JP2015010233A - Aluminum conductor for electrification - Google Patents

Aluminum conductor for electrification Download PDF

Info

Publication number
JP2015010233A
JP2015010233A JP2013133657A JP2013133657A JP2015010233A JP 2015010233 A JP2015010233 A JP 2015010233A JP 2013133657 A JP2013133657 A JP 2013133657A JP 2013133657 A JP2013133657 A JP 2013133657A JP 2015010233 A JP2015010233 A JP 2015010233A
Authority
JP
Japan
Prior art keywords
plating
aluminum conductor
electroless
aluminum
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013133657A
Other languages
Japanese (ja)
Other versions
JP6107468B2 (en
Inventor
圭輔 小倉
Keisuke Ogura
圭輔 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2013133657A priority Critical patent/JP6107468B2/en
Publication of JP2015010233A publication Critical patent/JP2015010233A/en
Application granted granted Critical
Publication of JP6107468B2 publication Critical patent/JP6107468B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high-reliability aluminum conductor for electrification that prevents an aluminum conductor from corroding owing to a defect such as a pinhole and is free of peeling of a plating layer while securing high conductivity of an electrification contact part.SOLUTION: An electroless Ni-P plating layer 2 is formed on a base material surface of an aluminum conductor 1 and an electrolytic Ni plating layer 3 is laminated further thereupon. Consequently, defect parts 2a, 3a such as pits, pinholes, etc., developed in the respective plating layers 2, 3 are made discontinuous so as to prevent the aluminum conductor 1 from being in contact with the atmosphere. Consequently, base material corrosion of the aluminum conductor 1 can be effectively suppressed through inexpensive Ni plating. Here, film thicknesses of the respective plating layers 2, 3 are set to 2 to 7 μm and then residual stress is suppressed low so as to effectively prevent the plating layers from peeling. Further, an outermost surface is subjected to electrolytic Ni plating of relatively low hardness (approximately Hv250) and adhesion of an electrification contact part (crimping, bolt fastening) to a connection opposite conductor is thereby enhanced so as to secure excellent conductivity.

Description

本発明は、配電盤などの盤内に配線するバー導体、回路遮断器(ブレーカ),真空遮断器(VCB)などの開閉機器の主回路導体に適用する通電用アルミ導体に関し、詳しくはアルミ導体に施した防食メッキの構造に係わる。   The present invention relates to an aluminum conductor for energization applied to a main circuit conductor of a switching device such as a bar conductor, a circuit breaker (breaker), a vacuum circuit breaker (VCB), etc. wired in a panel such as a switchboard. It relates to the structure of anti-corrosion plating.

頭記した通電用アルミ導体は、ボルト締結,圧着端子などを介して接続相手の導体に接続されることから、その通電接触部に対しては、高い通電性とともに通電に伴うジュール発熱による温度上昇値に制約が求められるほか、導体自身に高い耐腐食性が要求される。   Since the energizing aluminum conductor mentioned above is connected to the conductor of the other end of the connection via bolt fastening, crimp terminals, etc., the temperature rise due to Joule heating accompanying energization is high for the energized contact part. In addition to limiting the value, the conductor itself must have high corrosion resistance.

ところで、アルミニウムは大気雰囲気中で表面に酸化皮膜(非導電性)が形成されるので、このままでは接続部の接触抵抗が増大してしまう。そのほか、アルミニウムは腐食電位が卑金属であるため、アルミ導体に接続相手側の銅導体などを重ね合わせて接続する場合には、いわゆる接触腐食(電食)のためにアルミ導体の腐食が進行するおそれがある。   By the way, since an oxide film (non-conductive) is formed on the surface of aluminum in an air atmosphere, the contact resistance of the connection portion increases as it is. In addition, since aluminum has a corrosion potential that is a base metal, when the copper conductor on the other side of the connection is overlapped with the aluminum conductor, the corrosion of the aluminum conductor may progress due to so-called contact corrosion (electrolytic corrosion). There is.

そこで、アルミ導体の防食対策として通常はアルミ導体(母材)の表面にメッキを施す表面処理が行われているが、この場合にはメッキ種によって導体接続部の温度上昇の制約が異なる。また、通電に伴う温度上昇はメッキ皮膜の導電性、接続相手材との実効接触面積に大きく影響することから、そのメッキ皮膜は高い導電性のほかに、通電接触部の密着性を高めるために柔らかい低硬度の材料が望まれる。   Therefore, as a countermeasure against corrosion of the aluminum conductor, surface treatment for plating the surface of the aluminum conductor (base material) is usually performed. In this case, the restriction on the temperature rise of the conductor connection portion differs depending on the plating type. In addition, since the temperature rise due to energization greatly affects the conductivity of the plating film and the effective contact area with the mating material, the plating film is not only highly conductive, but also increases the adhesion of the energized contact area. A soft, low hardness material is desired.

一方、防食メッキの種類としては、Sn,Ag,Niメッキなどが考えられるが、Snは温度上昇の制約がAg,Niよりも10〜15K程度低いために、その用途は通電電流密度の低い導体に限定される。また、AgメッキはNiと同等の温度上昇でも使用可能であるが、高価であるためコスト面で制約がある。   On the other hand, Sn, Ag, Ni plating, etc. can be considered as the type of anticorrosion plating, but since Sn has a temperature rise restriction of about 10-15K lower than Ag, Ni, its application is a conductor with low current density. It is limited to. Moreover, although Ag plating can be used even at a temperature increase equivalent to Ni, it is expensive and has a limitation in terms of cost.

そこで、アルミ導体の防食メッキにはNiメッキの選択が有望であるが、Niメッキはピット,ピンホール(母材に達する微細孔)などの欠陥の発現が避けられない。
また、Niメッキには無電解Niメッキ(例えば、無電解Ni-Pメッキ),電解Niメッキがあり、このうち無電解Ni-Pメッキは電源が不要で、均一なメッキ膜厚が得られるほか、電解Niメッキに比べて防食性が優れているなど、通電用アルミ導体のメッキとして優れた利点があるものの、無電解Ni-Pメッキには重金属の添加剤(メッキ液の安定剤)が含まれるため、それらがメッキ膜に共析される際に核となって不連続点を形成する、そのほかメッキが成長している部分での水素発生を伴いNiを析出させているため、メッキ膜の成長とともにその皮膜内部にピンホールなどの欠陥が発現する。
Therefore, Ni plating is promising for anticorrosion plating of aluminum conductors, but Ni plating cannot avoid the appearance of defects such as pits and pinholes (fine holes reaching the base material).
Ni plating includes electroless Ni plating (for example, electroless Ni-P plating) and electrolytic Ni plating. Of these, electroless Ni-P plating does not require a power source and provides a uniform plating film thickness. Although there are excellent advantages as plating of current-carrying aluminum conductors, such as superior corrosion resistance compared to electrolytic Ni plating, the electroless Ni-P plating contains heavy metal additives (plating solution stabilizer) Therefore, when they are co-deposited on the plating film, they form nuclei and form discontinuous points. In addition, Ni is precipitated with the generation of hydrogen in the portion where the plating is growing. As the film grows, defects such as pinholes appear inside the film.

そして、このピンホールに使用環境から塩素イオンなどが侵入すると、アルミ導体の素地まで達した所で孔食が発生し、またメッキ膜中に存在するNi合金との関係から局部電池作用がより一層増幅され激しく孔食が進行し、この腐食生成物がメッキ膜を押し上げて皮膜を剥離させるおそれがあるなど、単独では十分な耐食性を確保できない。   When chlorine ions enter the pinhole from the usage environment, pitting corrosion occurs when it reaches the base of the aluminum conductor, and the local battery action is further enhanced due to the Ni alloy existing in the plating film. Amplification causes intense pitting corrosion, and the corrosion product may push up the plating film and cause the film to peel off, so that sufficient corrosion resistance cannot be secured alone.

なお、無電解Ni-Pメッキは、メッキ膜厚を厚く付けることで防食性が高くなり、またピット,ピンホールなどの欠陥発生も減少することが知られているものの、メッキ膜厚を厚くすると皮膜の残留応力(内部応力)が大きくなり、これが原因でアルミ導体の接続部に機械的な締め付け力を加えた際にメッキ皮膜が剥離する可能性が大きくなる問題がある。   It is known that electroless Ni-P plating increases corrosion resistance by increasing the plating film thickness, and also reduces the occurrence of defects such as pits and pinholes. There is a problem that the residual stress (internal stress) of the film increases, and this causes a possibility that the plating film peels off when a mechanical tightening force is applied to the connection portion of the aluminum conductor.

一方、アルミ素材に施したNiメッキの皮膜に発生するピット,ピンホールの欠陥対策として、Niメッキ皮膜の上にフッ素樹脂の防護膜を施してピット,ピンホールを封止すことにより、ピット、ピンホールを大気雰囲気から遮断するようにした防食構造(例えば、特許文献1参照)が知られている。   On the other hand, as a countermeasure against defects in pits and pinholes generated in Ni plating film applied to aluminum material, a protective film of fluororesin is applied on Ni plating film to seal the pits and pinholes. An anticorrosion structure (see, for example, Patent Document 1) in which a pinhole is shielded from the air atmosphere is known.

特開平8−281868号公報JP-A-8-281868

ところで、前述の特許文献1に開示されている防食構造では、フッ素樹脂膜(電気的に絶縁性)が導体の通電接触部の導電性を阻害することになるために通電用アルミ導体には適用できない。   By the way, in the anticorrosion structure disclosed in the above-mentioned patent document 1, since the fluororesin film (electrically insulating) inhibits the conductivity of the current-carrying contact portion of the conductor, it is applied to the current-carrying aluminum conductor. Can not.

そこで、通電用アルミ導体に施したメッキのピンホール欠陥対策として、前記の無電解Ni-Pメッキを下地メッキとして、その上にさらに無電解Ni-Pメッキを施して下地メッキの皮膜に生じたピンホールを上付けしたメッキ層で封止する方法(多重メッキ)も考えられる。しかしながら、先述のように無電解Ni-Pメッキのピンホールはランダムに発生することから、下地メッキ層のピンホールとその上に施したメッキ層に発現したピンホールとが互いに連なってアルミ導体の素地に達するピンホールが形成され、そのためにアルミ導体の素地が二層のメッキ皮膜に跨がって連なるピンホールを通じて大気側に曝されてしまうおそがある。   Therefore, as a countermeasure for the pinhole defect of the plating applied to the energizing aluminum conductor, the electroless Ni-P plating was used as a base plating, and the electroless Ni-P plating was further applied thereon, resulting in a film of the base plating. A method of sealing with a plating layer with pinholes (multiple plating) is also conceivable. However, since the electroless Ni-P plating pinholes are randomly generated as described above, the pinholes in the base plating layer and the pinholes developed in the plating layer formed thereon are connected to each other to form the aluminum conductor. A pinhole reaching the substrate is formed, and therefore the aluminum conductor substrate may be exposed to the atmosphere through a pinhole that extends across the two layers of the plating film.

そこで、本発明の目的は、防食メッキを施したアルミ導体の通電接触部に高い導電性を確保しつつ、そのメッキ皮膜に発現したピット、ピンホールなどの欠陥に起因するアルミ母材の腐食を効果的に防止し、さらに導体の接続に伴う機械的加圧力でメッキ皮膜が剥離するおそれがない高信頼性の通電用アルミ導体を提供することにある。   Therefore, the object of the present invention is to prevent corrosion of the aluminum base material due to defects such as pits and pinholes that appear in the plating film while ensuring high conductivity in the current-carrying contact portion of the aluminum conductor subjected to anticorrosion plating. Another object of the present invention is to provide a highly reliable energizing aluminum conductor that is effectively prevented and that does not cause the plating film to peel off due to the mechanical pressure accompanying the connection of the conductor.

上記目的を達成するために、本発明の通電用アルミ導体においては、アルミ導体に下地メッキとして無電解Ni-Pメッキを施し、さらにその上に電解Niメッキを施して防食表面処理したメッキ構造とし(請求項1)、具体的には次記態様のように構成するものとする。
(1)前記アルミ導体において、無電解Ni-Pメッキ、および電解Niメッキの各膜厚を2μm以上,7μm以下とする(請求項2)。
(2)前記アルミ導体の素材は、純アルミニウム、アルミニウムを主成分とした合金、もしくはアルミニウム複合材である(請求項3)。
(3)前記の通電用アルミ導体において、無電解Ni-Pメッキの組成はP濃度が1〜14wt%であり、そのメッキ皮膜の結晶構造がアモルファス、もしくは平均結晶粒径が0.1μm以下の微結晶質である(請求項4)。
In order to achieve the above object, the energizing aluminum conductor of the present invention has a plating structure in which an electroless Ni-P plating is applied to the aluminum conductor as a base plating, and further, an electrolytic Ni plating is applied thereon to provide an anticorrosive surface treatment. (Claim 1) Specifically, it shall be comprised like the following description aspect.
(1) In the aluminum conductor, each film thickness of electroless Ni—P plating and electrolytic Ni plating is set to 2 μm or more and 7 μm or less.
(2) The material of the aluminum conductor is pure aluminum, an alloy mainly composed of aluminum, or an aluminum composite material.
(3) In the energizing aluminum conductor, the electroless Ni—P plating composition has a P concentration of 1 to 14 wt%, and the plating film has an amorphous crystal structure or an average crystal grain size of 0.1 μm or less. It is microcrystalline (claim 4).

上記構成になる通電用アルミ導体によれば、ピット、ピンホールなどの欠陥に起因するアルミ導体の腐食、およびメッキ層の剥離を防止することができる。   According to the energizing aluminum conductor configured as described above, corrosion of the aluminum conductor and peeling of the plating layer due to defects such as pits and pinholes can be prevented.

本発明の実施例による通電用アルミ導体の局部的な模式断面構造図である。It is a local schematic cross-section figure of the aluminum conductor for electricity supply by the Example of this invention. 図1におけるアルミ導体に施す無電解Ni-Pメッキ、および電解Niメッキのメッキ処理工程を表わす図であって、(a)はアルミ導体に無電解Ni-Pメッキを施した状態図、(b)は無電解Ni-Pメッキ層の上に施す電解Niメッキの初期段階におけるメッキ膜成長の状態図、(c)は電解Niメッキ処理の終了段階の状態図である。FIG. 2 is a diagram showing an electroless Ni—P plating applied to the aluminum conductor in FIG. 1 and a plating treatment process of electrolytic Ni plating, wherein (a) is a state diagram in which the electroless Ni—P plating is applied to the aluminum conductor; ) Is a state diagram of the plating film growth in the initial stage of electrolytic Ni plating applied on the electroless Ni-P plating layer, and (c) is a state diagram in the final stage of the electrolytic Ni plating process.

以下、本発明の実施の形態を図1,図2に示す実施例に基づいて説明する。
アルミ導体に対する防食表面処理として本発明では、第1の処理工程でアルミ導体1の表面に無電解Ni-Pメッキを施して無電解Ni-Pメッキ層2を成膜し、続く第2の処理工程で無電解Ni-Pメッキ層2の上に電解Niメッキを施して電解Niメッキ層3を成層するものとする。なお、アルミ導体1は、純アルミニウム、アルミニウムを主成分とした合金、もしくはアルミニウム複合材を用いることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on the examples shown in FIGS.
In the present invention, as the anticorrosion surface treatment for the aluminum conductor, in the first treatment step, the surface of the aluminum conductor 1 is subjected to electroless Ni-P plating to form the electroless Ni-P plating layer 2, and then the second treatment. In the process, electrolytic Ni plating is applied on the electroless Ni-P plating layer 2 to form an electrolytic Ni plating layer 3. The aluminum conductor 1 can be made of pure aluminum, an alloy containing aluminum as a main component, or an aluminum composite material.

このメッキ処理により、アルミ導体1に無電解Ni-Pメッキを施した状態(図2(a)参照)では、メッキ層2にピンホールやピットなどの欠陥部2aが発現しているが、続く第2の処理工程で無電解Ni-Pメッキ層2の上に電解Niメッキを施すと、その電解メッキの初期段階(図2(b)参照)では、前記欠陥部2aのエッジ状周縁(矢印P部)に電界が集中してこの部分に電流が集中的に流れるようになる。その結果、無電解Ni-Pメッキ層2の欠陥部2aの周域にNiが優先的に析出し、該欠陥部2aを埋めるように電解Niメッキ層3が成長していき、電解Niメッキ層3のメッキ膜厚が所定の厚さに成長した状態(図2(c)参照)では、無電解Ni-Pメッキ層2の欠陥部2aの開口面が電解Niメッキ層3によって確実に封止される。これにより、図1の模式断面図で表わすようにアルミ導体1の母材表面が各メッキ層2,3に生じた欠陥部2a,3aを通じて直接大気に曝されて腐食するおそれがなくなる。なお、3aは電解Niメッキの成長過程でそのメッキ層3に発現したピンホールなどの欠陥部である。   By this plating process, in the state where the electroless Ni-P plating is applied to the aluminum conductor 1 (see FIG. 2A), defective portions 2a such as pinholes and pits appear in the plated layer 2, but continue. When electrolytic Ni plating is performed on the electroless Ni-P plating layer 2 in the second processing step, the edge-shaped peripheral edge (arrow) of the defect portion 2a is shown in the initial stage of the electrolytic plating (see FIG. 2B). The electric field concentrates on the P portion), and the current flows intensively in this portion. As a result, Ni preferentially precipitates around the defect portion 2a of the electroless Ni-P plating layer 2, and the electrolytic Ni plating layer 3 grows so as to fill the defect portion 2a. 3 is grown to a predetermined thickness (see FIG. 2C), the opening surface of the defective portion 2a of the electroless Ni-P plating layer 2 is reliably sealed by the electrolytic Ni plating layer 3. Is done. As a result, as shown in the schematic cross-sectional view of FIG. 1, there is no possibility that the surface of the base material of the aluminum conductor 1 is directly exposed to the atmosphere through the defective portions 2 a and 3 a generated in the plating layers 2 and 3 and corroded. Note that reference numeral 3a denotes a defect portion such as a pinhole developed in the plating layer 3 during the growth process of electrolytic Ni plating.

一方、電解Niメッキを含めて、通常メッキは下地の結晶(表面エネルギー)に従い結晶核を形成し成長する。よってメッキ膜の成長過程で水素発生、結晶成長やそれに伴う残留応力など、ピンホール、ピットなどの欠陥発生に関わる因子は下地の影響を大きく受けることになる。   On the other hand, including electrolytic Ni plating, normal plating forms and grows crystal nuclei according to the underlying crystal (surface energy). Therefore, factors related to the generation of defects such as pinholes and pits, such as hydrogen generation, crystal growth and residual stress associated therewith during the growth process of the plating film, are greatly affected by the substrate.

その一方で、前記した下地メッキの無電解Ni-Pメッキ層2はアモルファス状、もしくは非常に細かい結晶粒にて形成されるため、この無電解Ni-Pメッキ層2の上に施す電解Niメッキは、そのメッキ層3の成長過程で下地の無電解Ni-Pメッキ層2の影響を受け難くなる。そのために、電解Niメッキ層3に発現する欠陥部3aは、下地の無電解Ni-Pメッキ層2に形成され欠陥部2aとは関係なしに不規則な地点に発生するようになり、その結果としてアルミ導体1に施した内外二層からなるメッキ層2,3の全体では、図2(c)で示すように各Niメッキ層2,3の欠陥部2aと3aが断面方向で不連続となり、これにより防食効果の高いメッキ皮膜を実現できる。   On the other hand, since the electroless Ni-P plating layer 2 of the above-mentioned base plating is formed in an amorphous state or very fine crystal grains, the electrolytic Ni plating applied on the electroless Ni-P plating layer 2 is performed. Is less affected by the underlying electroless Ni—P plating layer 2 during the growth of the plating layer 3. For this reason, the defect 3a appearing in the electrolytic Ni plating layer 3 is formed in the underlying electroless Ni-P plating layer 2 and is generated at irregular points irrespective of the defect 2a. As shown in FIG. 2C, the defect portions 2a and 3a of the Ni plating layers 2 and 3 are discontinuous in the cross-sectional direction in the entire plating layers 2 and 3 formed on the aluminum conductor 1 as the inner and outer layers. As a result, a plating film having a high anticorrosion effect can be realized.

また、アルミ導体1に施した二層の積層メッキ層について、最表面のメッキ層を無電解Ni-Pメッキ(析出硬度:Hv500)に比べ硬度が低い電解Niメッキ層3(硬度:Hv250程度)にすることにより、この通電用アルミ導体と接続相手の導体との通電接続部(圧着)における導体間の密着性を高めて高い通電性を確保することができる。   Further, regarding the two-layered plating layer applied to the aluminum conductor 1, the outermost plating layer is an electrolytic Ni plating layer 3 (hardness: about Hv250) whose hardness is lower than that of electroless Ni-P plating (precipitation hardness: Hv500). By doing so, it is possible to increase the adhesion between the conductors in the current-carrying connection portion (crimping) between the current-carrying aluminum conductor and the conductor to be connected, thereby ensuring high electrical conductivity.

さらに、無電解Ni-PメッキのP濃度を1〜14wt%の範囲として、そのメッキ層2の皮膜結晶構造がアモルファス、もしくは平均結晶粒径が0.1μm以下の微結晶質となるようにし、かつ無電解Ni-Pメッキ層2,電解Niメッキ層3の各膜厚を2μm以上,7μm以下に設定することにより、メッキ処理に伴う過大な残留応力(内部応力)の発生、および在留応力に起因するメッキ皮膜の剥離を効果的に抑えて高い信頼性を確保できる。   Furthermore, the P concentration of the electroless Ni—P plating is set in the range of 1 to 14 wt% so that the film crystal structure of the plating layer 2 is amorphous or the microcrystalline material has an average crystal grain size of 0.1 μm or less. In addition, by setting the film thicknesses of the electroless Ni-P plating layer 2 and the electrolytic Ni plating layer 3 to 2 μm or more and 7 μm or less, excessive residual stress (internal stress) associated with the plating process is generated and the residual stress is reduced. High reliability can be secured by effectively suppressing peeling of the plating film.

上述のように、本実施形態による通電用アルミ導体によれば、アルミ導体に下地メッキとして施した無電解Ni-Pメッキの上に電解Niメッキを施すことにより、電解Niメッキの工程では無電解Ni-Pメッキ皮膜に生じているピット,ピンホールなどの欠陥部に電界,電流が集中してNiが析出し始め、これにより下地メッキの欠陥部が優先的に電解Niメッキ層で確実に封止されるようになる。なお、後から施した電解Niメッキでもメッキ膜の成長に伴いピンホールなどの欠陥が発生するが、この欠陥は下地の無電解Ni-Pメッキの欠陥から外れた領域で不規則に発現するので、二層からなるNiメッキ層全体としてはその断面方向に連続して連なる欠陥の発生を抑えてアルミ導体の防食性を高めることができる。   As described above, according to the aluminum conductor for energization according to the present embodiment, electroless Ni plating is performed on the electroless Ni-P plating applied as the base plating to the aluminum conductor, so that the electroless Ni plating process is electroless. Ni and P start to deposit due to concentration of the electric field and current at the pits, pinholes and other defects occurring in the Ni-P plating film, thereby preferentially sealing the defects in the underlying plating with the electrolytic Ni plating layer. It will be stopped. In addition, defects such as pinholes are generated with the growth of the plating film even in the electrolytic Ni plating performed later, but this defect appears irregularly in a region outside the defects of the underlying electroless Ni-P plating. As a whole, the Ni plating layer composed of two layers can suppress the occurrence of continuous defects in the cross-sectional direction and improve the corrosion resistance of the aluminum conductor.

また、導体の最表面に施した電解Niメッキの硬度(Hv250程度)は無電解Ni-Pメッキの析出硬度(Hv500)に比べて柔らかく、これによりアルミ導体の通電接触部(圧着,ボルト締め)における接続相手側の導体との間の密着性を増して高い通電性を確保できる。   In addition, the hardness of the electrolytic Ni plating applied to the outermost surface of the conductor (about Hv250) is softer than the precipitation hardness (Hv500) of the electroless Ni-P plating. It is possible to increase the adhesion between the conductor on the connection partner side and to ensure high electrical conductivity.

さらに、無電解Ni-PメッキのP濃度を1〜14wt%の範囲として、そのメッキ皮膜の結晶構造がアモルファス、もしくは平均結晶粒径が0.1μm以下の微結晶質となるようにし、かつ無電解Ni-Pメッキ,電解Niメッキの各膜厚を2μm以上,7μm以下に設定することにより、量産時のバラツキに対して、過大な残留応力の発生、および残留応力に起因するメッキ皮膜の剥離を抑止して信頼性の高い通電用アルミ導体を提供できる。   Further, the P concentration of the electroless Ni—P plating is set in the range of 1 to 14 wt% so that the crystal structure of the plating film is amorphous or the microcrystalline material has an average crystal grain size of 0.1 μm or less. By setting the film thickness of electrolytic Ni-P plating and electrolytic Ni plating to 2 μm or more and 7 μm or less, excessive residual stress is generated and the plating film is peeled off due to residual stress. And can provide a highly reliable aluminum conductor for energization.

1 アルミ導体
2 無電解Ni-Pメッキ層
2a 欠陥部
3 電解Niメッキ層
3a 欠陥部
DESCRIPTION OF SYMBOLS 1 Aluminum conductor 2 Electroless Ni-P plating layer 2a Defect part 3 Electrolytic Ni plating layer 3a Defect part

Claims (4)

アルミ導体に下地メッキとして無電解Ni-Pメッキを施し、さらにその上に電解Niメッキを施してなることを特徴とする通電用アルミ導体。   An aluminum conductor for energization, wherein electroless Ni-P plating is applied to an aluminum conductor as a base plating, and further electrolytic Ni plating is applied thereon. 請求項1に記載の通電用アルミ導体において、無電解Ni-Pメッキ、および電解Niメッキの各膜厚が2μm以上,7μm以下であることを特徴とする通電用アルミ導体。   2. The energizing aluminum conductor according to claim 1, wherein each film thickness of electroless Ni-P plating and electrolytic Ni plating is 2 μm or more and 7 μm or less. 請求項1または2に記載の通電用アルミ導体において、アルミ導体は、純アルミニウム、アルミニウムを主成分とした合金、もしくはアルミニウム複合材であることを特徴とする通電用アルミ導体。   3. The energizing aluminum conductor according to claim 1, wherein the aluminum conductor is pure aluminum, an alloy containing aluminum as a main component, or an aluminum composite material. 請求項1ないし3に記載の通電用アルミ導体において、無電解Ni-Pメッキの組成はP濃度が1〜14wt%であり、そのメッキ皮膜の結晶構造がアモルファス、もしくは平均結晶粒径が0.1μm以下の微結晶質であることを特徴とする通電用アルミ導体。   4. The current-carrying aluminum conductor according to claim 1, wherein the composition of electroless Ni-P plating has a P concentration of 1 to 14 wt%, and the crystal structure of the plating film is amorphous or the average crystal grain size is 0.1. A current-carrying aluminum conductor characterized by being microcrystalline of 1 μm or less.
JP2013133657A 2013-06-26 2013-06-26 Aluminum conductor for energization Expired - Fee Related JP6107468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013133657A JP6107468B2 (en) 2013-06-26 2013-06-26 Aluminum conductor for energization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013133657A JP6107468B2 (en) 2013-06-26 2013-06-26 Aluminum conductor for energization

Publications (2)

Publication Number Publication Date
JP2015010233A true JP2015010233A (en) 2015-01-19
JP6107468B2 JP6107468B2 (en) 2017-04-05

Family

ID=52303668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013133657A Expired - Fee Related JP6107468B2 (en) 2013-06-26 2013-06-26 Aluminum conductor for energization

Country Status (1)

Country Link
JP (1) JP6107468B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484835A (en) * 1977-12-19 1979-07-06 Toshiba Corp Surface treatment of al and al alloy for soldering
JPH06316773A (en) * 1993-04-28 1994-11-15 Pentel Kk Production of noble metal plating
JPH10237674A (en) * 1997-02-20 1998-09-08 Totoku Electric Co Ltd Plated aluminum electric wire, insulating plated aluminum electric wire and their production
JP2003147548A (en) * 2001-11-13 2003-05-21 Kobe Steel Ltd Reel made of aluminum or aluminum alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484835A (en) * 1977-12-19 1979-07-06 Toshiba Corp Surface treatment of al and al alloy for soldering
JPH06316773A (en) * 1993-04-28 1994-11-15 Pentel Kk Production of noble metal plating
JPH10237674A (en) * 1997-02-20 1998-09-08 Totoku Electric Co Ltd Plated aluminum electric wire, insulating plated aluminum electric wire and their production
JP2003147548A (en) * 2001-11-13 2003-05-21 Kobe Steel Ltd Reel made of aluminum or aluminum alloy

Also Published As

Publication number Publication date
JP6107468B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP4706690B2 (en) Circuit board and manufacturing method thereof
JP6616058B2 (en) Terminal and aluminum wire connection structure of the terminal
TWI362046B (en) Flat cable
JP2004068026A (en) Conducting material for connecting parts and manufacturing method therefor
JP6279170B1 (en) Surface treatment material, method for producing the same, and component formed using the surface treatment material
TW200945376A (en) Plated flat conductor and flexible flat cable therewith
WO2018124114A1 (en) Surface treatment material and article fabricated using same
JP2013227630A (en) Plated terminal for connector
JP6107468B2 (en) Aluminum conductor for energization
JP4090483B2 (en) Conductive connection parts
JP2014040649A (en) Plated terminal for connector and method of manufacturing plated terminal for connector
WO2021065866A1 (en) Terminal material for connectors
WO2018164127A1 (en) Corrosion-resistant terminal material, corrosion-resistant terminal, and wire end structure
WO2018124115A1 (en) Surface treatment material and article fabricated using same
JP2004006584A (en) Method of manufacturing flexible printed wiring board and flexible printed wiring board obtained with the same method
JP2007177311A (en) Plated coating, method for forming the same, and electronic component
JP6587848B2 (en) Fuel cell energization member, fuel cell, fuel cell stack, and fuel cell energization member manufacturing method
JP2019011504A (en) Anticorrosion terminal material, manufacturing method thereof, anticorrosion terminal and wire terminal part structure
JP6450300B2 (en) Laminated plating coating material containing ruthenium and method for producing the same
JP2007002341A (en) Electroconductive material plate for forming connecting parts and manufacturing method therefor
JP2007535092A (en) Tungsten contact strip with tin corrosion resistant layer
JP2006161127A (en) Electronic material suitable for insertion type connection terminal and method for producing the same
US20140308538A1 (en) Surface treated aluminum foil for electronic circuits
JP5494064B2 (en) High-frequency conducting conductor
JP2008004959A (en) Printed wiring board and circuit device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20160516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R150 Certificate of patent or registration of utility model

Ref document number: 6107468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees