JP2015010824A - 欠陥検査方法 - Google Patents

欠陥検査方法 Download PDF

Info

Publication number
JP2015010824A
JP2015010824A JP2013133747A JP2013133747A JP2015010824A JP 2015010824 A JP2015010824 A JP 2015010824A JP 2013133747 A JP2013133747 A JP 2013133747A JP 2013133747 A JP2013133747 A JP 2013133747A JP 2015010824 A JP2015010824 A JP 2015010824A
Authority
JP
Japan
Prior art keywords
image
light
defect
inspection object
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013133747A
Other languages
English (en)
Inventor
幸士郎 荒原
Koshiro Arahara
幸士郎 荒原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013133747A priority Critical patent/JP2015010824A/ja
Publication of JP2015010824A publication Critical patent/JP2015010824A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

【課題】照明光の強度ムラや被検物に付着した異物の像などのノイズが含まれる場合であっても、光学部材の表面上の微小凹凸欠陥などの位相物体の像のコントラストを向上させることにより欠陥の検出を容易にする欠陥検出方法を提供する。【解決手段】光源1から射出する光を被検査物4に対して照射し、被検査物4を透過した光に基づいて被検査物4の欠陥検査を行う欠陥検査方法であって、被検査物4の結像位置9が結像光学系5を介して光を受光する受光面8に対して被検査物4側に位置する場合の画像を少なくとも1以上取得する工程と、被検査物4の結像位置9が結像光学系5を介して光を受光する受光面8に対して被検査物4と反対側に位置する場合の画像を少なくとも1以上取得する工程と、上記2つの工程において取得した画像間の差分演算処理を行う工程と、を有する。【選択図】図1

Description

本発明は、透明体における欠陥の検査方法に関する。
従来、板ガラスやレンズなどの光学部材の欠陥検査は、暗視野照明や明視野照明などで被検査物を照明し、被検査物からの透過光もしくは反射光を観察して行っている。検査対象となる欠陥の中でもキズなどの散乱効率が高い欠陥は、暗視野照明を用いて比較的簡単に検出することができる。また、異物などの透過率の低い欠陥も、明視野照明では影として写るため、容易に検出することができる。従って、上記のような欠陥は、透過光の振幅に変調を与えるため、振幅物体とみなすことが出来る。一方、透明体表面上に存在する微小な凹凸や透明体内部に存在する脈理などの欠陥は、透明であるため、欠陥を検出するために可視化させる必要があるため、困難である。また、このような欠陥は、透過光の振幅には影響を与えず、位相のみを変調させることから位相物体とみなすことが出来る。
このような位相物体とみなせる欠陥の可視化方法として、以前から、シュリーレン法や位相差コントラスト(位相差顕微鏡)などが知られている。これらの方法は、位相物体から発せられる回折波の0次回折光と1次回折光とが空間的に分離された面において、それぞれナイフエッジや位相板を用いて、0次回折光の振幅もしくは位相に変調を加えることによって受光面上で欠陥像を可視化させている。また、位相物体の他の可視化方法としては、結像位置からデフォーカスさせた像を取得する方法が知られている。この方法は、例えば、被検査物が収差を持ったレンズの場合など、焦点面で0次回折光と1次回折光とを空間的に分離することが困難な系に対しても有効である。
デフォーカス像で透明体表面上に存在する微小な凹凸の欠陥の有無を検査した例としては、特許文献1で開示された方法がある。特許文献1は、透明体の被検査面をテレセントリックレンズでデフォーカスし撮像することにより、微小凹凸欠陥部分の強度が明方向・暗方向に強調され、凹凸欠陥部分の面積が拡大する現象に着目し、透明体の表面上の微小凹凸欠陥を検査する方法を開示している。
特開2011−27443号公報
しかしながら、光学部材表面上の微小凹凸欠陥などの位相物体を検査する際、従来のデフォーカスによって可視化された画像は、コントラストが非常に低い。このため、可視化した画像から、目視あるいは画像処理で欠陥検出を行う場合、背景に含まれるノイズを検査対象の欠陥と誤検知してしまう恐れがある。ここで、ノイズとは、照明光の強度ムラや被検物に付着した異物の像などである。
本発明は、照明光の強度ムラや被検物に付着した異物の像などのノイズが含まれる場合であっても、光学部材の表面上の微小凹凸欠陥などの位相物体の像のコントラストを向上させることにより欠陥の検出を容易にする欠陥検出方法を提供することを目的とする。
上記課題を解決するために、本発明は、光源から射出する光を被検査物に対して照射し、被検査物を透過した光に基づいて被検査物の欠陥検査を行う欠陥検査方法であって、被検査物の結像位置が結像光学系を介して光を受光する受光面に対して被検査物側に位置する場合の画像を少なくとも1以上取得する工程と、被検査物の結像位置が結像光学系を介して光を受光する受光面に対して被検査物と反対側に位置する場合の画像を少なくとも1以上取得する工程と、結像位置が受光面に対して被検査物側に位置する場合に取得した画像と、結像位置が受光面に対して被検査物と反対側に位置する場合に取得した画像との差分演算処理を行う工程と、を有することを特徴とする。
本発明によれば、照明光の強度ムラや被検物に付着した異物の像などのノイズが含まれる場合であっても、光学部材の表面上の微小凹凸欠陥などの位相物体の像のコントラストを向上させることにより欠陥の検出を容易にする欠陥検出方法を提供することができる。
本発明の第1実施形態における欠陥検査方法を模式的に示す図である。 結像位置より前側で撮像される欠陥画像を示す模式図である。 結像位置より後側で撮像される欠陥画像を示す模式図である。 図2に示す画像から図3に示す画像を差分演算処理した画像を示す模式図である。 欠陥からの回折光を示す模式図である。 本発明の第2実施形態における欠陥検査方法を模式的に示す図である。
以下、本発明を実施するための形態について図面などを参照して説明する。
(第1実施形態)
図1は、本発明の第1実施形態における欠陥検査方法を模式的に示す図である。本実施形態における欠陥検査方法における構成は、図1に示すように、まず、光源1から照明光を射出し、該照明光は、散乱体2を透過した後、ピンホール3を透過して、被検査物4を照明(照射)する。このとき、散乱体2は、被検査物4の全面を照明するように、照明放射角を広げている。
被検査物4を照明した照明光は、被検査物4を透過する際に、略平行光となる。被検査物4を透過した略平行光は、結像光学系5によって取り込まれ、被検査物4の像は、受光器7の受光面8に結像される。ここで、結像光学系5は、物体側テレセントリック光学系である。また、結像光学系5と受光器7は一体に構成され、これらは駆動機構6により光軸方向に移動することが可能である。
図1に示す被検査物4は正レンズであり、被検査物4を透過した後の光束を略平行光とするためピンホール3は被検査物4の前側焦点位置に配置されている。光束を平行光に近づけているのは、検出光学系5におけるケラれ(画像の一部が欠けること)をなくすためである。図1では、被検査物4は正レンズを想定しているが、被検査物4は正レンズでなくともよい。例えば、被検査物4が板ガラスの場合は、ピンホール3と被検査物4の間にコリメータレンズを配置して、被検査物4の透過光束を平行光としてもよい。また、被検査物4として焦点距離が負のレンズを検査する場合は、ピンホール3と被検査物4の間に焦点距離が正のレンズを投影レンズとして配置し、被検査物4を透過した後の光束を略平行光としてもよい。
結像光学系5と受光器7は、駆動機構6により光軸に沿って移動することで、被検査物4と結像光学系5の間隔が変わり、デフォーカス量を自由に調整することができる。図1(a)は、被検査物結像位置9に受光面8が位置している状態、図1(b)は、被検査物結像位置9が受光面8に対して前側(被検査物4側)に位置している状態を示す。また、図1(c)は、被検査物結像位置9が受光面8に対して後側(被検査物4と反対側)に位置している状態を示す。被検査物4の表面上に微小凹凸欠陥がある場合、図1(a)に示す被検物体4の欠陥部分の結像位置が受光面8と重なる位置では、欠陥は可視化されない。一方、図1(b)と図1(c)に示す結像位置からデフォーカスさせた状態では、受光面8上に欠陥像が可視化される。このとき、図1(b)と図1(c)に示す状態おいては、デフォーカス方向が異なるため、欠陥像の強度の明暗が反転する。
検査の際は、駆動機構6により結像光学系5と受光器7を移動させて、図1(b)に示すように被検査物結像位置9の前側に受光面8が位置する状態で1回撮像し、図1(c)に示すように被検査物結像位置9の後側に受光面8が位置する状態で1回撮像する。本実施形態では、1回ずつ撮像しているが、これに限定することなく、複数回でそれぞれ撮像してもよい(画像を1以上取得すればよい)。結像光学系5は、物体側テレセントリック光学系であるため、結像光学系5を移動させてデフォーカス量を変えても、欠陥像のボケ具合は変化するが横ずれはしない。そして、このように撮像された2枚の画像に対して、各画像間で差分演算処理を行う。差分演算処理された画像は、表面の微小凹凸欠陥を検出するための画像として使用される。
被検査物4の結像位置の前側に受光面8が位置している状態で取得した画像を図2(a)に、その強度のラインプロファイルを図2(b)に示す。同様に、被検査物4の結像位置の後側に受光面8が位置している状態で取得した画像を図3(a)に、その強度のラインプロファイルを図3(b)に示す。図2および図3では表面の微小凹凸欠陥の像10の他に、照明光の強度ムラ11と異物の像12が存在している。被検査物4表面上の微小凹凸欠陥の像10は、被検査物結像位置9を境に光軸方向に前側と後側で、強度の暗明が反転している。一方、照明光の強度ムラ11や異物の像12は、被検査物結像位置9から光軸方向の前側と後側を比較すると強度はほとんど変化しない。従って、図2で示した画像から図3で示した画像を差分演算処理すると、図4(a)と図4(b)に示すように被検査物4の表面の微小凹凸欠陥の像10だけが強調され、照明光の強度ムラ11や異物の像12は抑制された画像を得る。このようにして得られた画像を欠陥検出に用いる。尚、本実施形態では、表面の微小凹凸欠陥の像10を位相物体とし、異物の像12を振幅物体として説明をする。
図1に示した検査方法は、被検査物4に対して、結像光学系5または受光器7の受光面8が結像光学系5の光軸に沿って相対的に移動すればよい。例えば、固定された被検査物4に対して、一体化した結像光学系5と受光器7を移動させているが、この代わりに被検査物4を移動させてデフォーカスさせてもよい。但し、被検査物4を透過した光束が平行光から外れ、特に、レンズの焦点距離が短い場合、結像光学系5の絞りでケラれる可能性がある。これを防ぐため、照明系を構成する光源1と拡散板2とピンホール3も被検査物4と一体化させて移動させてもよい。また、別のデフォーカス方法として、結像光学系5を固定したまま受光器7のみを移動させてもよい。但し、その場合、結像光学系5として像側テレセントリック光学系を用いる必要がある。
本実施形態における撮像条件については、受光面8が被検査物結像位置9の前側と後側であればよく、デフォーカス量は任意であってよい。但し、デフォーカス方向の欠陥像のコントラストの対称性から、受光面8と結像位置9の距離は、前側と後側とで等間隔になるように撮像するのが望ましい。
また、撮像する画像の枚数は、被検査物結像位置9の前側と後側で少なくとも1枚ずつ必要であるが、複数枚ずつ取得してもよい。例えば、結像位置9の前側と後側でそれぞれ複数枚の画像を取得して、それぞれの側で画像を平均化した後に、差分演算処理を行ってもよい。
被検査物結像位置9の前側と後側で撮像された画像は、各画像間で差分演算処理を行うため、欠陥像は画素単位で同じ位置に写される必要がある。一般的に、デフォーカスさせると、倍率変化および画像歪が生じることによって、画像上で物点の像の位置は横にずれる。そのため、結像光学系5テレセントリックレンズを用いることで、デフォーカス時の欠陥像の位置ずれを防いでいる。結像光学系5にテレセントリックレンズを使用しない代わりに、画像処理による補正を行ってもよい。ここで、画像処理とは、被検査物4毎のデフォーカスに伴う倍率変化および画像歪を、実験もしくは計算に依って予め記録しておき、差分演算処理の前段階で倍率変化および画像歪変化による欠陥像の横ずれ補正するような処理である。
さらに、一般的にオフセットとなる強度分布もデフォーカスに伴い変化する。前述の通り、位相欠陥の像はコントラストが非常に低いため、デフォーカスに伴う強度分布変化の影響が無視できない場合が多い。倍率や画像歪の場合と同様に、予め計算または実験によってデフォーカスに伴う強度分布の変化を求めておき、差分演算処理をする際に補正を行ってもよい。
次に、表面の微小凹凸欠陥の様な位相物体の欠陥像が、結像位置前後で強度分布の明暗が反転する原理について、振幅物体と比較しながら説明する。前述のように、透明体の表面の微小凹凸欠陥や脈理の様に、透過光の位相に変化を与える欠陥は位相物体とみなすことが出来る。一方、異物などの不透明な物体は、光の振幅に変化を与えるため振幅物体とみなすことが出来る。
例えば、欠陥が倍率+1倍の理想的な結像状態で受光面に結像していると仮定すると、欠陥を透過した直後の波面と全く同じ波面が、結像位置において再現されていると考えることが出来る。光軸方向にz軸をとると、結像位置の後側、つまり+z方向へデフォーカスさせると、受光面上では欠陥を透過した直後の波面が+方向へデフォーカス分だけ伝搬した波面として観測される。同様に結像位置の前側、つまり−z方向へデフォーカスさせた場合は、欠陥を透過した直後の波面がデフォーカス分だけ逆方向に伝搬された波面として観測される。よって、±z方向にデフォーカスさせたときの欠陥像は、欠陥(位相・振幅物体)によって位相もしくは振幅が変調された透過波面の順伝搬後の強度分布、もしくは逆伝搬後の強度分布として考えてよい。
図5は、欠陥像からの回折光の模式図を示す。原点に欠陥16が存在するとし、説明を簡単にするため、欠陥をY方向に沿った1次元構造と仮定すると、回折方向は、XZ面内に存在し、Y方向には均一であるため、XZ平面内のみを考えればよい。また、実際の回折光は連続的なスペクトル分布を持つが、ここでは、説明を簡単にするため、回折光は、離散的なスペクトルのモデルであると仮定する。つまり、図5に示すように、入射光15は、欠陥16によって回折され、0次回折光から±N次回折光までの回折光17が発生する。これらのz=0の回折光が重ね合わさったものがz=0の波面である。デフォーカス分だけ伝搬した波面は、z=0の各回折光がデフォーカス方向にデフォーカス分だけ進んだ後、重ね合わさったものと考えればよい。iを0以上の整数とし、±i次回折光の振幅をE、波数ベクトルをk、0次回折光との位相差をδ、虚数単位をjとすると、±i次回折光の複素振幅Uは式(1)で表される。
Figure 2015010824
そして、±i次回折光の伝搬方向のX方向余弦をα、0次回折光との位相差をδとすると、±i次回折光の波数ベクトルkは式(2)で表される。
Figure 2015010824
ここで、eとeはx軸方向とz軸方向の単位ベクトルであり、振幅Eと、X方向余弦αの絶対値は、対称性から回折次数の符号によらず同じとした。また、0次回折光は直進する為、X方向余弦は0である。
0次以外の回折光の0次回折光との位相差δは、位相物体と振幅物体で異なる。振幅物体の場合は、180°または0°である。位相物体の場合は、位相物体を透過する際に生じる位相差が微量の場合には、ほぼ±90°である。ガラス表面上の凹凸欠陥の場合は、深さもしくは高さが波長に比べて十分小さい場合、位相差は微量とみなすことが出来る。符号については、欠陥周辺の非欠陥部分(正常部分)に対して位相が遅れているか進んでいるかに依存するため、例えば、ガラス表面上に存在する欠陥の場合には、その凹凸に依存して符号が変わる。また、結像系倍率の符号によっても符号が変わる。ここでは、回折次数を考慮した位相差δを、位相物体の場合は式(3)、振幅物体の場合は式(4)で表す。
Figure 2015010824
Figure 2015010824
次に、波面として、0次から±N次までの回折光を合成した複素振幅Uは、式(5)によって表される。
Figure 2015010824
従って、回折光の干渉による強度分布は式(6)に示すように導くことが出来る。
Figure 2015010824
式(6)の右辺第1項は0次回折光の強度、第2項は異符号で同じ次数同士の干渉による強度、第3項は0次と0次以外の回折光との干渉に依る強度、第4項は0次以外の回折光同士の干渉に依る強度を示す。この式において、位相物体と振幅物体の違いは、0次とi次回折光との位相差δだけであるが、δ−δの値は式(7)に示されるように、位相物体と振幅物体で同じである。
Figure 2015010824
ここで、i、jは、0でない整数であり、nは、整数である。このため、以下に示す式(8)の右辺第4項は位相物体と振幅物体で同じとなる。結果として、式(6)の中で位相物体と振幅物体の違いが表れる項は、0次と0次以外の回折光との干渉に依る強度を示すのは右辺第3項だけである。
そして、位相物体の強度分布は、式(6)に式(3)と式(7)を代入することで得られ、式(8)に示す。
Figure 2015010824
同様に、振幅物体の強度分布は、式(6)に式(4)と式(7)を代入することで得られる。これを式(9)に示す。
Figure 2015010824
式(8)と式(9)から±方向にデフォーカスさせた際の結像位置前後における像の強度分布の変化について述べる。まず、式(8)に示す位相物体の強度分布では、0次光強度が他の回折光より圧倒的に大きいため、右辺第2項、第4項に比べて、0次光の振幅Eを含む右辺第1項、第3項の方が大きくなる。この内、第1項はz方向に依存しない成分であるので、位相物体が可視化される現象は、第3項で説明することが出来る。尚、この第3項は、sin関数の和であるため奇関数となる。位相物体は、結像位置(z=0)で不可視であり、デフォーカス位置(z≠0)によって可視化され、さらに結像面(z=0)を境に強度の明暗が反転する理由はこのためである。結像面(z=0)から±方向に等しいデフォーカス量の像の差分を取った強度分布は、式(10)示すように式(8)の右辺第3項、つまり位相物体の可視化を示す成分だけが残る。
Figure 2015010824
一方、振幅物体については式(9)が変数zの偶関数であることから、結像面(z=0)を境に対称的な強度分布であることが分かる。結像面(z=0)から±方向に等しいデフォーカス量の像の差分を取った強度分布は、式(11)示すようにゼロになる。
Figure 2015010824
実際の振幅比を考えると、0次以外の回折光の振幅Eの中では、±1次の回折光の振幅が圧倒的に大きい。よって、0次と±1次の干渉による成分が多くを占める。また、実際の回折光の強度は、離散的ではなく連続的な分布を有する。しかし、ここでは振幅欠陥と位相欠陥とで回折光の位相差δが異なり、これによって結像位置近傍でのデフォーカスによる欠陥像の強度変化が異なることを上記のモデルで説明した。
また、式(8)に示す位相物体の強度変化は、位相物体を透過する際に生じる位相差が微量の場合にのみ成り立つ。本実施形態においても、このような位相差が微量の欠陥を対象としている。位相差がπ近づくにつれ、z方向の強度変化は奇関数から偶関数に近づく。屈折率が1.5に近いガラス部材の表面凹(凸)の深さ(高さ)が波長と同程度では位相物体を透過する際に生じる位相差は、ほぼπとなり、±方向のデフォーカス像で明暗が反転しない。従って、差分演算処理によるコントラスト向上の効果は、小さい。しかしながら、位相差が大きい欠陥の場合は、単一デフォーカス像のコントラストが高くなるため、あえて差分演算処理を行い、コントラストを向上させる必要はない。
以上の結果から、結像位置から同じ距離だけ±方向にデフォーカスさせた強度分布の差分画像は、異物などの振幅物体の強度は理想的には式(11)に示すようにゼロになる。また、照明光の強度ムラは、式(6)、(8)、(9)の右辺第1項がXY平面で分布を有することに相当するが、z方向には変化しないため、差分を取ることで除去されてしまう。一方、微小凹凸欠陥などの位相物体の場合は、理想的には、式(10)のように変調整分がそのまま残ることになる。結果として、差分画像は、表面の微小凹凸欠陥の像だけが強調され、照明光の強度ムラや異物の像は抑制される。
(第2実施形態)
図6は、第2実施形態の欠陥検査方法を模式的に示す図である。第2実施形態の欠陥検査方法は、被検査物4を透過した後にビームスプリッタ(光路分岐手段)14を配置し、光路を2方向に分岐させて、それぞれの方向に結像光学系5a、5bと受光器7a、7bを設けている。2方向の結像系の内、1方向(一方)は、被検査物結像位置9aの前側に受光面8aが位置するように、被検査物4と結像光学系5aとの間隔が調整されている。もう片方(他方)は、被検査物結像位置9bの後側に受光面8bが位置するように被検査物4と結像光学系5bとの間隔が調整されている。結像光学系5a、5bは物体側テレセントリックであるため、デフォーカス方向が異なる2方向の結像系で撮像された画像において、欠陥像は横ずれしない。従って、2方向の受光器7a、7bで撮像された2枚の画像に対して、第1実施形態と同様の方法で各画像間の差分演算処理が可能であり、差分演算処理された画像は欠陥検出に用いられる。
第2実施形態では、前記の様な構成とすることで、第1実施形態と比べ結像光学系5と受光器7が2組必要であるものの、結像系を移動させる時間を省き2方向の像を同時に撮像することができ、検査時間を短縮することが出来る。
図6では結像系を透過した後に、結像光学系5の前に光路分岐手段であるビームスプリッタ14が配置されているが、光路分岐手段は結像光学系5の後でもよい。
被検査物側と像側でどちらをデフォーカスするように配置させてもよいが、第1実施形態と同様の理由で、結像光学系5a、5bは、デフォーカス側でテレセントリックである必要がある。もし、テレセントリック光学系を用いないのであれば、倍率および画像歪を補正する画像処理を施す必要がある。
以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。
1 光源
4 被検査物
5 結像光学系
8 受光面
9 被検査物結像位置

Claims (5)

  1. 光源から射出する光を被検査物に対して照射し、前記被検査物を透過した前記光に基づいて前記被検査物の欠陥検査を行う欠陥検査方法であって、
    前記被検査物の結像位置が結像光学系を介して前記光を受光する受光面に対して前記被検査物側に位置する場合の画像を少なくとも1以上取得する工程と、
    前記被検査物の結像位置が前記結像光学系を介して前記光を受光する前記受光面に対して前記被検査物と反対側に位置する場合の画像を少なくとも1以上取得する工程と、
    前記結像位置が前記受光面に対して前記被検査物側に位置する場合に取得した画像と、前記結像位置が前記受光面に対して被検査物と反対側に位置する場合に取得した画像との差分演算処理を行う工程と、
    を有することを特徴とする欠陥検査方法。
  2. 前記被検査物を透過した光を受光する前記結像光学系は、テレセントリック光学系であることを特徴とする請求項1記載の欠陥検出方法。
  3. 前記結像位置が前記受光面に対して前記被検査物側に位置する場合、または前記結像位置が前記受光面に対して前記被検査物と反対側に位置する場合に取得した前記画像に対して、各画像の倍率および画像歪を補正するための画像処理を行うことを特徴とする請求項1記載の欠陥検出方法。
  4. 前記被検査物に対して前記結像光学系または前記受光面を前記結像光学系の光軸に沿って相対的に移動させることによって、前記結像位置が前記受光面に対して前記被検査物側に位置する場合、または前記結像位置が前記受光面に対して前記被検査物と反対側に位置する場合の画像をそれぞれ1以上取得する
    ことを特徴とする請求項1に記載の欠陥検出方法。
  5. 前記被検査物を透過した前記光の光路を分岐する光路分岐手段を用いて前記光路を分岐する工程、
    をさらに有し、
    前記光路分岐手段で分岐した一方の光路において、前記被検査物の前記結像位置が前記結像光学系を介して前記光を受光する前記受光面に対して被検査物側に位置する場合の画像を少なくとも1以上取得し、前記光路分岐手段で分岐した他方の光路において、前記被検査物の前記結像位置が前記結像光学系を介して前記光を受光する前記受光面に対して前記被検査物と反対側に位置する場合の画像を少なくとも1以上取得する
    ことを特徴とする請求項1に記載の欠陥検出方法。



JP2013133747A 2013-06-26 2013-06-26 欠陥検査方法 Pending JP2015010824A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013133747A JP2015010824A (ja) 2013-06-26 2013-06-26 欠陥検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013133747A JP2015010824A (ja) 2013-06-26 2013-06-26 欠陥検査方法

Publications (1)

Publication Number Publication Date
JP2015010824A true JP2015010824A (ja) 2015-01-19

Family

ID=52304128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013133747A Pending JP2015010824A (ja) 2013-06-26 2013-06-26 欠陥検査方法

Country Status (1)

Country Link
JP (1) JP2015010824A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7292457B1 (ja) 2022-03-14 2023-06-16 三菱電機株式会社 表面形状検査方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7292457B1 (ja) 2022-03-14 2023-06-16 三菱電機株式会社 表面形状検査方法
JP2023133744A (ja) * 2022-03-14 2023-09-27 三菱電機株式会社 表面形状検査方法

Similar Documents

Publication Publication Date Title
JP4760564B2 (ja) パターン形状の欠陥検出方法及び検出装置
US10422984B2 (en) Flexible mode scanning optical microscopy and inspection system
US9678021B2 (en) Method and apparatus for inspecting defects
JP5364203B2 (ja) 観察装置
US10114207B2 (en) Apparatus and method for obtaining three-dimensional information
US20170146463A1 (en) Defect Inspection Device and Defect Inspection Method
US10838184B2 (en) Artefact reduction for angularly-selective illumination
JP3483948B2 (ja) 欠陥検出装置
JP4645113B2 (ja) 光検査方法及び光検査装置並びに光検査システム
US20160088213A1 (en) Inspection apparatus, coordinate detection apparatus, coordinate detection method, and wavefront aberration correction method
US8228497B2 (en) Method and system for evaluating an object that has a repetitive pattern
JP2022528003A (ja) 対物レンズに対する試料の変位を検出する方法及び装置
JP2008076962A (ja) 光学検査装置
JP2009085691A (ja) 検査装置
JP2015010824A (ja) 欠陥検査方法
US20220244516A1 (en) Microscope device and data generation method using microscope
JP2014169988A (ja) 透過体または反射体の欠陥検査装置
TW201229556A (en) Observing optical system and laser processing equipment
JP2015200835A (ja) 撮像装置および位相推定方法
JPH09281401A (ja) 物体検査装置
US11055836B2 (en) Optical contrast enhancement for defect inspection
JPH0682373A (ja) 欠陥検査方法
JP2007148084A (ja) 焦点検出装置
JP2014020784A (ja) 電磁波計測システム
JP2008281719A (ja) 光学顕微鏡、焦点位置調整方法、及びパターン基板の製造方法