサ62のコンデンサ電圧をViとする。ここで、車両に衝突が発生していない場合にはステップ230が実行される度にコンデンサ電圧Viが取得される。つまり、前回のコンデンサ電圧Vi(n)と今回のコンデンサ電圧Vi(n−1)とが取得される。
続いて、ステップ240では、衝突フラグが立っているか、または、低電圧電源がOFFであるか否かが判定される。「低電圧電源がOFF」とは、絶縁トランス電源部65dからマイコン65aに低電圧が供給されていないことを意味している。本ステップにおいて、衝突フラグが立っておらず、マイコン65aへの低電圧電源がOFFではないと判定されると、ステップ250に進む。
このように、ステップ210〜ステップ240では、車両に何らかの異常な状態があったか否かを判定するためのパラメータの取得と判定が行われる。
例えば、通信線が断線しても低電圧電源が正常な場合がある。この場合、マイコン65a内で通信エラーが発生するまでは車両異常等の異常状態を判定することができずに長い時間が必要となる。このようにマイコン65aで通信エラーが発生するよりも早く高電圧のハーネスが断線するようなケースでは、コンデンサ電圧Viの電圧変化から車両異常を検知する方法が速やかに放電制御を実行することができる。
ステップ250では、通常運転制御が維持される。すなわち、スイッチング素子群63に対する通常制御が継続して行われる。そして、ステップ200に戻る。
次に、車両に衝突が発生した場合について説明する。この場合、上位ECU70によって衝突フラグが立てられたり、マイコン65aに供給される低電圧電源がOFFしたりする。
上述のように、ステップ200〜ステップ230が実行される。そして、ステップ240では、衝突フラグが立っている、または、低電圧電源がOFFであると判定される。この場合、ステップ260に進む。すなわち、放電制御を行うルートに移行する。
ステップ260では、ΔViが算出される。具体的には、制御周期をTとすると、ΔViはΔVi=|Vi(n)−Vi(n−1)|/Tによって算出される。つまり、ΔViは、コンデンサ電圧Viの変化量(減少量)の大きさを示している。したがって、ΔViが大きい場合はコンデンサ電圧Viの減少速度が速い。一方、ΔViが小さい場合にはコンデンサ電圧Viの減少速度は遅い。なお、制御周期Tは一定値である。
ここで、コンデンサ電圧Viの変化量(減少量)は、コンデンサ電圧Viの電圧変化を示しているが、本実施形態では電圧変化は電圧値に基づいて算出されている。しかしながら、コンデンサ電圧Viの電圧変化はコンデンサ電圧Viに対応する電流値等の他のパラメータによって算出されるようになっていても良い。
続いて、ステップ270では、ステップ260で算出されたΔViが所定電圧以下であるか否かが判定される。所定電圧をVsとすると、ΔVi≦Vsの条件を満たすか否かが判定される。本ステップにおいてΔVi≦Vsの条件を満たす場合とは、コンデンサ電圧Viの変化量ΔViがVs以下の第1範囲に含まれる。この場合、モータ64等の電力消費に対して電力供給が継続している状態である。一方、本ステップにおいてΔVi≦Vsの条件を満たさない場合、コンデンサ電圧Viの変化量ΔViが第1範囲よりも大きなVs以上の第2範囲に含まれる。この場合、モータ64等の電力消費に対して電力供給が継続していない状態である。本ステップでは、ΔViが所定電圧Vsよりも小さい場合、ステップ280に進む。一方、ΔViが所定電圧Vsよりも大きい場合、ステップ290に進む。
ステップ280では、第1放電制御が選択される。第1放電制御は、放電用スイッチ66をONすることで放電用抵抗67に電流を流す制御である。放電用抵抗67の抵抗値次第で比較的早い放電や比較的遅い放電のどちらも実行することができる。第1放電制御が実行される際、電動機60のスイッチング素子群63のスイッチング状態は、図3に示された還流モードとなるように制御されていることが好ましい。これにより放電が効果的に行われる。
ステップ290では、第2放電制御が選択される。第2放電制御は、電動機60のスイッチング素子群63を動作させてスイッチング損失により損失を発生させる制御である。ここで、第2放電制御では、スイッチング素子群63をスイッチングする周波数を変更することにより、スイッチング損失を増減することが可能である。比較的高いキャリア周波数でスイッチング素子群63をスイッチングする場合は損失が大きくなって放電が比較的早くなる。一方、比較的低いキャリア周波数でスイッチング素子群63をスイッチングする場合は損失が小さくなり放電が比較的遅くなる。このことを利用して、第2放電制御を第1放電制御よりも遅い放電にすることができる。
上記のように、第1放電制御は放電用抵抗67に電流を流す制御であり、第2放電制御はスイッチング素子群63を動作させる制御であるが、各放電制御の内容は一例である。したがって、放電用抵抗67の抵抗値をすること、または、スイッチング素子63dをスイッチングする周波数を変更することによりスイッチング損失を発生させる制御を第1放電制御とすることが可能である。また、放電用抵抗67に電流を流す制御を第2放電制御とすることも可能である。このように、各放電制御の内容は一例であり、それぞれ適宜設定すれば良い。
このように、本実施形態では、第1放電制御及び第2放電制御の少なくとも2つの放電手段によって入力コンデンサ62の放電が行われる。すなわち、複数の放電手段が設けられているので、コンデンサ電圧Viの変化量が所定電圧Vs以下の場合すなわち入力コンデンサ62の放電が遅い場合には比較的速い第1放電制御による放電を行うことができる。これにより、コンデンサ電圧Viを速く低下させることができる。一方、コンデンサ電圧Viの変化量が所定電圧Vs以上の場合すなわち入力コンデンサ62の放電が速い場合には第1放電制御よりも遅い第2放電制御による放電を行うことができる。これにより、コンデンサ電圧Viの急激な減少によってコンデンサ電圧Viがマイコン65a等の動作下限電圧を下回ってしまうことを回避することができる。
この後、ステップ300では、コンデンサ電圧Viが動作下限電圧(V40)以下であるか否かが判定される。本ステップでコンデンサ電圧Viが動作下限電圧(V40)以下ではないと判定されるとステップ310に進み、ステップ280またはステップ290で選択された放電制御が実行される。一方、コンデンサ電圧Viが動作下限電圧(V40)以下であると判定されるとステップ320に進み、放電制御が停止される。
ステップ320またはステップ310が実行された後、すなわち第1放電制御または第2放電制御による入力コンデンサ62の放電後、ステップ330では、コンデンサ電圧Viの維持制御が実行される。コンデンサ電圧Viの維持制御は、放電制御の有無に関わらず、マイコン65aや駆動ドライバ65b等が動作不能に陥らないようにマイコン65aや駆動ドライバ65b等の動作可能な電源電圧を維持する制御である。つまり、コンデンサ電圧Viをマイコン65a等が動作可能な電源電圧として維持するために入力コンデンサ62の放電実行と放電停止とを繰り返す制御である。例えば、コンデンサ電圧Viの値の大小によって、回生モードと還流モードとのスイッチング動作を変更して、例えば30Vのように適切な電圧を維持する制御である。
なお、成り行きでも、電動機60の回転が止まり電動機60の回生がなくなるとコンデンサ電圧Viの維持はできなくなり、コンデンサ電圧Viは下降して電動機60は停止する。これに対し、所定時間経過後にコンデンサ電圧Viの維持制御を停止しても良い。
ステップ330の後、ステップ200に戻る。ステップ200では、放電制御中であるか否かが判定される。ステップ320において放電制御が停止されている場合はステップ210に進む。一方、ステップ310において放電制御が実行されている場合はステップ340に進む。
ステップ340では、ステップ230と同様に、コンデンサ電圧Viが検出される。これにより、放電制御中に最新のコンデンサ電圧Viが得られる。この後、ステップ300に進み、最新のコンデンサ電圧Viが動作下限電圧(V40)以下であるか否かが判定される。以上のように、コンデンサ電圧Viの放電制御が行われる。
次に、上記のように放電制御が行われたときのコンデンサ電圧Viの変化の例について説明する。図16に示されるように、時点T27で車両に衝突が発生したとする。この後、例えば第1放電制御が選択され、第1放電制御による放電が開始される。これにより、コンデンサ電圧Viが急激に低下する。
そして、第1放電制御によってΔViの値が大きくなるので、時点T28で第1放電制御から比較的放電が遅い第2放電制御に変更される。これにより、コンデンサ電圧Viの急激な低下に伴ってコンデンサ電圧Viがマイコン65a等の動作下限電圧を下回ってマイコン65a等が動作不能になることを防止することができる。
この後、時点T29では、コンデンサ電圧Viが動作下限電圧に達するので、コンデンサ電圧Viが動作下限電圧を下回らないようにコンデンサ電圧Viの維持制御が始まる。図16に示された例では、コンデンサ電圧Viは40Vから25Vまでの間に維持される。
また、第1放電制御が始まった時点T27からモータ誘起電圧は低下し続け、コンデンサ電圧Viの維持制御中の時点T30で例えば60Vを下回る。
なお、回生モードにおけるコンデンサ電圧Viの立ち上がり、及び、還流モードにおけるコンデンサ電圧Viの立ち下がりの傾きは、インバータ装置であるスイッチング素子群63や電動機60によって異なるため、一意には決まらない。コンデンサ電圧Viの維持制御は成り行きでも停止するが、例えば、モータ誘起電圧またはモータ誘起電圧に関連する状態量を利用して回生モードが機能しない条件になったらコンデンサ電圧Viの維持制御を停止しても良い。
一方、図16に示された放電速度よりも遅い放電のケースもある。図17に示されるように、時点T31で車両に衝突が発生した後、第1放電制御による放電が開始される。そして、時点T32で第1放電制御から第2放電制御に変更される。図17では、第1放電制御と第2放電制御とでコンデンサ電圧Viの傾きの差が小さいケースが示されている。
このようなケースでは、第2放電制御では、インバータ装置であるスイッチング素子群63のスイッチング動作により放電を実行する場合がある。この場合は回生モードとなるスイッチング状態にもならざるを得ないため、時点T33以降は放電と回生を繰り返しながらコンデンサ電圧Viが低下する。そして、時点T34でモータ誘起電圧が60Vを下回る。
また、回生時間を長くせざるを得ない場合、所定電圧(例えば40V)になるまで放電を継続することになる。但し、放電と回生を繰り返す中でインバータ装置の動作を可能とすることができるコンデンサ電圧Viを維持しているため、コンデンサ電圧Viの維持制御を実行していることと同義である。
以上説明したように、車両に衝突が発生した後に放電制御の方法を変更してコンデンサ電圧Viを低下させることができる。そして、コンデンサ電圧Viを放電しきらないように放電制御が行われるので、電動機60の制御状態を継続することができる。また、放電後のコンデンサ電圧Viを安定的に例えば40V以下に制御することが可能となる。
さらに、本実施形態では、コンデンサ電圧Viの放電制御のための新たな部品が不要である。したがって、図9に示されたシステムの構成要素のみで放電制御を実現することができる。
ここで、車両衝突時に配線の断線が全く起こらなかった場合、放電制御により入力コンデンサ62の高電圧電荷を、電動機60の出力を利用して放電が可能である。これにより、速やかな放電を実現することもできる。また、電気装置51内にもコンデンサが存在すれば同様の使い方が可能である。
なお、本実施形態の記載と特許請求の範囲の記載との対応関係については、ステップ210、240に係る処理、ステップ220、240に係る処理、ステップ230、260に係る処理が特許請求の範囲の「衝突検知手段」に対応する。また、ステップ210〜240に係る処理が特許請求の範囲の「車両異常状態判定手段」に対応する。
(第6実施形態)
本実施形態では、第5実施形態と異なる部分について説明する。本実施形態では、電動機60の回転数に基づいて放電制御が行われる。以下、図18に示されたフローチャートについて説明する。
本実施形態では、ステップ240で衝突フラグが立っている、または、低電圧電源がOFFであると判定されると、ステップ241に進む。
ステップ241では、電動機60の回転数が所定回転数以下であるか否かが判定される。具体的には、電動機60の回転数をNrpmとし、所定回転数をNsとすると、Nrpm≦Nsの条件を満たすか否かが判定される。そして、Nrpm≦Nsの条件を満たす場合、すなわち電動機60の回転数が低いと判定された場合はステップ242に進む。
ステップ242では、動作下限電圧(V40)が0Vに設定される。これは、電動機60が所定出力以下で動作している場合、電動機60の動作による回生によってコンデンサ電圧Viが再度上昇しないので、コンデンサ電圧Viが安全な値になるまで入力コンデンサ62を放電させるためである。本実施形態では、「所定出力以下」とは電動機60の回転数が所定回転数以下の場合に該当するが、他のパラメータが用いられても良い。
ステップ241においてNrpm≦Nsの条件を満たさないと判定された場合、またはステップ242において動作下限電圧(V40)が0Vに設定された場合、ステップ260に進む。そして、ステップ260ではΔViが算出される。
この後、ステップ300では、コンデンサ電圧Viが動作下限電圧(V40)以下であるか否かが判定される。ここで、動作下限電圧(V40)は通常40Vに設定されているが、ステップ242を経た場合には動作下限電圧(V40)は0Vに設定されている。
動作下限電圧(V40)が0Vに設定されている場合、第1放電制御または第2放電制御による入力コンデンサ62の放電後のコンデンサ電圧が0Vになるように入力コンデンサ62の放電が実行される。
このように、車両衝突時に電動機60が所定回転数以下で動作している場合は、動作下限電圧(V40)が0Vに設定されているので、コンデンサ電圧Viの上昇の要因がない状況では入力コンデンサ62の高電圧電荷を全て放電させることができる。これにより、安全性を早く確保することができる。
(第7実施形態)
本実施形態では、第6実施形態と異なる部分について説明する。本実施形態では、電動機60の回転数に基づいて新たな第3放電制御が行われる場合がある。以下、図19に示されたフローチャートについて説明する。
まず、ステップ241においてNrpm≦Nsの条件を満たすと判定された場合はステップ243に進む。ステップ243では、第3放電制御が選択される。第3放電制御は、コンデンサ電圧Viの値に因らず、比較的早い放電が可能な第1放電制御と同じ内容の放電制御である。ステップ241で電動機60の回転数が低いと判定されたために電動機60の回生によるコンデンサ電圧Viの上昇がないので、放電制御の方式を選択することなく第3放電制御による放電が実行されるようにする。なお、本ステップで選択される放電方法はどの方式が採用されても良い。
他の放電方法としては、スイッチング素子群63を動作させる一方、電動機60にトルクを発生させずに放電する方法がある。これによると、スイッチング素子群63を動作させるので、スイッチング損失や僅かに流れるモータ電流等による放電効果が得られる。
また、絶縁トランス電源部65d、駆動ドライバ65b、マイコン65aの消費電力を増やすモードに設定して放電効果を得る方法もある。この方法では、消費電力は少ないので、小さな放電効果を得たい場合に適している。
さらに、電気装置51にヒータ等が備えられた構成の場合、電気装置51を動作させることにより電力を消費する方法がある。放電効果はヒータの出力に依存するが、中〜大くらいの放電効果が得られる。
これらの放電方法は、第3放電制御に限られず、上述の第1放電制御や第2放電制御として採用しても良い。
そして、ステップ244では、ステップ243で選択された第3放電制御が実行される。この後、ステップ200に戻る。ステップ200では放電制御中であると判定され、ステップ201に進む。
ステップ201では、第3放電制御が実行されているか否かが判定される。本ステップにおいて第3放電制御が実行されていると判定されるとステップ244に進み、第3放電制御が維持される。一方、本ステップにおいて第3放電制御が実行されていないと判定されるとステップ202に進む。ステップ202では、ステップ340と同じ処理が実行される。すなわち、最新のコンデンサ電圧Viが取得され、ステップ300に進む。ステップ300以降は上述のように処理が行われる。
以上説明したように、車両衝突時に電動機60が所定回転数以下で動作している場合、入力コンデンサ62のコンデンサ電圧Viの差分ΔViの変化に応じて放電制御が選択されるのではなく、第3放電制御による放電が選択されるようにすることができる。なお、第6実施形態と同じく回生電力によるコンデンサ電圧Viの上昇がない場合、差分ΔViの変化によらず最も早く放電可能な放電制御が選択されるようにすることも可能である。
(第8実施形態)
本実施形態では、第5実施形態と異なる部分について説明する。本実施形態では、図20に示されるように、ステップ340で最新のコンデンサ電圧Viが取得された後はステップ260に進む。これにより、ステップ260では、常に最新のΔViが算出される。
これにより、コンデンサ電圧Viの差分ΔViの変化に合わせて放電制御を切り替えることができる。このため、コンデンサ電圧Viの充放電制御をより適切に実行することができ、ひいては安定的な高電圧電荷の放電が可能となる。
(第9実施形態)
本実施形態では、第5実施形態と異なる部分について説明する。本実施形態では、図21に示されるように、ステップ310においてステップ280またはステップ290で選択された放電制御が実行された後、ステップ311に進む。
ステップ311では、ステップ310で放電制御が開始されてから所定時間が経過したか否かが判定される。そして、本ステップで所定時間が経過していないと判定されると、ステップ330に進み、コンデンサ電圧Viの維持制御が行われる。一方、本ステップで所定時間が経過していると判定されると、ステップ312に進む。ステップ312では、ステップ320と同様に、放電制御が停止される。つまり、所定時間後もコンデンサ電圧Viが例えば60V以下にならない場合は放電制御を終了させる。
この後、ステップ313では、ダイアグ情報としての異常フラグが上位ECU70に送信される。このように、スイッチング素子群63の動作が停止してダイアグ情報が残される。上位ECU70は正常に動作しているので、電動機60に異常があると判定され、車両の異常が警告ランプ等を介して乗員に知らされる。
なお、車両運転中であれば車両走行可能な状態にするが、IG−ON時等の車両起動時であれば乗員に警告ランプで知らせる等して車両走行不能にしても良い。
以上説明したように、放電制御の実行後に所定時間が経過してもコンデンサ電圧Viが下がらない場合は放電制御を停止するようにすることができる。これは、外部から接続される低電圧配線のコネクタが車両衝突以外の条件で外れたり故障したりした場合、高電圧バッテリ10を接続するリレーシステム20が接続されたままになり、入力コンデンサ62への充電が続く場合に特に有効である。
(他の実施形態)
上記各実施形態で示された電動機60の構成は一例であり、上記で示した構成に限定されることなく、本発明を実現できる他の構成とすることもできる。例えば、図1に示された電動機60の構成は一例であり、他の構成でも良い。また、各実施形態は適宜組み合わせて実施することができる。
上記第5〜第9実施形態では、放電制御により入力コンデンサ62のコンデンサ電圧Viを動作下限電圧(V40)に収束させているが、ローパスフィルタやフィードバック制御により時定数を設定して収束させる制御方式を採用しても良い。これにより、動作下限電圧(V40)の近傍での電圧変動(ハンチング)を縮小することが可能である。
50 平滑コンデンサ(コンデンサ)
62 入力コンデンサ(コンデンサ)
63 スイッチング素子群
64 モータ
65 CPU・制御回路(制御手段)
70 上位ECU(外部装置)

Claims (13)

  1. スイッチング素子群(63)を駆動することによってモータ(64)を回転させることにより、前記スイッチング素子群(63)の入力側に接続されたコンデンサ(50、62)を備え、前記コンデンサ(50、62)にコンデンサ電圧を充電する車載用電動機制御装置であって、
    前記コンデンサ電圧が印加される高電圧部と、外部から前記コンデンサ電圧よりも低い外部電圧が印加される低電圧部と、を有し、前記高電圧部に印加された前記コンデンサ電圧から生成された電源電圧及び前記低電圧部に印加された前記外部電圧から生成された電源電圧のいずれかに基づいて動作する制御手段(65)を備えており、
    前記制御手段(65)は、車両の衝突が発生したことにより前記モータ(64)の回転数が低下すると共に前記コンデンサ電圧が低下した場合、前記スイッチング素子群(63)を駆動することにより、当該制御手段(65)が動作可能な電源電圧を維持することを特徴とする車載用電動機制御装置。
  2. 前記制御手段(65)は、外部装置(70)との通信によって前記車両の衝突を検知する衝突検知手段(210、240)を有していることを特徴とする請求項1に記載の車両用電動機制御装置。
  3. 前記制御手段(65)は、前記コンデンサ電圧から生成された低電圧電源の供給を受けて動作可能になっており、前記コンデンサ電圧から生成された低電圧電源の供給が停止したか否かを判定することにより前記車両の衝突を検知する衝突検知手段(220、240)を有していることを特徴とする請求項1に記載の車両用電動機制御装置。
  4. 前記制御手段(65)は、前記コンデンサ電圧の電圧変化を取得すると共に、当該電圧変化に基づいて前記車両の衝突を検知する衝突検知手段(230、260)を有していることを特徴とする請求項1に記載の車両用電動機制御装置。
  5. 前記制御手段(65)は、前記車両の異常時の状態を判定する車両異常状態判定手段(210〜240、260)を有しており、
    前記車両異常状態判定手段(210〜240、260)は、前記コンデンサ電圧の電圧変化を取得すると共に、当該電圧変化に基づいて前記車両の異常状態を判定することを特徴とする請求項1ないし4のいずれか1つに記載の車両用電動機制御装置。
  6. 前記制御手段(65)は、前記車両異常状態判定手段(210〜240、260)によって取得された前記コンデンサ電圧の変化量が第1範囲に含まれる場合には前記コンデンサ(50、62)を放電するための第1放電制御を選択及び実行する一方、前記コンデンサ電圧の変化量が前記第1範囲よりも大きな第2範囲に含まれる場合には前記第1放電制御よりも遅く前記コンデンサ(50、62)を放電するための第2放電制御を選択及び実行することを特徴とする請求項5に記載の車両用電動機制御装置。
  7. 前記制御手段(65)は、前記第1放電制御または前記第2放電制御による前記コンデンサ(50、62)の放電後のコンデンサ電圧を当該制御手段(65)が動作可能な電源電圧として維持するために前記コンデンサ(50、62)の放電実行と放電停止とを繰り返すことを特徴とする請求項6に記載の車両用電動機制御装置。
  8. 前記制御手段(65)は、前記車両異常状態判定手段(210〜240、260)によって前記車両に異常を検知したときに前記モータ(64)が所定出力以下で動作していると判定した場合、前記第1放電制御または前記第2放電制御による前記コンデンサ(50、62)の放電後のコンデンサ電圧が0Vになるように前記コンデンサ(50、62)の放電を実行することを特徴とする請求項6または7に記載の車両用電動機制御装置。
  9. 前記制御手段(65)は、前記スイッチング素子群(63)と前記モータ(64)との間で電流を還流させることにより前記コンデンサ電圧を低下させる還流モードと、前記モータ(64)から前記スイッチング素子群(63)を介して前記コンデンサ(50、62)に電流を流すことにより前記コンデンサ電圧を上昇させる回生モードと、を交互に切り替えることにより、当該制御手段(65)が動作可能な電源電圧を維持することを特徴とする請求項1ないし8のいずれか1つに記載の車載用電動機制御装置。
  10. 前記制御手段(65)は、前記コンデンサ電圧が前記車両の安全を確保することができる所定電圧を超えないように、前記スイッチング素子群(63)を駆動することを特徴とする請求項1ないし9のいずれか1つに記載の車載用電動機制御装置。
  11. 前記制御手段(65)は、外部装置(70)との通信によって外部装置(70)から前記車両が衝突したことを示す衝突信号を受信した後に当該制御手段(65)が動作可能な電源電圧を維持する制御を開始することを特徴とする請求項1ないし10のいずれか1つに記載の車載用電動機制御装置。
  12. 前記制御手段(65)は、前記車両の衝突前においてモータ(64)の高速回転時にはモータ(64)に発生する誘起電圧を低下させる弱め界磁制御を行っており、前記車両の衝突後に前記モータ(64)の誘起電圧が所定のレートで低下した場合は前記弱め界磁制御を停止することを特徴とする請求項1ないし11のいずれか1つに記載の車載用電動機制御装置。
  13. スイッチング素子群(63)を駆動することによってモータ(64)を回転させることにより、前記スイッチング素子群(63)の入力側に接続されたコンデンサ(50、62)にコンデンサ電圧を充電する車載用電動機制御装置であって、
    前記コンデンサ電圧が印加される高電圧部と、外部装置(70)から前記コンデンサ電圧よりも低い外部電圧が印加される低電圧部と、を有し、前記低電圧部に印加された前記外部電圧から生成された電源電圧に基づいて動作する制御手段(65)を備えており、
    前記制御手段(65)は、車両の衝突が発生したことにより前記モータ(64)の回転数が低下すると共に前記コンデンサ電圧が低下した場合、前記スイッチング素子群(63)と前記モータ(64)との間で電流を還流させることにより前記コンデンサ電圧を低下させるように前記スイッチング素子群(63)を駆動することを特徴とする車載用電動機制御装置。
JP2014078363A 2013-06-13 2014-04-07 車載用電動機制御装置 Expired - Fee Related JP6187369B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014078363A JP6187369B2 (ja) 2013-06-13 2014-04-07 車載用電動機制御装置
DE112014002815.0T DE112014002815T5 (de) 2013-06-13 2014-06-03 An einem Fahrzeug montierte Motorsteuereinheit
PCT/JP2014/002916 WO2014199587A1 (ja) 2013-06-13 2014-06-03 車載用電動機制御装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013124339 2013-06-13
JP2013124339 2013-06-13
JP2014078363A JP6187369B2 (ja) 2013-06-13 2014-04-07 車載用電動機制御装置

Publications (2)

Publication Number Publication Date
JP2015019561A true JP2015019561A (ja) 2015-01-29
JP6187369B2 JP6187369B2 (ja) 2017-08-30

Family

ID=52021905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014078363A Expired - Fee Related JP6187369B2 (ja) 2013-06-13 2014-04-07 車載用電動機制御装置

Country Status (3)

Country Link
JP (1) JP6187369B2 (ja)
DE (1) DE112014002815T5 (ja)
WO (1) WO2014199587A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136815A1 (ja) * 2015-02-25 2016-09-01 本田技研工業株式会社 電力システム
JP2017041926A (ja) * 2015-08-18 2017-02-23 トヨタ自動車株式会社 自動車
JP2017147782A (ja) * 2016-02-15 2017-08-24 トヨタ自動車株式会社 二次電池切り離し方法
JP2017169390A (ja) * 2016-03-17 2017-09-21 トヨタ自動車株式会社 車両
US10122317B2 (en) 2014-08-01 2018-11-06 Denso Corporation Electric compressor for vehicle
US10183555B2 (en) 2013-11-20 2019-01-22 Denso Corporation Onboard electric system
WO2020071079A1 (ja) * 2018-10-01 2020-04-09 サンデン・オートモーティブコンポーネント株式会社 高電圧機器の制御装置
JP2020096483A (ja) * 2018-12-14 2020-06-18 本田技研工業株式会社 車両の電源システム
US10737681B2 (en) 2016-12-27 2020-08-11 Denso Corporation Drive unit, vehicle, and control method for drive unit
JP2020198764A (ja) * 2019-06-05 2020-12-10 アイシン・エィ・ダブリュ株式会社 回転電機制御システム
JP7424790B2 (ja) 2019-10-21 2024-01-30 本田技研工業株式会社 車両の電源システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105429561B (zh) * 2015-12-28 2018-09-07 珠海格力电器股份有限公司 一种电机控制电路
WO2019243019A1 (en) * 2018-06-21 2019-12-26 Jaguar Land Rover Limited Discharging a bus of an electrically powered or hybrid vehicle
CN112060914B (zh) * 2020-09-27 2022-07-26 苏州汇川联合动力系统有限公司 驱动电机控制器状态切换电路、控制方法及电机控制器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07143611A (ja) * 1993-11-16 1995-06-02 Hitachi Ltd 電気自動車の回生制動制御方法および制御装置
WO2009101859A1 (ja) * 2008-02-13 2009-08-20 Kabushiki Kaisha Yaskawa Denki インバータ装置とその制御方法
WO2010131340A1 (ja) * 2009-05-13 2010-11-18 トヨタ自動車株式会社 車両の電力変換装置およびそれを搭載する車両
JP2011259517A (ja) * 2010-06-04 2011-12-22 Toyota Motor Corp 車両の電力変換装置およびそれを備える車両
WO2012164680A1 (ja) * 2011-05-31 2012-12-06 トヨタ自動車株式会社 車両および車両の制御方法
JP2012249478A (ja) * 2011-05-30 2012-12-13 Toyota Motor Corp 電動車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07143611A (ja) * 1993-11-16 1995-06-02 Hitachi Ltd 電気自動車の回生制動制御方法および制御装置
WO2009101859A1 (ja) * 2008-02-13 2009-08-20 Kabushiki Kaisha Yaskawa Denki インバータ装置とその制御方法
WO2010131340A1 (ja) * 2009-05-13 2010-11-18 トヨタ自動車株式会社 車両の電力変換装置およびそれを搭載する車両
JP2011259517A (ja) * 2010-06-04 2011-12-22 Toyota Motor Corp 車両の電力変換装置およびそれを備える車両
JP2012249478A (ja) * 2011-05-30 2012-12-13 Toyota Motor Corp 電動車両
WO2012164680A1 (ja) * 2011-05-31 2012-12-06 トヨタ自動車株式会社 車両および車両の制御方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10183555B2 (en) 2013-11-20 2019-01-22 Denso Corporation Onboard electric system
US10122317B2 (en) 2014-08-01 2018-11-06 Denso Corporation Electric compressor for vehicle
WO2016136815A1 (ja) * 2015-02-25 2016-09-01 本田技研工業株式会社 電力システム
JPWO2016136815A1 (ja) * 2015-02-25 2017-07-27 本田技研工業株式会社 電力システム
US10507731B2 (en) 2015-02-25 2019-12-17 Honda Motor Co., Ltd. Electric power system
JP2017041926A (ja) * 2015-08-18 2017-02-23 トヨタ自動車株式会社 自動車
JP2017147782A (ja) * 2016-02-15 2017-08-24 トヨタ自動車株式会社 二次電池切り離し方法
JP2017169390A (ja) * 2016-03-17 2017-09-21 トヨタ自動車株式会社 車両
US10086706B2 (en) 2016-03-17 2018-10-02 Toyota Jidosha Kabushiki Kaisha Vehicle
US10737681B2 (en) 2016-12-27 2020-08-11 Denso Corporation Drive unit, vehicle, and control method for drive unit
JP2020058123A (ja) * 2018-10-01 2020-04-09 サンデン・オートモーティブコンポーネント株式会社 高電圧機器の制御装置
WO2020071079A1 (ja) * 2018-10-01 2020-04-09 サンデン・オートモーティブコンポーネント株式会社 高電圧機器の制御装置
CN113039714A (zh) * 2018-10-01 2021-06-25 三电汽车部件株式会社 高压设备的控制装置
JP7221632B2 (ja) 2018-10-01 2023-02-14 サンデン株式会社 電動コンプレッサの制御装置
US11888388B2 (en) 2018-10-01 2024-01-30 Sanden Corporation Electric compressor control device
CN113039714B (zh) * 2018-10-01 2024-03-08 三电有限公司 高压设备的控制装置
JP2020096483A (ja) * 2018-12-14 2020-06-18 本田技研工業株式会社 車両の電源システム
CN111319467A (zh) * 2018-12-14 2020-06-23 本田技研工业株式会社 车辆的电源系统
US11458844B2 (en) 2018-12-14 2022-10-04 Honda Motor Co., Ltd. Power supply system for vehicle
JP2020198764A (ja) * 2019-06-05 2020-12-10 アイシン・エィ・ダブリュ株式会社 回転電機制御システム
JP7259563B2 (ja) 2019-06-05 2023-04-18 株式会社アイシン 回転電機制御システム
JP7424790B2 (ja) 2019-10-21 2024-01-30 本田技研工業株式会社 車両の電源システム

Also Published As

Publication number Publication date
DE112014002815T5 (de) 2016-03-24
WO2014199587A1 (ja) 2014-12-18
JP6187369B2 (ja) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6187369B2 (ja) 車載用電動機制御装置
US9680405B2 (en) Onboard motor controller
US11458844B2 (en) Power supply system for vehicle
US10800360B2 (en) Electric power system of vehicle with quick discharge of a high-voltage condenser
JP5171578B2 (ja) 車両用バッテリー制御装置
JP4519728B2 (ja) 電動車両の制御装置
EP2860059A2 (en) Electric vehicle power conversion system
JP2010200455A (ja) 自動車および平滑コンデンサの放電方法
JP6252244B2 (ja) モータ駆動装置
JP6503636B2 (ja) モータ制御装置
JP6378267B2 (ja) 車両
US10787136B2 (en) Electric power system for controlling pre-charge of vehicle
US20230129767A1 (en) Control circuit of power converter
US20150015168A1 (en) Vehicular driving system
WO2018143046A1 (ja) 回転電機ユニット、車両
CN112693314B (zh) 车辆的电源系统
JP6439310B2 (ja) 車両用電動圧縮機
US11077754B2 (en) In-vehicle control apparatus and program
JP2013255297A (ja) 車両用インバータ装置
WO2022019038A1 (ja) 電力変換器の制御回路
US20230006664A1 (en) Control circuit for power conversion apparatus
JP2022156170A (ja) 電源システム
JP2023069457A (ja) 電動車両の制御装置
JP2021175324A (ja) 電力変換器の制御回路
JP2020178522A (ja) 回転電機システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170717

R151 Written notification of patent or utility model registration

Ref document number: 6187369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees