JP2015010487A - System for generating power by making organic substance such as biomass into duplication combustion heat source and converting it into steam - Google Patents

System for generating power by making organic substance such as biomass into duplication combustion heat source and converting it into steam Download PDF

Info

Publication number
JP2015010487A
JP2015010487A JP2013134505A JP2013134505A JP2015010487A JP 2015010487 A JP2015010487 A JP 2015010487A JP 2013134505 A JP2013134505 A JP 2013134505A JP 2013134505 A JP2013134505 A JP 2013134505A JP 2015010487 A JP2015010487 A JP 2015010487A
Authority
JP
Japan
Prior art keywords
steam
combustion
furnace
heat
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013134505A
Other languages
Japanese (ja)
Other versions
JP5650812B1 (en
Inventor
弥一 小原
Yaichi Obara
弥一 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013134505A priority Critical patent/JP5650812B1/en
Application granted granted Critical
Publication of JP5650812B1 publication Critical patent/JP5650812B1/en
Publication of JP2015010487A publication Critical patent/JP2015010487A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To construct a system by accumulating means for double utilizing tremendous amount of unused resources to generate electricity essential for human-being lifestyle.SOLUTION: This invention relates to a system in which earlier applications are succeeded and improved to cause means solving the above stated problem to be accumulated. At first, in order to change organic substances acting as unused resources into heat source, improvement is accumulated to make a carbonization means device because the organic substances must at first be advanced to a pure carbonic state in view of the characteristic of the substances, the produced pure carbonic material (graphite) is being improved in its quality up to an atomic state, reacted with atomic state oxygen of high temperature air to make a radiation heat source, the radiation heat beam light wave is changed into primary wet steam by a boiler having a high efficiency heat exchanging function, further high temperature waste gas is induced by a conversion device activating the steam pressure to make secondary super-heated steam, the steam is received by an improved steam turbine and changed into a rotating force of high torque, and multipolar power generator is driven in compliance with its characteristic to attain electricity.

Description

本発明は先願技術を継承改良し移動可能な連継システム装置の開発を目指しバイオマス等有機体を乾溜炭化をして高品質燃料化し、重複燃焼発熱させ効率よく熱交換して高圧蒸気に変換し、蒸気タービンで回転動力に換え、その動力によって発電するシステム技術装置に関するものである。   The present invention inherits and improves the technology of the previous application and aims to develop a transfer system that can be moved. Carbonized organic matter such as biomass is carbonized into high quality fuel, and heat is generated by overlapping combustion to efficiently exchange heat and convert to high pressure steam. In addition, the present invention relates to a system technology device that generates electric power by using a rotatory power instead of a steam turbine.

生産と生活の結果として巷に満ちあふれる産業廃棄物的未利用資源は危機的な状況にある。その可燃物を焼却処分するにしても人の健康を阻害するに至る環境汚染をもたらすおそれもあり、その処理に膨大なコストの負担を強いられている。
しかし自燃力のある資源を高品質な燃料化し、有効に燃焼発熱熱源として効率よく熱交換し高圧蒸気に変換して発電出来れば、その資源価値は莫大なものとなる。そのシステム技術に立遅れがあり、普遍的な技術の開発が焦眉の社会的急務となっている。
As a result of production and livelihood, the wasteful industrial waste resources are in a critical situation. Even if the combustible material is incinerated, there is a risk of environmental pollution leading to human health, and the treatment is forced to bear an enormous cost.
However, if resources with self-combustion power are converted to high-quality fuels, they can be efficiently exchanged heat as a combustion heat source and converted into high-pressure steam to generate electricity, the resource value will be enormous. The system technology is lagging behind, and the development of universal technology has become a keen social urgent task.

前項に鑑み本発明者は資源の有効な活用に参画し、それ等の資源を有効な熱に変換する具体的方策と技術を提言して来たので逐次記述する。
燃焼熱を利用する為に物質を燃やす行為は古来から連綿として行われている。限られた装置内で効率よく熱に転換するには燃焼雰囲気を高温に維持して発熱体を高温化し、その燃焼炎輻射熱線の電磁波化して可能な限り電熱面積を広く確保することである。発明者等が出会った現象をもとに仕上げた火炎を包み込む高圧少量の斜め対向流送風手段によって具現された事象は、ステファン・ボルツマンの法則による事象でもあった。発明者は更に炉壁を遠赤外線放射機能の高い炉材を選んで構築し、負圧状況の中で最小限の空気量に限定する斜め高圧対向流送風との相乗作用によって燃焼炎を高温遠赤外線輻射熱線化する域に到達した。燃焼雰囲気の高温維持は炭素分子と酸素分子の各原子化工程の解離エネルギーを供給する効果ともなり総合エネルギー収支理論に合致した乾溜ガス化燃焼事象でもある本願の燃焼熱交換部分の基礎とも成った。
In view of the preceding paragraphs, the present inventor has participated in the effective use of resources and has proposed specific measures and techniques for converting those resources into effective heat, and will be described sequentially.
The act of burning a substance to use the heat of combustion has been practiced continuously since ancient times. In order to efficiently convert to heat in a limited apparatus, it is necessary to maintain the combustion atmosphere at a high temperature to increase the temperature of the heating element and to convert the combustion flame radiation heat rays into electromagnetic waves so as to ensure as wide an electric heating area as possible. The event embodied by the high-pressure and small-scale oblique counter-flow fan that wraps the flame finished based on the phenomenon that the inventors met was also an event according to Stefan-Boltzmann's law. The inventor further constructed the furnace wall by selecting a furnace material with a high far-infrared radiation function, and the combustion flame is heated to a high temperature by synergistic action with the oblique high-pressure counter-flow fan that limits the amount of air to the minimum in the negative pressure situation. Reached the area where infrared radiant heat rays are generated. Maintaining the combustion atmosphere at a high temperature has the effect of supplying dissociation energy for each atomization process of carbon and oxygen molecules, and has also become the basis for the combustion heat exchange part of the present application, which is a dry distillation gasification combustion event that meets the overall energy balance theory. .

物質が燃えるという化学反応は原子炭素と原子酸素がその条件を得て燃焼反応して熱を発生することであるが、その各分子状から各原子状になる為には膨大な解離エネルギーを必要とする。例えば分子状炭素と酸素が燃焼の場合反応熱の3/4がそれに使われるので実際外部に利用されるのは1/4に過ぎない。総合エネルギー収支理論によると有機体が炭素原子状に分解するには亦更に多くの解離エネルギーを奪われるので燃焼熱として外部に出る反応熱は目減りすることになり、有機体の熱量が小さいといわれるゆえんである。
発明者は未利用資源を効率の高い燃料とする為に、それが限りなく炭素分子状に近い炭化材とする目的で遠赤外線光波の力を借りる無酸素雰囲気の中で物体を燃やすことなく乾溜ガス化する化学反応にたよって炭化する方法を追い続けて来た。ようやく純度の高い炭素材となりコスト面でも社会に通用する段階に到達したので、その成果による炭化材或いは乾溜炭化材化工程を経過した物材を燃料として効率的に熱源に生かす本願に到達した。
バイオマス乾溜ガス化燃焼熱変換発電装置−特願2004−209241 固形バイオマス又は石炭を燃料とする蒸気ボイラー−特許第4824827号
The chemical reaction that a substance burns is that atomic carbon and atomic oxygen get the conditions and generate a heat reaction to generate heat, but enormous dissociation energy is required to change from each molecular state to each atomic state. And For example, when molecular carbon and oxygen are combusted, 3/4 of the heat of reaction is used for it, so only 1/4 is actually used outside. According to the overall energy balance theory, when an organism decomposes into carbon atoms, more dissociation energy is taken away, so the reaction heat that goes out as combustion heat is reduced, and it is said that the amount of heat of the organism is small That's why.
The inventor made dry distillation without burning an object in an oxygen-free atmosphere that borrows the power of far-infrared light waves in order to make the unused resources a highly efficient fuel, in order to make it a carbonaceous material that is nearly carbon molecular. We have continued to follow the method of carbonization according to the chemical reaction to gasify. Finally, the carbon material has become highly pure and has reached the stage where it can be applied to society in terms of cost. Therefore, the present application has been reached in which the carbonized material resulting from the result or the material that has undergone the carbonized carbonization process is efficiently utilized as a heat source as fuel.
Biomass dry distillation gasification combustion heat conversion power generation device-Japanese Patent Application No. 2004-209241 Steam boiler using solid biomass or coal as fuel-Patent 4824827

燃焼と熱交換の効率を大幅にアップした蒸気によるベンチュリスクラバ機構によって、高熱の燃焼排ガスを誘引して高温融合変換蒸気化し、その圧力を回転力転換する接点となる蒸気タービンには合成正弦曲線を基調とした羽根形の蒸気タービンを開発した。それによって小規模装置で中圧大容量の蒸気も効率よくトルクの大きい回転力に変換できる。   The steam venturi scrubber mechanism with steam that greatly improves the efficiency of combustion and heat exchange induces high-temperature combustion exhaust gas into high-temperature fusion conversion steam, and a synthetic sine curve is formed on the steam turbine that becomes the contact point that converts the rotational force of the steam A basic vane-shaped steam turbine was developed. As a result, it is possible to efficiently convert steam with medium pressure and large capacity into a rotational force with a large torque with a small-scale device.

炉壁を構築する新規材料の起源は非特許文献3,4,5,6の通りである。   The origin of the new material for constructing the furnace wall is as described in Non-Patent Documents 3, 4, 5, and 6.

高能率熱交換燃焼装置−特許第3030321号High efficiency heat exchange combustion device-Patent No. 3030321 成熟固体物質の吸引乾溜ガス化燃焼装置−特許第4220083号Suction dry distillation gasification combustion apparatus for mature solid substance-Patent No. 4220083 バイオマス乾溜ガス化燃焼熱変換発電装置−特願2004−209241Biomass dry distillation gasification combustion heat conversion power generation device-Japanese Patent Application No. 2004-209241 固形バイオマス又は石炭を燃料とする蒸気ボイラー−特許第4824827号Steam boiler using solid biomass or coal as fuel-Patent 4824827 回転羽根による搬送装置−(特許第2711402号)Conveying device using rotating blades (Patent No. 2711402) 蒸気タービン装置−特許第4367783号Steam turbine equipment-Patent No. 4,367,783 吸引圧縮高圧送風機−特願2011−281250Suction compression high pressure blower-Japanese Patent Application No. 2011-281250

化学反応はなぜ起きるか−上野景平−1993講談社Why chemical reactions occur-Keihei Ueno-1993 Kodansha 二匹目の電気うなぎ−電力中央研究所−1993日本工業新聞社The second electric eel-Central Research Institute of Electric Power-1993 Nihon Kogyo Shimbun シリカブラックの遠赤外線放射率並に波長測定−徳島県工試(1994)Far-infrared emissivity and wavelength measurement of silica black-Tokushima Prefecture Engineering Test (1994) トルマリン鉱石の物性−ブラジル国アダン鉱山調査報告書Physical properties of tourmaline ores-Adan mine survey report, Brazil ライフグリーン原石分析報告書−長野県精密工業試験場Life Green Rough Analysis Report-Nagano Prefectural Precision Industrial Experiment Station ホウ酸溶液の高温処理で金属表面硬化(ポロン処理)−岩手製鉄(株)Metal surface hardening by high temperature treatment of boric acid solution (polon treatment)-Iwate Steel Co., Ltd.

前項の積み重ねを受けて、本発明者はその具体的利用目標について鋭意考察した結果、普遍的需要のある電気に変換再生することに目標を定めた。その未達の技術開発が進めば、廃棄物的未利用資源は厄介物転じて宝の山となる。本願は緊急を要する社会的要請の解決と確実な社会需要とを結ぶシステム技術の開発を目指す。具体的装置としては膨大な資源材料の存在する現場に移動可能な装置を造成することを目指す。   Following the accumulation of the previous paragraph, the present inventor intensively studied the specific utilization target, and as a result, set a goal to convert and regenerate electricity with universal demand. If the undeveloped technological development advances, waste-based unused resources turn into troublesome things and become treasures. This application aims to develop a system technology that links urgent social demands with certain social demands. As a specific device, we aim to create a device that can be moved to the site where a huge amount of resource materials exist.

本システムを進めるいくつかの装置は機能面で遠赤外線放射機能炉壁を備えることが必須とされているので、まずその原材料の準備から始め、炉壁構築に進みたい。   Since some devices that advance this system are required to have a far-infrared radiation functional furnace wall in terms of functionality, we want to start with the preparation of the raw materials and then proceed to the furnace wall construction.

本願装置の特徴である熱交換燃焼炉や炭化炉等の炉床と炉壁を構成する材料について考察説明する。
(1)シリカブラックは北海道に産出する火成岩の一種で、炭素−5%、SiO2−81.35%、Al23−6.35%、K2O−1.66%、TiO2−1.18%、Fe23−0.53%、MgO−0.45%等を含有し特殊な磁場を持つ鉱石で遠赤外線放射機能の高いことが知られている。
(2)トルマリン鉱石はブラジル国アダン高山に産出して電気石と呼ばれる極性結晶体でSiO2−36.6%、Al23−34.05%、Fe23−14.15%、MgO−0.9%等を含有しねじれていて永久磁極性を有する特徴があり、細かく砕くほど電気の力が強くなり遠赤外線(4〜14マイクロメーター)放射力あり、多くの分野に使用されている。
(3)ライフグリーンは石川県金沢市医王山に産出する石英祖面岩並に水晶メノー含有パーライト系岩で構成され平均した組成分はSiO2−75.53%、Al23−13.34%、Fe23−0.76%、CaO−1.33%、Na2O−3.65%、K2O−3.43%、MgO−0.16%、TiO2−0.12%等を含有する外、エマナチオン(RH)を含み、土中では酸素富化現象を呈し、とにかく硬い特性をもつ。
(4)耐熱キャスターは燃焼炉々壁を構築する主体的材料で、より高温耐熱性のものは反射力も強いと信じられるのでそれを選ぶ。本剤の入れた炉壁は常温乾燥でも極めて硬い。
(5)アルミナセメントは遠赤外線放射力も強く、各材料を混練するに当ってバインダーとして優れた性能を持っている。
(6)牡蠣殻焼成石灰−牡蠣殻は57%のCO2を含有する炭酸石灰状で、それを1,200℃のキルーンで焼いても20%弱しか生石灰化せず40%近いCO2は炭酸石灰状のままである(岩手県工技センター)
(7)高濃度ホウ酸複合化合液は、(イ)高分子特性のあるパーム椰子殻焼成灰(5kg)を(ロ)特殊腐植物質を加工したマリネックス抽出液(20リットル)で抽出された残液(10リットル)を温め(40℃)(ハ)ホウ酸10kgと硫酸マンガン(1kg)、とを混和すると反応して猛烈なガスを放出し反応液となる。が圧力容器を用いるとこれが20k圧を示して全く溶けない特性でもある。

The material constituting the hearth and wall of the heat exchange combustion furnace, carbonization furnace or the like, which is a feature of the present apparatus, will be described.
(1) Silica black is a kind of igneous rock to yield Hokkaido, carbon -5%, SiO 2 -81.35%, Al 2 O 3 -6.35%, K 2 O-1.66%, TiO 2 - 1.18%, Fe 2 O 3 -0.53 %, higher far-infrared radiation function ore with special field contains MgO-0.45%, and the like are known.
(2) Tourmaline ore SiO 2 -36.6% polar crystal called tourmaline to produce the Brazil Adan Takayama, Al 2 O 3 -34.05%, Fe 2 O 3 -14.15%, It contains MgO-0.9%, etc., and has a characteristic of being twisted and having permanent magnetic poles. As it is finely crushed, the power of electricity becomes stronger and there is far-infrared (4-14 micrometers) radiation power, which is used in many fields. ing.
(3) Life Green composition worth of average is composed of a quartz agate containing perlite-based rock to the quartz Somen Iwanami to yield to Iozen Kanazawa, Ishikawa Prefecture SiO 2 -75.53%, Al 2 O 3 -13 .34%, Fe 2 O 3 -0.76 %, CaO-1.33%, Na 2 O-3.65%, K 2 O-3.43%, MgO-0.16%, TiO 2 -0 In addition to containing 12%, etc., it contains emanathione (RH), exhibits an oxygen enrichment phenomenon in the soil, and has a hard property anyway.
(4) The heat-resistant caster is the main material for constructing the walls of the combustion furnace, and the one with higher temperature and heat resistance is believed to have strong reflectivity, so it is chosen. The furnace wall containing this agent is extremely hard even at room temperature.
(5) Alumina cement has strong far-infrared radiation power and has excellent performance as a binder in kneading each material.
(6) Oyster shell calcined lime-Oyster shell is in the form of carbonated lime containing 57% CO 2 , and even if it is baked in a kiln at 1,200 ° C., only 20% or less is quick-calcified and CO 2 is nearly 40%. It remains in the form of lime carbonate (Iwate Prefectural Engineering Center)
(7) The high-concentration boric acid complex mixture was extracted from (i) palm coconut shell calcined ash (5 kg) having high polymer characteristics with (ii) marinex extract (20 liters) processed from special humic substances. The remaining liquid (10 liters) is warmed (40 ° C.). (C) When 10 kg of boric acid and manganese sulfate (1 kg) are mixed, they react to release a violent gas and become a reaction liquid. However, when a pressure vessel is used, this is a characteristic that shows a pressure of 20 k and does not melt at all.

前項基材6種を混和したものを高濃度ホウ酸複合化合液で混練すると漆黒の混合材の炉壁材となるので、分解した外壁鉄板に内装し、熱線放射型電気炉で窒素ガス置換焼成して
組立てる。
初回熱処理時1,200℃では溶解し、1,000℃で安定した黒色材となり、窒素ガス置換では700℃では陶器状となったので実施時の温度帯については慎重に検討を要する。
上記基材6種それぞれ遠赤外線放射機能につながる特性成分を持ち、更にマイナスイオンの磁性を帯びるといわれるものが数種あり、その合成放射機能への期待が高い。
また特許文献4、の取組み事象の例として複数材料を高濃度ホウ酸複合化液で練り合わせた際に前記牡蠣殻をキルーンで1,200℃で焼成した白色の牡蠣殻燃成粉砕物を加えた時、その混合物が漆黒に変化した。乾燥後、電気炉で1,000℃で焼成後の一関高専の分析結果では炭素の集積が非常に高い結果を得た。表図−1に示す様に炭素が重量で30%で、分子数で56%の数値からは他の基材からはその炭素が見出せず、45%余の炭酸ガスを抱え込んでいるという牡蠣殻焼成粉砕物内の炭酸ガスが酸素を放出し炭素が残溜したとすればほぼ理解できる数値であり、牡蠣殻中の炭酸ガスが還元的分解反応し易いこと教えるものと考えれば、その後望外の牡蠣殻活用の希望を与えられた。本願での炉壁機能としての域では通電性は見られないとのことであったので、炉壁からの光波の発進に好影響への期待が高い。

Figure 2015010487
Mixing the 6 types of the above-mentioned base materials with a high-concentration boric acid composite compound mixture will result in a furnace wall material of a jet black mixed material, so it will be placed inside a disassembled outer wall iron plate and replaced with nitrogen gas in a heat-radiation electric furnace. And assemble.
At the first heat treatment, it melts at 1,200 ° C. and becomes a stable black material at 1,000 ° C., and when it is replaced with nitrogen gas, it becomes a pottery shape at 700 ° C. Therefore, careful examination of the temperature zone at the time of implementation is required.
There are several types of the above-mentioned base materials each having a characteristic component that leads to the far-infrared radiation function, and further said to have negative ion magnetism, and there are high expectations for the synthetic radiation function.
Further, as an example of the action event of Patent Document 4, white oyster shell combustible pulverized material obtained by firing the oyster shell at 1,200 ° C. in a kiln when a plurality of materials were kneaded with a high-concentration boric acid complexing solution was added. At that time, the mixture turned jet black. The analysis result of Ichinoseki National College of Technology after drying and firing in an electric furnace at 1,000 ° C. showed that carbon accumulation was very high. As shown in Table 1, carbon is 30% by weight and the number of molecules is 56%. From the other base materials, the carbon cannot be found from other base materials, and the oyster shell contains 45% or more carbon dioxide gas. If carbon dioxide in the baked pulverized product releases oxygen and carbon remains, it is a numerical value that can be almost understood, and if you think that carbon dioxide in oyster shell is easy to undergo reductive decomposition reaction, I was given the hope of using oyster shells. In the area of the furnace wall function in the present application, no electrical conductivity is seen, so there is high expectation for a positive effect on the start of light waves from the furnace wall.

Figure 2015010487

本発明者は多様な物質循環策を開発しているが、膨大な未利用資源、特にも主題のバイオマスを燃料として有効な熱に変換するに当って、後述する燃焼等の利用技術以前に、資源を燃料化する前提について考慮すべきことについて学術文献に教導された。燃焼とは物質の燃えることであるが、それは物資がガス化、つまり炭素、酸素それぞれが原子化して結合反応する化学反応であり、その次元から越えねばならない原理がある。その反応の実態を検証すると、炭素原子と酸素原子が衝突反応して二酸化炭素となるに当って発熱する現象の熱収支法則がある。その基本に関わる木質系炭の純粋な炭素体の燃焼を例にして、現象の基礎である化学反応における総合エネルギー理論の観点から燃焼反応にかかるエネルギー収支の推移を知ることが、その後の技術対応の方向性を探る基礎となる。それを表−2に示す。

Figure 2015010487
The present inventor has developed various material circulation measures, but before converting the enormous unused resources, particularly the subject biomass, into effective heat as a fuel, before use technology such as combustion described later, He was taught in the academic literature on what to consider about the premise of using resources as fuel. Combustion is the burning of a substance, but it is a chemical reaction in which materials are gasified, that is, carbon and oxygen are each atomized and bonded, and there is a principle that must be exceeded from that dimension. Examining the actual state of the reaction, there is a heat balance law of a phenomenon that generates heat when a carbon atom and an oxygen atom collide to become carbon dioxide. Taking the combustion of pure carbon bodies of wood-based charcoal related to the basics as an example, knowing the transition of the energy balance of the combustion reaction from the viewpoint of the overall energy theory in the chemical reaction that is the basis of the phenomenon, Is the basis for exploring the direction of It is shown in Table-2.

Figure 2015010487

上記高温原子状炭素ガスと高温原子状酸素との結合反応の設定単位当りの総合熱量収支383calのうち分子状炭素と分子状酸素との燃焼反応の場合では我々が利用出来るのは、CO2ガス化反応熱のうち吸熱分の差引余剰となる95kcalだけで、約4分の1という現実である。(グラファイトは炭素原子2ケの結合分子体)
上記反応熱を利用を目的とする立場からの検証結果に教えられて、バイオマス等有機体を物質循環する一端として燃料化を考えれば、限りなく炭素分子状に近づいた状態にすることが、限られた熱交換燃焼装置における効率向上の為に求められる。反対に、炭素分子体から遠ざかる有機体個体は解離吸熱反応を幾段階も重ねることになり、反比例してロスが多くなることを知ると共に、燃焼循環の重要さも思い知らされた。各因子分子に解離エネルギーを与える有機体素材を純炭素材(グラファイト)燃料にすることが資源再生のスタートになるという本願思考の起源である。
Of the total calorie balance 383cal per set unit of the bonding reaction between the high temperature atomic carbon gas and high temperature atomic oxygen, in the case of the combustion reaction between molecular carbon and molecular oxygen, we can use CO2 gasification Only 95 kcal, which is a surplus of the endothermic portion of the reaction heat, is a reality of about a quarter. (Graphite is a binding molecule with two carbon atoms)
Given the verification results from the standpoint of utilizing the heat of reaction described above and considering fuel conversion as one end of material circulation of organic substances such as biomass, it is possible to limit the state to a carbon molecular shape as much as possible. It is required for improving the efficiency of the heat exchange combustion apparatus. On the other hand, it was found that an individual organism moving away from a carbon molecule would undergo a number of dissociative endothermic reactions, and the loss increased in inverse proportion, and the importance of combustion circulation was also realized. The origin of the present application is that the organic material that gives dissociation energy to each factor molecule is made of pure carbon (graphite) fuel, which starts the resource regeneration.

本発明者は木質系をはじめとするバイオマス等を燃料として発電需要につなげる前提として、グラファイトに限りなく近づける炭化手段を特許第4220083号にたどりついたが、出願(平成11年)後その原理を検証すべく次の手段を実施した。外熱による鉄箱の内側の遠赤外線放射機能のもとで、窒素ガス雰囲気(無酸素)のなかで乾溜変化によって得られた試験経緯結果を表−3に示す。


Figure 2015010487


上記処理によって得られた炭化材(雑木乾燥材最大5×10×15cm角)は非常に軽いものであったが、岩手県工試の分析によると、グラファイト8,100cal/gとの対比で94%〜98%の発熱量をもつ炭化材(7,500cal/g)であることが確かめられ、奇跡的結果が得られ、その後の発想に重要な示唆となり、本システムのスタートとなる有機体を高能率燃料体に進化させるという方向性が定まった。また前記試験における鉄箱から吹出す気化ガスが、周囲からの加熱によって350℃段階で着発火したことも、その後の開発に重大な示唆を与えられた。 The present inventor has arrived at Patent No. 4220083 as a premise to connect woody and other biomass to power generation demand using fuel as a fuel, but after the application (1999), the principle was verified. The following measures were implemented. Table 3 shows the test results obtained by dry distillation change in a nitrogen gas atmosphere (oxygen-free) under the far-infrared radiation function inside the iron box by external heat.


Figure 2015010487


The carbonized material obtained by the above treatment (mixed wood drying material maximum 5 × 10 × 15 cm square) was very light, but according to the analysis by Iwate Prefecture Engineering Test, it was 94 in comparison with graphite 8,100 cal / g. % -98% calorific value (7,500 cal / g) was confirmed, and miraculous results were obtained. The direction to evolve into a highly efficient fuel body has been determined. In addition, the vaporization gas blown out from the iron box in the above test ignited in the 350 ° C. stage by heating from the surrounding area also gave a serious suggestion to the subsequent development.

以下、主題について順を追って具体策を説明する。
(A)−発明者は物質の燃焼熱を活かす立場から、燃焼を考える技術として高能率熱交換燃焼装置−特許第3030321号を発案しそれに基いた改善策を提案している。即ち、燃料比較対比で容積の大きい遠赤外線放射力の強い炉壁を備えた熱交換燃焼室(45cm×45cm×180cm炉)の中で、強い負圧に引かれ吸引空気で燃える燃焼物から発生する4リットルバーナー炎を包み込む様に炎の流れに対向し斜めに横断して単列或いはラッパ状の高温化された高圧空気膜を噴射して強烈な燃焼反応層を形成させて輻射熱バリア化し、それに包み込まれて燃焼炎が高温となって乾溜ガス化が進み、炎は輻射熱線化して周囲の間隙を有して並列された熱交換水管壁に輻射熱を直照射され、同時に熱せられた炉壁からは遠赤外線が反射されて水管の熱交換が進行し−対向流送風ガス化溶融燃焼と呼べるステファン・ボルツマン法則事象を典型的に活かせる技術である。
ステファン・ボルツマンの法則とは又放射線光波機能でもある。{燃焼温度+273℃}=輻射熱線→電磁波(熱交換効率が高い)(特許文献1)
In the following, specific measures will be explained in order for the subject.
(A)-From the standpoint of utilizing the combustion heat of a substance, the inventor proposed a highly efficient heat exchange combustion apparatus-Patent No. 3030321 as a technique for considering combustion and has proposed an improvement measure based on it. In other words, in heat exchange combustion chamber (45cm × 45cm × 180cm furnace) equipped with a furnace wall with a large volume of far-infrared radiation compared with fuel comparison, it is generated from combustion products that are attracted by strong negative pressure and burned with suction air In order to wrap the 4 liter burner flame, it is opposed to the flame flow, obliquely traversing it and injecting a single-line or trumpet-like high-temperature high-pressure air film to form a strong combustion reaction layer to form a radiant heat barrier, Enclosed in it, the combustion flame becomes high temperature and dry distillation gasification progresses, the flame is converted to radiant heat radiation, and the heat exchange water pipe walls arranged in parallel with the surrounding gap are directly irradiated with radiant heat, and the furnace is heated at the same time The far-infrared rays are reflected from the walls and heat exchange of the water tubes proceeds-a technique that can typically take advantage of the Stefan-Boltzmann law phenomenon, which can be called counterflow blast gasification melt combustion.
Stefan Boltzmann's law is also a radiation lightwave function. {Combustion temperature + 273 ° C} 4 = Radiant heat rays → Electromagnetic waves (high heat exchange efficiency) (Patent Document 1)

本項のステファン・ボルツマンの法則事象の現象を別の視点からみると、前記燃焼手段によって燃焼雰囲気を高めることは炭素分子、酸素分子に解離エネルギーを与えることになると共にその熱線の直進性を活かす熱交換手段効果になり、比例して燃焼反応熱が増えることになる。
バイオマス等を燃やして熱を求めるに際しては、その物質特性から越えなければならない課題が多いことを教えられた。段落番号0012項で示している表−2によると、燃焼反応が起きるには、炭素と酸素がそれぞれ原子化しなければならない化学的定めがあり、それから遠く離れた有機体は解離吸熱反応を幾段階も越えなければならなので、効率的に燃焼反応熱を求めるには、まず素材を完全な炭素体に近づけなければならないという宿命にあることから、それに可能な限り近づきたい。段落番号0012項に示した表−2から教えられた現象から本システム構成の目標が定まり、以下順序に示したい。
Looking at the phenomenon of Stefan-Boltzmann's law phenomenon in this section from another viewpoint, increasing the combustion atmosphere by the combustion means gives dissociation energy to carbon molecules and oxygen molecules and makes use of the straightness of the heat rays. It becomes a heat exchange means effect, and the heat of combustion reaction increases in proportion.
I was told that there are many issues that must be overcome from the material characteristics when burning biomass and so forth to obtain heat. According to Table-2 shown in paragraph No. 0012, there is a chemical definition that carbon and oxygen must be atomized in order for the combustion reaction to take place, and an organism far away from it has several steps of dissociative endothermic reaction. Therefore, in order to obtain the heat of combustion reaction efficiently, the material must be brought close to a complete carbon body, so we want to approach it as much as possible. The target of this system configuration is determined from the phenomenon taught from Table-2 shown in paragraph 0012, and I would like to show it in the following order.

(B)−バイオマス等有機体をグラファイト態に進化させる一方法は次の通りである。(イ)ハンマークラッシャーで細断した素材チップが自然流下する斜傾炉は(図1―イ)横断面は底面を90cmとする長楕円半円形高さ1mで長さ1.8mの鉄板製で、炉内壁に遠赤外線機能炉壁を内装し、頂部円形部分を下方からの吸引負圧に引かれて燃料体の燃焼2次排熱ガスが流動する斜傾炉2〜3基を組合せそれを設置する架台は55°程度の傾斜として、素材が自然流下の状態に合わせて再調製し、上端に素材供給口を設け炉外に原料供給装置を設け、下端面の上部に気化ガス排出装置口を、下端面下部に炭化材の排出装置を設け、外部に水冷式スクリューを接続し、水又は蒸気による消火冷却機構を付設する。気化ガスは下端上部の排出口からの吸引力に引かれて下降し、排出口に連接するボイラーへの移送管を通ってボイラーに送られ燃焼される機構である。
前述の機構に基づき上端の素材供給口から素材チップが供給され、炉底面を流下するチップは炉上面を流下する燃料体の燃焼2次排ガス熱源と、炉壁からの遠赤外線光波との相乗作用を受けて過熱蒸気雰囲気のもと酸欠乾溜機構の作用が働き完全炭化材(グラスファイバー)への変化が進み、気化機能作用で発生した気化ガスはボイラーからの負圧吸引力に引かれて下降しボイラーに吸い込まれる。
下端の炭化材排出口での状況を調べながら上部のチップ供給装置からの供給量を調節する仕様となる。
(B)-One method of evolving an organism such as biomass into a graphite state is as follows. (B) The tilting furnace in which the material chips shredded by the hammer crusher naturally flow down (Fig. 1-a) is made of an iron plate with an elliptical semicircular height of 1 m and a length of 1.8 m with a bottom of 90 cm. The furnace wall is equipped with a far-infrared functional furnace wall, and a combination of two or three tilting furnaces, in which the top circular part is pulled by the suction negative pressure from below and the combustion secondary exhaust gas flows through the fuel body The installation base is inclined at about 55 °, and the material is re-adjusted according to the state of natural flow, the material supply port is provided at the upper end, the material supply device is provided outside the furnace, and the vaporized gas discharge device port is located above the lower end surface A carbonized material discharging device is provided at the bottom of the lower end surface, a water-cooled screw is connected to the outside, and a fire extinguishing and cooling mechanism using water or steam is attached. The vaporized gas is pulled down by the suction force from the discharge port at the upper end of the lower end, and is sent to the boiler through the transfer pipe to the boiler connected to the discharge port and burned.
Based on the above-mentioned mechanism, the material chip is supplied from the material supply port at the upper end, and the chip that flows down the bottom of the furnace is a synergistic effect of the secondary exhaust heat source of combustion fuel flowing down the furnace top surface and the far-infrared light wave from the furnace wall In response to the action of oxygen dehydration mechanism under superheated steam atmosphere, the change to full carbonized material (glass fiber) proceeds, and the vaporized gas generated by the vaporization function is attracted by the negative pressure suction force from the boiler It descends and is sucked into the boiler.
It becomes a specification to adjust the supply amount from the upper chip supply device while examining the situation at the carbide outlet at the lower end.

(ロ)斜傾炉で発生した気化ガスは、炉と一体連接機構のボイラーに吸い込まれ燃焼される。そのボイラー構造は(図2)の様に立型円形で基部炉は炉壁15cm厚の炉壁内径1mの高さ50cmの鉄板製で、気化ガス吸入口と対象位置に着火バーナー口を、周り中間位置に温度検知口を備え、熱交換部は、基部炉の上に内径1mで高さ8cm、巾8cmの下端角型円周径管の上に高さ2mの5cm径管を2.5cmの間隔をあけて円周配列し、上端に横巾8cm、高さ25cmで、上面を半円形の角型円周型管でつないで気水分離室として蒸気圧力弁を備え、熱交換本体の貫流水管の外側は遠赤外線放射機能炉壁材を内装(5cm厚)した鉄板外壁で囲み、内径20cm径の煙突基部装置を備えた円形炉壁板で閉じる。煙突基部装置には煙突分流口を備え、対象位置に有意のパイプ穴と中間周位置に温度検知口を設け、上部には十分な吸引力のある煙突を立て、パイプ穴には有意径パイプに炉外位置にチャッキバルブで中継ぎの高圧送風機を備え、煙突中心位置で直角下降し、貫流水管長半分の位置に、下方鋭角のラッパ型高圧送風膜口装置を設け、熱交換水は貫流水管下端円周管にカスケードポンプで供給される。
吸引負圧力の強い煙突機能によって、炭化装置からの気化ガスがボイラー内に吸い込まれるとバーナーが噴射されガスは火災化し、炎が安定したなら着火バーナーは消され炉中段の高圧送風機構が作動して輻射バリヤが形成され、包み込まれた火炎は輻射熱線化し高率の熱線光波を貫流水管に直照射、或いは反射して熱交換機構が進行し熱交換水は蒸気化が進み圧力弁から噴出する。段落番号0017、0018項で高品質の燃料炭化の段階は経過した。
(B) Vaporized gas generated in the tilting furnace is sucked into the boiler connected to the furnace and is burned. The boiler structure is vertical as shown in Fig. 2 and the base furnace is made of steel plate with a furnace wall 15cm thick and a furnace wall inner diameter of 1m with a height of 50cm. There is a temperature detection port in the middle position, and the heat exchange part is 2.5cm in diameter of 2cm high 5cm diameter tube on the lower end square circular diameter tube of 1cm inside diameter and 8cm height and 8cm width on the base furnace. With a steam pressure valve as a steam-water separation chamber by connecting the upper surface with a semicircular square-circumferential pipe with a horizontal width of 8 cm and a height of 25 cm. The outside of the once-through water pipe is surrounded by a steel plate outer wall (5 cm thick) with a far-infrared radiation function furnace wall material and closed with a circular furnace wall plate having a chimney base device having an inner diameter of 20 cm. The chimney base unit is equipped with a chimney diverter, a significant pipe hole at the target position and a temperature detection port at the middle circumferential position, a chimney with sufficient suction power at the top, and a pipe with a significant diameter in the pipe hole Equipped with a high-pressure blower with a check valve at the outside of the furnace, with a right angle descent at the center position of the chimney, a trumpet type high-pressure blower membrane port device with a sharp downward angle is provided at the half of the length of the once-through water pipe, and heat exchange water is at the bottom of the once-through water pipe Supplied by a cascade pump to the circumferential pipe.
When the vaporized gas from the carbonizer is sucked into the boiler by the chimney function with strong suction negative pressure, the burner is injected and the gas is turned into a fire.When the flame is stabilized, the ignition burner is turned off and the high-pressure air blow mechanism in the middle stage of the furnace is activated. A radiant barrier is formed, and the encased flame is converted into radiant heat rays, and a high-rate heat ray light wave is directly applied to the once-through water pipe or reflected, and the heat exchange mechanism proceeds, and the heat exchange water is vaporized and ejected from the pressure valve. . In paragraphs 0017 and 0018, the stage of high-quality fuel carbonization has passed.

(C)−前項までの手段によって燃料有機体が高品質炭素燃料化されたことを生かしてそれを高率に蒸気にする手段を組立てる。そのボイラー段階は次の仕様による。
ボイラー本体は前項の気化ガス燃焼装置の一周り大きい基部炉壁内径(1.5m)とし基部炉の高さも75cm、貫流水管の長さも3.0mとし、特にボイラー炉肩から貫流水管下端の炉芯位置まで燃料移送燃焼装置を設置する。その装置は長楕円半円形の断面(底辺30cm)の鉄板製で遠赤外線放射機能炉壁を内装し、上端に炭化材燃料供給タンクよりの供給装置を備え、その下端位置で水平開口し、その開口周囲に基部炉床に向けた斜め下方迎角度の一次燃焼用高圧空気噴射膜口パイプを設け、移送装置の上肩を送風管をのばし炉外にチャッキバルブを中継した高圧送風機に継ぐ。熱交換貫流水管関連装置や、二次燃焼用の対向流送風装置、基部炉の着火バーナー等の機器も装具されている。
上述装置の主な起動は、先ず基部炉の着火バーナーが作動し基部炉内壁や、燃料移送燃焼装置や外壁等が充分加熱され、それぞれ炉壁の熱線放射機能域に到達したなら、燃料供給機構が作動しグラファイトに近い燃料が流下しながら炉内外熱で熱せられた装置内の炉壁からの遠赤外線光波と酸欠乾溜機能の相乗機能によって炭素ガスが膨張し高温の一次燃焼空気膜に吸い出されて燃焼反応し火炎が基部炉床に吹き当り反転して上昇し、その一次燃焼炎が安定したら着火バーナーは消され、高温の二次燃焼の対向流高圧送風空気膜が噴射されて輻射バリヤが形成され、包み込まれた二次燃焼炎は輻射熱線化して光波を貫流水管に直照射、或いは反射して熱交換水への熱移転が急速に進み高圧蒸気となって気水分離室の蒸気圧力弁から噴出する。
(C)-Assembling means for converting the fuel organic substance into high-quality carbon fuel by the means up to the preceding paragraph and making it into steam at a high rate. The boiler stage is according to the following specifications.
The boiler body has an inner diameter of the base furnace wall (1.5 m) which is larger than the vaporized gas combustion apparatus in the previous section, the height of the base furnace is 75 cm, and the length of the once-through water pipe is 3.0 m, particularly the furnace at the bottom of the once-through water pipe from the boiler furnace shoulder. Install the fuel transfer combustion device to the wick position. The device is made of an iron plate with an elliptical semicircular cross section (bottom 30 cm) and is equipped with a far-infrared radiation function furnace wall, equipped with a supply device from a carbide fuel supply tank at the upper end, opened horizontally at the lower end position, A high-pressure air injection membrane port pipe for primary combustion at an oblique downward angle of attack toward the base hearth is provided around the opening, and the upper shoulder of the transfer device is extended to a high-pressure blower that extends a blower pipe and relays a check valve outside the furnace. Equipment such as a heat exchange once-through water pipe related device, a counterflow air blower for secondary combustion, and an ignition burner for the base furnace are also equipped.
The main start-up of the above-mentioned device is to start the fuel supply mechanism when the ignition burner of the base furnace is activated and the inner wall of the base furnace, the fuel transfer combustion device, the outer wall, etc. are sufficiently heated and reach the heat ray radiation function area of the furnace wall, respectively. The carbon gas expands due to the synergistic function of the far-infrared light wave from the furnace wall in the equipment heated by the internal and external heat of the furnace while the fuel close to graphite is flowing down and absorbed by the oxygen-depleted dry distillation function, and is absorbed into the high-temperature primary combustion air film The flame burns and reacts to the base hearth and reverses and rises.When the primary combustion flame stabilizes, the ignition burner is turned off, and a countercurrent high-pressure air blown film for high-temperature secondary combustion is injected and radiated. The barrier is formed, and the enclosed secondary combustion flame is converted into radiant heat rays, and light waves are directly applied to the once-through water pipe, or reflected, and the heat transfer to the heat exchange water rapidly proceeds to become high-pressure steam, which becomes the steam in the steam-water separation chamber. It ejects from the steam pressure valve.

(D)−前項によって効率よく発生した蒸気圧力を活用したベンチュリスクラバ機構によって煙突の排ガスを誘引し高温融合して中圧多量の高温過熱蒸気に変換する技術手段について、本発明者はバイオマスの乾溜ガス化燃焼熱変換発電装置(特願2004−209241)によって提案しているが、本願ではその蒸気噴射機構を改良して提案した。通常のベンチュリスクラバ機構は、燃焼促進の為の強制吸引排気の場合や或いは集塵機の供給仕様に高温の排ガスを吸引移動させながら温度を低下させる(300℃)の為に高圧大量の空気で誘引することが多く、通例、空気吐出口径3と煙道口径10の断面比は7:78である。

(D)-Regarding the technical means for attracting the flue gas from the chimney by the venturi scrubber mechanism utilizing the steam pressure generated efficiently according to the preceding paragraph and converting it into high temperature superheated steam with a large amount of medium pressure, the present inventor This is proposed by a gasification combustion heat conversion power generation device (Japanese Patent Application No. 2004-209241). In this application, the steam injection mechanism is improved and proposed. The normal venturi scrubber mechanism is attracted with a large amount of high-pressure air in order to reduce the temperature (300 ° C) while sucking and moving high-temperature exhaust gas in the case of forced suction exhaust to promote combustion or supply specifications of the dust collector In many cases, the sectional ratio of the air discharge port diameter 3 and the flue port diameter 10 is usually 7:78.

本願における該機構の目的は、高温の煙突排ガス熱(例400℃)と一次高温強湿り蒸気(例200℃−15.8kp)との両気体の高温融合で更に高温の二次過熱蒸気(例250℃−40.6kp)とすることを目指すので、両ガス体のみでそれを発象する必要に限定された条件のもとでラッパ型の蒸気噴射機構と膨張圧力緩衝推走機構によってその目的機能に近づくものである。前者は煙突機能管口径10の拡大された管口径20の周壁に達する鋭角全周方位噴射口により、管の全断面で吸引する改良タイプで、蒸気拡大吐出断面口径20と煙道口径10との断面比は314:78で、4倍の断面で高温排ガスを吸引しながら混合し、融合蒸気化する。後者は融合蒸気の噴射口を包み込む後方全周囲から形成されたハート型空気室によって爆発的(200℃−250℃、15.8kp−40.6kp)膨張圧力を緩衝して推送圧力に変換して集束された管口から二次過熱蒸気として噴出される。その噴出口は融合蒸気口より拡大され、逆流圧を防ぎながら次につなぐ。   The purpose of the mechanism in the present application is to achieve a higher-temperature secondary superheated steam (eg, a high-temperature fusion of both gases of high-temperature chimney flue gas (eg, 400 ° C.) and primary high-temperature, high-humidity steam (eg, 200 ° C.-15.8 kp)). 250 ° C-40.6 kp), and its purpose is achieved by a trumpet-type steam injection mechanism and an expansion pressure buffer thrust mechanism under conditions limited to the necessity of generating both gas bodies only. It approaches the function. The former is an improved type that sucks in the entire cross section of the pipe by the acute angle omnidirectional injection port reaching the peripheral wall of the expanded pipe diameter 20 of the chimney function pipe diameter 10. The cross-sectional ratio is 314: 78, and high-temperature exhaust gas is mixed while sucking in a quadruple cross-section to form a fusion vapor. In the latter, the explosive (200 ° C-250 ° C, 15.8 kp-40.6 kp) expansion pressure is buffered and converted into the thrust pressure by a heart-shaped air chamber formed from the entire rear circumference that wraps around the injection port of the fusion steam. It is ejected as secondary superheated steam from the converged pipe port. The jet port is expanded from the fusion steam port and connected next while preventing backflow pressure.

(E)−蒸気タービンは入口と出口を備えたケーシングに内蔵された、合成正弦曲線を基調とした一次元形状の羽根形と有意の巾を備えた羽根翼複数を偏芯取付配置と側板を組合せた羽根車を、羽根翼外周端を有意にずらして複数並列固定した構成で所要の巾を確保した羽根車で構成され、各羽根翼間はバケット状となる。
回転軸は中空で羽根翼取付部間には羽根入射角度に近い通気孔が開けられている。2次蒸気吐出管口径より広い巾を有するタービンケーシングは、その入口で扁平末広がりとなって高圧蒸気を低圧に膨張させながら有意の角度で羽根に当てる構造で、タービン羽根車は羽根の特性から蒸気の衝動圧力G点が蒸気の流動慣性と共に移動して途切れることなく回転力価に変換し且偏芯取付配置によりトルクの大きい機能する仕事となる。ケーシングは蒸気滞留外周を有意に保持しているので、回転軸の通気孔からは羽根車の回転によって生ずる負圧に引かれて吸入される冷水によって回転軸が冷却されて軸受を保護し、羽根車の過熱も防ぎながら吐出口で蒸気温度を低下させて容積を縮小させる顕著なマフラー作用を発象して蒸気の流動が促進される。回転による流動慣性をスムーズに保持する羽根形特性は回転抵抗も少なく蒸気の放出も効率よく機能し、又偏芯取付配置による挺子機能も加わって、蒸気圧に比例する回転速度は程々でも蒸気圧力の大部分がトルクの大きい回転力に変換される中圧大容量の蒸気向きタービンである。
(E)-A steam turbine is built in a casing having an inlet and an outlet, and has a one-dimensional blade shape based on a composite sine curve and a plurality of blade blades having a significant width. The combined impeller is constituted by an impeller that secures a required width with a configuration in which a plurality of impeller blade outer peripheral ends are significantly shifted and fixed in parallel, and a bucket shape is formed between the impeller blades.
The rotating shaft is hollow, and a vent hole close to the blade incident angle is opened between the blade blade mounting portions. A turbine casing having a width wider than the diameter of the secondary steam discharge pipe has a structure that spreads flat at the inlet and applies high pressure steam to the blades at a significant angle while expanding to low pressure. The impulse pressure point G moves along with the flow inertia of the steam and is converted into a rotational force value without interruption, and the work with a large torque is performed by the eccentric mounting arrangement. Since the casing retains the steam staying outer periphery significantly, the rotating shaft is cooled by the cold water sucked by the negative pressure generated by the rotation of the impeller from the vent hole of the rotating shaft to protect the bearing, and the blade While preventing overheating of the car, the flow of steam is promoted by generating a remarkable muffler action that reduces the volume of the steam by reducing the steam temperature at the discharge port. The blade-shaped characteristics that smoothly maintain the flow inertia due to rotation have low rotational resistance and function to discharge steam efficiently, and the lever function by the eccentric mounting arrangement is added, so that the rotation speed proportional to the steam pressure is moderate. This is a medium-pressure, large-capacity steam-oriented turbine in which most of the pressure is converted into torque with a large torque.

(F)−発電装置蒸気タービンの回転力は中速でトルクの大きい特性からそれを生かす発電装置は直径の大きい多極型発電装置を選択する。有意の直径の相対する外輪と内輪相対応の固定子外枠は回転軸を有する回転子内枠の軸受台座に固定され、外枠には多数の固定子が装着され、内枠には多数の回転子が装着されていて、内枠が回転すると固定子群には励起電流と電圧を生じて電気エネルギーとなり、システムの完結となる。
追加々筆すれば、段落番号0018項のボイラーでの蒸気噴射事象は、チップ供給量を増量する装置においては変換二次過熱蒸気化を経て発電に至る機構に進展し得ることは当然で、炭化装置を移動可能規模とするか、定置大型規模とするかで選択し大型定置装置においては、炭化工程から発電までのシステム完結も可能である。
(F) -Power generation apparatus Since the rotational force of the steam turbine is medium speed and has a large torque, a power generation apparatus that takes advantage of it has a multi-pole power generation apparatus with a large diameter. A stator outer frame corresponding to a significant outer diameter and an inner ring phase is fixed to a bearing pedestal of a rotor inner frame having a rotating shaft, a number of stators are mounted on the outer frame, and a number of stators are mounted on the inner frame. When the rotor is mounted and the inner frame rotates, an excitation current and voltage are generated in the stator group to become electric energy, and the system is completed.
In addition, it is natural that the steam injection event in the boiler of paragraph 0018 can progress to a mechanism that leads to power generation through conversion secondary superheated steaming in a device that increases the amount of chip supply. The system can be completed from the carbonization process to the power generation in the large-sized stationary apparatus, which is selected depending on whether the apparatus is a movable scale or a stationary large-scale apparatus.

総括一順を追って詳述した本願を要約すると、木質系をはじめとするバイオマス有機体は物質の特性上、熱を求めて物体を燃焼するに当っては、原子状炭素と原子状酸素とが燃焼反応してCO2となることが最善の熱源を得られるという文献からの教導を得て、まず燃料として分子状炭素(グラファイト)に進化させることを目指して、炭化処理手段にたどりつき、次の高効率熱交換を目指す貫流水管構成のボイラー炉の内で、炭化斜傾炉構造を小型化した燃料移送燃焼装置でグラファイト燃料を急速に炭素ガス化に進相し、一次燃焼空気膜で吸引燃焼反応し、炉床に当って反転上昇する火炎に二次燃焼対向流送風空気膜によりバリヤ化して包み込まれた一次火炎を輻射熱線化してその二次燃焼炎光波を貫流水管に直照射、反射して熱交換水を一次湿り蒸気化し、圧力弁より噴出するが、本願ではその一次蒸気の噴射圧を活用し改良ベンチュリスクラバ機構を応用して排気ガスを誘引融合して二次過熱蒸気に変換してより高圧の蒸気圧を得て、蒸気タービンを駆動し、その回転力に連動して直径の大きい多極型発動機を作動して発電し、本願システムの目標に到達した。 Summarizing the present application, which has been described in detail in a general order, biomass organisms including woody materials are characterized by the characteristics of substances, and when burning an object for heat, atomic carbon and atomic oxygen are Obtained teaching from the literature that the best heat source can be obtained by combustion reaction to become CO 2 , first aimed to evolve into molecular carbon (graphite) as a fuel, arrived at the carbonization treatment means, the following In a boiler furnace with a once-through water pipe configuration aiming for high-efficiency heat exchange, graphite fuel is rapidly advanced to carbon gasification with a fuel transfer combustion device with a downsized carbonized tilting furnace structure, and suction combustion is performed with a primary combustion air film The primary flame encapsulated by the secondary combustion counterflow blown air film is radiated into a heat ray, and the secondary combustion flame light wave is directly radiated and reflected on the once-through water pipe. Heat exchange water It is converted to secondary superheated steam by converting it into secondary superheated steam by applying the improved venturi scrubber mechanism by utilizing the injection pressure of the primary steam and converting it into secondary superheated steam. The pressure was obtained, the steam turbine was driven, and a multi-pole motor with a large diameter was operated in conjunction with the rotational force to generate power, and the target of the present system was reached.

以上本願システムの手段及び作用について説明したが、それを生かす前提条件について補強する。
(1).熱交換用の熱を求めて物体の燃焼と炭化等の関連手段を行うに際しては現今の強い加圧送風燃焼方法を避けて、吸引負圧炉環境での燃焼手段に改めることで、大巾な熱源化−輻射熱線化に近づき易く、併せてその光波が直射性であることを生かす熱交換機構装置は格段の熱交換効率を向上し得る。
(2).熱を求め有機体を燃焼するに際しては、燃焼発熱とは原子状炭素と原子状酸素が反応してCO2ガスとなり発熱するという文献教示をふまえて、そこに至るまで有機体は物質特性上多くの吸熱反応段階を経なければならない宿命にあることを如何にして経過せしめるかに基本的配慮を要することをシステム施行向上の要とすることを忘れてはならない。
Although the means and operation of the system of the present application have been described above, the preconditions for utilizing them will be reinforced.
(1). When performing related measures such as combustion and carbonization of objects in order to obtain heat for heat exchange, avoid the current strong pressurized blast combustion method and replace it with a combustion method in a suction negative pressure furnace environment. A heat exchanging mechanism device that makes it easy to approach heat source-radiant heat radiation and that the light wave is direct radiation can improve remarkably heat exchange efficiency.
(2). Based on the teaching of the literature that when carbon is burned for heat, combustion exotherm is the reaction of atomic carbon and atomic oxygen to generate CO 2 gas and generate heat. It must be remembered that the basic consideration of how to pass the fate that must go through the endothermic reaction stage is the key to improving system implementation.

本願は、発明者が出合った自然現象と文献からの教導の融合によってバイオマス有機体の特性を最大限生かしながら熱源に転換し蒸気に変換し回転力に換えて発電に至るシステムに仕上げ発案した。
今エネルギー資源をめぐる生産と消費課題、地球温暖化問題をめぐる先進国に対比する後進国間との軋轢、産業廃棄物と環境汚染との悪循環、等々地球規模での解決を迫られているやに見受けられるが、研究機関や大企業程、既存技術に固執したやに見える対応で、根元にある技術開発分野では立ち止まっている社会環境にしか見えない。
本発明者は自然現象の出遭いと学術文献の教導との融合によって本システムに進化したものだが、それは劇的と云える燃焼熱源化とその輻射熱線光波の直照射を生かす熱交換機構によって物質の熱転換を熱源まで高め得て広範な技術課題前進に大きく貢献し得ると信じているので、それが生かされることを切に祈っている。
The present application has been conceived as a final design of a system that converts natural phenomena encountered by the inventor and teaching from the literature into the heat source and converts it into steam while making the best use of the characteristics of the biomass organism, and converts it into steam and converts it into rotational force.
Production and consumption issues related to energy resources, conflicts between developing countries compared to developed countries over global warming issues, vicious circle between industrial waste and environmental pollution, etc. However, it seems that research institutions and large companies seem to stick to existing technology, and it seems to be a social environment that has stopped in the underlying technology development field.
The present inventor has evolved into this system by the combination of encountering natural phenomena and teaching of academic literature, but it is based on the heat exchange mechanism that makes the most of the combustion heat source and direct irradiation of radiant heat rays. I believe that it can greatly contribute to the advancement of a wide range of technical issues by raising the heat conversion to the heat source.

、有機態資源を完全な炭素燃料体にする装置である傾斜炉図, Tilt furnace diagram that is a device to convert organic resources into a complete carbon fuel body 、図1から発生する気化ガスを燃焼させるボイラー図, Boiler diagram for burning vaporized gas generated from FIG. 、完全炭化状燃料を高率一次湿り蒸気にするボイラー(図3−イ)と、発生蒸気を二次過熱蒸気にする変換装置(図3−ロ)の組み合わせ図, Combination diagram of boiler (Fig. 3-I) that converts fully carbonized fuel into high-rate primary wet steam and converter (Fig. 3-B) that converts generated steam into secondary superheated steam 、蒸気タービン(図4−イ)と発電装置(図4−ロ)の組み合わせ図 (図4−ハ)は蒸気タービン断面図で、(図4−ニ)は発電機断面図Fig. 4-H is a cross-sectional view of the steam turbine (Fig. 4-I) and Fig. 4-H is a cross-sectional view of the generator.

本願は多様なバイオマス等有機体を酸欠乾溜炭化した高品質燃料にして、限られた装置内で炭素原子となる解離エネルギーの必要度を最低にして燃料効果を高めたことを出発点として、発熱体に斜め対向流空気膜形成によって高温化するステファン・ボルツマン法則事象を発象させた熱源から相対的直射方法の熱交換を効率化し、得られた蒸気の蒸気圧をも活用する改良されたベンチュリスクラバ機構によって高温の排気ガスを誘引して高温融合転換蒸気に変換して、その中圧大容量の蒸気圧で合成正弦曲線を基調とした羽根形の蒸気タービンで回転力に転換し、そのトルクの大きい回転力で多極型発電機を回して発電するという多段階の機構を組み合わせたシステムに成る。
それぞれの段階の手段を支える機構は自然現象に教えられて開発されたものが多く、その最善の機能向上にはたゆまぬ努力が必要である。例えば炉壁の構成については燃焼化学反応に最適の触媒機能のある輻射熱線の放射力発生源というあまり情報の少ない分野もあり、乾溜、ガス化、燃焼反応に与える熱線光波の影響の大きさが知られて来たからである。それぞれを構成する機器の材質等も同様である。上述技術システムが多段的にわたることからそれに対応できる機構装置の構築の技術面と広範囲にわたる運用現場とを有意に連継して組織化することが決め手となり、併せて事業成果の電気活用分野の開発も急務で、例えば広い山中を移動する装置の電源としてのバッテリー化はまた遠方への一手段ともなる。
The present application is a high-quality fuel obtained by carbonizing various organic organisms such as biomass, and starting from the fact that the fuel effect has been improved by minimizing the need for dissociation energy to become carbon atoms in a limited system. Improved efficiency of heat exchange of the direct direct method from the heat source that generated the Stefan-Boltzmann law phenomenon that is heated by the formation of the diagonal counter-flow air film on the heating element, and also uses the vapor pressure of the resulting steam The venturi scrubber mechanism attracts high-temperature exhaust gas to convert it to high-temperature fusion conversion steam, and its intermediate-pressure large-capacity steam pressure converts it to rotational force with a vane-shaped steam turbine based on a composite sine curve. This system combines a multi-stage mechanism that generates electricity by turning a multi-pole generator with a large torque.
Many of the mechanisms that support the means of each stage have been developed by being taught by natural phenomena, and constant efforts are required to improve their functions. For example, there is a field with very little information on the structure of the furnace wall, such as the radiation source of radiant heat rays that has an optimal catalytic function for combustion chemical reactions, and the magnitude of the influence of heat ray light waves on dry distillation, gasification, and combustion reactions is large. Because it has been known. The same applies to the materials and the like of the devices constituting each. Since the above-mentioned technical system is multi-staged, it is crucial to organize the technical aspects of construction of mechanical devices that can cope with it and a wide range of operation sites, and also develop the electric utilization field of business results. However, there is an urgent need, for example, the use of a battery as a power source for a device that moves in a large mountain is also a means of distant.

以下図面により各段階の手段操作について説明する。
1・ 図1―イ・ロは資材を炭化する傾斜炉で外殻鉄板1と内壁2と下底内壁2〜1が装着されており下底裏下3を耐火レンガで支えられ、バーナー4の燃焼炎に対向流送風膜5を浴びて完全燃焼した排ガスが上昇して通路6から炉内に入りガス移送管7よりの負圧に引かれて下降し、気化ガスと共に図2のボイラーに送られる。資材供給装置8から資材が供給されると無酸素の2次排ガスの熱源とその熱に加熱された上・下の炉壁から発する輻射熱線を浴びながら底面を流下降しながら乾溜炭化されて水冷スクリュー9で排出される。
2. 図2は図1より排出された気化ガスを燃焼熱交換するボイラー装置で、基部炉11の上に管径の半分の間隙を明けて貫流水管15を円周形並列し上部は円周角形管で結んで気水分離室16として圧力弁17を備え、下端は円周角形下端連結管12で結んでカスケードポンプ18で注水する、貫流水管外側は炉壁14を装着した外殻鉄板13で囲い上部は煙突20を備えた円板で閉じ、煙突管には高圧送風機21を備えた送風管が挿入され直角下降して貫流水管中段高さに炉床に向けた下方迎角度の火炎に向けた高圧送風膜口22が設けられ、図1からの気化ガスが移送管7を経てガス給入口10からボイラーに吸入されると着火バーナー19が作動して気化ガスは火炎となり安定したら着火バーナー19は消され中段の対向流送風機構が作動して気化ガス炎は輻射熱線化して熱線を貫流水管15に直照射・反射して貫流水を高温化して蒸気圧力弁17を押し上げて流出する。これによって図1〜図2の素材酸欠乾溜炭化工程は完了し高品質のグラファイト状炭素素材が集積される。
3. 図3―イはグラファイト状炭素燃料を用いて高率一次蒸気化する装置。基部炉24の上に管径の半分の間隙を持たせて貫流水管25が円周並列され下端は円周角形下端連結管26で結ばれてカスケードポンプ27を備え、上部は横幅が貫径の1.5倍で高さがその3倍で上部を円形とした円周角形上端連結管28で結んで気水分離室29とし圧力バルブ30を備える。貫流水管外側は炉壁材31を内装したボイラー外殻鉄板23で囲い上部は煙突分離部33を備えた煙突34を装着した円板32で閉じ、分離部上方にはダンパー35を設ける。煙突基部に高圧送風機36にチャッキバルブ37で中継したパイプを挿入して煙突中心位置で直角下降し貫流水管中間高さ位置で止め、先端に下方迎角度ラッパ状の高圧空気噴射口管38を設け2次燃焼炎輻射熱線化装置Bとする。
更にボイラー炉肩位置から貫流水管下端炉心位置まで燃料移送燃焼装置Aを設置する。それは有意の半円形(内壁底面30cm×高さ30cm)の断面の炉壁材を内装し先端に下方迎角度ラッパ状の高圧空気噴射口管39を設けるが、上方燃料供給装置40と高圧の送風機41と噴射口管をつなぐパイプは本装置の上背に設置する。
4. 図3−ロは上述ボイラーから発生する高圧一次湿り蒸気を受ける二次過熱蒸気変換装置で上述ボイラーの煙突分離部33より分かれた煙突管43からの高温排気ガスを図3―イから噴出させる蒸気の圧力を利用して誘引混和して二次過熱蒸気に変換する。蒸気管44内の蒸気を噴出口45より拡散噴出すると拡大空気室側壁46に当たり膜状蒸気は集束して出口に放出される際に生じた負圧に引かれて煙突からの燃焼排ガスである高温のガス体が吸引されるベンチュリスクラバ機構が作動するので噴出源の一次湿り蒸気は高温ガス体とハート型空気室47内で混合融合されて変換二次過熱蒸気49に進相し一段と高圧力の蒸気となる。
5. 図4−イ・ハは上述二次過熱蒸気の推進圧力を受けて回転力に変換する機構のタービン装置である。回転室ケーシング50に内蔵され軸受51に支えられた中空の回転軸52と共通の回転軸上の受動回転羽根車53は、合成正弦曲線羽根形と有意の幅の羽根翼54の4枚をそれぞれの基部となる円弧接点を回転軸フランジ55の外周切線に重ね合わせて偏心配置して横板円板に取付けた羽根板複数枚を所要数組み合わせて成ると共に中空の回転軸フランジ55の壁には羽根翼54取付け位置に平行的斜めに搾孔されて外気の流通が共通しているので、高圧蒸気圧を有効に回転力に変換できると同時に、羽根翼裏側に生ずる負圧に引かれて回転軸を通して冷水が導入されると軸受52を保護すると共に放出蒸気を冷却するマフラー機能となり、よりトルクの大きい回転力の維持増強に貢献できる。
6.図4−ロ・ニは上述の蒸気タービンの得られた回転力で駆動して発電する多極型発電装置である。回転室ケーシング58には内側に多数の固定子59が装着され、回転軸52に支えられた内枠60に多数の回転子61が固定子59に相対して装着されている。タービンの回転で内枠60が回転すると外枠に装着されているは多数の固定子59に電流と電圧を生じて、大きなエネルギーが得られるという仕様である。
Hereinafter, the means operation at each stage will be described with reference to the drawings.
1. Fig. 1-I Lo is an inclined furnace that carbonizes the material, which is equipped with outer shell iron plate 1, inner wall 2, and lower bottom inner wall 2-1 and supports bottom bottom back 3 with fire bricks. Exhaust gas exhausted by the counter-flow blower film 5 in the combustion flame rises, enters the furnace through the passage 6 and descends due to the negative pressure from the gas transfer pipe 7, and is sent to the boiler in FIG. 2 together with the vaporized gas. It is done. When the material is supplied from the material supply device 8, it is carbonized by dry distillation while flowing down the bottom while being exposed to the heat source of the oxygen-free secondary exhaust gas and the radiant heat rays emitted from the upper and lower furnace walls heated by the heat. It is discharged by the screw 9.
2. FIG. 2 is a boiler apparatus for exchanging heat of vaporized gas discharged from FIG. 1, and a through water pipe 15 is arranged in a circular shape on the base furnace 11 with a gap of half the diameter of the pipe, and the upper part is a circular square pipe. And a pressure valve 17 is provided as a steam-water separation chamber 16, the lower end is connected by a circular rectangular lower end connecting pipe 12 and water is injected by a cascade pump 18, and the outside of the once-through water pipe is surrounded by a shell iron plate 13 fitted with a furnace wall 14. The upper part is closed with a disk with a chimney 20, and a blow pipe with a high-pressure blower 21 is inserted into the chimney pipe, descending at a right angle and directed to a flame with a downward attack angle toward the hearth at the middle stage of the once-through water pipe. 1 is provided. When the vaporized gas from FIG. 1 is sucked into the boiler from the gas inlet 10 through the transfer pipe 7, the ignition burner 19 is activated and the vaporized gas becomes a flame. The counterflow fan mechanism in the middle stage is turned off Vaporized gas flame Te is radiant heat Senka to straight-irradiation and reflected once-through water tubes 15 heat rays through-flow water to high temperature flows pushes up the steam pressure valve 17. As a result, the raw material oxygen-depleted carbonization process of FIGS. 1 and 2 is completed, and high-quality graphite-like carbon materials are accumulated.
3. Fig. 3-1 shows a high-rate primary vaporization system using graphite-like carbon fuel. A through water pipe 25 is circumferentially arranged on the base furnace 24 with a gap of half the diameter of the pipe, and a lower end is connected by a circular angular lower end connecting pipe 26 and includes a cascade pump 27, and the upper part has a transverse width. A pressure valve 30 is provided as a steam-water separation chamber 29 connected by a circular angular upper end connecting pipe 28 which is 1.5 times the height and 3 times the height and circular at the top. The outside of the once-through water pipe is surrounded by a boiler outer shell iron plate 23 having a furnace wall 31 and the upper part is closed by a disk 32 fitted with a chimney 34 having a chimney separation part 33, and a damper 35 is provided above the separation part. A pipe relayed by a check valve 37 is inserted into the high-pressure blower 36 at the chimney base, descends at a right angle at the chimney center position, stops at the intermediate height position of the once-through water pipe, and is provided with a high angle air injection pipe 38 having a downward attack angle trumpet at the tip Let it be the secondary combustion flame radiant heat linearizer B.
Further, a fuel transfer combustion apparatus A is installed from the boiler furnace shoulder position to the bottom-flow water pipe bottom core position. It has a significant semi-circular (inner wall bottom surface 30 cm × height 30 cm) cross-section furnace wall material and is provided with a high angle air injection pipe 39 having a downward attack angle trumpet at the tip, but with an upper fuel supply device 40 and a high pressure blower. The pipe connecting 41 and the injection pipe is installed on the upper back of the device.
4). FIG. 3B is a secondary superheated steam converter that receives the high-pressure primary wet steam generated from the above-mentioned boiler, and steam that ejects the high-temperature exhaust gas from the chimney tube 43 separated from the chimney separation part 33 of the above-mentioned boiler from FIG. It is converted into secondary superheated steam by attracting and mixing using the pressure of. When the steam in the steam pipe 44 is diffused and jetted from the jet outlet 45, the film-like steam hits the side wall 46 of the enlarged air chamber and is condensed and drawn by the negative pressure generated when discharged to the outlet. Since the venturi scrubber mechanism that sucks in the gas body is activated, the primary wet steam of the ejection source is mixed and fused in the high-temperature gas body and the heart-shaped air chamber 47 to advance to the converted secondary superheated steam 49 and further increase in pressure. It becomes steam.
5. FIG. 4-i-ha shows a turbine device having a mechanism that receives the propulsion pressure of the secondary superheated steam and converts it into rotational force. A passive rotary impeller 53 on a common rotary shaft and a hollow rotary shaft 52 that is built in the rotary chamber casing 50 and supported by a bearing 51 includes four pieces of a composite sinusoidal blade shape and a blade blade 54 having a significant width. A circular contact that forms the base of the rotating shaft flange 55 is overlapped with the outer peripheral cutting line of the rotating shaft flange 55 and is eccentrically arranged to combine the required number of blade plates attached to the horizontal disk, and on the wall of the hollow rotating shaft flange 55 Since it is squeezed obliquely parallel to the attachment position of the blade blade 54 and the circulation of the outside air is common, high-pressure steam pressure can be effectively converted into rotational force, and at the same time, it is drawn by the negative pressure generated on the back side of the blade blade. When cold water is introduced through the shaft, it serves as a muffler function that protects the bearing 52 and cools the discharged steam, thereby contributing to the maintenance and enhancement of torque with a larger torque.
6). FIG. 4-Roni is a multipolar power generator that generates electric power by driving with the rotational force obtained by the steam turbine described above. A large number of stators 59 are mounted on the inside of the rotary chamber casing 58, and a large number of rotors 61 are mounted on the inner frame 60 supported by the rotation shaft 52 so as to be opposed to the stator 59. When the inner frame 60 is rotated by the rotation of the turbine, it is a specification that a large amount of energy is obtained by generating current and voltage in a large number of stators 59 attached to the outer frame.

改めていうまでもなく生産と生活にとって電気なしでは成り立たないことを踏まえた発明者の取り組みは本願までたどり着いた。これから先は発明の効果の項で述べたとおり、世界を上げての課題である産業基盤への貢献対策として特許技術の掘り起こしもその一策ではあるまいか!現在の社会環境は特許技術の活用に対して冷淡ではないかと感じる。
背景技術で述べた通り世界を上げての課題であるエネルギー資源の解決の一翼を担う省エネルギー技術、地球温暖化対策を迫られている資源消費問題、そして環境汚染をももたらす広範囲の産廃資源の解消策等々数えればその必要度は増すばかりに見受けられる。
本願は自然現象との出会いを生かし前述の課題に貢献することを願い複次段階の技術構築に努めて来た。
そして活用の道は単純ではなく、国家的目標を明確に立て、それぞれの段階でそれぞれの立場の関係者、中核となる企業等の有機的組織化によって、資源活用の結果として電気の生産と消費をつなぐ流通経路を構築して、より多くの人々の生活向上につなげて欲しいものである。その可能性は非常に大きいものがあるのではあるまいか!
Needless to say, the inventor's efforts based on the fact that without electricity for production and life have reached the present application. From now on, as described in the section of the effect of the invention, digging up patented technology as a countermeasure to contribute to the industrial base, which is a challenge for raising the world, is one of those measures! I feel that the current social environment is cold to the use of patented technology.
As mentioned in the background art, energy saving technology that plays a part in solving energy resources, which is a challenge for raising the world, resource consumption issues that are required to fight global warming, and elimination of a wide range of industrial waste resources that also cause environmental pollution If you count measures, the need will increase.
This application has been working on the construction of multi-stage technology in the hope of contributing to the above-mentioned problems by making use of encounters with natural phenomena.
And the way of utilization is not simple, and national goals are clearly defined, and the production and consumption of electricity as a result of resource utilization through the organic organization of stakeholders in each position and core companies at each stage. We want you to build a distribution channel that connects people and improve the lives of more people. I don't think there is a very big possibility!

1−外殻鉄板 2−内壁 2~1−下底内壁 3−下底裏下
4−バーナー 5−対向流送風膜 6−ガス通路 7−気化ガス移送管 8−資材供 給装置 9−水冷スクリュー 10−ガス吸入口 11―基部炉 12−円周角形下 端連結管 13−外殻鉄板 14−炉壁 15―貫流水管 16―気水分離室 17−蒸気圧力弁 18−カスケードポンプ 19−着火バーナー 20−煙突 21−高圧送風機 22−高圧送風膜口 23−ボイラー外殻鉄板 24−炉基部 25−貫流水管 26−円周角形下端連結管 27−カスケードポンプ 28−円周 角形上端連結管 29−気水分離室 30−圧力バルブ 31−炉壁材 32−円板 33−煙突分離部 34−煙突 35−ダンパー 36−高圧送風機 37−チャッ キバルブ 38−高圧空気噴射口管 39−高圧空気噴射口管 40−上方燃料供給 装置 41−高圧送風機 42−着火バーナー A−燃料移送燃焼装置 B−2次燃 焼炎輻射熱線化装置 43−煙突管 44−蒸気管 45−噴出口 46−拡大空気 室側壁 47−ハート型空気室 48−温度検知口 49−変換二次過熱蒸気 50−回転室ケーシング 51−軸受 52−回転軸 53−受動回転羽根車 54−羽根翼 55−回転軸フランジ 56−高圧蒸気導入口 57−蒸気排出口 58−発電機ケーシング 59−固定子 60−内枠 61−回転子










































1-outer iron plate 2-inner wall 2-1-lower bottom inner wall 3-lower bottom back 4-burner 5-counter flow blower film 6-gas passage 7-vaporized gas transfer pipe 8-material supply device 9-water cooling screw 10-gas inlet 11-base furnace 12-circular square lower end connecting pipe 13-outer shell iron plate 14-furnace wall 15-flow-through water pipe 16-gas / water separation chamber 17-steam pressure valve 18-cascade pump 19-ignition burner 20-chimney 21-high pressure blower 22-high pressure blower membrane port 23-boiler shell iron plate 24-furnace base 25-flow-through water pipe 26-circular square lower end connection pipe 27-cascade pump 28-circumferential square upper end connection pipe 29-air Water separation chamber 30-Pressure valve 31-Furnace wall material 32-Disc 33-Chimney separation part 34-Chimney 35-Damper 36-High pressure blower 37-Chuck valve 38-High pressure air injection pipe 39-High pressure air injection pipe 0-Upper fuel supply device 41-High pressure blower 42-Ignition burner A-Fuel transfer combustion device B-2 secondary combustion flame radiant heat line device 43-chimney tube 44-steam tube 45-outlet 46-expanded air chamber side wall 47 -Heart-shaped air chamber 48-Temperature detection port 49-Conversion secondary superheated steam 50-Rotary chamber casing 51-Bearing 52-Rotary shaft 53-Passive rotary impeller 54-Blade blade 55-Rotary shaft flange 56-High-pressure steam inlet 57-Steam outlet 58-Generator casing 59-Stator 60-Inner frame 61-Rotor










































物質が燃えるという化学反応は原子炭素と原子酸素がその条件を得て燃焼反応して熱を発生することであるが、その各分子状から各原子状になる為には膨大な解離エネルギーを必要とする。例えば分子状炭素と酸素が燃焼の場合3/4がそれに使われるので実際外部に利用されるのは1/4に過ぎない。結合エネルギー収支理論によると有機体が炭素状態に分解するには亦更に多くの解離エネルギーを奪われるので燃焼熱として外部にでる反応熱は目減りすることになり、有機体の熱量が小さいといわれるゆえんである。
発明者は未利用資源を効率の高い燃料とする為に、それが限りなく炭素分子状に近い炭化材とする目的で遠赤外線光波の力を借りる無酸素雰囲気の中で物体を燃やすことなく乾溜ガス化する化学反応にたよって炭化する方法を追い続けて来た。ようやく純度の高い炭素材とコスト面でも社会に適用する段階に到達したので、その成果による炭化材或いは乾溜材化工程を経過した物材を燃料として効率的熱源に生かす本願に到達した。
The chemical reaction that a substance burns is that atomic carbon and atomic oxygen get the conditions and generate a heat reaction to generate heat, but enormous dissociation energy is required to change from each molecular state to each atomic state. And For example, when molecular carbon and oxygen are used for combustion, 3/4 is used for it, so only 1/4 is actually used outside. According to the bond energy balance theory, when an organism decomposes into a carbon state, more dissociation energy is lost, so the reaction heat that appears outside as combustion heat is reduced, and it is said that the amount of heat of the organism is small. It is.
The inventor made dry distillation without burning an object in an oxygen-free atmosphere that borrows the power of far-infrared light waves in order to make the unused resources a highly efficient fuel, in order to make it a carbonaceous material that is nearly carbon molecular. We have continued to follow the method of carbonization according to the chemical reaction to gasify. Finally, we have reached the stage of applying it to society in terms of high purity carbon material and cost, so we have arrived at the present application that uses the carbonized material resulting from the result or the material that has undergone the dry distillation process as an efficient heat source as fuel.

高能率熱交換燃焼装置−特許第3030321号High efficiency heat exchange combustion device-Patent No. 3030321 成熟固体物質の吸引乾溜ガス化燃焼装置−特許第4220083号Suction dry distillation gasification combustion apparatus for mature solid substance-Patent No. 4220083 バイオマス乾溜ガス化燃焼熱変換発電装置−特願2004−209241Biomass dry distillation gasification combustion heat conversion power generation device-Japanese Patent Application No. 2004-209241 固形バイオマス又は石炭を燃料とする蒸気ボイラー−特許第4824827号Steam boiler using solid biomass or coal as fuel-Patent 4824827 回転羽根による運送装置−(特許第2711402号)Carrying device with rotating blades-(Patent No. 2711402) 蒸気タービン装置−特許第4367733号Steam turbine equipment-Patent 4367733 吸引圧縮高圧送風機−特願2011−281250Suction compression high pressure blower-Japanese Patent Application No. 2011-281250

化学反応はなぜ起きるのか−上野景平‐1993講談社Why chemical reactions occur-Keihei Ueno-1993 Kodansha 二匹目の電気うなぎ−電力中央研究所‐1993日本興業新聞社The second electric eel-Central Research Institute of Electric Power Industry-1993 Nippon Kogyo Shimbun ライフグリーン原石分析報告書−長野県精密工業試験場‐Life Green Rough Analysis Report-Nagano Prefectural Precision Industrial Experiment Station- ホウ酸溶液の高温処理で金属表面硬化(ポロン処理)−岩手製鉄(株)Metal surface hardening by high temperature treatment of boric acid solution (polon treatment)-Iwate Steel Co., Ltd.

本願装置の特徴である熱交換燃焼炉や炭化炉等の炉床と炉壁を構成する材料について考察説明する。
(1)ライフグリーンは石川県金沢市医王山に産出する石英祖面並に結晶メノー含有パーライト系岩で構成され平均した組成分はSiO‐75.53%、Al‐13.34%、Fe−0.76%、CaO−1.33%、NaO‐3.65%、KO−3.43%、MgO‐0・16%、TiO−0.12%等を含有する外、エマナチオン(RH)を含み、土中では酸素富化現象を呈、とにかく硬い特性をもつ。
(2)アルミナセメントは遠赤外線放射力も強く、各材料を混練するに当たってバインダーとして優れた性能を持っている。
(3)牡蠣殻焼成石灰‐牡蠣殻は57%のCOを含有する炭酸石灰状で、それを1,200℃のキルーンで焼いても20%弱しか生石灰化せず40%近いCOは炭酸石灰状のままである(岩手工技センター)
(4)高濃度ホウ酸複合化合液は、(イ)高分子特性のあるパーム椰子殻焼成灰(5kg)を(ロ)特殊腐植物質を加工したマリネック抽出液(20リットル)で抽出された残液(10リットル)を温め(40℃)(ハ)ホウ酸10kgと硫酸マンガン(1kg)、20k圧を示して全く溶けない特性でもある。
The material constituting the hearth and wall of the heat exchange combustion furnace, carbonization furnace or the like, which is a feature of the present apparatus, will be described.
(1) Life Green composition fraction averaged composed of crystal agate containing pearlitic rock quartz its surface parallel to yield the Iozen Kanazawa Ishikawa SiO 2 -75.53%, Al 2 O 3 -13. 34%, Fe 2 O 3 -0.76 %, CaO-1.33%, Na 2 O-3.65%, K 2 O-3.43%, MgO-0 · 16%, TiO 2 -0. In addition to containing 12%, etc., it contains emanathione (RH), exhibits an oxygen enrichment phenomenon in the soil, and has a hard property anyway.
(2) Alumina cement has strong far-infrared radiation, and has excellent performance as a binder in kneading each material.
(3) Oyster shell calcined lime-Oyster shell is in the form of carbonated lime containing 57% CO 2 , and even if it is baked in a kiln at 1,200 ° C., only 20% is quick-calcified and CO 2 is nearly 40%. It remains in the form of lime carbonate (Iwate Engineering Center)
(4) The high-concentration boric acid composite compound mixture is obtained by extracting (i) palm coconut shell calcined ash (5 kg) having high polymer characteristics with (b) marineck extract (20 liters) processed from special humic substances. The liquid (10 liters) is warmed (40 ° C.). (C) 10 kg boric acid and manganese sulfate (1 kg).

前項種を混和したものを高濃度ホウ酸複合化合液で混練すると漆黒の混合材の炉壁材となるので、分解した外壁鉄板に内装し、熱線放射型電気炉で窒素ガス置換焼成して組立てる。
初回熱処理時1,200℃では溶解し、1,000℃で安定した黒色材となり、窒素ガス置換では700℃では陶器状となったので実施時の温度帯については慎重に検討を要する。
上記基材6種それぞれ遠赤外線放射機能につながる特性成分を持ち、更にマイナスイオンの磁性を帯びるといわれるものが数種あり、その合成放射機能への期待が高い。
また特許文献4、の取組み事象の例として複数材料を高濃度ホウ酸複合化液で練り合わせた際に前記牡蠣殻をキルーンで1,200℃で焼成した白色の牡蠣殻燃成粉砕物を加えた時、その混合物が漆黒に変化した。乾燥後、電気炉で1,000℃で焼成後の一関高専の分析結果では炭素の集積が非常に高い結果を得た。表図−1に示す様に炭素が重量で30%で、分子数で56%の数値からは他の基材からはその炭素が見出せず、45%余の炭酸ガスを抱え込んでいるという牡蠣殻焼成粉砕物内の炭酸ガスが酸素を放出し炭素が残溜したとすればほぼ理解できる数値であり、牡蠣殻中の炭酸ガスが還元的分解反応し易いこと教えるものと考えれば、その後望外の牡蠣殻活用の希望を与えられた。本願での炉壁機能としての域では通電性は見られないとのことであったので、炉壁からの光波の発進に好影響への期待が高い。

Figure 2015010487
Mixing the above three types with a high-concentration boric acid composite compound mixture will result in a jet black mixed material furnace wall material. I'm assembling.
At the first heat treatment, it melts at 1,200 ° C. and becomes a stable black material at 1,000 ° C., and when it is replaced with nitrogen gas, it becomes a pottery shape at 700 ° C. Therefore, careful examination of the temperature zone at the time of implementation is required.
There are several types of the above-mentioned base materials each having a characteristic component that leads to the far-infrared radiation function, and further said to have negative ion magnetism, and there are high expectations for the synthetic radiation function.
Further, as an example of the action event of Patent Document 4, white oyster shell combustible pulverized material obtained by firing the oyster shell at 1,200 ° C. in a kiln when a plurality of materials were kneaded with a high-concentration boric acid complex solution was added. At that time, the mixture turned jet black. The analysis result of Ichinoseki National College of Technology after drying and firing in an electric furnace at 1,000 ° C. showed that carbon accumulation was very high. As shown in Table 1, carbon is 30% by weight and the number of molecules is 56%. From the other base materials, the carbon cannot be found from other base materials, and the oyster shell contains 45% or more carbon dioxide gas. If carbon dioxide in the baked pulverized product releases oxygen and carbon remains, it is a numerical value that can be almost understood, and if you think that carbon dioxide in oyster shell is easy to undergo reductive decomposition reaction, I was given the hope of using oyster shells. In the area of the furnace wall function in the present application, no electrical conductivity is seen, so there is high expectation for a positive effect on the start of light waves from the furnace wall.
Figure 2015010487

(B)‐バイオマス等有機体をグラスファイト態に進化させる一方法は次の通りである。
(イ)ハンマークラッシャーで細断した素材チップが自然流下する傾斜炉は(図‐1)横断面は底面を90cmとする長楕円半円形高さ1mで長さ1.8mの鉄板製で、炉内壁に遠赤外線機能壁を内装した傾斜炉2〜3基を組合わせそれを設置する架台は55°程度の傾斜として、素材が自然流下の状態に合わせて再調製し、炉底裏下に耐火レンガを側壁とする燃焼室を設けてバーナー熱源と対向流送風装置を組合わせた完全燃焼排ガス発生桟構としてその無酸素状排ガスを傾斜炉上部の通路より内部に吸引して流下材料を加熱する桟構を設け、頂部円形部分を下方から吸引負圧に引かれて発熱体の燃焼2次排熱ガスが流動する、上端に素材供給口を設け炉外に原料供給口を設け、下端面の上部に気化ガス排出口を、下端下部に炭化材の排出装置を設け、外部に水冷却スクリューを接続し、水又は蒸気による消火冷却機構を付設する。気化ガスは下端上部の排出口からの吸引力に引かれて降下し、排出口に連接するボイラーへの移送管を通ってボイラーに送られ燃焼される機構である。
前述の機構に基づき上端の素材供給口から素材チップが供給され、炉底面を流下するチップは炉上面を流下する発熱体の燃焼2次排ガス熱源と、炉壁からの遠赤外線光波との相乗作用を受けて過熱蒸気雰囲気のもと酸欠乾溜機構の作用が働き完全炭化材(グラスファイバー)への変化が進み、気化機能作用で発生した気化ガスはボイラーから負圧吸引力に引かれて下降しボイラーに吸い込まれる。
下端の炭化材排出口での状況を調べながら上部チップ供給装置からの供給量を調節する仕様となる。
(B)-One method for evolving an organism such as biomass into a glass fight state is as follows.
(B) Inclined furnace in which the material chips shredded by hammer crusher naturally flow down (Fig. 1) The cross section is made of an iron plate with an elliptical semicircular height of 1 m and a length of 1.8 m with a bottom of 90 cm. Combined with two or three tilt furnaces with far-infrared functional walls on the inner wall, the installation base is inclined at about 55 °, the material is re-adjusted according to the state of natural flow, and refractory under the furnace bottom As a complete combustion exhaust gas generating frame combining a burner heat source and a counterflow air blower with a brick-side combustion chamber, the oxygen-free exhaust gas is sucked into the passage from the upper part of the inclined furnace to heat the flowing material. A frame is provided, the top circular part is drawn from below by suction negative pressure, and the combustion secondary exhaust heat gas of the heating element flows, a material supply port is provided at the upper end, a raw material supply port is provided outside the furnace, Vaporized gas discharge port at the top and carbonized material discharge at the bottom bottom The location provided to connect the water cooling screw to the outside, to attaching a fire extinguishing cooling mechanism with water or steam. The vaporized gas is drawn down by the suction force from the discharge port at the upper end of the lower end, and is sent to the boiler through the transfer pipe to the boiler connected to the discharge port and burned.
Based on the above-mentioned mechanism, the material chip is supplied from the material supply port at the upper end, and the chip flowing down the furnace bottom surface is a synergistic action between the heat source of combustion secondary exhaust gas flowing down the furnace top surface and the far-infrared light wave from the furnace wall In response to the superheated steam atmosphere, the oxygen-depleted dry distillation mechanism works and the transition to completely carbonized material (glass fiber) progresses, and the vaporized gas generated by the vaporization function is pulled down by the negative pressure suction force from the boiler. It is sucked into the boiler.
It becomes a specification to adjust the supply amount from the upper chip supply device while examining the situation at the carbide outlet at the lower end.

前項種を混和したものを高濃度ホウ酸複合化合液で混練すると漆黒の混合材の炉壁材となるので、分解した外壁鉄板に内装し、熱線放射型電気炉で窒素ガス置換焼成して組立てる。
初回熱処理時1,200℃では溶解し、1,000℃で安定した黒色材となり、窒素ガス置換では700℃では陶器状となったので実施時の温度帯については慎重に検討を要する。
上記基材6種それぞれ遠赤外線放射機能につながる特性成分を持ち、更にマイナスイオンの磁性を帯びるといわれるものが数種あり、その合成放射機能への期待が高い。
また特許文献4、の取組み事象の例として複数材料を高濃度ホウ酸複合化液で練り合わせた際に前記牡蠣殻をキルーンで1,200℃で焼成した白色の牡蠣殻燃成粉砕物を加えた時、その混合物が漆黒に変化した。乾燥後、電気炉で1,000℃で焼成後の一関高専の分析結果では炭素の集積が非常に高い結果を得た。表図−1に示す様に炭素が重量で30%で、分子数で56%の数値からは他の基材からはその炭素が見出せず、45%余の炭酸ガスを抱え込んでいるという牡蠣殻焼成粉砕物内の炭酸ガスが酸素を放出し炭素が残溜したとすればほぼ理解できる数値であり、牡蠣殻中の炭酸ガスが還元的分解反応し易いこと教えるものと考えれば、その後望外の牡蠣殻活用の希望を与えられた。本願での炉壁機能としての域では通電性は見られないとのことであったので、炉壁からの光波の発進に好影響への期待が高い。

Figure 2015010487
Mixing the above three types with a high-concentration boric acid composite compound mixture will result in a jet black mixed material furnace wall material. I'm assembling.
At the first heat treatment, it melts at 1,200 ° C. and becomes a stable black material at 1,000 ° C., and when it is replaced with nitrogen gas, it becomes a pottery shape at 700 ° C. Therefore, careful examination of the temperature zone at the time of implementation is required.
There are several types of the above-mentioned base materials each having a characteristic component that leads to the far-infrared radiation function, and further said to have negative ion magnetism, and there are high expectations for the synthetic radiation function.
Further, as an example of the action event of Patent Document 4, white oyster shell combustible pulverized material obtained by firing the oyster shell at 1,200 ° C. in a kiln when a plurality of materials were kneaded with a high-concentration boric acid complex solution was added. At that time, the mixture turned jet black. The analysis result of Ichinoseki National College of Technology after drying and firing in an electric furnace at 1,000 ° C. showed that carbon accumulation was very high. As shown in Table 1, carbon is 30% by weight and the number of molecules is 56%. From the other base materials, the carbon cannot be found from other base materials, and the oyster shell contains 45% or more carbon dioxide gas. If carbon dioxide in the baked pulverized product releases oxygen and carbon remains, it is a numerical value that can be almost understood, and if you think that carbon dioxide in oyster shell is easy to undergo reductive decomposition reaction, I was given the hope of using oyster shells. In the area of the furnace wall function in the present application, no electrical conductivity is seen, so there is high expectation for a positive effect on the start of light waves from the furnace wall.
Figure 2015010487

前項種を混和したものを高濃度ホウ酸複合化合液で混練すると漆黒の混合材の炉壁材となるので、分解した外壁鉄板に内装し、熱線放射型電気炉で窒素ガス置換焼成して組立てる。
初回熱処理時1,200℃では溶解し、1,000℃で安定した黒色材となり、窒素ガス置換では700℃では陶器状となったので実施時の温度帯については慎重に検討を要する。
上記基材種それぞれ遠赤外線放射機能につながる特性成分を持ち、更にマイナスイオンの磁性を帯びるといわれるものが数種あり、その合成放射機能への期待が高い。
また特許文献4、の取組み事象の例として複数材料を高濃度ホウ酸複合化液で練り合わせた際に前記牡蠣殻をキルーンで1,200℃で焼成した白色の牡蠣殻燃成粉砕物を加えた時、その混合物が漆黒に変化した。乾燥後、電気炉で1,000℃で焼成後の一関高専の分析結果では炭素の集積が非常に高い結果を得た。表図−1に示す様に炭素が重量で30%で、分子数で56%の数値からは他の基材からはその炭素が見出せず、45%余の炭酸ガスを抱え込んでいるという牡蠣殻焼成粉砕物内の炭酸ガスが酸素を放出し炭素が残溜したとすればほぼ理解できる数値であり、牡蠣殻中の炭酸ガスが還元的分解反応し易いこと教えるものと考えれば、その後望外の牡蠣殻活用の希望を与えられた。本願での炉壁機能としての域では通電性は見られないとのことであったので、炉壁からの光波の発進に好影響への期待が高い。

Figure 2015010487
Mixing the above three types with a high-concentration boric acid composite compound mixture will result in a jet black mixed material furnace wall material. I'm assembling.
At the first heat treatment, it melts at 1,200 ° C. and becomes a stable black material at 1,000 ° C., and when it is replaced with nitrogen gas, it becomes a pottery shape at 700 ° C. Therefore, careful examination of the temperature zone at the time of implementation is required.
Have the characteristics components leading to the substrate 3 or the respective far-infrared radiation function, there still several what is said magnetized negative ions, high expectations for its synthesis radiation function.
Further, as an example of the action event of Patent Document 4, white oyster shell combustible pulverized material obtained by firing the oyster shell at 1,200 ° C. in a kiln when a plurality of materials were kneaded with a high-concentration boric acid complex solution was added. At that time, the mixture turned jet black. The analysis result of Ichinoseki National College of Technology after drying and firing in an electric furnace at 1,000 ° C. showed that carbon accumulation was very high. As shown in Table 1, carbon is 30% by weight and the number of molecules is 56%. From the other base materials, the carbon cannot be found from other base materials, and the oyster shell contains 45% or more carbon dioxide gas. If carbon dioxide in the baked pulverized product releases oxygen and carbon remains, it is a numerical value that can be almost understood, and if you think that carbon dioxide in oyster shell is easy to undergo reductive decomposition reaction, I was given the hope of using oyster shells. In the area of the furnace wall function in the present application, no electrical conductivity is seen, so there is high expectation for a positive effect on the start of light waves from the furnace wall.
Figure 2015010487

Claims (10)

バイオマス等有機資源を原料とし再生する複種手段を積重ねて発電に至ることを目標に
以下の手段を先願技術で継承改良して移動可能な連継システムを構築する 廃棄物的有機体再生のスタートとなる遠赤外線放射機能の炉壁材を内装する傾斜炉でバーナー炎の2次排ガスの無酸素状の熱源により酸欠乾溜炭化してグラファイト状の炭素燃料に改質し その際に生ずる気化ガスは新機構のボイラーに誘引して燃焼し その純炭素状燃料は高能率熱交換機能のボイラーに内設する燃料移送燃焼装置で炭素材の原子化が進んで1次燃焼し その炎が炉床に吹き当たって反転上昇すると中段の下方向き高圧対向流送風膜に包み込まれて2次燃焼し その火炎は輻射熱線化して絶対温度に比例すると云われる光波に進相して熱交換貫流水管に直照射して高率に熱交換して供給される循環水は急速に一次湿り蒸気に変換して圧力弁より噴出する 更にその蒸気圧を活用して煙突の排ガスを吸引するベンチュリスクラバ機能のハート型膨張圧力緩衝装置で二次過熱蒸気に変換し その高圧蒸気を合成正弦曲線羽形の羽根翼の受動回転する蒸気タービン装置で受けて回転力に転換すると共に羽根翼裏側の負圧を活かして中空の回転軸を通して冷水を吸引して軸受を冷やしながら放出蒸気も冷却収縮するマフラー機能を進行させてトルクの大きい回転力に転換し そのトルクの大きな回転力で多極型発電装置を駆動して電気エネルギーを得る機能構造を有することを特徴とする バイオマス等有機体を重複燃焼熱源化し蒸気変換して発電に至るシステム
With the goal of accumulating multiple types of regeneration using organic resources such as biomass as raw materials, the following methods are inherited and improved with the prior application technology to build a movable continuous system Start of organic waste recycling Gasification gas generated at the time of reforming into graphite-like carbon fuel by carbonization with oxygen-depleted carbonization by an oxygen-free heat source of the secondary exhaust gas of burner flame in an inclined furnace equipped with a far-infrared radiation function furnace wall material Is attracted to the boiler of the new mechanism and burned. The pure carbon fuel is a fuel transfer combustion device installed in the boiler with a high efficiency heat exchange function, and the atomization of the carbon material advances and the primary combustion occurs, and the flame becomes the hearth. When it hits and reverses and rises, it is wrapped in a high-pressure counter-flow blower film facing downward in the middle stage, and then secondary combustion occurs.The flame is converted into a radiant heat ray and advances to a light wave that is proportional to absolute temperature, and directly into the heat exchange once-through water pipe. Irradiation and high heat Circulating water supplied after replacement is quickly converted to primary wet steam and ejected from the pressure valve. The ventilator is a heart-shaped expansion pressure buffer with a venturi scrubber function that uses the steam pressure to suck the exhaust gas from the chimney. Converted into superheated steam, the high-pressure steam is received by a passively rotating steam turbine device with a synthetic sinusoidal blade blade and converted to rotational force, and cold water is sucked through a hollow rotating shaft by utilizing the negative pressure behind the blade blade. Then, the muffler function that cools and shrinks the discharged steam while cooling the bearing is advanced to convert it into a torque with a large torque, and it has a functional structure to obtain electric energy by driving the multipolar power generator with the torque with a large torque A system that converts biomass such as biomass into a heat source for multiple combustion and converts it into steam for power generation
請求項1記載のシステムにあって それぞれの装置の炉壁構造には遠赤外線放射機能の保持が必須条件であり その発振源となる炉壁構造は
(1)シリカブラック (2)トルマリン鉱石 (3)ライフグリーン (4)耐熱キャスター (5)アルミナセメント (6)牡蠣殻焼成石灰 を基本材としそれを(イ)パーム椰子殻焼成灰 (ロ)マリネックス液 (ハ)ホウ酸 (ニ)硫酸マンガンとを調合反応させて得られた高濃度ホウ酸複合化合液で混練し 分解した外壁鉄板のそれぞれに内装し乾燥した後に 熱線放射型電気炉装置で窒素ガス置換燃焼し 熱に反応して遠赤外線光波を発振する機能構造体となることを特徴とする請求項1記載の バイオマス等有機体を重複燃焼熱源化し蒸気変換して発電に至るシステム。
2. The system according to claim 1, wherein the furnace wall structure of each device is required to maintain a far-infrared radiation function, and the furnace wall structure serving as the oscillation source is
(1) Silica black (2) Tourmaline ore (3) Life green (4) Heat-resistant caster (5) Alumina cement (6) Oyster shell calcined lime as a basic material (i) Palm coconut shell calcined ash (b) Mali Nex liquid (c) Boric acid (d) Manganese sulfate mixed and mixed with high-concentration boric acid complex compound liquid, kneaded and disassembled on each of the decomposed outer wall iron plates, 2. The system according to claim 1, wherein the system is a functional structure that oscillates far-infrared light waves in response to heat by nitrogen gas substitution combustion, and converts biomass such as biomass into a heat source for overlapping combustion and steam conversion to generate power.
請求項1記載のシステムの交換熱を求めて物体を燃す際には 炉内を負圧吸引圧のもと燃焼炎に対して煙突排気口側から斜め対向流高圧空気膜を噴射して放射バリヤを形成させ それに包み込まれた炎が輻射熱線化に進相し 絶対温度の4乗に比例すると言われる光波を熱交換水管に直照射させる 熱交換の為の燃焼手段の応用機構があり その現象に至る前提として 燃焼反応送風量=<対向流高圧空気噴射量=<煙突吸排気量のバランス維持が求められるので 現今の既設装置に多い強加圧燃焼方法を避け 負圧吸引燃焼方法によって願首の熱交換の為の燃焼反応発熱効果が得られ 更に効率的熱交換機構の機能と連動して高率の蒸気転換に進展することを特徴とする請求項1記載の バイオマス等有機体を重複燃焼熱源化し蒸気変換して発電に至るシステム。
When an object is burned for exchange heat of the system according to claim 1, a radiation barrier is formed by injecting an oblique counter-flow high-pressure air film from the chimney exhaust port side against the combustion flame under a negative suction pressure in the furnace. There is an application mechanism of combustion means for heat exchange that causes the heat exchange water pipe to directly irradiate the heat wave that is said to be proportional to the fourth power of the absolute temperature. As a premise, combustion reaction blast volume = <counterflow high-pressure air injection volume = <balance maintenance of the chimney intake and exhaust volume is required. The combustion reaction exothermic effect for exchange is obtained, and further, the organic substance such as biomass is converted into a double combustion heat source in conjunction with the function of the efficient heat exchange mechanism and progresses to high rate steam conversion. System that converts steam to power generation Mu.
請求項1記載のシステムの進行スタートとなる有機体資源を過熱蒸気雰囲気のもと酸欠乾溜炭化手段を進める装置は 有意の長楕円半円形(底面0.9m×高さ1m)の断面と有意の長さ(1.8m)の鉄板外壁の炉体2〜3基を組み合わせた斜傾炉より成り 炉体を装篤する篤台は傾斜を55度程度に設置し 素材をハンマークラッシャーで粗砕したチップが自然流下する角度に再調製し 傾斜炉本体は内壁に遠赤外線機能炉壁材を装着し 底面は素材がバウンドする傾斜突起を設け 上部円形部分を下方に吸引流動する燃料体の燃焼2次排熱による加熱機構を設け傾斜炉上部端に素材供給装置を備え 下端面上部に乾溜ガスの吸引排気装置を設け 下端面下部に炭化材流出口を設け 炉外に搬出水冷スクリューを接続し 装置上部の素材供給口により供給されたチップは 炉底面を自然流下しながら燃料体の燃焼2次排ガスの無酸素状ガスでの400℃前後の加熱を受けて過熱蒸気雰囲気と 炉壁材より発する遠赤外線光波との相乗機能によって酸欠乾溜作用を受けて炭化材に進化しながら流下し 排水口より落下して水冷スクリュー上で水又は蒸気で消火・冷却され チップはグラスファイバーに近い燃料炭素材に進化し 気化ガスは下端のガス移送口よりの負圧吸引力に引かれて下降し ボイラーへの移送管で移送されて燃焼される この素材チップから炭化材への進化機能装置の構造を有することを特徴とする請求項1記載の バイオマス等有機体を重複燃焼熱源化し蒸気変換して発電に至るシステム。

The system for advancing the oxygen-depleted carbonization means in the superheated steam atmosphere with the organic resources that will start the progress of the system according to claim 1 has a significant oval semicircular (bottom 0.9 m × height 1 m) cross-section It consists of a tilting furnace that combines two or three furnace bodies on the outer wall of a steel plate with a length of 1.8 m. The clinker is equipped with an inclination of about 55 degrees and the material is roughly crushed with a hammer crusher. The tilt furnace body is equipped with a far-infrared functional furnace wall material on the inner wall, and the bottom surface is provided with slanted projections that bounce the material. The secondary discharge of the fuel body that sucks and flows the upper circular part downward A heating mechanism with heat is provided, a material supply device is provided at the upper end of the inclined furnace, a suction / exhaust device for dry distillation gas is provided at the upper end of the lower end surface, a carbide outlet is provided at the lower end of the lower end surface, and a discharge water cooling screw is connected to the outside of the furnace. The chip supplied through the material supply port is the bottom of the furnace Due to the synergistic function of the superheated steam atmosphere and the far-infrared light wave emitted from the furnace wall material due to heating at around 400 ° C in the oxygen-free gas of the secondary combustion exhaust gas of the fuel body while naturally flowing down, Flowing down while evolving into carbonized material, falling from the drainage port, extinguishing and cooling with water or steam on the water cooling screw, the tip evolved into a fuel carbon material close to glass fiber, and the vaporized gas was negative pressure from the gas transfer port at the bottom 2. The organism such as biomass according to claim 1, characterized in that it has a structure of an evolution function device from this material chip to a carbonized material, which is lowered by being attracted by suction force, transferred by a transfer pipe to a boiler and burned. A system that generates heat from overlapping combustion heat generation and steam conversion.

請求項4の炭化装置の気化ガスは連接するボイラーの負圧吸引力に引かれて ガス移送管を通りボイラーに移送されるが そのガス濃度は高いので 炭化炉より充分離し ボイラーへの吐出口手前には回転羽根車を備えて 逆流発火防止を留意する。
そのボイラー構造仕様の 有意に設定された直径(1m)とその半分の高さの円形立型基部炉は、遠赤外線放射機能炉壁を内装した鉄板構造で、炭化装置からの気化ガスの移送受入れ口と その対向位置にバーナー口を設け その横位置に温度検知口を設け その上部に基部炉の内壁直径と同じ内径列の貫流水管が設けられるが 下部は有意の管直径(5cm)の1.5倍の横巾と高さの円周形角型管が設けられ その上に基部炉々壁内径の2倍(2m)の高さの水管を、管直径の半分の間隔を設けて円周形並列し その上端は管直径の1.5倍の横巾とその3倍の高さで 上面を半円形より成る円周形角型管で結んで気水分離室とし 蒸気圧力バルブを設け 貫流水管への熱交換水は下端の円周形角型管のバルブにカスケードポンプで注入され 貫流水管の外側は、管径の半分の厚さの炉壁材を内装した鉄板で囲み 上面は煙突・基部装置を備えた外壁鉄板で閉じ充分な吸引機能を備えた高さの煙突を装着し 煙突基部装置には煙突分岐口が設けられてダンパーで閉じられ、その対向位置に有意径のパイプ穴が設けられ その直横側にチャッキバルブで中継した高圧送風機を備えたパイプが煙突管内に挿入され煙突径中心位置で直角管で下降し 貫流水管の半分の高さ位置に火炎に向けて対向流送風する下方円形迎角度の高圧空気膜噴射口を設け ボイラーには吸引負炉圧が働き それに引かれて炭化装置からの気化ガスが移送管から放出されると 対向位置のバーナー口からの着火バーナーが点火され ガスは火炎化し 着火した燃焼炎が安定したらバーナーを止め上部の対向流高圧空気膜噴射機構が作動してその高温化した高圧空気膜が対向衝突してバリヤ化し それに包み込まれた火炎は輻射熱線化して光波を貫流水管に直照射、反射して 熱交換水は蒸気に転換し 上部の気水分離室バルブから噴出する機構構造を有することを特徴とする請求項1記載の バイオマス等有機体を重複燃焼熱源化し蒸気変換して発電に至るシステム。
The vaporized gas of the carbonization apparatus of claim 4 is attracted by the negative pressure suction force of the connected boiler and transferred to the boiler through the gas transfer pipe, but its gas concentration is high, so it is charged and separated from the carbonization furnace and before the discharge port to the boiler Is equipped with a rotary impeller to prevent back-flow ignition.
The round vertical base furnace with a significantly set diameter (1m) and half the height of its boiler structure specification is an iron plate structure with a far-infrared radiation function furnace wall, and accepts the transfer of vaporized gas from the carbonizer There is a burner port at the opposite position and a temperature detection port at the lateral position. A flow-through water pipe with the same inner diameter column as the inner wall diameter of the base furnace is installed at the upper part, but the lower part is 1.5 times the significant pipe diameter (5 cm). A horizontal square tube with a horizontal width and height of 2 mm (2 m) in height is placed on top of it. The upper end of the tube is 1.5 times the width of the tube diameter and 3 times its height, and the upper surface is connected by a semicircular circular tube with a semicircular shape, and a steam pressure valve is provided to provide heat to the once-through water tube. The exchange water is injected by a cascade pump into the circular square tube valve at the bottom, and the outside of the once-through water tube is half the diameter of the tube. Surrounded by an iron plate with an interior wall material, the upper surface is closed with an outer wall iron plate equipped with a chimney / base device, and a chimney with a sufficient suction function is installed, and the chimney base device is provided with a chimney branch port and closed with a damper A pipe hole with a significant diameter is provided at the opposite position, and a pipe equipped with a high-pressure blower relayed by a check valve is inserted directly into the chimney pipe and is lowered by a right-angle pipe at the center position of the chimney diameter, half of the once-through water pipe A high-pressure air film injection port with a downward circular attack angle that blows counter-flow toward the flame is provided at the height of the boiler, and the suction negative furnace pressure works on the boiler, and vaporized gas from the carbonizer is released from the transfer pipe. Then, the ignition burner from the burner port at the opposite position is ignited, the gas is flamed, and when the ignited combustion flame is stabilized, the burner is stopped and the upper counter flow high pressure air film injection mechanism is activated, and the high temperature high pressure air film is It has a mechanism structure in which the flame that has been impinged on it and turned into a barrier is converted into radiant heat rays, and light waves are directly irradiated to the once-through water pipe, reflected, and the heat exchange water is converted into steam and ejected from the upper air / water separation chamber valve. 2. The system according to claim 1, wherein the biomass such as biomass is converted into a heat source for overlapping combustion and converted into steam for power generation.
前々項及び前項でバイオマス等有機体を無機のグラファイトに近い燃料体に改質し得たこと受けて 次段階の熱源化を求めて次の燃焼手段とそれを効率的熱交換手段装置とを組合せて蒸気に変換する。その機構のボイラー本体は請求項5の構造に準ずるが 一周り大型の直径1.5mで基部炉の高さも(75cm)とし管径(7cm)の貫流水管の高さも(3m)とし 加える機構は 貫流水管の気水分離室上部の炉肩位置から貫流水管下端の炉芯位置まで傾斜状の燃料移送燃焼装置を設けるが それは有意の半円型(内壁底面30cm×高さ30cm)の横断面を有する鉄板構造製で 内壁に遠赤外線放射機能炉壁材を内装し 底面は炭化材燃料が徐流々下する炉床構造とし 下端は水平開口し その周囲に下方迎角度の1次燃焼空気噴射口円形管を設けて 移送装置上背の送風管を通して炉外のチャッキバルブを中継して高圧送風機と連結され 燃焼移送装置にも炉外に燃料供給装置一式が連設され 貫流水管中段炉芯位置には2次燃焼用高圧空気噴射口を備えた高圧空気送風機構一式を設置する。
上述構造機構での操作は先ず着火バーナーが作動し炉内炉壁が充分加熱されて熱線放射機能が保持されると着火バーナーが外され炉外の燃料供給装置が作動して燃料移送燃焼装置内の燃料が流下しながら炉内高温を受けて熱せられた炉壁からの遠赤外線放射を受けてグラファイト状の分子状炭素燃料は急速に吸熱反応が進行して原子状に近づいてガス化が進み下端の開口部に近づくと 開口周囲の噴出口から噴射される熱せられた高圧空気膜に吸い出されて激しく燃焼反応して燃焼ガスは炉床に当り反転して上昇する1次燃焼反応が進行し それが安定したら中段上部の下向き対向流高圧空気噴射機構が作動し 高温の高圧空気噴射膜と2次燃焼反応して放射バリヤが形成され包み込まれた火炎の輻射熱線化ガスの光波を貫流水管に直照射 反射する2次燃焼熱交換反応が進行し その光波を受けた貫流水管内の循環水は効率よく熱に反応して蒸気化し蒸気圧力弁を押し上げて噴出する機能構造を有することを特徴とする請求項1記載の バイオマス等有機体を重複燃焼熱源化し蒸気変換して発電に至るシステム。
In response to the fact that the biomass such as biomass was reformed into a fuel body close to inorganic graphite in the previous paragraph and the previous paragraph, the next combustion means and the efficient heat exchange means apparatus were obtained for the next stage heat source conversion. Combined to convert to steam. The boiler body of the mechanism follows the structure of claim 5, but the diameter of the one-size large 1.5m, the height of the base furnace is (75cm), and the height of the once-through water pipe with the pipe diameter (7cm) is also (3m). An inclined fuel transfer combustion device is provided from the shoulder position at the top of the water / water separation chamber of the water pipe to the core position at the bottom of the once-through water pipe, but it has a significant semicircular cross section (inner wall bottom 30 cm x height 30 cm). It is made of iron plate and the inner wall is equipped with a far infrared radiation function furnace wall material. The bottom is a hearth structure in which the carbonized fuel gradually flows down. The lower end is a horizontal opening. It is connected to a high-pressure blower via a check valve outside the furnace through a blower pipe on the back of the transfer device, and a set of fuel supply devices are connected to the combustion transfer device outside the furnace. High pressure air with high pressure air injection port for secondary combustion A set of blower mechanisms will be installed.
In the operation of the above-mentioned structural mechanism, the ignition burner is activated first, the furnace wall in the furnace is sufficiently heated to maintain the heat ray radiation function, the ignition burner is removed, the fuel supply device outside the furnace is activated, and the inside of the fuel transfer combustion apparatus The graphite-like molecular carbon fuel rapidly undergoes an endothermic reaction upon receiving far-infrared radiation from the furnace wall that has been heated due to the high temperature in the furnace while flowing down, and the gasification proceeds toward the atomic form. When approaching the opening at the lower end, the primary combustion reaction progresses where it is sucked into the heated high-pressure air film injected from the jet outlet around the opening and burns violently, and the combustion gas hits the hearth and reverses and rises When it stabilizes, the downwardly facing high-pressure air injection mechanism at the upper part of the middle stage operates, and a secondary combustion reaction with the high-temperature high-pressure air injection film forms a radiation barrier and encloses the light wave of the radiant heat linearized gas in the flame through the water pipe Directly reflected on 2 Reflected 2. The circulating water in the once-through water pipe that has undergone the next combustion heat exchange reaction and has received the light wave, has a functional structure that efficiently reacts with heat to vaporize and push up the steam pressure valve to eject it. A system that converts biomass such as biomass into a combustion heat source and converts it into steam for power generation.
請求項6の装置で高効率生成された一次湿り蒸気を変換して更なる二次過熱蒸気化を目指す次の装置は前項の大型化ボイラーの頂部外壁鉄板頂部に設けられた煙突基部装置の横向きに設けられた煙突分流口に連接された横向き煙管を本体と有意の位置で直角下向して設定された位置で止め 同時に蒸気圧力弁に接続された蒸気パイプを煙管に挿入して煙管中心位置を直角下降し煙管下端で止め揃え そのパイプ先端に燃焼排ガスの進行方向に煙管直径が数割拡大された煙管の周壁に達する鋭角の全周方位のラッパ型蒸気噴出装置が設けられると同時に外側の煙管にはそれを包み込む後方全周囲位置にハート型空気室を形成し先端が基煙管より2割増径管に集束されて2次転換蒸気吐出管となる膨張圧力緩衝推送機構としその機能は次の推移となる。
蒸気パイプ先端の噴出装置からラッパ型膜状に高圧力の高温蒸気が射放出されると拡大されたハート型空気室側壁にあたり膜状蒸気は集束して出口に放出される際に生じた負圧に引かれて煙管からの燃焼排ガスである高温のガス体が吸引されるベンチュリスクラバ機能が作動するので射出源の一次湿り蒸気は煙突から吸引された高温ガス体とハート型空気室内で混合融合されて変換二次過熱蒸気に進相し一段と高圧力の蒸気となる機構構造を有することを特徴とする請求項1記載の バイオマス等有機体を重複燃焼熱源化し蒸気変換して発電に至るシステム。
The next device aiming at further secondary superheated steam conversion by converting the primary moist steam generated with high efficiency by the device of claim 6 is a horizontal orientation of the chimney base device provided on the top outer wall iron plate of the large boiler of the previous item Stop the horizontal smoke pipe connected to the chimney diverter provided at the position where it is set at a right angle downward at a significant position with the main body.At the same time, insert the steam pipe connected to the steam pressure valve into the smoke pipe and place it at the center of the smoke pipe. At the same time, an acute-angled trumpet-type steam blower that reaches the wall of the smoke pipe whose diameter is expanded by several percent in the direction of combustion exhaust gas is installed at the tip of the pipe. The smoke pipe has a heart-shaped air chamber around the entire rear circumference that wraps it, and the tip is focused on a 20% diameter-enlarged pipe from the base smoke pipe to form an expansion pressure buffering transmission mechanism that becomes a secondary conversion steam discharge pipe. Transition.
When high-pressure high-temperature steam is sprayed and released in the form of a trumpet-type film from the jet device at the tip of the steam pipe, the negative pressure generated when the film-like steam converges and is discharged to the outlet when hitting the expanded heart-shaped air chamber side wall The venturi scrubber function that draws the high-temperature gas body, which is the combustion exhaust gas from the smoke pipe, is activated and the primary wet steam from the injection source is mixed and fused in the heart-shaped air chamber with the high-temperature gas body sucked from the chimney. 2. The system according to claim 1, which has a mechanism structure in which the converted secondary superheated steam is advanced to become steam at a higher pressure, and an organic substance such as biomass is converted into a heat source for overlapping combustion and converted into steam.
請求項7の装置で発生せしめた変換二次過熱蒸気である高温蒸気圧力を受ける蒸気タービン機構は 蒸気の受入れ部と吐出部が開口されたケーシングに内蔵され 両端を軸受で支持された回転軸と一体の回転羽根車は、外部からの強力な圧力蒸気による受動打撃推力を受けて回転し その蒸気圧力を回転力に転換する装置において その回転羽根車は、中空の回転軸と通気が共通する設定された直径で中空構造の回転フランジに 選定された振幅と範囲の正弦曲線を合成して成る合成正弦曲線を基調とした羽根形と 一次形状の有効な中を備えた羽根翼が複数 それぞれの基部となる円弧接点を 特定位置に選定した回転軸フランジの外周切線に重ね合わせて偏芯配置し取付けて成り 羽根翼両端を円板で囲うことにより羽根翼間はバケット状となり その羽根車複数組をその仕上げ円周上に羽根翼外周端を均等に配置する様に組み合わせて必要な幅員を確保して回転力の均質化を図り、更に回転軸フランジは中空の回転軸を通して外気の流通が共通しており 羽根翼取付け位置に近いフランジ壁には羽根翼と平行的斜めに搾孔され回転に伴う裏面に生ずる負圧に引かれて冷水が吸引される機構となっている。
前述の機構構成のもとで強圧蒸気が導入されると羽根車の羽根翼は 蒸気の導入受けから排出されるまでその受動点(G)を移動させながら蒸気圧力を受け止め トルクの大きい回転力に転換すると共に 併せてその流動慣性によって羽根翼裏面に生ずる負圧に引かれる冷水吸入が機能して、回転軸受けを冷やしながら 吐出して蒸気を冷却し容積を収縮するマフラー機能に進相する二重の機能構成を有する構造であることを特徴とする請求項1記載の バイオマス等有機体を重複燃焼熱源化し蒸気変換して発電に至るシステム。
A steam turbine mechanism that receives high-temperature steam pressure, which is converted secondary superheated steam generated by the apparatus of claim 7, is built in a casing in which a steam receiving part and a discharging part are opened, and a rotating shaft that is supported by bearings at both ends. The integrated impeller is a device that rotates by receiving a passive impact thrust from a strong pressure steam from the outside, and converts the steam pressure into a rotational force. A rotating flange with a specified diameter and a hollow structure. A plurality of blade blades with an effective center of a primary shape and a blade shape based on a composite sinusoid composed of a sine curve of the selected amplitude and range. The circular arc contacts are placed on the outer peripheral cutting line of the rotary shaft flange selected at a specific position, and are eccentrically arranged and attached. Multiple sets of root wheels are combined so that the outer peripheral edges of the blade blades are evenly arranged on the finished circumference to ensure the necessary width and homogenize the rotational force. The flange wall close to the blade blade attachment position is squeezed obliquely in parallel with the blade blade, and the cold water is sucked by the negative pressure generated on the back surface due to rotation.
When strong pressure steam is introduced under the above-mentioned mechanism configuration, the impeller blades receive the steam pressure while moving its passive point (G) until it is discharged from the steam introduction receiver, and the torque is increased. In addition to the conversion, the cold water suction drawn by the negative pressure generated on the back of the blade blades functions due to the flow inertia, and the phase advances to a muffler function that cools the rotating bearing and cools the steam to shrink the volume. 2. The system according to claim 1, which has a functional configuration as described above, wherein an organic substance such as biomass is converted into a heat source for overlapping combustion and converted into steam for power generation.
請求項1記載のシステムの最終目標である発電は 前項による蒸気タービンの回転機能が中速でトルクが大きいという特性にあわせた直径の大きい多極型発電装置による 発電機架台には発電機外枠が設置され 対する内枠は立ち上り台に設置された軸受に支えられた回転軸を備えた内枠が設けられる構造で 外枠には多数の固定子群が装着され相対する内枠には多数の回転子が固定されていて蒸気タービンの回転と連動して内枠が回転すると 外枠の固定子群には励起電流及び電圧を生じて電気エネルギーとなる構造を有することを特徴とする 請求項1記載のバイオマス等有機体を重複燃焼熱源化し蒸気変換して発電に至るシステム。

The power generation that is the final goal of the system according to claim 1 is a multi-pole power generator with a large diameter that matches the characteristics that the rotation function of the steam turbine according to the previous paragraph is medium speed and large torque. A frame is installed and the inner frame is a structure in which an inner frame with a rotating shaft supported by a bearing installed on a stand is provided.A large number of stator groups are mounted on the outer frame, and a large number of opposing inner frames are installed. The stator of the outer frame has a structure in which when the inner frame rotates in conjunction with the rotation of the steam turbine, the stator group of the outer frame generates an excitation current and voltage to become electric energy. A system in which an organism such as biomass described in 1 is converted into a heat source for overlapping combustion and converted into steam for power generation.

請求項 1で設定されたシステム目標にそって積重ねて来た機構は発明者の自然現象との出合いが端緒であり その意味を教導してくれた文献との融合の成果でシステム施行に当って現今の技術傾向と対比して留意したいことは(1)熱交換用の熱を求めて物体の燃焼と炭化等の関連手段を行う際には 現今の強い加圧燃焼方法を避けて 吸引負圧環境での燃焼手段等に転換することで大巾な熱源化・放射線化に近づき易く 併せて伝導熱交換でなく 放射線光波の直射性を生かす熱交換機能装置は格段の熱交換効率を向上し得ること(2)熱交換熱を求めて有機体を燃焼する際には燃焼発熱は原子状の炭素と酸素が反応してCoガスとなり発熱するという文献教示をふまえて有機体燃焼が純粋の分子状炭素体に至るまで多くの吸熱反応段階を如何に少くして経過せしめるかと併せて空気酸素も高温化して供給することに基本的配慮を要することをシステム施行効率向上の要とすることを特徴とする請求項1記載の バイオマス等有機体を重複燃焼熱源化し蒸気変換して発電に至るシステム。

The mechanism that has been accumulated according to the system goal set in claim 1 is the beginning of the encounter with the natural phenomenon of the inventor, and the result of the fusion with the literature that taught me the meaning of the mechanism, It should be noted in contrast to current technological trends: (1) When performing related measures such as object combustion and carbonization in order to obtain heat for heat exchange, avoid current strong pressurized combustion methods. By switching to combustion means in the environment, it is easy to approach a large heat source and radiation, and heat exchange function devices that take advantage of the direct radiation of radiation light waves, not conduction heat exchange, can greatly improve heat exchange efficiency (2) Combustion exotherm when combusting an organic substance to obtain heat exchange heat is a pure molecule based on the teaching of the literature that atomic carbon and oxygen react to generate Co 2 gas and generate heat. How many endothermic reaction steps to the carbon-like body 2. The system according to claim 1, wherein the improvement of the system implementation efficiency is that the basic consideration is required to supply air oxygen at a high temperature together with whether it is passed or not. A system that converts to power generation.

JP2013134505A 2013-06-27 2013-06-27 A system that converts organic matter such as biomass into a heat source for multiple combustion and converts it to steam for power generation Expired - Fee Related JP5650812B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013134505A JP5650812B1 (en) 2013-06-27 2013-06-27 A system that converts organic matter such as biomass into a heat source for multiple combustion and converts it to steam for power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013134505A JP5650812B1 (en) 2013-06-27 2013-06-27 A system that converts organic matter such as biomass into a heat source for multiple combustion and converts it to steam for power generation

Publications (2)

Publication Number Publication Date
JP5650812B1 JP5650812B1 (en) 2015-01-07
JP2015010487A true JP2015010487A (en) 2015-01-19

Family

ID=52303876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013134505A Expired - Fee Related JP5650812B1 (en) 2013-06-27 2013-06-27 A system that converts organic matter such as biomass into a heat source for multiple combustion and converts it to steam for power generation

Country Status (1)

Country Link
JP (1) JP5650812B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020183843A (en) * 2019-05-09 2020-11-12 株式会社環健スーパーテクノ Incineration device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106352341B (en) * 2016-08-26 2018-08-28 合肥合意环保科技工程有限公司 A kind of the combustion power generation method and combustion apparatus of waste
CN106287748B (en) * 2016-08-26 2018-08-28 合肥合意环保科技工程有限公司 A kind of dangerous waste incinerator complexes
CN113881461B (en) * 2021-09-28 2023-07-28 兖矿新疆煤化工有限公司 Method for quickly replacing process burner of gasifier
CN117346146B (en) * 2023-12-04 2024-02-13 山西三水能源股份有限公司 Biomass auxiliary type garbage pyrolysis equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020183843A (en) * 2019-05-09 2020-11-12 株式会社環健スーパーテクノ Incineration device
JP7208607B2 (en) 2019-05-09 2023-01-19 株式会社環健スーパーテクノ Incinerator

Also Published As

Publication number Publication date
JP5650812B1 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5650812B1 (en) A system that converts organic matter such as biomass into a heat source for multiple combustion and converts it to steam for power generation
US6073445A (en) Methods for producing hydro-electric power
CN102000691B (en) Two-stage plasma gasifying, melting and cracking method and device of waste containing organic matters
CN201152197Y (en) Gas turbine power generation system without carbon dioxide emission
JP2006002746A (en) Biomass dry distillation gas combustion/heat exchanging generation apparatus
JP2012007600A (en) Distributed thermal-electric combined supply facility, and distributed biomass thermal-electric combined supply facility
CN203717127U (en) Gas turbine generation system
CN102364248B (en) Novel low temperature plasma direct-current pulverized coal ignition combustor
CN105571337A (en) Energy-saving industrial furnace adopting biomass gasification combustion power generation system
CN205710623U (en) A kind of system realizing rubbish charcoal resource
Kuznetsov et al. The effect of the distance between wood and coal particles on the characteristics of their joint ignition under conditions of high-temperature radiation-convective heating
CN202868717U (en) Steam combustion-supporting boiler
CN106940011A (en) The double constraint flame magnesium catalysis fuel oils of high-temperature plasma gas magnetic, coal dust, heap formula heat engine
CN101705844A (en) Power generating system of coal-gas turbine without carbon emission and method thereof
JP2022174702A (en) Device and system for turning organic matter such as petroleum or coal, solid biomass, and industrial waste into heat source for multiple combustion and converting the same into steam
CN111351028B (en) Cyclone airflow field combustion chamber
CN103670712B (en) A kind of gas turbine generating system
CN203330102U (en) Household garbage flashing mineralizing processor box
CN203940432U (en) A kind of hot photovoltaic power generation apparatus of micro-combustion with backheating function
CN105889906A (en) Thermal-pulverization high-efficiency combustion device and method for high-volatile-component carbon-containing fuel
JP2020063897A (en) Device and system for using organic substance such as petroleum, coal, solid biomass and industrial waste for duplication combustion heat source to convert it into steam and generate power
CN205710624U (en) A kind of system realizing rubbish charcoal resource and improving pyrolysis gas calorific value
JP6041451B2 (en) Gasification method and gasification apparatus for solid organic raw material
CN206397598U (en) A kind of complementary stored-energy thermal power generation device of biomass energy gasification
JP2008281321A (en) Plant gasifying smokeless combustion electronic furnace

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

R150 Certificate of patent or registration of utility model

Ref document number: 5650812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R150 Certificate of patent or registration of utility model

Ref document number: 5650812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees