JP2015006672A - Vacuum-evaporation-based voc recovery apparatus and method - Google Patents

Vacuum-evaporation-based voc recovery apparatus and method Download PDF

Info

Publication number
JP2015006672A
JP2015006672A JP2014183102A JP2014183102A JP2015006672A JP 2015006672 A JP2015006672 A JP 2015006672A JP 2014183102 A JP2014183102 A JP 2014183102A JP 2014183102 A JP2014183102 A JP 2014183102A JP 2015006672 A JP2015006672 A JP 2015006672A
Authority
JP
Japan
Prior art keywords
removal liquid
voc
voc removal
liquid
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014183102A
Other languages
Japanese (ja)
Other versions
JP5925853B2 (en
Inventor
藤岡 完
Kan Fujioka
完 藤岡
田中 茂
Shigeru Tanaka
茂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anest Iwata Corp
Keio University
Original Assignee
Anest Iwata Corp
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anest Iwata Corp, Keio University filed Critical Anest Iwata Corp
Priority to JP2014183102A priority Critical patent/JP5925853B2/en
Publication of JP2015006672A publication Critical patent/JP2015006672A/en
Application granted granted Critical
Publication of JP5925853B2 publication Critical patent/JP5925853B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a VOC (volatile organic compound) removal solution regeneration and recovery apparatus in which no heater is used and no gas-permeable membrane is required and therefore volatile substances and the like are not adversely affected when passing through the gas-permeable membrane, and also to provide a VOC removal solution regeneration and recovery method therefor.SOLUTION: The VOC removal solution regeneration and recovery apparatus includes: a liquid feeding pump and a nozzle that spray the VOC removal solution; a vacuum vessel that has the nozzle disposed inside thereof; a vacuum pump that reduces pressure of an interior of the vacuum vessel and performs vacuum-evaporation of the VOC included in the VOC removal solution; a gas introducing mechanism that introduces evaporation enhancing gas into the vacuum vessel; and a liquid discharge mechanism that discharges the processed VOC removal solution from the vacuum vessel. The apparatus further comprises a compressor that compresses air from the outside and generates compressed air having thermal energy and pressure energy. A heat exchanger is provided at a passage from the liquid feeding pump to the nozzle, heat exchange between the VOC removal solution and the compressed air is performed by the heat exchanger, and the thermal energy is supplied to the VOC removal solution. The liquid feeding pump is an air-driven pump that is driven by air pressure as a power source, and the pressure energy of the compressed air is used as the power source of the pump.

Description

本発明は、VOC(Volatile Organic Compounds:揮発性有機化合物)を除去するために用いられたVOC除去液(以下、除去液と称する)から、そこに含まれるVOCを除去し、除去液を回収するためのVOC除去液再生・回収装置及び再生・回収方法に関するものである。   The present invention removes VOC contained in a VOC removal liquid (hereinafter referred to as a removal liquid) used to remove VOC (Volatile Organic Compounds), and collects the removal liquid. The present invention relates to a VOC removal liquid regeneration / recovery device and a regeneration / recovery method.

例えば塗装や印刷工程において発生する排気ガスにはVOCが含まれ、VOCが含まれる排気ガスを直接大気中に放出すると、二次汚染を引き起こすことが知られている。そこで、排気ガスからVOCを除去するための技術が検討されてきている。   For example, it is known that exhaust gas generated in a painting or printing process contains VOC, and if exhaust gas containing VOC is directly discharged into the atmosphere, secondary pollution is caused. Therefore, techniques for removing VOC from exhaust gas have been studied.

排気ガスからVOCを除去する技術として、例えば特許文献1に開示された技術がある。
特許文献1に開示された技術においては、VOC(排気ガス)に接触させて吸収させた除去液(吸収液)を回収する吸収液回収槽が設けられている。前記吸収液回収槽にはヒータが設けられており、ヒータの加温によって除去液からVOCを蒸発除去するように構成されているものである。
As a technique for removing VOC from exhaust gas, for example, there is a technique disclosed in Patent Document 1.
In the technique disclosed in Patent Document 1, an absorption liquid recovery tank that recovers a removal liquid (absorption liquid) that is absorbed by contact with VOC (exhaust gas) is provided. The absorption liquid recovery tank is provided with a heater, and is configured to evaporate and remove VOC from the removal liquid by heating the heater.

また、排気ガスからVOCを除去する別の技術として、脱気膜を用いた除去液回収機構に関する技術が特許文献2に開示されている。
特許文献2に開示された技術は、処理すべき液体を気体透過膜の一方の側に導入し、他方の側の気相を減圧することにより、液中に含有される気体ないし揮発性物質を気相室へ除去するモジュールにより構成されている。特許文献2に開示された技術においては、さらに、減圧した気相室に搬送ガスとしての空気を導入するためのエアブリーダーが設けられている。該エアブリーダーは、脱気を促進するための手段であって、そこから導入されたガスが、気体透過膜を透過した揮発性物質を効率よく運び去るような位置に設けられることが好ましく、さらに、気体透過膜として、平膜、中空糸膜、管状膜の非多孔質膜や多孔質膜を適用することができる。
Further, as another technique for removing VOC from exhaust gas, Patent Document 2 discloses a technique related to a removal liquid recovery mechanism using a degassing membrane.
The technique disclosed in Patent Document 2 introduces a liquid or volatile substance contained in a liquid by introducing a liquid to be processed into one side of the gas permeable membrane and reducing the gas phase on the other side. It is composed of a module that removes the gas phase chamber. In the technique disclosed in Patent Document 2, an air bleeder for introducing air as a carrier gas into the decompressed gas phase chamber is further provided. The air bleeder is a means for promoting degassing, and the gas introduced from the air bleeder is preferably provided at a position where the volatile substance that has permeated the gas permeable membrane is efficiently carried away. As the gas permeable membrane, a non-porous membrane or a porous membrane such as a flat membrane, a hollow fiber membrane, or a tubular membrane can be applied.

特開2002−273157号公報JP 2002-273157 A 特許第2949732号公報Japanese Patent No. 2949732

しかしながら、特許文献1に開示された技術においては、除去液(吸収液)回収のためにヒータを用いているため、消費電力が大きくその分だけ余計にCOを排出するという課題がある。また、特許文献2に開示された技術においては、気体透過膜を必要とするので、透過する際に揮発物質等が受ける悪影響により処理効率が悪いという課題がある。 However, since the technique disclosed in Patent Document 1 uses a heater for recovering the removal liquid (absorption liquid), there is a problem that power consumption is large and CO 2 is discharged more by that amount. Moreover, since the technique disclosed in Patent Document 2 requires a gas permeable membrane, there is a problem that the processing efficiency is poor due to an adverse effect of volatile substances and the like when permeating.

従って、本発明においては、ヒータが不要であるため、ヒータの使用に係る電力を消費しない分だけCOの排出量を削減することができ、気体透過膜を必要としないため、気体透過膜を透過する際に揮発物質等が悪影響を受けることがないVOC除去液再生・回収装置及び再生・回収方法を提供することを目的とする。 Therefore, in the present invention, since no heater is required, the amount of CO 2 emission can be reduced by the amount that does not consume the electric power related to the use of the heater, and no gas permeable membrane is required. An object of the present invention is to provide a VOC removal liquid regeneration / recovery device and a regeneration / recovery method in which volatile substances and the like are not adversely affected during permeation.

上記の課題を解決するために、本発明においては、VOC除去液中に含まれるVOCを除去してVOC除去液を再生・回収するVOC除去液再生・回収装置であって、VOC除去液を噴霧する送液ポンプ及びノズルと、前記ノズルを内部に配置した真空容器と、前記真空容器内部を減圧してVOC除去液に含まれるVOCを真空蒸発させる真空ポンプと、前記真空容器内に蒸発促進気体を導入する気体導入機構と、前記真空容器から処理後のVOC除去液を排出する排液機構と、を有し、外部からの空気を圧縮して熱エネルギー及び圧力エネルギーを有する圧縮空気を生成する圧縮機を備え、前記送液ポンプからノズルに至る通路上に熱交換器を設け、該熱交換器で前記VOC除去液と前記圧縮空気を熱交換して、前記熱エネルギーを前記VOC除去液に供給することを特徴とする。また、前記送液ポンプは空気圧を動力源として駆動するエアー駆動型ポンプであって、該ポンプの動力源として前記圧縮空気の圧力エネルギーを利用することを特徴とする。   In order to solve the above-described problems, in the present invention, a VOC removal liquid regeneration / recovery device that regenerates and collects a VOC removal liquid by removing VOC contained in the VOC removal liquid, and sprays the VOC removal liquid. A liquid feed pump and a nozzle, a vacuum container in which the nozzle is disposed, a vacuum pump for decompressing the inside of the vacuum container to vacuum-evaporate VOC contained in the VOC removal liquid, and an evaporation promoting gas in the vacuum container And a drainage mechanism for discharging the processed VOC removal liquid from the vacuum vessel, and compresses air from the outside to generate compressed air having thermal energy and pressure energy. A heat exchanger is provided on a path from the liquid feed pump to the nozzle, and heat exchange is performed between the VOC removal liquid and the compressed air in the heat exchanger, and the thermal energy is converted to the V energy. And supplying the C remover. The liquid feed pump is an air-driven pump that is driven by air pressure as a power source, and uses the pressure energy of the compressed air as the power source of the pump.

これにより、前記送液ポンプによって圧送されたVOC除去液が、真空容器内においてノズルから噴霧される。真空ポンプの働きにより真空容器内は減圧され、これによってVOC除去液からVOCが真空蒸発する。VOC除去液は噴霧によって霧状になっているので単に貯留してあるものに比べてその表面積が飛躍的に拡大している。これと相まって、気体導入機構を介した蒸発促進気体の導入が、真空蒸発の効率をよくする。すなわち、VOC除去液の再生・回収が効率よく行われる。ここで、「真空蒸発」とは、気相の圧力を減圧してVOC除去液から揮発性物質等を分離する方法のことをいう。   Thereby, the VOC removal liquid pumped by the liquid feed pump is sprayed from the nozzle in the vacuum container. The inside of the vacuum vessel is depressurized by the action of the vacuum pump, whereby VOC is vacuum evaporated from the VOC removal solution. Since the VOC removal liquid is atomized by spraying, its surface area is dramatically increased as compared with the one that is simply stored. Combined with this, the introduction of the evaporation promoting gas through the gas introduction mechanism improves the efficiency of vacuum evaporation. That is, the regeneration / recovery of the VOC removal liquid is efficiently performed. Here, “vacuum evaporation” refers to a method of reducing the pressure in the gas phase and separating volatile substances and the like from the VOC removal liquid.

さらに、前記圧縮空気の熱エネルギーをVOC除去液の加熱に利用することで、VOC除去液が加熱されて真空蒸発をさらに効率的に行うことができる。これは、コンプレッサで生成された高温高圧の圧縮空気の熱エネルギーを、熱交換器を使用してVOC除去液に伝えることにより可能となる。   Furthermore, by using the thermal energy of the compressed air for heating the VOC removal liquid, the VOC removal liquid is heated and vacuum evaporation can be performed more efficiently. This is made possible by transferring the thermal energy of the high-temperature and high-pressure compressed air generated by the compressor to the VOC removal liquid using a heat exchanger.

さらに、前記熱交換後の降温した圧縮空気の圧力エネルギーを、VOC除去液を真空容器内に圧送するための前記送液ポンプの駆動源として利用するため、コンプレッサにより生成された圧縮空気が持つ圧力エネルギーを無駄なく有効に使用することができる。   Further, the pressure energy of the compressed air generated by the compressor is used in order to use the pressure energy of the cooled compressed air after the heat exchange as a drive source of the liquid feeding pump for pumping the VOC removal liquid into the vacuum vessel. Energy can be used effectively without waste.

従って、ヒータが不要であるため、ヒータの使用に係る電力を消費しない分だけCOの排出量を削減することができ、気体透過膜を必要としないため、気体透過膜を透過する際に揮発物質等が悪影響を受けることもない。しかも高効率でVOC除去液から、そこに含まれるVOCを除去し、除去液を回収することができる。 Therefore, since a heater is not required, the amount of CO 2 emission can be reduced by the amount that does not consume the electric power associated with the use of the heater, and since no gas permeable membrane is required, volatilization occurs when passing through the gas permeable membrane. Substances are not adversely affected. In addition, the VOC contained therein can be removed from the VOC removal liquid with high efficiency, and the removal liquid can be recovered.

また、前記排液機構から排出されたVOC除去液を貯留する貯液槽を有し、前記熱交換器で熱交換した後の圧縮空気を、前記貯液槽内に導入する圧縮空気導入手段を設けるとよい。前記貯液槽は2つ設け除去液の貯留を交互に行えるようにしてもよい。
これにより、コンプレッサにより生成された圧縮空気が持つ圧力エネルギーをさらに有効に活用することができる。
And a storage tank for storing the VOC removal liquid discharged from the drainage mechanism, and compressed air introduction means for introducing the compressed air after heat exchange with the heat exchanger into the storage tank. It is good to provide. Two liquid storage tanks may be provided so that the removal liquid can be stored alternately.
Thereby, the pressure energy which the compressed air produced | generated by the compressor has can be utilized still more effectively.

また、前記熱交換器で熱交換した後の圧縮空気を貯留する空気タンクを設けるとよい。
これにより、前記空気タンクが前記圧縮空気のバッファとなり、圧縮空気の圧力エネルギーをさらに無駄なく活用することができる。
Moreover, it is good to provide the air tank which stores the compressed air after heat-exchanging with the said heat exchanger.
Thereby, the air tank serves as a buffer for the compressed air, and the pressure energy of the compressed air can be utilized more efficiently.

また、前記蒸発促進気体は大気の代わりに前記圧縮機からの圧縮空気を用いてもよい。加温空気を真空タンク内に直接導入することで真空タンク内の急激な冷却を抑えることができる。   The evaporation promoting gas may be compressed air from the compressor instead of the atmosphere. The rapid cooling in the vacuum tank can be suppressed by directly introducing the heated air into the vacuum tank.

また、課題を解決するための方法の発明として、VOC除去液中に含まれるVOCを除去してVOC除去液を再生・回収するVOC除去液再生・回収方法であって、コンプレッサによって生成された圧縮気体と熱交換して昇温されたVOC除去液を真空容器内部に噴霧しながら該真空容器内部を真空ポンプによって減圧し、さらに、蒸発促進気体を該真空容器内に導入することによってVOC除去液に含まれるVOCを真空蒸発させることを特徴とする。また、前記熱交換した後の圧縮空気を、前記VOC除去液を噴霧するための送液ポンプの駆動源として使用することを特徴とする。   Further, as a method invention for solving the problem, a VOC removal liquid regeneration / recovery method for regenerating / recovering a VOC removal liquid by removing the VOC contained in the VOC removal liquid, the compression generated by the compressor The inside of the vacuum vessel is depressurized by a vacuum pump while spraying the VOC removal solution heated by the heat exchange with the gas inside the vacuum vessel, and further, the VOC removal solution is introduced by introducing an evaporation promoting gas into the vacuum vessel. The VOC contained in is vacuum evaporated. The compressed air after the heat exchange is used as a drive source of a liquid feed pump for spraying the VOC removal liquid.

また、前記VOCを真空蒸発させた後のVOC除去液を、前記真空容器外部に設けた貯液槽に貯留し、前記熱交換した後の圧縮空気の圧力により、前記貯液槽から前記VOC除去液を排出するとよい。   Further, the VOC removal liquid after the VOC is vacuum evaporated is stored in a liquid storage tank provided outside the vacuum container, and the VOC removal is performed from the liquid storage tank by the pressure of the compressed air after the heat exchange. The liquid should be drained.

本発明によれば、ヒータが不要であるため、ヒータの使用に係る電力を消費しない分だけCOの排出量を削減することができ、気体透過膜を必要としないため、気体透過膜を透過する際に揮発物質等が悪影響を受けることがないVOC除去液再生・回収装置及び再生・回収方法を提供することができる。 According to the present invention, since no heater is required, the amount of CO 2 emission can be reduced by the amount that does not consume the electric power related to the use of the heater, and no gas permeable membrane is required. It is possible to provide a VOC removal liquid regeneration / recovery device and regeneration / recovery method in which volatile substances and the like are not adversely affected.

実施例におけるVOC除去液再生・回収装置を示す系統図である。It is a systematic diagram which shows the VOC removal liquid reproduction | regeneration and collection | recovery apparatus in an Example. VOC再生・回収実験の結果を示す図である。It is a figure which shows the result of VOC reproduction | regeneration / collection | recovery experiment.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りはこの発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Absent.

図1は、実施例におけるVOC除去液再生・回収装置を示す系統図である。
VOC除去液再生・回収装置1(以下、再生・回収装置1と称する)は、VOCが含まれたVOC除去液(以下、被処理除去液と称する)からVOCを除去して、VOC除去液(以下、再生除去液と称する)を再生・回収するものである。
FIG. 1 is a system diagram showing a VOC removal liquid regeneration / recovery device in the embodiment.
The VOC removal liquid regeneration / recovery device 1 (hereinafter referred to as the regeneration / recovery device 1) removes VOC from a VOC removal liquid (hereinafter referred to as a to-be-processed removal liquid) containing VOC, and removes the VOC removal liquid ( In the following, this is regenerated / recovered.

まず、図1に基づいて実施例における再生・回収装置の構造について説明する。
図1に示す再生・回収装置1は、貯留タンク3、送液ポンプ5、噴霧ノズル7、真空容器9、真空ポンプ11、気体導入機構13、排液機構15、貯液槽17、コンプレッサ19、熱交換器21、空気タンク23を有して構成される。
First, the structure of the regeneration / recovery device in the embodiment will be described with reference to FIG.
1 includes a storage tank 3, a liquid feed pump 5, a spray nozzle 7, a vacuum vessel 9, a vacuum pump 11, a gas introduction mechanism 13, a drainage mechanism 15, a liquid storage tank 17, a compressor 19, A heat exchanger 21 and an air tank 23 are included.

貯留タンク3は、外部から抽入されたVOC除去液(被処理除去液Ld)を貯留するタンクである。貯留タンク3を設けず、貯留タンク3の代わりにVOC除去装置(図示省略)から直接被処理除去液Ldを取り出したり、被処理除去液Ldの送液管(図示省略)の途中に送液ポンプ5を設けたりすることもできる。送液ポンプ5は、貯留タンク3に貯留されている被処理除去液Ldを取り出してノズル7へ圧送するためのものである。ノズル7は圧送された被処理除去液Ldを真空容器9内で噴霧するためのものである。真空ポンプ11の排気側にはVOC処理機構である冷却凝縮装置27が設けられている。コンプレッサ19は高温高圧の圧縮空気を生成するものである。熱交換器21は、コンプレッサ19で生成された圧縮空気と送液ポンプ5からノズル7へ圧送される被処理除去液Ldとを熱交換して被処理除去液Ldを昇温するためのものである。0空気タンク23は、熱交換器21で被処理除去液Ldと熱交換した圧縮空気を貯留するためのタンクである。   The storage tank 3 is a tank that stores a VOC removal liquid (processed removal liquid Ld) drawn from the outside. The storage tank 3 is not provided, and instead of the storage tank 3, the removal liquid Ld to be processed is directly taken out from the VOC removal device (not shown), or the liquid supply pump is provided in the middle of the liquid supply pipe (not shown) of the removal liquid Ld to be processed. 5 can also be provided. The liquid feed pump 5 is for taking out the liquid to be removed Ld stored in the storage tank 3 and pumping it to the nozzle 7. The nozzle 7 is for spraying the to-be-processed removal liquid Ld fed in the vacuum vessel 9. On the exhaust side of the vacuum pump 11, a cooling condensing device 27, which is a VOC processing mechanism, is provided. The compressor 19 generates high-temperature and high-pressure compressed air. The heat exchanger 21 is for heat-exchanging the compressed air generated by the compressor 19 and the removal liquid Ld to be processed which is pressure-fed from the liquid feed pump 5 to the nozzle 7 to raise the temperature of the removal liquid Ld to be processed. is there. The 0 air tank 23 is a tank for storing the compressed air heat-exchanged with the to-be-processed removal liquid Ld in the heat exchanger 21.

真空容器9は、接続した真空ポンプ11によって内部が減圧されるようになっている筒状容器である。真空容器9内の上部にはノズル7が配されており、その下部には気体導入機構13、最下部には排液機構15が配されている。さらに、真空容器9内部の高さ方向の途中であってノズル7の下方且つ気体導入機構の上方に霧トラップ25が設けられており、真空容器9上部であってノズル7より上方に霧トラップ25’が設けられている。また、霧トラップ25より下方には熱交換器21が設けられている。尚、本実施例では熱交換器21は真空容器9の内部に設けたが真空容器の外に設けても良い。   The vacuum container 9 is a cylindrical container whose inside is decompressed by a connected vacuum pump 11. A nozzle 7 is disposed in the upper part of the vacuum vessel 9, a gas introduction mechanism 13 is disposed in the lower part thereof, and a drainage mechanism 15 is disposed in the lowermost part. Further, a mist trap 25 is provided in the middle of the height inside the vacuum vessel 9 and below the nozzle 7 and above the gas introduction mechanism. The mist trap 25 is above the vacuum vessel 9 and above the nozzle 7. 'Is provided. A heat exchanger 21 is provided below the fog trap 25. In this embodiment, the heat exchanger 21 is provided inside the vacuum vessel 9, but may be provided outside the vacuum vessel.

本実施例においては、霧トラップ25は、連続気泡フォームであるポリウレタンフォームとそれを下支えする支持体とから構成されている。ポリウレタンフォームは、軽量且つ安価に手に入れることができる。さらにポリウレタンフォームは、その一辺を1mの立方体である場合(即ち容積1立方メートル)に、その単位容積あたり1490mという膨大な表面積(セル壁の総面積)を有し、空隙率も0.97でVOC除去液の通過抵抗もほとんどないという利点を有している。これに伴い、そのセル壁に付着する被処理除去液Ldの総面積も膨大となり、これが効率の良いVOCの真空蒸発を実現する。従来のセラミック製ガス吸着用多孔体と比較して軽量・安価(概ね1/10以下)であり、ポリウレタンフォームは非常に使い勝手がよい。もっとも隣接気泡間のセル壁が相互に連通している気泡構造の気包体であって、被処理除去液Ldがそのセル壁に付着可能なものであれば、ポリウレタンフォーム以外のフォームを採用することもできる。なお、霧トラップ25’は、霧トラップ25と同様にポリウレタンフォームを採用しているが、霧トラップの目的が達成できれば他の連続気泡フォームその他の部材を採用することもできる。 In the present embodiment, the fog trap 25 is composed of a polyurethane foam that is an open-cell foam and a support that supports the foam. Polyurethane foam is lightweight and can be obtained inexpensively. Furthermore, polyurethane foam has a huge surface area (total area of the cell wall) of 1490 m 2 per unit volume when its side is a cube of 1 m (ie, volume of 1 cubic meter), and the porosity is 0.97. There is an advantage that there is almost no passage resistance of the VOC removal liquid. Along with this, the total area of the to-be-processed removal liquid Ld adhering to the cell wall also becomes enormous, and this realizes efficient VOC vacuum evaporation. Compared to conventional ceramic gas-adsorbing porous bodies, it is lighter and cheaper (approximately 1/10 or less), and polyurethane foam is very easy to use. However, a foam other than polyurethane foam is adopted as long as the cell wall between adjacent cells communicates with each other and has an air bubble structure in which the removal liquid Ld to be treated can adhere to the cell wall. You can also. The fog trap 25 ′ employs a polyurethane foam in the same manner as the fog trap 25, but other open-cell foams and other members can be employed as long as the purpose of the fog trap can be achieved.

霧トラップ25を構成する前記支持体は、網状の部材であって真空容器9内部を横断するように取り付けてある。前記支持体を網状にすることで、被処理除去液Ldが過度に滞留せずに前記連続気泡フォームから滴下できる。従って、前記支持体の網目は、前記連続気泡フォームを下支えするのに十分であり、かつVOC除去液の滴下が円滑に行われる程度の粗さであることが必要である。そのような目的が達成できるものであれば、前記支持体は、網状以外の例えば簀の子状のもの、パンチングメタルのような多数の小穴を形成した板部材等によって構成することもできる。なお、前記連続気泡フォームが十分に自立可能な硬さを持っている場合や、連続気泡フォーム以外の自立可能な部材を霧トラップとして採用した場合等、前記支持体が不要である場合には支持体は省略可能である。   The support constituting the fog trap 25 is a net-like member and is attached so as to cross the inside of the vacuum vessel 9. By making the said support body mesh-like, the to-be-processed removal liquid Ld can be dripped from the said open cell foam, without staying excessively. Therefore, it is necessary that the mesh of the support is sufficient to support the open-cell foam and is rough enough to smoothly drop the VOC removal liquid. As long as such an object can be achieved, the support can also be constituted by, for example, a cocoon-like one other than the net-like shape, a plate member formed with a large number of small holes such as punching metal, and the like. If the support is not required, such as when the open cell foam has sufficient hardness to be self-supporting, or when a self-supporting member other than the open-cell foam is used as a fog trap, it is supported. The body can be omitted.

ノズル7は、前述の通り霧トラップ25の上方に位置し、噴霧した被処理除去液Ldが真空容器9内に満遍なく行き渡るように噴霧角や霧トラップ25との距離、噴霧圧力、噴霧粒径等を調整する。ノズル7の個数は、本実施例においては1個としているが、真空容器9の容積や被処理除去液Ldの単位時間あたりの処理量等に応じて2つ以上設けることもできる。   The nozzle 7 is located above the mist trap 25 as described above, and the spray angle, the distance from the mist trap 25, the spray pressure, the spray particle size, etc. so that the to-be-processed removal liquid Ld is spread evenly in the vacuum vessel 9. Adjust. Although the number of the nozzles 7 is one in this embodiment, two or more nozzles 7 may be provided according to the volume of the vacuum vessel 9 and the processing amount per unit time of the removal liquid Ld to be processed.

気体導入機構13は、リーク弁である。真空ポンプ11を駆動させて真空容器9内を減圧した状態でこのリーク弁を開放すると、蒸発促進用気体(本実施例の図1においては大気導入を図示したが、コンプレッサ19からの加温された圧縮空気を直接導入しても良い)を真空容器9内へ吸引導入するようになっている。なお、リーク弁を設ける代わりに、ノズル7を介して蒸発促進用気体を真空容器9内に導入するように構成してもよい。また、リーク弁とノズル7の両者によって蒸発促進用気体の導入を行ってもよい。これらの場合には、ノズル7は、被処理除去液を噴霧する機能と気体導入機構13の機能を兼ね備えることになる。   The gas introduction mechanism 13 is a leak valve. When this leak valve is opened in a state where the vacuum pump 11 is driven and the inside of the vacuum vessel 9 is depressurized, the gas for promoting evaporation (in FIG. 1 of this embodiment, the introduction of the atmosphere is illustrated, but the compressor 19 is heated). The compressed air may be directly introduced) into the vacuum container 9 by suction. Instead of providing a leak valve, an evaporation promoting gas may be introduced into the vacuum vessel 9 through the nozzle 7. Further, the gas for promoting evaporation may be introduced by both the leak valve and the nozzle 7. In these cases, the nozzle 7 has both the function of spraying the liquid to be treated and the function of the gas introduction mechanism 13.

次に、図1に基づいて実施例における再生・回収装置の動作について説明する。
再生・回収装置1によれば、貯留タンク3内に貯留されている被処理除去液Ldは、送液ポンプ5によって圧送され、熱交換器21でコンプレッサ19からの圧縮空気と熱交換して昇温された後、ノズル7から真空容器9内に噴霧される。一方、熱交換器21で前記被処理除去液Ldと熱交換することで高圧を保持したまま降温した圧縮空気は、空気タンク23に貯留される。
なお、送液ポンプ5は、駆動源が圧縮空気であるエアー駆動型のポンプである。送液ポンプの駆動源として、空気タンク23に貯留された圧縮空気を、減圧弁31によって適度な圧力に降圧して利用する。
Next, the operation of the regeneration / collection apparatus in the embodiment will be described with reference to FIG.
According to the regeneration / recovery device 1, the to-be-processed removal liquid Ld stored in the storage tank 3 is pumped by the liquid feeding pump 5, and exchanged with the compressed air from the compressor 19 by the heat exchanger 21 to rise. After being heated, it is sprayed into the vacuum container 9 from the nozzle 7. On the other hand, the compressed air that has been cooled while maintaining a high pressure by exchanging heat with the removal liquid Ld to be treated in the heat exchanger 21 is stored in the air tank 23.
The liquid feed pump 5 is an air-driven pump whose driving source is compressed air. As a drive source for the liquid feed pump, the compressed air stored in the air tank 23 is reduced to an appropriate pressure by the pressure reducing valve 31 and used.

また、真空ポンプ11を駆動させることにより真空容器9内は減圧され、該減圧によりノズル7から噴霧された被処理除去液LdからVOCが真空蒸発する。被処理除去液Ldは噴霧によって霧状になっているので単に貯留してあるものに比べてその表面積が飛躍的に拡大している。さらに、被処理除去液Ldは、熱交換器21で昇温されているため、さらに蒸発しやすくなっている。   Further, by driving the vacuum pump 11, the inside of the vacuum vessel 9 is depressurized, and VOC is evaporated from the to-be-treated removal liquid Ld sprayed from the nozzle 7 by the depressurization. Since the to-be-processed removal liquid Ld is atomized by spraying, its surface area is dramatically increased as compared with the liquid just stored. Furthermore, since the to-be-processed removal liquid Ld is heated by the heat exchanger 21, it is more easily evaporated.

そして、霧状の被処理除去液Ldは霧トラップ25を構成する連続気泡フォームに到着してそのセル壁に付着する。前記セル壁に付着した被処理除去液Ldは、その表面積をさらに拡大する。拡大を重ねた被処理除去液Ldの表面積は膨大なものとなる。これらと相まって、気体導入機構13を介した蒸発促進気体(空気)の導入が、真空蒸発の効率をよくする。すなわち、被処理除去液Ldの回収(再生除去液Lcへの転換)が効率よく行われる。被処理除去液Ldは、前記連続気泡フォームを通過(下降)しながら再生除去液Lcとなり、前記連続気泡フォーム及び支持体を通過して滴下する。   And the mist-like to-be-processed removal liquid Ld arrives at the open cell foam which comprises the fog trap 25, and adheres to the cell wall. The to-be-processed removal liquid Ld adhering to the cell wall further expands its surface area. The surface area of the removal liquid Ld to be processed which has been enlarged is enormous. Combined with these, the introduction of the evaporation promoting gas (air) through the gas introduction mechanism 13 improves the efficiency of vacuum evaporation. That is, the recovery liquid Ld to be treated (recovery removal liquid Lc) is efficiently recovered. The to-be-processed removal liquid Ld becomes the regeneration removal liquid Lc while passing (falling) through the open-cell foam, and drops through the open-cell foam and the support.

滴下した再生除去液Lcは、排液機構15を介して真空容器9外へ排出され、貯液槽17に貯留される。貯液槽17に貯留された再生除去液Lcは、適宜貯液槽17から排出される。貯液槽17からの再生除去液Lcの排出に際しては、貯液槽17の下部に設けた排出バルブ18を開放し、空気タンク23に貯留された圧縮空気を配管33を介して貯液槽17に導入し、貯液槽17の内圧を上げることで、再生除去液Lcを容易に外部に排出することができる。なお、配管33には、減圧弁35、スピードコントローラ37、圧縮空気導入弁39が設けられている。空気タンク23から貯液槽17に導入する圧縮空気の圧力及び導入量を減圧弁35及びスピードコントローラ37で調整することができるとともに、空気タンク23から貯液槽17への圧縮空気の導入の必要がないときには圧縮空気導入弁39を閉止することで導入を停止することができる。   The dropped regeneration removal liquid Lc is discharged out of the vacuum vessel 9 through the drainage mechanism 15 and stored in the liquid storage tank 17. The regeneration removal liquid Lc stored in the liquid storage tank 17 is appropriately discharged from the liquid storage tank 17. When discharging the regeneration removal liquid Lc from the liquid storage tank 17, the discharge valve 18 provided at the lower part of the liquid storage tank 17 is opened, and the compressed air stored in the air tank 23 is supplied to the liquid storage tank 17 through the pipe 33. In this case, the regeneration removal liquid Lc can be easily discharged to the outside by increasing the internal pressure of the liquid storage tank 17. The pipe 33 is provided with a pressure reducing valve 35, a speed controller 37, and a compressed air introduction valve 39. The pressure and amount of compressed air introduced from the air tank 23 to the liquid storage tank 17 can be adjusted by the pressure reducing valve 35 and the speed controller 37, and the introduction of compressed air from the air tank 23 to the liquid storage tank 17 is necessary. When there is no air, the introduction can be stopped by closing the compressed air introduction valve 39.

尚、貯液槽17の手前には排液バルブ40が設けられていて、空気タンク23からの圧縮空気を用いたエアオペレート式切換制御弁とすることで真空容器9から排出される除去液を2つの貯液槽17に交互に貯留することができる。   In addition, a drain valve 40 is provided in front of the liquid storage tank 17, and the removal liquid discharged from the vacuum vessel 9 can be obtained by using an air operated switching control valve using compressed air from the air tank 23. It can be stored alternately in the two liquid storage tanks 17.

気体導入機構13について付け加えて説明する。
前提として従来の技術によるVOC除去液からのトルエン回収率の結果について説明する。
VOCを含んだVOC除去液を再生させる従来の方法としては膜分離によるPV法(パーベーパレーション法)がある。しかし、この方法ではVOC除去液からのトルエン回収率0.027%程度と非常に低い値となりリアルタイムでのVOC除去液の再生は困難である。
The gas introduction mechanism 13 will be additionally described.
As a premise, the result of the toluene recovery rate from the VOC removal solution according to the conventional technique will be described.
As a conventional method for regenerating a VOC removal solution containing VOC, there is a PV method (pervaporation method) by membrane separation. However, with this method, the recovery rate of toluene from the VOC removal solution is as low as about 0.027%, and it is difficult to regenerate the VOC removal solution in real time.

そこで、図2(a)に示すように膜の透過抵抗を小さくするために多孔質の膜を用いた真空蒸発法によりVOC蒸発量を多くすることができる。前述のPV法によるトルエンの蒸発濃度は約70ppmで安定し、回収率は0.027%程度であったのに対し、図2(a)に示すような多孔膜を用いた真空蒸発法によるトルエン蒸発濃度は約200ppmで安定し、回収率は0.077%であり、PV法と比較して3倍に向上している。しかし、図2(a)に示すような多孔膜を用いた真空蒸発法であっても、リアルタイムでのVOC除去液の再生は困難である。   Therefore, as shown in FIG. 2A, the VOC evaporation amount can be increased by a vacuum evaporation method using a porous film in order to reduce the permeation resistance of the film. While the evaporation concentration of toluene by the PV method was stable at about 70 ppm and the recovery rate was about 0.027%, toluene by the vacuum evaporation method using a porous film as shown in FIG. The evaporation concentration is stable at about 200 ppm, and the recovery rate is 0.077%, which is a threefold improvement over the PV method. However, even with the vacuum evaporation method using the porous film as shown in FIG. 2A, it is difficult to regenerate the VOC removal solution in real time.

即ち、前述のように従来の方法では、数十Pa以下と高真空にするため空気の流動がなく蒸発したVOCを効率よく回収することが出来なかったと考えられる。これに対し空気流動真空蒸発法は、図2(b)に示すように、真空容器をリークして空気を導入して真空度を低くした状態で空気の流動によって蒸発したVOCをぬぐって回収する方法である。この方法においては、トルエン蒸発には数千Pa程度の比較的低い真空とするとVOCの回収を効率的におこなうことができることが確認できた。また、気体透過膜を用いず除去液を噴霧する本発明の空気流動真空蒸発法によればトルエン蒸発濃度は約2900ppmで安定し、回収率は93.5%であった。   That is, as described above, it is considered that the conventional method could not efficiently recover the evaporated VOC because there was no air flow because the high vacuum was set to several tens of Pa or less. On the other hand, in the air flow vacuum evaporation method, as shown in FIG. 2 (b), the VOC evaporated by the flow of air is wiped and collected in a state where the vacuum vessel is leaked and air is introduced to lower the degree of vacuum. Is the method. In this method, it was confirmed that VOC can be efficiently recovered when a relatively low vacuum of about several thousand Pa is used for toluene evaporation. In addition, according to the air flow vacuum evaporation method of the present invention in which the removal liquid is sprayed without using a gas permeable membrane, the toluene evaporation concentration was stabilized at about 2900 ppm, and the recovery rate was 93.5%.

つまり、本発明によれば、VOC回収率93.5%と従来と比較して飛躍的に上昇し、リアルタイムでの除去液の再生が可能となった。   In other words, according to the present invention, the VOC recovery rate is 93.5%, which is a dramatic increase compared to the prior art, and the removal liquid can be regenerated in real time.

また、本発明によれば、前記圧縮空気の熱エネルギーを被処理除去液Ldの加熱に利用することで、被処理除去液Ldが加熱されて真空蒸発をより効率的に行うことができる。しかも、コンプレッサで生成された高温高圧の圧縮空気の熱エネルギーを、真空容器内に設けた熱交換器を使用して被処理除去液Ldに伝える場合は、被処理除去液Ldの加熱を真空容器外部で行うことなく安全で効率よく被処理除去液Ldの加熱が可能となる。   In addition, according to the present invention, by using the thermal energy of the compressed air for heating the treatment removal liquid Ld, the treatment removal liquid Ld is heated and vacuum evaporation can be performed more efficiently. In addition, when the heat energy of the high-temperature and high-pressure compressed air generated by the compressor is transmitted to the treatment removal liquid Ld using a heat exchanger provided in the vacuum vessel, the heating of the treatment removal liquid Ld is performed in the vacuum vessel. The removal liquid Ld to be processed can be heated safely and efficiently without performing it outside.

さらに、前記熱交換後の降温した圧縮空気の圧力エネルギーを、被処理除去液Ldを真空容器内に圧送するための送液ポンプ5の駆動源として利用するとともに、分離後の除去液を貯液槽から効率よく排出するための圧送機能として使用するため、コンプレッサにより生成された圧縮空気が持つエネルギーを無駄なく有効に使用することができる。   Further, the pressure energy of the compressed air whose temperature has been lowered after the heat exchange is used as a drive source of the liquid feed pump 5 for pumping the treated removal liquid Ld into the vacuum vessel, and the separated removal liquid is stored. Since it is used as a pumping function for efficiently discharging from the tank, the energy of the compressed air generated by the compressor can be used effectively without waste.

従って、被処理除去液Ldの加熱手段として圧縮空気を利用することで、被処理除去液Ldの加熱にヒータを用いる必要がなく、ヒータの使用に係る電力の削減、COの排出の削減が可能であるとともに、ヒータによる引火の危険性を回避することができる。つまり空圧を利用した装置なので防爆構造を考慮する必要もなく安全である。 Therefore, by using compressed air as the heating means for the removal liquid Ld to be treated, it is not necessary to use a heater for heating the removal liquid Ld to be treated, and it is possible to reduce power consumption and CO 2 emissions associated with the use of the heater. This is possible and the risk of ignition by the heater can be avoided. In other words, it is safe without considering the explosion-proof structure because it uses air pressure.

さらに、被処理除去液Ldとの熱交換後の降温した圧縮空気の圧力エネルギーを利用することで、エアー駆動式ポンプ及び空気圧を利用した分離後の再生除去液Lcの排出を一連のシステムとして有効活用し、装置全体のエネルギー効率を高めることができる。   Furthermore, by using the pressure energy of the compressed air whose temperature has been lowered after the heat exchange with the removal liquid Ld to be treated, it is possible to effectively discharge the regenerated removal liquid Lc after separation using an air driven pump and air pressure as a series of systems. It can be used to increase the energy efficiency of the entire device.

ヒータが不要であるため、ヒータの使用に係る電力を消費しない分だけCOの排出量を削減することができ、気体透過膜を必要としないため、気体透過膜を透過する際に揮発物質等が悪影響を受けることがないVOC除去液再生・回収装置及び再生・回収方法として利用することができる。 Since no heater is required, CO 2 emissions can be reduced by the amount that does not consume the electric power used for the heater, and since no gas permeable membrane is required, a volatile substance or the like can pass through the gas permeable membrane. Can be used as a VOC removal liquid regeneration / recovery device and a regeneration / recovery method that are not adversely affected.

1 VOC除去液再生・回収装置
3 貯留タンク
5 送液ポンプ
7 ノズル
9 真空容器
11 真空ポンプ
13 気体導入機構
15 排液機構
17 貯液槽
19 コンプレッサ(圧縮機)
21 熱交換器
23 空気タンク
25、25’ 霧トラップ
DESCRIPTION OF SYMBOLS 1 VOC removal liquid reproduction | regeneration and collection | recovery apparatus 3 Storage tank 5 Liquid feed pump 7 Nozzle 9 Vacuum container 11 Vacuum pump 13 Gas introduction mechanism 15 Drainage mechanism 17 Liquid storage tank 19 Compressor (compressor)
21 heat exchanger 23 air tank 25, 25 'fog trap

Claims (9)

VOC除去液中に含まれるVOCを除去してVOC除去液を再生・回収するVOC除去液再生・回収装置であって、
VOC除去液を噴霧する送液ポンプ及びノズルと、
前記ノズルを内部に配置した真空容器と、
前記真空容器内部を減圧してVOC除去液に含まれるVOCを真空蒸発させる真空ポンプと、
前記真空容器内に蒸発促進気体を導入する気体導入機構と、
前記真空容器から処理後のVOC除去液を排出する排液機構と、を有し、
外部からの空気を圧縮して熱エネルギー及び圧力エネルギーを有する圧縮空気を生成する圧縮機を備え、
前記送液ポンプからノズルに至る通路上に熱交換器を設け、該熱交換器で前記VOC除去液と前記圧縮空気を熱交換して、前記熱エネルギーを前記VOC除去液に供給することを特徴とするVOC除去液再生・回収装置。
A VOC removal liquid regeneration / recovery device that regenerates / recovers a VOC removal liquid by removing VOC contained in the VOC removal liquid,
A liquid feed pump and a nozzle for spraying the VOC removal liquid;
A vacuum container having the nozzle disposed therein;
A vacuum pump for depressurizing the inside of the vacuum container and evaporating VOC contained in the VOC removal liquid;
A gas introduction mechanism for introducing an evaporation promoting gas into the vacuum vessel;
A drainage mechanism for discharging the processed VOC removal liquid from the vacuum vessel,
A compressor that compresses air from the outside to generate compressed air having thermal energy and pressure energy;
A heat exchanger is provided on a passage from the liquid feed pump to the nozzle, the VOC removal liquid and the compressed air are heat-exchanged by the heat exchanger, and the thermal energy is supplied to the VOC removal liquid. VOC removal liquid regeneration and recovery equipment.
前記送液ポンプは空気圧を動力源として駆動するエアー駆動型ポンプであって、該送液ポンプの動力源として前記圧縮空気の圧力エネルギーを利用することを特徴とする請求項1記載のVOC除去液再生・回収装置。   2. The VOC removal liquid according to claim 1, wherein the liquid feed pump is an air-driven pump that drives air pressure as a power source, and uses the pressure energy of the compressed air as the power source of the liquid feed pump. Regeneration / collection equipment. 前記排液機構から排出されたVOC除去液を貯留する貯液槽を有し、
前記熱交換器で熱交換した後の圧縮空気を、前記貯液槽内に導入する圧縮空気導入手段を設けたことを特徴とする請求項1又は2記載のVOC除去液再生・回収装置。
A liquid storage tank for storing the VOC removal liquid discharged from the drainage mechanism;
3. The VOC removal liquid regeneration / recovery device according to claim 1, further comprising compressed air introduction means for introducing compressed air after heat exchange with the heat exchanger into the liquid storage tank.
前記貯液槽を2つ設け除去液の貯留を交互に行えるようにしたことを特徴とする請求項3記載のVOC除去液再生・回収装置。   4. The VOC removal liquid regeneration / recovery device according to claim 3, wherein two storage tanks are provided so that the removal liquid can be stored alternately. 前記熱交換器で熱交換した後の圧縮空気を貯留する空気タンクを設けたことを特徴とする請求項3記載のVOC除去液再生・回収装置。   4. The VOC removal liquid regeneration / recovery device according to claim 3, further comprising an air tank for storing compressed air after heat exchange by the heat exchanger. 前記蒸発促進気体に前記圧縮機からの圧縮空気を用いることを特徴とする請求項5記載のVOC除去液再生・回収装置。   6. The VOC removal liquid regeneration / recovery device according to claim 5, wherein compressed air from the compressor is used as the evaporation promoting gas. VOC除去液中に含まれるVOCを除去してVOC除去液を再生・回収するVOC除去液再生・回収方法であって、
コンプレッサによって生成された圧縮気体と熱交換して昇温されたVOC除去液を真空容器内部に噴霧しながら該真空容器内部を真空ポンプによって減圧し、さらに、蒸発促進気体を該真空容器内に導入することによってVOC除去液に含まれるVOCを真空蒸発させることを特徴とするVOC除去液再生・回収方法。
A VOC removal liquid regeneration / recovery method that removes VOC contained in a VOC removal liquid to regenerate / recover the VOC removal liquid,
While spraying the VOC removal liquid heated by the heat exchange with the compressed gas generated by the compressor, the inside of the vacuum container is depressurized by a vacuum pump, and further, an evaporation promoting gas is introduced into the vacuum container. A VOC removal liquid regeneration / recovery method characterized in that the VOC contained in the VOC removal liquid is evaporated in a vacuum.
熱交換した後の圧縮空気を、前記VOC除去液を噴霧するための送液ポンプの駆動源として使用することを特徴とする請求項7記載のVOC除去液再生・回収方法。   8. The VOC removal liquid regeneration / recovery method according to claim 7, wherein the compressed air after heat exchange is used as a drive source of a liquid feed pump for spraying the VOC removal liquid. 前記VOCを真空蒸発させた後のVOC除去液を、前記真空容器外部に設けた貯液槽に貯留し、
熱交換した後の圧縮空気の圧力により、前記貯液槽から前記VOC除去液を排出することを特徴とする請求項7又は8記載のVOC除去液再生・回収方法。
The VOC removal liquid after the VOC is vacuum evaporated is stored in a liquid storage tank provided outside the vacuum container,
9. The VOC removal liquid regeneration / recovery method according to claim 7 or 8, wherein the VOC removal liquid is discharged from the liquid storage tank by the pressure of compressed air after heat exchange.
JP2014183102A 2014-09-09 2014-09-09 Vacuum evaporation type VOC recovery apparatus and method Expired - Fee Related JP5925853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014183102A JP5925853B2 (en) 2014-09-09 2014-09-09 Vacuum evaporation type VOC recovery apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014183102A JP5925853B2 (en) 2014-09-09 2014-09-09 Vacuum evaporation type VOC recovery apparatus and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011018538A Division JP5758638B2 (en) 2011-01-31 2011-01-31 Vacuum evaporation type VOC recovery apparatus and method

Publications (2)

Publication Number Publication Date
JP2015006672A true JP2015006672A (en) 2015-01-15
JP5925853B2 JP5925853B2 (en) 2016-05-25

Family

ID=52337391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014183102A Expired - Fee Related JP5925853B2 (en) 2014-09-09 2014-09-09 Vacuum evaporation type VOC recovery apparatus and method

Country Status (1)

Country Link
JP (1) JP5925853B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179113A (en) * 1983-03-30 1984-10-11 Mitsubishi Heavy Ind Ltd Degassing method of gas dissolved in oil
JPS6025515A (en) * 1983-07-20 1985-02-08 Mitsubishi Heavy Ind Ltd Apparatus for removing component dissolved in oil
JPH06315613A (en) * 1993-04-30 1994-11-15 Mitsubishi Kakoki Kaisha Ltd Recovering apparatus for solvent
JP2001170615A (en) * 1999-12-15 2001-06-26 Kurita Water Ind Ltd Removing method of volatile organic matter
JP2001259304A (en) * 2000-03-24 2001-09-25 Sumikin Kansai Kogyo Kk Purification apparatus for water containing volatile organic compound
JP2001300254A (en) * 2000-04-28 2001-10-30 Kimio Kawai Deodorizing method and deodorizing device
JP2002273157A (en) * 2001-03-22 2002-09-24 Sumitomo Heavy Ind Ltd Method and apparatus for removing volatile organic compound
JP2003126652A (en) * 2001-10-23 2003-05-07 Osaka Gas Co Ltd Nitrogen oxide removal system for exhaust gas from cogeneration

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179113A (en) * 1983-03-30 1984-10-11 Mitsubishi Heavy Ind Ltd Degassing method of gas dissolved in oil
JPS6025515A (en) * 1983-07-20 1985-02-08 Mitsubishi Heavy Ind Ltd Apparatus for removing component dissolved in oil
JPH06315613A (en) * 1993-04-30 1994-11-15 Mitsubishi Kakoki Kaisha Ltd Recovering apparatus for solvent
JP2001170615A (en) * 1999-12-15 2001-06-26 Kurita Water Ind Ltd Removing method of volatile organic matter
JP2001259304A (en) * 2000-03-24 2001-09-25 Sumikin Kansai Kogyo Kk Purification apparatus for water containing volatile organic compound
JP2001300254A (en) * 2000-04-28 2001-10-30 Kimio Kawai Deodorizing method and deodorizing device
JP2002273157A (en) * 2001-03-22 2002-09-24 Sumitomo Heavy Ind Ltd Method and apparatus for removing volatile organic compound
JP2003126652A (en) * 2001-10-23 2003-05-07 Osaka Gas Co Ltd Nitrogen oxide removal system for exhaust gas from cogeneration

Also Published As

Publication number Publication date
JP5925853B2 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
JP5758638B2 (en) Vacuum evaporation type VOC recovery apparatus and method
US9079134B2 (en) Carbon dioxide separating and capturing apparatus
CN103958028B (en) Carbon dioxide separation device
JP5269426B2 (en) Hydrogen generation system
AU2010319846A1 (en) Forward osmosis separation processes
US20130087043A1 (en) Device and Method for Removing Volatile Substances From a Liquid Mixture
JP6088268B2 (en) NMP purification system
JP5925852B2 (en) Vacuum evaporation type VOC recovery apparatus and method
JP5187861B2 (en) VOC removal liquid regeneration / recovery device and regeneration / recovery method
JP6391698B2 (en) Fresh water generator
US20200346164A1 (en) Method and device for obtaining water from ambient air
JP5925853B2 (en) Vacuum evaporation type VOC recovery apparatus and method
KR20150019394A (en) Apparatus for carbon dioxide separation and removal
JP2005066526A5 (en)
CN103539215A (en) Sewage treatment system and process
JP2013040868A (en) Radioactive contaminated water treatment system and radioactive contaminated water treatment method
KR102374527B1 (en) Flue Gas Treatment Device Using Flooding in Scrubber Equipped with Packing
US10537846B2 (en) Method and device for separating carbon dioxide from a gas stream and for removing degradation products in the washing medium by photolytic decomposition
JP3144592U (en) Organic compound gas recovery system
US20240115994A1 (en) Mechanical vapor re-compressor heat pump for separating co2 from water vapor in temperature-vacuum swing adsorption cycles
RU51898U1 (en) ABSORPTION AND DESORPTION DEVICE
CN220071181U (en) VOC's device is got rid of in low temperature condensation
US20230130721A1 (en) Intensified carbon capture using building infrastructure
JP3258469B2 (en) Gas-liquid separation device
JP2022093075A (en) Co2 recovery device and co2 recovery method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141009

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160420

R150 Certificate of patent or registration of utility model

Ref document number: 5925853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees