JPS6025515A - Apparatus for removing component dissolved in oil - Google Patents

Apparatus for removing component dissolved in oil

Info

Publication number
JPS6025515A
JPS6025515A JP13259583A JP13259583A JPS6025515A JP S6025515 A JPS6025515 A JP S6025515A JP 13259583 A JP13259583 A JP 13259583A JP 13259583 A JP13259583 A JP 13259583A JP S6025515 A JPS6025515 A JP S6025515A
Authority
JP
Japan
Prior art keywords
oil
gas
vacuum
dissolved
degassing tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13259583A
Other languages
Japanese (ja)
Other versions
JPH0254124B2 (en
Inventor
Hiroshi Suzumura
洋 鈴村
Hiroshi Makihara
牧原 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13259583A priority Critical patent/JPS6025515A/en
Publication of JPS6025515A publication Critical patent/JPS6025515A/en
Publication of JPH0254124B2 publication Critical patent/JPH0254124B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PURPOSE:To enhance the removal efficiency of a dissolved component by promoting degassing, by separately supplying unpurified oil and recycle oil to a packing layer. CONSTITUTION:An oil sprayer 8b is provided in a vacuum degassing tank 7 other than an oil sprayer 8a for spraying unpurified oil 18 and the recycle oil 17 taken out from the vacuum degassing tank 7 is sprayed from the oil sprayer 8b while inert gas 22 is leaked into the vacuum degassing tank 7 through a leak value 23. Unpurified oil is sprayed into a vacuum atmosphere under atmospheric pressure to perform degassing in a boiling state and gas other than the gas component dissolved in oil is leaked to the vacuum degassing tank to lower the partial pressure of a gaseous phase dissolved component and gas separated from oil is carried out of the degassing tank by the leaked gas.

Description

【発明の詳細な説明】 水素やメタン、エタン、プロパン、ブタン。[Detailed description of the invention] Hydrogen, methane, ethane, propane, butane.

ペンタン、ヘキサン、ヘノタン等の炭化水素カスおよび
これらの中に不純物として含まれるH2Sなどを圧扁す
る圧絹機において、軸封等のために用いるゾールオイル
には被圧縮ガスのJjk、分のほか、空気中の水分など
が溶解するため、シールオイルの物性の維持、防爆安全
性の7rjli 4ja’。
In a silk pressing machine that compresses hydrocarbon residues such as pentane, hexane, henotane, etc. and H2S contained as impurities in these, the sol oil used for shaft sealing etc. contains Jjk, min. of the gas to be compressed, etc. , Since moisture in the air dissolves, the physical properties of the seal oil are maintained, and explosion-proof safety is maintained.

の点から油装置にはそれなシの対策が必要である。特に
ガス井戸元における被圧縮ガスは1(質成分としてペン
タン、ヘキサンからウンデソノン。
From this point of view, oil equipment requires countermeasures. In particular, the compressed gas at the source of the gas well is 1 (quality components include pentane, hexane to undesonone).

ドデカンに至る成分ならびに高濃度のH2Sを含む場合
が多い。したがってシール部通過後のシールオイルには
、これらの成分が多飯に溶解することとなシこれらの溶
解成分を除去しないとシールオイルとして再使用するこ
とはできない。
It often contains components up to dodecane as well as high concentrations of H2S. Therefore, after passing through the seal portion, these components are dissolved in large quantities in the seal oil, and unless these dissolved components are removed, the seal oil cannot be reused as a seal oil.

つまシ−ルオイルに炭化水素やH2Sが残存すると、シ
ールオイルのフラッシュ”インドが低下し、シールオイ
ルをタンクにて貯蔵する際に火災や爆発の危険性が高く
なるほか、タンクや配管さらにシールリングなどの腐食
も問題となる。
If hydrocarbons or H2S remain in the seal oil, the flash of the seal oil will decrease, increasing the risk of fire or explosion when storing the seal oil in a tank, and will also damage the tank, piping, and seal ring. Corrosion such as this is also a problem.

そこで、一般にシールオイルは11]使用に備えて溶解
成分を除去する必要があり、その除去方法としては■加
熱による方法■空気、 N、 、 CO2などイナート
ガス・バブリングによる方法■真空による方法が知ら扛
ている。
Therefore, in general, it is necessary to remove dissolved components from seal oil in preparation for use, and the known methods for removing this include ■ Method by heating ■ Method by bubbling with inert gas such as air, N, CO2, etc. ■ Method by vacuum ing.

このうち、真空方法を用いたオイル中溶解成分除去装置
の従来例について述べる。
Among these, a conventional example of an apparatus for removing dissolved components in oil using a vacuum method will be described.

第1図において、浄化すべきオイル1を弁2を通して供
給し、まずストレーナ3でスラッジ−を除去したのち、
フィードポンf4およU a ft調節計5を介してf
f7足の流量とし、さらに電気ヒータ6によって加温後
、真空脱気槽7の上部からオイルスプレーヤ8によって
空間にスプレーする。真空脱気槽7は共空引きライン9
を通して真空ボン7°10により常に排気され、大気放
出jスプレとして放出されているため、真空雰囲気妙S
形成されている。そこで、真空脱気槽2内にスプレーさ
れたオイルは多数の液滴または液柱となって界面積を大
キくシ、これによって界面力・らの脱気が進行すること
となる。このようにして浄化された貯蔵部内オイル12
は、ポンプ13の吐出流の1部がら取シ出され、フィル
タ14、流量wi、l1(i′i計15を介して所定流
量の浄化したオイル16となる。しかし、1回限りのス
プレーでは十分な脱気効果つまシ浄化効果は期待できな
いので、貯槽部内オイル12乏ポンプ13を介して真空
脱気槽2から取シ出しリサイクルオイル17として、真
空脱気槽に入る直前の未浄化オイル18と合流させ、再
びスプレーすることが行われている。
In FIG. 1, oil 1 to be purified is supplied through a valve 2, and after first removing sludge with a strainer 3,
f via feed pump f4 and U a ft controller 5
After heating with an electric heater 6, the oil is sprayed into the space from the top of the vacuum degassing tank 7 with an oil sprayer 8. The vacuum degassing tank 7 is connected to the empty drawing line 9
Since it is constantly evacuated through a vacuum bomb 7°10 and released into the atmosphere as a spray, the vacuum atmosphere is strange.
It is formed. Therefore, the oil sprayed into the vacuum degassing tank 2 becomes a large number of droplets or liquid columns, increasing the interfacial area, and as a result, degassing progresses due to interfacial forces. Oil 12 in the reservoir purified in this way
is taken out from a part of the discharge flow of the pump 13, and becomes the purified oil 16 at a predetermined flow rate through the filter 14 and the flow rate wi, l1 (i'i meter 15. However, in a one-time spray, Since a sufficient deaeration effect or purification effect cannot be expected, the unpurified oil 18 immediately before entering the vacuum deaeration tank is taken out from the vacuum deaeration tank 2 via the storage tank oil 12 depletion pump 13 and recycled oil 17. The current practice is to merge the water with the water and spray it again.

次に第2図に示す従来例は、真空脱気槽7内のオイルス
プレーヤ8の下方に充填層20を設はプこものである。
Next, in the conventional example shown in FIG. 2, a packed bed 20 is provided below the oil sprayer 8 in the vacuum degassing tank 7.

リサイクルオイル17と真空脱気槽に入る直前の未浄化
オイル18とを合流させると、以下に示すように、物質
移動速度が小さくなる。
When recycled oil 17 and unpurified oil 18 immediately before entering the vacuum degassing tank are combined, the mass transfer rate decreases as shown below.

まず、脱気速度は、次式で表わされる。First, the degassing rate is expressed by the following formula.

NB =V(KLaハ(xi−xt”) −・・−−<
りここで、 N:脱気速度(lcg−+nolAr)■:脱気室脱気
有効容積(m8) K:t、a:容量係数()’l? mo l/rrL”
 Hr °モル分率)Xニオイル中溶解ガス濃度(モル
分率)x*: 気相と平衝にあるオイル中溶解〃ス振度
(モル分率) 添字i:酸成分を示す。
NB =V(KLa(xi-xt”) −・・−−<
Here, N: Degassing rate (lcg-+nolAr) ■: Degassing chamber effective degassing volume (m8) K: t, a: Capacity coefficient ()'l? mol/rrL”
Hr °mole fraction) x Dissolved gas concentration in oil (mole fraction)

(1)式において、未浄化オイル18はリサイクルオイ
ル17と合流した後にスプレーされ、(K La ) 
iはi成分の真空下での容量係数であるために、10−
2〜10−1〔+Cg−mol//′rrL8Hr〕の
オーダーと小さく、従って脱気速度も小さくなるのであ
る。そこで所定の除去効率を得るためにはかなり大きな
充填層20を必要とすることになる〇また第1図、第2
図の装置では、真空脱気槽7内にイチ在する気体は、浄
化すべきオイル1中に溶解している気体のみである。し
たがって、真空脱気槽の操作温度と圧力で決まるところ
の熱力学的平衡組成以下には、オイル中に溶解している
気体を除去することはできない。これを以下に理論的に
説明する。
In equation (1), unpurified oil 18 is sprayed after merging with recycled oil 17, and (K La )
Since i is the capacity coefficient of component i under vacuum, 10-
It is small, on the order of 2 to 10-1 [+Cg-mol//'rrL8Hr], and therefore the degassing rate is also small. Therefore, in order to obtain a predetermined removal efficiency, a considerably large packed bed 20 is required.
In the illustrated apparatus, the only gas present in the vacuum degassing tank 7 is the gas dissolved in the oil 1 to be purified. Therefore, the gas dissolved in the oil cannot be removed below the thermodynamic equilibrium composition determined by the operating temperature and pressure of the vacuum degassing tank. This will be explained theoretically below.

気相と平衡にあるオイル中溶解ガス鋲度xi*は、次式
のように表わされる。
The degree of dissolved gas in oil xi* in equilibrium with the gas phase is expressed by the following equation.

X、傘=yt/Ki −・・・・ ・・・・・(2)こ
こで、y:気相中のガス温度(モル分率)K:気液平衡
関係 熱力学的平衡状態では、もはや脱気速度はゼロであるか
ら、(1)式でNi二0とおき、(2)式を考慮すると
、 3’ i = Ki ” i ”””””” (3)す
なわち、(3)式は気液平衡関係を表わしている。
X, umbrella = yt/Ki - (2) where, y: gas temperature in the gas phase (mole fraction) K: vapor-liquid equilibrium relationship In the thermodynamic equilibrium state, Since the degassing rate is zero, by setting Ni20 in equation (1) and considering equation (2), 3' i = Ki ” i ”””””” (3) That is, equation (3) represents the vapor-liquid equilibrium relationship.

そこで(3)式の両辺に全圧Pを来じると、Pylは成
分iの気相分圧Piとなシ、全成分について分圧の和を
とると、 (4)式から判るように、液相と平衡な気相の分圧の和
すなわち全圧が、真空脱気槽7の操作圧力と等しくなれ
ば、それ以上の脱気は進行しな−こととなる。簡単なた
めに、タービン油にn−ヘキサンのみが溶解している例
を考え、真空脱気槽の操作条件を70 ′G、 1.5
 mmHg abg とした揚台の脱気の限界を考える
。70℃、1.5mmHg abs 下でのn−ヘキサ
ンの気液平衡定数はに二507であシ、また気相はほぼ
n−ヘキサンだけであるからy二1.(l である。し
たがって、平衡下では すなわち、70°C’ 、 1.5 mmHg abs
 (D’m件下ではオイル中のn−ヘキサンは0.2モ
ル襲以下にはすることができない。
Therefore, if we include the total pressure P on both sides of equation (3), Pyl will be the gas phase partial pressure Pi of component i.If we take the sum of the partial pressures for all components, then as can be seen from equation (4), If the sum of the partial pressures of the gas phase in equilibrium with the liquid phase, that is, the total pressure, becomes equal to the operating pressure of the vacuum deaeration tank 7, no further deaeration will proceed. For simplicity, consider an example in which only n-hexane is dissolved in turbine oil, and set the operating conditions of the vacuum degassing tank to 70'G and 1.5
Let's consider the limit of deaeration of the platform as mmHg abg. The vapor-liquid equilibrium constant of n-hexane at 70°C and 1.5 mmHg abs is 2507, and since the gas phase is almost exclusively n-hexane, it is 21. (l. Therefore, under equilibrium, i.e. 70°C', 1.5 mmHg abs
(Under D'm conditions, n-hexane in oil cannot be reduced to less than 0.2 molar concentration.

従来装置によって、オイル中の溶解ガス濃度をさらに下
げる必要がある時は、操作温度を上げるか、操作圧力を
下げるしがないが、オイルの劣化防止上温度は約90〜
100 ℃が限度であシ、圧力f:1桁低くすると残存
ガスム度は1/10となることが期待できるが、逆に排
気容量は10倍の真空ポンプが必俊となるなどの問題が
ある。
With conventional equipment, if it is necessary to further reduce the dissolved gas concentration in the oil, there is no choice but to raise the operating temperature or lower the operating pressure, but in order to prevent oil deterioration, the temperature must be around 90°C.
The limit is 100°C, and if the pressure f is lowered by one order of magnitude, the residual gas level can be expected to be reduced to 1/10, but on the other hand, there are problems such as the need for a vacuum pump with 10 times the exhaust capacity. .

本発明はこのような問題を解決するためになされたもの
で、その目的は未浄化オイルとりザイクルオイルとを別
途に充填層に供給することによシ、すなわち未浄化オイ
ルを常圧下から真空下にスプレーさせて、弊騰状態的に
脱気を起こし、脱気速度を増大させ、またオイル中に溶
解しているガス成分以外のガスを真空脱気槽にリークさ
せることによって、気相における溶解成分の分圧を低下
きせると同時に、リークさせたガスに脱ガスを脱気槽外
に持ち去らせることにより、脱気を促進させ、溶解成分
除去効率を高めることができるオイル中溶解成分除去装
置6を提供することにある。
The present invention was made to solve these problems, and its purpose is to supply unpurified oil and cycle oil separately to a packed bed, that is, to transfer unpurified oil from normal pressure to vacuum. Dissolution in the gas phase can be prevented by spraying on the oil to cause deaeration in a turbulent state, increasing the deaeration rate, and leaking gases other than the gas components dissolved in the oil into the vacuum deaeration tank. Dissolved component removal device 6 in oil that can reduce the partial pressure of the components and at the same time allow the leaked gas to carry away the degassing outside the degassing tank, thereby promoting deaeration and increasing the efficiency of removing dissolved components. Our goal is to provide the following.

以下、本発明の一実施例を第3図に基づき説明する。An embodiment of the present invention will be described below with reference to FIG.

第3図のオイル中溶解成分除去装紅は、第2図の従来装
置と次の点で相違する。すなわち真空脱気槽7内に、未
浄化オイル18をスプレーするオイルスプレーヤ8aと
は別のオイルスグレーヤ8bを設け、真空脱気槽7がら
取シ出されたリサイクルオイル17をそのオイルスプレ
ーヤ8bよシスプレーするようにした点と、イナートガ
ス22をリーク弁23を通して真空脱気槽7内にリーク
をせるようにした点である。
The red coating for removing dissolved components in oil shown in FIG. 3 differs from the conventional apparatus shown in FIG. 2 in the following points. That is, an oil sprayer 8b separate from the oil sprayer 8a that sprays unpurified oil 18 is provided in the vacuum degassing tank 7, and the recycled oil 17 taken out from the vacuum degassing tank 7 is sprayed onto the oil sprayer 8b. The second point is that the inert gas 22 is made to leak into the vacuum degassing tank 7 through the leak valve 23.

なお、図中24はリークさせたイナートガスの流れを示
す。
Note that 24 in the figure indicates the flow of the leaked inert gas.

このように構成きれたオイル中溶解成分除去装置では、
未浄化オイルを常圧下から真空下ヘスプレーさせて沸騰
状態的に脱気を起こし、飛開的に脱気速度を増大させる
ことができる。この原理を第4図にょシ説明する。
In the device for removing dissolved components in oil configured in this way,
By spraying unpurified oil from normal pressure to vacuum, deaeration occurs in a boiling state, and the deaeration rate can be dramatically increased. This principle will be explained with reference to FIG.

第4図は真空脱気槽7における物質収支を説明するため
の図である。第4図において、FキLとしてi fjX
分について物質収支をとると、1’J4=F(Zi−x
、)二(K、、a)j’V(xl−xl”) ・−(5
)また、脱気槽7内でオイルと接触する全ガス量とガス
中のi成分のモル分率はそれぞれ次のようになる。
FIG. 4 is a diagram for explaining the material balance in the vacuum degassing tank 7. In Figure 4, as FkiL, i fjX
Taking the material balance for minutes, 1'J4=F(Zi-x
,)2(K,,a)j'V(xl-xl") ・-(5
) Furthermore, the total amount of gas that comes into contact with oil in the degassing tank 7 and the molar fraction of component i in the gas are as follows.

GTFR−ω+1F(Zlx 1 ) −−−−(6)
−1 そこで気液平衡関係式を用いてxi*をめると、xl”
 =y i/に1 =F (Zl −Xl )/(KIGTFR) −−(
8)となる。したがって、(6)式を(8)式に代入し
、次・・・・・・(9) この(9)式をi=n個連立させて、抜き出し中の各成
分濃度xiをめることができる。なお(5)〜(9)式
で用いられた新しい記号の意味は次の通シである。
GTFR-ω+1F (Zlx 1 ) -----(6)
−1 Therefore, if we calculate xi* using the vapor-liquid equilibrium equation, we get xl”
=y i/to 1 =F (Zl −Xl )/(KIGTFR) --(
8). Therefore, by substituting equation (6) into equation (8), the following... (9) By making i=n simultaneous equations (9), find the concentration xi of each component being extracted. Can be done. The meanings of the new symbols used in equations (5) to (9) are as follows.

F:供給量(kg−mol/Hr :)GTFR:ガス
のトータル流ffi CICgrnol/Hr )L:
抜き出しi (kg−mol/Hr )Z:供P量中の
モル分率〔−〕 Xニオイル中の溶解ガスのモル分率〔−〕ω:リークガ
ス流冊CjC9−mol/Hr )添字i:成分量 添字n:成分数 ここで、近似的には供給オイルの沸騰現象−・のガス(
リークガス24+充填部での脱気ガス)の影gはないと
考えることができる。
F: Supply amount (kg-mol/Hr:) GTFR: Total flow of gas ffi CICgrnol/Hr) L:
Extraction i (kg-mol/Hr) Z: Mole fraction in supplied P amount [-] Mole fraction of dissolved gas in X oil [-] ω: Leak gas flow rate CjC9-mol/Hr) Subscript i: Component Quantity index n: Number of components Here, approximately boiling phenomenon of supplied oil - gas (
It can be considered that there is no influence from the leakage gas 24+degassed gas in the filling section.

沸騰状態は、溶解ガスの平衡気相分圧の総和がその系の
圧力よりも大きい時、すなわち、P責ミΣP−に、Xi
)>1’ のとき生じる。このとき過飽和ははとんど許されないの
で沸騰現象は、戸→Pとなるまで進行すると考えられる
。従って、沸騰現象に伴なうKLaの増大効果(全成分
にt’tは同率)を考慮して、非沸騰時のKLaを修正
し、戸=Pとなる沙度は、次式からめられる。
A boiling state occurs when the sum of the equilibrium gas phase partial pressures of the dissolved gas is greater than the pressure of the system, that is, when P
)>1'. At this time, supersaturation is hardly allowed, so it is thought that the boiling phenomenon progresses until the temperature changes from door to point P. Therefore, taking into consideration the effect of increasing KLa due to the boiling phenomenon (t't is the same for all components), KLa at the time of non-boiling is corrected, and the degree of saturation at which door=P is calculated from the following equation.

Ni二F’、(Z i−” i )”” CKL a]
 ni’ V(X I X 1”) ”’ (IIここ
に である。以上から、沸騰時の容量係M (KL a )
 Rfは非常に大きいため、m騰現象を利用することに
より脱気速度が飛躍的に増大することがわかる。
Ni2F', (Z i-"i)""CKL a]
ni' V(X I
Since Rf is very large, it can be seen that the degassing rate can be dramatically increased by utilizing the m-rising phenomenon.

また(9)式からり−クガスがあるとき(口1」ちa+
)Q)のときNiは増加し、丹たXiも小さくし得るこ
とがわかる。
Also, when there is equation (9), karari-kugasu (mouth 1"chi a+
)Q), it can be seen that Ni increases and tangent Xi can also be decreased.

また以上の如く構成した場合の有効+E全実証するため
、以下に示すタービン油に混合ガスが溶解した例をとり
あけ、脱気試験を実施した。
Further, in order to fully demonstrate the effectiveness +E of the configuration as described above, a degassing test was conducted using the example shown below in which a mixed gas was dissolved in turbine oil.

第1表に試験条件を、第2表および第3表には真空脱気
@7よりポンプ13に至るオイル取出しライン中の組成
をそれぞれ示す。なお、これらの試験結果は、第5図、
第6しjの如くリザイクルオイル17を真空脱気槽7に
入る直前の未浄化オイル18に合流させた場合と比較し
て示しである。
Table 1 shows the test conditions, and Tables 2 and 3 show the composition in the oil take-out line from the vacuum degassing @7 to the pump 13, respectively. These test results are shown in Figure 5.
This figure shows a comparison with the case where the recycle oil 17 is merged with the unpurified oil 18 immediately before entering the vacuum deaeration tank 7 as shown in No. 6-j.

真空脱気検光な1ノー : 0.098m”1/2イン
チラシヒリング リサイクルオイルスプレーヤ茜さ二充填層上面がI)l
Oc、i真空脱気槽操作圧力 :1o韻Hg abs〃
 操作温度 :60℃ オイル供給1ik :0.0207ノCg−mo l 
/)ir第2表および第3表の試験結果から明らかなよ
うに、第3図の如くリサイクルオイルJ7の循環ライン
と未浄化オイル18の供給ラインとを別々にする方が、
第5図の如くリサイクル1フオイルを未浄化オイル18
の供給ライ/に合流させるよ勺も、溶解成分除去効果が
飛躍的傾増大することになる。
Vacuum degassing analysis 1 No: 0.098 m" 1/2 inch Raschig ring recycling oil sprayer Akanesa 2 packed bed top surface is I)l
Oc, i Vacuum degassing tank operating pressure: 1 o Hg abs〃
Operating temperature: 60℃ Oil supply 1ik: 0.0207 Cg-mol
/)IR As is clear from the test results in Tables 2 and 3, it is better to separate the circulation line for recycled oil J7 and the supply line for unpurified oil 18 as shown in Figure 3.
As shown in Figure 5, recycled 1 oil is used as unpurified oil 18.
The effect of removing dissolved components will be dramatically increased if it is merged with the feed line.

また、第2表および第3表の試験結果を比較して、イナ
ートガスのリーク流量、の大きい方が、溶解成分除去効
果も大きいことが判る。
Furthermore, by comparing the test results in Tables 2 and 3, it can be seen that the larger the inert gas leakage flow rate, the greater the dissolved component removal effect.

以上、第3図の実施例では真空脱気槽内部に充填層を採
用した場合を示したが、充填層に代えてスプレー塔5多
孔板塔その他の気液接触方式を採用しても同様の効果を
イ(fることができる。
As mentioned above, the embodiment shown in Fig. 3 shows the case where a packed bed is used inside the vacuum degassing tank, but the same result can be obtained even if a spray tower, perforated plate tower, or other gas-liquid contact system is used instead of the packed bed. You can change the effect.

以上詳述したように、本発明によれば、A’E脱気槽に
おける脱気速度を増大させ、溶解成分除去効率を高め得
るオイル中溶解成分除去装置を提供することができる。
As described in detail above, according to the present invention, it is possible to provide an apparatus for removing dissolved components in oil that can increase the degassing rate in the A'E degassing tank and improve the efficiency of removing dissolved components.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示すオイル中溶8イ成分除去装置の概
略構成図、第2図は第1図の構成にお中溶解成分除去装
置の概略構成図、第4図は第3図の構成における真空脱
気相まわりの物質収支をとるための模式図、第5図は未
浄化オイルとりザイクルオイルとを合流させたオイル中
溶解成分除去装置の概略構成図、第6図は第5図の構成
における真空脱気桶まわシの物質収支をとるための模式
図である。 1・・・浄化すべきオイル、7・・・真空脱気相、8・
°°オイル・スプレーヤ、10・・・真空ポンプ、17
・・リサイクルオイル、18・・・真空脱気相に入る直
前の未浄化オイル、2o・・・充填層、22・・・リー
クさせるイナートガス。
Figure 1 is a schematic configuration diagram of a conventional example of a device for removing 8 components dissolved in oil, Figure 2 is a schematic diagram of a device for removing components dissolved in oil with the configuration shown in Figure 1, and Figure 4 is a diagram of a device for removing dissolved components in oil with the configuration shown in Figure 3. A schematic diagram for taking the mass balance around the vacuum degassing phase in the configuration, Figure 5 is a schematic diagram of the equipment for removing dissolved components in oil, in which unpurified oil and cycle oil are combined, Figure 6 is Figure 5 FIG. 2 is a schematic diagram for calculating the material balance of the vacuum degassing bucket in the configuration of FIG. 1...Oil to be purified, 7...Vacuum degassing phase, 8.
°°Oil sprayer, 10...Vacuum pump, 17
... Recycled oil, 18... Unpurified oil just before entering the vacuum degassing phase, 2o... Filled bed, 22... Inert gas to be leaked.

Claims (1)

【特許請求の範囲】[Claims] ガスおよび低沸点成分を溶解させているオイルを供給ラ
インを通して流入させ真空脱気によりそのオイル中の溶
解成分を放散させる真空脱気槽と、オイル中の溶解成分
以外のイナートカスを真空脱気槽にリークさせ前記真空
脱気槽内のオイルと当該イナートガスとを接触させる手
段と、真空脱気槽よp取出されたりザイクルオイルを前
記供給ラインとは別途に設けられたオイル循現ラインを
通して一74空脱気槽上部に直接供給する手段とを具Φ
11Nシたことを48似とするオイル中溶解成分除去装
h’l 。
There is a vacuum deaeration tank in which oil in which gas and low boiling point components are dissolved flows in through a supply line and the dissolved components in the oil are diffused by vacuum degassing, and inert scum other than the dissolved components in the oil is removed into the vacuum deaeration tank. A means for leaking the oil in the vacuum deaeration tank and the inert gas, and a means for causing cycle oil taken out from the vacuum deaeration tank to pass through an oil circulation line provided separately from the supply line. A means of supplying directly to the upper part of the deaeration tank Φ
An equipment for removing dissolved components in oil similar to 11N and 48.
JP13259583A 1983-07-20 1983-07-20 Apparatus for removing component dissolved in oil Granted JPS6025515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13259583A JPS6025515A (en) 1983-07-20 1983-07-20 Apparatus for removing component dissolved in oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13259583A JPS6025515A (en) 1983-07-20 1983-07-20 Apparatus for removing component dissolved in oil

Publications (2)

Publication Number Publication Date
JPS6025515A true JPS6025515A (en) 1985-02-08
JPH0254124B2 JPH0254124B2 (en) 1990-11-20

Family

ID=15085011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13259583A Granted JPS6025515A (en) 1983-07-20 1983-07-20 Apparatus for removing component dissolved in oil

Country Status (1)

Country Link
JP (1) JPS6025515A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190803A (en) * 1990-11-26 1992-07-09 Nomura Micro Sci Kk Vacuum degassing method
CN102462978A (en) * 2011-07-12 2012-05-23 常州贺斯特电气有限公司 Combined type degassing technology for vacuum oil filter
JP2012157808A (en) * 2011-01-31 2012-08-23 Anest Iwata Corp Vacuum-evaporation-based voc recovery apparatus and method
JP2014240075A (en) * 2014-09-09 2014-12-25 アネスト岩田株式会社 Vacuum-evaporation-based voc recovery apparatus and method
JP2015006672A (en) * 2014-09-09 2015-01-15 アネスト岩田株式会社 Vacuum-evaporation-based voc recovery apparatus and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190803A (en) * 1990-11-26 1992-07-09 Nomura Micro Sci Kk Vacuum degassing method
JP2012157808A (en) * 2011-01-31 2012-08-23 Anest Iwata Corp Vacuum-evaporation-based voc recovery apparatus and method
CN102462978A (en) * 2011-07-12 2012-05-23 常州贺斯特电气有限公司 Combined type degassing technology for vacuum oil filter
JP2014240075A (en) * 2014-09-09 2014-12-25 アネスト岩田株式会社 Vacuum-evaporation-based voc recovery apparatus and method
JP2015006672A (en) * 2014-09-09 2015-01-15 アネスト岩田株式会社 Vacuum-evaporation-based voc recovery apparatus and method

Also Published As

Publication number Publication date
JPH0254124B2 (en) 1990-11-20

Similar Documents

Publication Publication Date Title
US4316725A (en) Method and apparatus for deaerating liquid
CA2466094C (en) Method for absorbing vapours and gasses from pressure vessels
CA1134597A (en) Sterilization gas separation process
US3837143A (en) Simultaneous drying and sweetening of wellhead natural gas
WO2016111765A2 (en) Separating impurities from a fluid steam using multiple co-current contactors
RU2001129287A (en) The method of loading containers with liquefied natural gas under pressure
US5502969A (en) Cryogenic rectification system for fluorine compound recovery
GB2323093A (en) De-acidification of gases yielding acid gases in liquid form
JPS6025515A (en) Apparatus for removing component dissolved in oil
KR100867240B1 (en) A method and a device for loading petroleum
US5771713A (en) Cryogenic rectification system for recovery of fluorine compounds
JPS59179113A (en) Degassing method of gas dissolved in oil
EP0678317B1 (en) Process and plant for separating a gas mixture by cryogenic distillation
US1317688A (en) Balanced process of extracting and desiccating sulfur dioxid from
JPH1015334A (en) Refining of carbon dioxide gas and device therefor
US3630666A (en) Precontacting hydrogen sulfide containing gas streams with rich sulfinol
Badssi et al. Influence of pressure on the gas-liquid interfacial area and the gas-side mass transfer coefficient of a laboratory column equipped with cross-flow sieve trays
RU2750197C1 (en) Method for filling liquid fuel system with prepared fuel and implementation device
Lydersen Cocurrent vacuum de‐aeration of water for injection into oil reservoirs
SU994877A1 (en) Method of liquefying liquid vapours
SU1094849A2 (en) Apparatus for filling transportation containers with petroleum product
US1608365A (en) Preventing loss of volatile liquids
JPH02311596A (en) Technique for removing hydrogen sulfide, light fraction, and water in stripping tower
SU808759A1 (en) Cryogenic pipeline
RU2193001C1 (en) Method of cleaning vapor-gas mixture formed at filling container with oil product from vapors