JP5269426B2 - Hydrogen generation system - Google Patents

Hydrogen generation system Download PDF

Info

Publication number
JP5269426B2
JP5269426B2 JP2008019089A JP2008019089A JP5269426B2 JP 5269426 B2 JP5269426 B2 JP 5269426B2 JP 2008019089 A JP2008019089 A JP 2008019089A JP 2008019089 A JP2008019089 A JP 2008019089A JP 5269426 B2 JP5269426 B2 JP 5269426B2
Authority
JP
Japan
Prior art keywords
hydrogen
adsorption tower
adsorption
water
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008019089A
Other languages
Japanese (ja)
Other versions
JP2009179842A (en
Inventor
孝治 中沢
昌規 岡部
憲司 樽家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008019089A priority Critical patent/JP5269426B2/en
Publication of JP2009179842A publication Critical patent/JP2009179842A/en
Application granted granted Critical
Publication of JP5269426B2 publication Critical patent/JP5269426B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)
  • Drying Of Gases (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen generation system which sufficiently uses an adsorption function of an adsorption tower with a simple structure, and efficiently and economically generates hydrogen. <P>SOLUTION: A hydrogen generation system 10 includes; a water electrolysis apparatus 14 for producing high-pressure hydrogen by electrolyzing water; a first gas-liquid separator 18 for removing a water content contained in the high-pressure hydrogen; and an adsorption device 22 for removing the water content contained in the high-pressure hydrogen by adsorption. The adsorption device 22 includes a first adsorption tower 42a and a second adsorption tower 42b which are arranged in series along a hydrogen-flowing direction, and has a dew-point hygrometer 46 arranged in between the first adsorption tower 42a and the second adsorption tower 42b. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、水を電気分解して水素を生成する水電解部と、生成された前記水素に含まれる水分を吸着して除去する吸着装置とを備える水素生成システムに関する。   The present invention relates to a hydrogen generation system including a water electrolysis unit that electrolyzes water to generate hydrogen and an adsorption device that adsorbs and removes moisture contained in the generated hydrogen.

近年、水素を燃料として電力又は動力を供給するシステム、例えば、燃料電池システムが提案されている。この種のシステムでは、燃料である水素を製造するために、水を電気分解して水素(及び酸素)を発生させる水電解装置が用いられている。   In recent years, a system for supplying electric power or power using hydrogen as a fuel, for example, a fuel cell system has been proposed. In this type of system, a water electrolysis apparatus that generates hydrogen (and oxygen) by electrolyzing water is used to produce hydrogen as a fuel.

この水電解装置では、水分を含んだ水素が製造されており、乾燥状態、例えば、5ppm以下の水素(以下、ドライ水素ともいう)を得るために、前記水素から水分を除去する必要がある。そこで、例えば、特許文献1に開示されている水素ステーションが知られている。   In this water electrolysis apparatus, hydrogen containing water is produced, and in order to obtain a dry state, for example, 5 ppm or less of hydrogen (hereinafter also referred to as dry hydrogen), it is necessary to remove the water from the hydrogen. Therefore, for example, a hydrogen station disclosed in Patent Document 1 is known.

この水素ステーションは、図3に示すように、水分を含む水素を製造する水電解装置1と、水素から水分を奪取して乾燥状態の水素を得る除水器2と、その乾燥状態の水素を貯蔵するタンク3と、除水器2の奪取水分量の増加に伴う機能減退時、その除水器2と交換される水分奪取能を持つ新たな除水器2と、交換後の元の除水器2を再生してその水分奪取能を回復させる再生設備4とを備えている。   As shown in FIG. 3, this hydrogen station includes a water electrolysis apparatus 1 that produces hydrogen containing water, a dehydrator 2 that obtains dry hydrogen by removing moisture from the hydrogen, and the dry hydrogen. When the function is reduced due to an increase in the amount of water taken away by the tank 3 to be stored and the water removal device 2, a new water remover 2 having a water removal ability to be exchanged with the water remover 2, and the original removal after the replacement A regeneration facility 4 is provided for regenerating the water vessel 2 and recovering its water-capturing ability.

水電解装置1は、太陽電池5から供給される電力により作動して水素を製造し、この水素は、水分を含んだ状態で除水器2に送られて前記水分が奪取され、乾燥状態の水素がタンク3に導入されている。   The water electrolysis apparatus 1 is operated by the electric power supplied from the solar cell 5 to produce hydrogen, and this hydrogen is sent to the dehydrator 2 in a state of containing moisture, and the moisture is taken away, and the hydrogen is removed. Hydrogen is introduced into the tank 3.

そして、除水器2の奪取水分量が増加して機能が減退すると、新たな除水器2が、機能を減退した稼働中の除水器2と交換されている。一方、再生設備4では、元の除水器2の再生が行われている。   Then, when the amount of water taken away by the dewatering device 2 increases and its function decreases, a new dewatering device 2 is replaced with an operating dewatering device 2 whose function has been decreased. On the other hand, in the regeneration facility 4, the original dehydrator 2 is regenerated.

特開2002−155386号公報JP 2002-155386 A

ところで、上記の除水器2では、図4に示すように、除水機能がある時点で一気に減退し、水分を含んだ水素がタンク3に供給されてしまう。一方、タンク3に貯蔵される水素は、製品ガスとして所望のドライ水素(例えば、5ppm以下の水素)に維持される必要がある。このため、通常、除水器2は、除水機能を有する期間内で余裕を見て比較的早期に交換されており、前記除水器2の再生処理が頻繁に行われている。   By the way, in the above dehydrator 2, as shown in FIG. 4, when the dewatering function is present, the water is reduced at a stroke and hydrogen containing water is supplied to the tank 3. On the other hand, the hydrogen stored in the tank 3 needs to be maintained at a desired dry hydrogen (for example, 5 ppm or less hydrogen) as a product gas. For this reason, normally, the water remover 2 is replaced | exchanged comparatively at an early stage in the period which has a water removal function, and the reproduction | regeneration process of the said water remover 2 is performed frequently.

しかしながら、除水器2の再生処理では、熱エネルギやパージ水素が消費されており、この再生処理が頻繁に行われるため、損失エネルギが増加するとともに、水素生成の効率が低下するという問題がある。   However, in the regeneration process of the dehydrator 2, heat energy and purge hydrogen are consumed, and this regeneration process is frequently performed. Therefore, there is a problem in that loss energy increases and hydrogen generation efficiency decreases. .

本発明はこの種の問題を解決するものであり、簡単な構成で、吸着塔の吸着機能を可及的に利用することができ、効率的且つ経済的に水素生成処理が遂行可能な水素生成システムを提供することを目的とする。   The present invention solves this type of problem, and with a simple configuration, the adsorption function of the adsorption tower can be utilized as much as possible, and hydrogen production can be performed efficiently and economically. The purpose is to provide a system.

本発明は、水を電気分解して水素を生成する水電解部と、生成された前記水素に含まれる水分を吸着して除去する吸着装置とを備える水素生成システムに関するものである。   The present invention relates to a hydrogen generation system including a water electrolysis unit that electrolyzes water to generate hydrogen, and an adsorption device that adsorbs and removes moisture contained in the generated hydrogen.

吸着装置は、水電解部の下流に、水素流れ方向に沿って直列に配置される2以上の吸着塔と、少なくとも最下流に配置される前記吸着塔より上流に配置される露点検出手段とを備えている。   The adsorption device has two or more adsorption towers arranged in series along the hydrogen flow direction downstream of the water electrolysis unit, and dew point detection means arranged at least upstream of the adsorption tower arranged at the most downstream side. I have.

また、水電解部と吸着装置との間には、前記水電解部から生成される水素を昇圧するための圧力調整バルブが配設されることが好ましい。これにより、1MPa〜70MPaの高圧水素が得られる。   Moreover, it is preferable that a pressure adjusting valve for increasing the pressure of hydrogen generated from the water electrolysis unit is disposed between the water electrolysis unit and the adsorption device. Thereby, high-pressure hydrogen of 1 MPa to 70 MPa is obtained.

さらに、水電解部と吸着装置との間には、生成された水素から水分を除去する気液分離部と、前記気液分離部の下流に位置して前記水素を冷却する冷却器とが配設されることが好ましい。   Further, a gas-liquid separation unit that removes moisture from the produced hydrogen and a cooler that cools the hydrogen located downstream of the gas-liquid separation unit are arranged between the water electrolysis unit and the adsorption device. It is preferable to be provided.

さらにまた、少なくとも最下流に配置される吸着塔は、上流側の他の吸着塔よりも小さな容積に設定されることが好ましい。   Furthermore, it is preferable that the adsorption tower arranged at least on the most downstream side is set to have a smaller volume than other adsorption towers on the upstream side.

本発明によれば、水電解部により生成された水素は、吸着装置を構成する上流側の吸着塔を介して含有水分が除去される。そして、上流側の吸着塔の吸着機能が低下すると、露点検出手段を介して上流側の前記吸着塔が飽和状態であることが検知される。このため、上流側の吸着塔は、その吸着機能を可及的に利用することができ、前記吸着塔の再生処理を有効に削減させることが可能になる。これにより、再生処理に消費される熱エネルギの低減及び水素生成の効率の向上が容易に図られる。   According to the present invention, the hydrogen produced by the water electrolysis unit is removed of the contained water via the upstream adsorption tower constituting the adsorption device. When the adsorption function of the upstream adsorption tower is lowered, it is detected that the upstream adsorption tower is in a saturated state via the dew point detection means. For this reason, the adsorption tower on the upstream side can utilize its adsorption function as much as possible, and the regeneration process of the adsorption tower can be effectively reduced. Thereby, reduction of the heat energy consumed for the regeneration process and improvement of the efficiency of hydrogen generation can be easily achieved.

しかも、2以上の吸着塔は、水素流れ方向に沿って直列に配置されている。従って、上流側の吸着塔の飽和状態が検知された後、多量の水分を含有する水素は、下流側の吸着塔に導入されて前記水分の除去が行われる。これにより、多量の水分を含有する水素が、製品ガスとして供給されることがなく、簡単な構成で、効率的且つ経済的に水素生成処理が遂行可能になる。   Moreover, the two or more adsorption towers are arranged in series along the hydrogen flow direction. Therefore, after the saturation state of the upstream adsorption tower is detected, hydrogen containing a large amount of moisture is introduced into the downstream adsorption tower to remove the moisture. Accordingly, hydrogen containing a large amount of moisture is not supplied as a product gas, and the hydrogen generation process can be performed efficiently and economically with a simple configuration.

図1は、本発明の第1の実施形態に係る水素生成システム10の概略構成説明図である。   FIG. 1 is a schematic configuration explanatory diagram of a hydrogen generation system 10 according to the first embodiment of the present invention.

水素生成システム10は、純水供給装置12を介して市水から生成された純水が供給され、この純水を電気分解することによって高圧水素を製造する水電解装置(水電解部)14と、前記水電解装置14から水素導出路16に導出される前記高圧水素に含まれる水分を除去する第1気液分離器(気液分離部)18と、前記第1気液分離器18から水素供給路20に供給される水素に含まれる水分を吸着して除去する吸着装置22と、前記水素生成システム10全体の運転を制御するコントローラ23とを備える。   The hydrogen generation system 10 is supplied with pure water generated from city water via a pure water supply device 12, and electrolyzes the pure water to produce high-pressure hydrogen and a water electrolysis device (water electrolysis unit) 14. , A first gas-liquid separator (gas-liquid separator) 18 for removing water contained in the high-pressure hydrogen led out from the water electrolysis device 14 to the hydrogen lead-out path 16, and hydrogen from the first gas-liquid separator 18. An adsorption device 22 that adsorbs and removes moisture contained in hydrogen supplied to the supply path 20 and a controller 23 that controls the operation of the entire hydrogen generation system 10 are provided.

水電解装置14は、複数の水分解セル24を積層して構成される。水分解セル24は、水を分解して水素(及び酸素)を発生させるため、固体高分子電解質膜を用い、この固体高分子電解質膜の両面に電極触媒層が設けられた電解質膜・電極構造体を構成する。電解質膜・電極構造体の両側には、給電体が配設され、実質的に燃料電池と同様に構成される。   The water electrolysis device 14 is configured by stacking a plurality of water decomposition cells 24. The water splitting cell 24 uses a solid polymer electrolyte membrane to decompose water and generate hydrogen (and oxygen), and an electrolyte membrane / electrode structure in which electrode catalyst layers are provided on both sides of the solid polymer electrolyte membrane. Make up the body. Power feeding bodies are disposed on both sides of the electrolyte membrane / electrode structure, and are configured substantially in the same manner as a fuel cell.

水分解セル24の積層方向一端には、配管26a、26b及び26cが接続される。配管26a、26bは、純水供給装置12に連通して純水の循環が行われる一方、配管26cは、水素導出路16を介して第1気液分離器18に接続される。第1気液分離器18には、純水循環路28の一端が接続され、前記純水循環路28は、純水供給装置12を介装して水電解装置14の配管26aに接続される。第1気液分離器18の底部には、純水循環路28に連通するドレンバルブ30が設けられる。   Pipes 26 a, 26 b and 26 c are connected to one end of the water splitting cell 24 in the stacking direction. The pipes 26 a and 26 b communicate with the pure water supply device 12 to circulate pure water, while the pipe 26 c is connected to the first gas-liquid separator 18 through the hydrogen lead-out path 16. One end of a pure water circulation path 28 is connected to the first gas-liquid separator 18, and the pure water circulation path 28 is connected to a pipe 26 a of the water electrolysis apparatus 14 via the pure water supply device 12. . A drain valve 30 communicating with the pure water circulation path 28 is provided at the bottom of the first gas-liquid separator 18.

水素供給路20には、第1気液分離器18と吸着装置22との間に位置し、水素ガスの流れ方向に沿って、第1圧力調整バルブ32、冷却器34及び第2気液分離器36が配設される。   The hydrogen supply path 20 is located between the first gas-liquid separator 18 and the adsorption device 22, and along the flow direction of hydrogen gas, the first pressure adjustment valve 32, the cooler 34, and the second gas-liquid separation. A container 36 is provided.

第1圧力調整バルブ32は、水電解装置14から生成される水素を所定の圧力、例えば、35MPaまで昇圧する機能を有している。この第1圧力調整バルブ32の入口側には、脱圧ライン38が開閉弁40を介して接続される。   The first pressure adjustment valve 32 has a function of increasing the pressure of hydrogen generated from the water electrolysis device 14 to a predetermined pressure, for example, 35 MPa. A depressure line 38 is connected to the inlet side of the first pressure regulating valve 32 via an on-off valve 40.

冷却器34は、第1気液分離器18から供給される水素を、例えば、5℃に冷却することにより、前記水素に含まれる水分量を低下させる。第2気液分離器36は、冷却器34で水素から分離された水分を除去する機能を有し、この第2気液分離器36には、純水循環路28aがドレンバルブ30aを介装して接続される。   The cooler 34 reduces the amount of water contained in the hydrogen by cooling the hydrogen supplied from the first gas-liquid separator 18 to, for example, 5 ° C. The second gas-liquid separator 36 has a function of removing water separated from hydrogen by the cooler 34. In the second gas-liquid separator 36, a pure water circulation path 28a is provided with a drain valve 30a. Connected.

吸着装置22は、水素に含まれる水蒸気(水分)を物理的吸着作用で吸着するとともに、加熱により水分を蒸発脱着して再生される水分吸着剤を充填した第1吸着塔42a及び第2吸着塔42bを備える。水分吸着剤としては、例えば、活性炭、合成ゼオライト、多孔質アルミナ又はシリカが用いられる。第1吸着塔42a及び第2吸着塔42bとしては、通常、TSA(Thermal Swing Adsorption)装置の加熱吸着塔が使用される。   The adsorption device 22 adsorbs water vapor (moisture) contained in hydrogen by a physical adsorption action, and the first adsorption tower 42a and the second adsorption tower filled with a moisture adsorbent regenerated by evaporating and desorbing moisture by heating. 42b. As the moisture adsorbent, for example, activated carbon, synthetic zeolite, porous alumina, or silica is used. As the first adsorption tower 42a and the second adsorption tower 42b, a heating adsorption tower of a TSA (Thermal Swing Adsorption) apparatus is usually used.

第1吸着塔42a及び第2吸着塔42bは、水素流れ方向(矢印A方向)に沿って直列に配置されるとともに、前記第2吸着塔42bは、前記第1吸着塔42aよりも小さな容積に設定される。第1吸着塔42a及び第2吸着塔42bを周回して円筒状の第1ヒータ44a及び第2ヒータ44bが配設される。なお、第1ヒータ44a及び第2ヒータ44bに代えて、触媒燃焼部(図示せず)を採用してもよい。   The first adsorption tower 42a and the second adsorption tower 42b are arranged in series along the hydrogen flow direction (arrow A direction), and the second adsorption tower 42b has a smaller volume than the first adsorption tower 42a. Is set. Cylindrical first heaters 44a and second heaters 44b are arranged around the first adsorption tower 42a and the second adsorption tower 42b. A catalytic combustion unit (not shown) may be employed instead of the first heater 44a and the second heater 44b.

第1吸着塔42aと第2吸着塔42bとの間には、露点計(露点検出手段)46が配置される。この露点計46は、第1吸着塔42aが飽和状態に至ったこと、すなわち、前記第1吸着塔42aが所望の吸着機能を得られない状態に至ったことを検知する。第1吸着塔42aの入口及び出口には、バルブ48a、48bが設けられており、前記第1吸着塔42aは、水素供給路20から取り外し可能である。   A dew point meter (dew point detection means) 46 is disposed between the first adsorption tower 42a and the second adsorption tower 42b. The dew point meter 46 detects that the first adsorption tower 42a has reached a saturated state, that is, that the first adsorption tower 42a has not achieved a desired adsorption function. Valves 48 a and 48 b are provided at the inlet and outlet of the first adsorption tower 42 a, and the first adsorption tower 42 a can be removed from the hydrogen supply path 20.

第2吸着塔42bの出口側には、第2圧力調整バルブ49を介してドライ水素供給路50が設けられる。ドライ水素供給路50には、高圧タンク52が配設されるとともに、燃料供給路54がバルブ56を介して分岐される。この燃料供給路54には、車両充填部58が設けられており、前記車両充填部58から燃料電池車両60の図示しない燃料タンクに燃料である水素が充填可能である。   A dry hydrogen supply path 50 is provided on the outlet side of the second adsorption tower 42 b via a second pressure adjustment valve 49. The dry hydrogen supply path 50 is provided with a high-pressure tank 52 and a fuel supply path 54 is branched via a valve 56. The fuel supply path 54 is provided with a vehicle filling portion 58, and a fuel tank (not shown) of the fuel cell vehicle 60 can be filled with hydrogen as fuel from the vehicle filling portion 58.

このように構成される水素生成システム10の動作について、以下に説明する。   The operation of the hydrogen generation system 10 configured as described above will be described below.

先ず、純水供給装置12では、純水循環路28に純水が導出されており、この純水は、配管26aから水電解装置14内に供給される。水電解装置14では、各水分解セル24で水が電気により分解されて水素が生成されており、第1圧力調整バルブ32が閉塞されることによって、高圧水素(1MPa〜70MPa)が直接得られる。この高圧水素は、配管26cを介して水電解装置14の外部に取り出し可能となる。一方、反応により生成した酸素は外部に排出され(図示せず)、使用済みの水は、配管26bを介して純水供給装置12に戻される。   First, in the pure water supply device 12, pure water is led to the pure water circulation path 28, and this pure water is supplied into the water electrolysis device 14 from the pipe 26a. In the water electrolysis device 14, water is decomposed by electricity in each water splitting cell 24 to generate hydrogen, and the first pressure regulating valve 32 is closed to directly obtain high pressure hydrogen (1 MPa to 70 MPa). . This high-pressure hydrogen can be taken out of the water electrolysis apparatus 14 through the pipe 26c. On the other hand, oxygen produced by the reaction is discharged to the outside (not shown), and used water is returned to the pure water supply device 12 through the pipe 26b.

水電解装置14で生成された水蒸気を含む比較的高圧の水素は、水素導出路16を介して第1気液分離器18に送られる。この第1気液分離器18では、水素に含まれる水蒸気が、この水素から分離されて純水循環路28に戻される一方、前記水素は、水素供給路20に供給可能である。   The relatively high-pressure hydrogen containing water vapor generated by the water electrolysis device 14 is sent to the first gas-liquid separator 18 via the hydrogen lead-out path 16. In the first gas-liquid separator 18, water vapor contained in hydrogen is separated from the hydrogen and returned to the pure water circulation path 28, while the hydrogen can be supplied to the hydrogen supply path 20.

そこで、第1圧力調整バルブ32が開放されることにより水素供給路20に供給された水素は、冷却器34に導入されて所定の温度(例えば、5℃程度)に冷却され、この水素に含まれる水分を液化させる。液化された水分は、第2気液分離器36で除去されるため、一層水分量が減少された水素は、吸着装置22に送られる。   Therefore, the hydrogen supplied to the hydrogen supply path 20 by opening the first pressure regulating valve 32 is introduced into the cooler 34 and cooled to a predetermined temperature (for example, about 5 ° C.), and is contained in this hydrogen. Liquefied water is liquefied. Since the liquefied water is removed by the second gas-liquid separator 36, the hydrogen whose water content is further reduced is sent to the adsorption device 22.

吸着装置22では、バルブ48a、48bが開放されており、水素は、最上流に配置されている第1吸着塔42aに導入される。この第1吸着塔42a内では、水素に含まれる水蒸気が吸着されて乾燥状態の水素(以下、ドライ水素ともいう)が得られ、このドライ水素は、第2吸着塔42bを通過してドライ水素供給路50に導出される。   In the adsorption device 22, the valves 48a and 48b are opened, and hydrogen is introduced into the first adsorption tower 42a arranged at the most upstream. In the first adsorption tower 42a, water vapor contained in hydrogen is adsorbed to obtain dry hydrogen (hereinafter, also referred to as dry hydrogen), which passes through the second adsorption tower 42b and becomes dry hydrogen. It is led out to the supply path 50.

ドライ水素供給路50に導出されたドライ水素は、高圧タンク52に貯蔵される一方、前記ドライ水素の一部は、必要に応じてバルブ56の開放作用下に燃料供給路54に供給され、車両充填部58から燃料電池車両60に充填される。   The dry hydrogen led out to the dry hydrogen supply path 50 is stored in the high-pressure tank 52, while a part of the dry hydrogen is supplied to the fuel supply path 54 under the opening action of the valve 56 as required. The fuel cell vehicle 60 is filled from the filling unit 58.

次いで、第1吸着塔42aが限界吸着量に達すると、この第1吸着塔42aが飽和して水分を含んだ水素が第2吸着塔42bに導入されるとともに、この飽和状態が露点計46を介して検出される。   Next, when the first adsorption tower 42a reaches the limit adsorption amount, the first adsorption tower 42a is saturated and hydrogen containing water is introduced into the second adsorption tower 42b. Detected through.

このため、水電解装置14による水素生成工程が一旦停止され、バルブ48a、48bが閉塞されるとともに、第1吸着塔42aが水素供給路20から取り外されて、前記第1吸着塔42aに再生処理が施される。再生処理が施された第1吸着塔42a又は予め用意されている新たな第1吸着塔42aは、水素供給路20に接続されて水電解装置14による水素生成処理が再開される。   For this reason, the hydrogen production process by the water electrolysis apparatus 14 is temporarily stopped, the valves 48a and 48b are closed, and the first adsorption tower 42a is removed from the hydrogen supply path 20, and the first adsorption tower 42a is regenerated. Is given. The first adsorption tower 42a subjected to the regeneration process or the new first adsorption tower 42a prepared in advance is connected to the hydrogen supply path 20, and the hydrogen generation process by the water electrolysis apparatus 14 is resumed.

この場合、第1の実施形態では、第1吸着塔42a及び第2吸着塔42bが、水素流れ方向(矢印A方向)に沿って直列に配置されるとともに、最下流に配置される前記第2吸着塔42bより上流に露点計46が配置されている。このため、第1吸着塔42aが飽和状態に至った後に、規定量以上の水分量を含んだ水素ガスは、第2吸着塔42bにより良好に水分の吸着除去が行われる。従って、水分を含んだ水素ガスが高圧タンク52側に製品ガスとして供給されることがなく、所望のドライ水素を、一定の期間にわたって前記高圧タンク52側に供給することができる。   In this case, in the first embodiment, the first adsorption tower 42a and the second adsorption tower 42b are arranged in series along the hydrogen flow direction (arrow A direction), and the second arranged at the most downstream. A dew point meter 46 is disposed upstream of the adsorption tower 42b. For this reason, after the first adsorption tower 42a reaches the saturated state, the hydrogen gas containing the moisture amount equal to or more than the specified amount is favorably desorbed by the second adsorption tower 42b. Therefore, hydrogen gas containing moisture is not supplied as a product gas to the high-pressure tank 52 side, and desired dry hydrogen can be supplied to the high-pressure tank 52 side for a certain period.

これにより、第1吸着塔42aの吸着機能を可及的に利用することができ、前記第1吸着塔42aの再生処理を有効に削減することが可能になる。このため、第1吸着塔42aの再生処理に消費される熱エネルギを低減するとともに、水素生成効率の向上が図られるという効果が得られる。   Thereby, the adsorption function of the first adsorption tower 42a can be utilized as much as possible, and the regeneration process of the first adsorption tower 42a can be effectively reduced. For this reason, while reducing the heat energy consumed for the regeneration process of the 1st adsorption tower 42a, the effect that improvement in hydrogen production efficiency is achieved is acquired.

さらに、水電解装置14では、例えば、35MPaの高圧水素を生成するため、常圧の水素を生成する場合に比べて、単位水素分子中に含有される水分量を大幅に削減することができる。水素ガス中に含有する水分量は、温度にのみ依存しており、例えば、水電解装置14の運転温度が約60℃である際、0.1MPaの水素ガス中に含まれる水分量は、35MPaの水素ガス中に含まれる水分量に比べて、同一水素分子量当たり6000倍以上となる。   Furthermore, since the water electrolysis device 14 generates high-pressure hydrogen of 35 MPa, for example, the amount of water contained in the unit hydrogen molecule can be greatly reduced as compared with the case of generating normal-pressure hydrogen. The amount of water contained in the hydrogen gas depends only on the temperature. For example, when the operating temperature of the water electrolysis apparatus 14 is about 60 ° C., the amount of water contained in the 0.1 MPa hydrogen gas is 35 MPa. The amount of water contained in the hydrogen gas is 6000 times or more for the same hydrogen molecular weight.

換言すれば、高圧水素ガス中に含まれる水分量は、常圧の水素ガス中に含まれる水分量に比べて大幅に低下し、これによって第1吸着塔42aの吸着寿命が大幅に延びる。このため、第1吸着塔42aは、常圧の水素ガスの再生工程に用いられる場合に比べ、同量の吸着剤で、約6000倍以上の時間にわたり寿命が延び、再生工程の頻度が大幅に削減されるという利点がある。   In other words, the amount of water contained in the high-pressure hydrogen gas is significantly lower than the amount of water contained in the normal-pressure hydrogen gas, thereby greatly extending the adsorption life of the first adsorption tower 42a. For this reason, compared with the case where the 1st adsorption tower 42a is used for the reproduction | regeneration process of a hydrogen gas of a normal pressure, lifetime is extended over about 6000 time with the same quantity of adsorbent, and the frequency of a reproduction | regeneration process is greatly increased. There is an advantage that it is reduced.

しかも、第1吸着塔42aの寿命が大幅に延びるため、この第1吸着塔42aを有効に小型化することが可能になる。さらに、第2吸着塔42bは、常時、水分の吸着処理に使用されないため、第1吸着塔42aに比べて小さな容積に設定することができる。これにより、吸着装置22全体を大幅に小型化且つ簡素化することが可能になるという効果がある。   In addition, since the life of the first adsorption tower 42a is greatly extended, the first adsorption tower 42a can be effectively downsized. Furthermore, since the second adsorption tower 42b is not always used for moisture adsorption processing, the second adsorption tower 42b can be set to a smaller volume than the first adsorption tower 42a. Thereby, there is an effect that the entire adsorption device 22 can be greatly reduced in size and simplified.

さらにまた、第1の実施形態では、第1圧力調整バルブ32と第2圧力調整バルブ49とが設けられている。このため、第1圧力調整バルブ32と第2圧力調整バルブ49とを閉塞することにより、第1吸着塔42a及び第2吸着塔42b内を高圧に保持することができ、水電解装置14から生成される水素ガスの流動変動に影響されることを良好に抑制することが可能になる。   Furthermore, in the first embodiment, a first pressure adjustment valve 32 and a second pressure adjustment valve 49 are provided. Therefore, by closing the first pressure adjustment valve 32 and the second pressure adjustment valve 49, the inside of the first adsorption tower 42a and the second adsorption tower 42b can be maintained at a high pressure, and is generated from the water electrolysis device 14. It is possible to satisfactorily suppress the influence of the flow fluctuation of the generated hydrogen gas.

図2は、本発明の第2の実施形態に係る水素生成システム70の概略構成説明図である。なお、第1の実施形態に係る水素生成システム10と同一の構成要素には同一の参照符号を付して、その詳細な説明は省略する。   FIG. 2 is a schematic configuration explanatory diagram of a hydrogen generation system 70 according to the second embodiment of the present invention. In addition, the same referential mark is attached | subjected to the component same as the hydrogen generation system 10 which concerns on 1st Embodiment, and the detailed description is abbreviate | omitted.

水素生成システム70は、吸着装置72を備えるとともに、前記吸着装置72は、水素流れ方向に沿って直列に配置される第1吸着塔74a、第2吸着塔74b及び第3吸着塔74cを備える。第1吸着塔74a、第2吸着塔74b及び第3吸着塔74cを周回して、円筒状の第1ヒータ76a、第2ヒータ76b及び第3ヒータ76cが配置される。   The hydrogen generation system 70 includes an adsorption device 72, and the adsorption device 72 includes a first adsorption tower 74a, a second adsorption tower 74b, and a third adsorption tower 74c that are arranged in series along the hydrogen flow direction. Cylindrical first heater 76a, second heater 76b, and third heater 76c are arranged around the first adsorption tower 74a, second adsorption tower 74b, and third adsorption tower 74c.

最下流に配置される第3吸着塔74cより上流には、すなわち、前記第3吸着塔74cと第2吸着塔74bとの間には、露点計46が配置される。なお、第1吸着塔74aと第2吸着塔74bとの間には、必要に応じて、露点計46を配置してもよい。第3吸着塔74cは、第1吸着塔74a及び第2吸着塔74bよりも小さな容積に設定される。   A dew point meter 46 is arranged upstream of the third adsorption tower 74c arranged on the most downstream side, that is, between the third adsorption tower 74c and the second adsorption tower 74b. In addition, you may arrange | position the dew point meter 46 between the 1st adsorption tower 74a and the 2nd adsorption tower 74b as needed. The third adsorption tower 74c is set to have a smaller volume than the first adsorption tower 74a and the second adsorption tower 74b.

このように構成される第2の実施形態では、水電解装置14で生成された水素は、先ず、第1吸着塔74aの吸着作用下に水分が除去され、ドライ水素として第2吸着塔74b及び第3吸着塔74cを通って高圧タンク52側に供給される。   In the second embodiment configured as described above, the hydrogen generated in the water electrolysis apparatus 14 is first removed from the moisture under the adsorption action of the first adsorption tower 74a, and then dried as the second adsorption tower 74b and the dry hydrogen. It is supplied to the high-pressure tank 52 side through the third adsorption tower 74c.

そして、第1吸着塔74aが限界吸着量を超えると、水分を含んだ水素は、この第1吸着塔74aを通過して第2吸着塔74bに導入され、水分が吸着される。このため、第2吸着塔74bでドライ水素が得られ、このドライ水素は、第3吸着塔74cを通って高圧タンク52側に製品ガスとして供給される。   When the first adsorption tower 74a exceeds the limit adsorption amount, the hydrogen containing moisture passes through the first adsorption tower 74a and is introduced into the second adsorption tower 74b, and the moisture is adsorbed. For this reason, dry hydrogen is obtained in the second adsorption tower 74b, and this dry hydrogen is supplied as product gas to the high-pressure tank 52 side through the third adsorption tower 74c.

さらに、第2吸着塔74bが限界吸着量を超えると、露点計46により第1吸着塔74a及び第2吸着塔74bが飽和状態であることが検出される一方、水分を含んだ水素ガスは、第3吸着塔74cに導入される。従って、第3吸着塔74cでは、水素中の水分を除去することができ、水分を含んだ水素ガスが製品ガスとして高圧タンク52側に供給されることを阻止することが可能になる。   Further, when the second adsorption tower 74b exceeds the limit adsorption amount, the dew point meter 46 detects that the first adsorption tower 74a and the second adsorption tower 74b are saturated, while the hydrogen gas containing moisture is It introduce | transduces into the 3rd adsorption tower 74c. Therefore, in the third adsorption tower 74c, moisture in the hydrogen can be removed, and it is possible to prevent hydrogen gas containing moisture from being supplied as a product gas to the high-pressure tank 52 side.

次いで、第1吸着塔74a及び第2吸着塔74bは、水素供給路20から取り出されて再生処理が施された後、前記水素供給路20に新たな第1吸着塔74a及び第2吸着塔74bが配設されて、水素生成処理が再開される。   Next, after the first adsorption tower 74a and the second adsorption tower 74b are taken out from the hydrogen supply path 20 and subjected to regeneration treatment, new first adsorption tower 74a and second adsorption tower 74b are added to the hydrogen supply path 20. And the hydrogen generation process is resumed.

これにより、第1吸着塔74a及び第2吸着塔74bは、それぞれの吸着機能を可及的に利用することができるとともに、多量の水分を含んだ水素は、製品ガスとして供給されることがない。このため、簡単な構成で、効率的且つ経済的に水素生成処理が遂行可能になる等、上記の第1の実施形態と同様の効果が得られる。   As a result, the first adsorption tower 74a and the second adsorption tower 74b can utilize the respective adsorption functions as much as possible, and hydrogen containing a large amount of moisture is not supplied as a product gas. . For this reason, the same effects as those of the first embodiment described above can be obtained, such as enabling the hydrogen generation process to be performed efficiently and economically with a simple configuration.

なお、第1吸着塔74aと第2吸着塔74bとの間にも、露点計46を配置すれば、前記第1吸着塔74aの飽和状態と、前記第2吸着塔74bの飽和状態とを、個別に検出することができる。   In addition, if the dew point meter 46 is also arranged between the first adsorption tower 74a and the second adsorption tower 74b, the saturation state of the first adsorption tower 74a and the saturation state of the second adsorption tower 74b, It can be detected individually.

また、第2の実施形態において、吸着装置72は、第1吸着塔74a〜第3吸着塔74cの3塔直列構造を採用しているが、これに限定されるものではなく、例えば4塔直列構造等の多塔直列構造を採用することも可能である。   Moreover, in 2nd Embodiment, although the adsorption | suction apparatus 72 employ | adopts the 3 towers serial structure of the 1st adsorption tower 74a-the 3rd adsorption tower 74c, it is not limited to this, For example, 4 tower series It is also possible to adopt a multi-column series structure such as a structure.

本発明の第1の実施形態に係る水素生成システムの概略構成説明図である。It is a schematic structure explanatory view of a hydrogen generation system concerning a 1st embodiment of the present invention. 本発明の第2の実施形態に係る水素生成システムの概略構成説明図である。It is schematic structure explanatory drawing of the hydrogen production system which concerns on the 2nd Embodiment of this invention. 特許文献1に開示されている水素ステーションの説明図である。It is explanatory drawing of the hydrogen station currently disclosed by patent document 1. FIG. 吸着塔の吸着機能の説明図である。It is explanatory drawing of the adsorption | suction function of an adsorption tower.

符号の説明Explanation of symbols

10、70…水素生成システム 12…純水供給装置
14…水電解装置 16…水素導出路
18、36…気液分離器 20…水素供給路
22、72…吸着装置 23…コントローラ
24…水分解セル 32、49…圧力調整バルブ
34…冷却器
42a、42b、74a〜74c…吸着塔
44a、44b、76a〜76c…ヒータ
46…露点計 52…高圧タンク
DESCRIPTION OF SYMBOLS 10,70 ... Hydrogen production system 12 ... Pure water supply apparatus 14 ... Water electrolysis apparatus 16 ... Hydrogen lead-out path 18, 36 ... Gas-liquid separator 20 ... Hydrogen supply path 22, 72 ... Adsorption apparatus 23 ... Controller 24 ... Water splitting cell 32, 49 ... Pressure adjusting valve 34 ... Coolers 42a, 42b, 74a-74c ... Adsorption towers 44a, 44b, 76a-76c ... Heater 46 ... Dew point meter 52 ... High pressure tank

Claims (3)

水を電気分解して水素を生成する水電解部と、生成された前記水素に含まれる水分を吸着して除去する吸着装置とを備える水素生成システムであって、
前記吸着装置は、前記水電解部の下流に、水素流れ方向に沿って直列に配置される2以上の吸着塔と、
少なくとも最下流に配置される前記吸着塔より上流に配置される露点検出手段と、
を備え、
前記水電解部と最上流に配置される前記吸着との間には、該水電解部から生成される前記水素を昇圧するための第1圧力調整バルブが配設され、且つ、最下流に配置される前記吸着塔の下流には、第2圧力調整バルブが配設され、前記第1及び第2圧力調整バルブにより前記吸着塔内を高圧に保持することを特徴とする水素生成システム。
A hydrogen generation system comprising a water electrolysis unit that electrolyzes water to generate hydrogen, and an adsorption device that adsorbs and removes moisture contained in the generated hydrogen,
The adsorption device comprises two or more adsorption towers arranged in series along the flow direction of hydrogen downstream of the water electrolysis unit;
Dew point detection means disposed at least upstream of the adsorption tower disposed at the most downstream;
With
Between the water electrolysis unit and the adsorption tower disposed at the uppermost stream, a first pressure regulating valve for increasing the pressure of the hydrogen generated from the water electrolysis unit is disposed, and at the most downstream side. A hydrogen generation system, wherein a second pressure regulating valve is disposed downstream of the adsorption tower, and the inside of the adsorption tower is held at a high pressure by the first and second pressure regulating valves.
請求項1記載の水素生成システムにおいて、前記水電解部と最上流に配置される前記吸着との間には、生成された前記水素から水分を除去する気液分離部と、
前記気液分離部の下流に位置して前記水素を冷却する冷却器と、
が配設されることを特徴とする水素生成システム。
2. The hydrogen generation system according to claim 1, wherein a gas-liquid separation unit that removes moisture from the generated hydrogen is provided between the water electrolysis unit and the adsorption tower disposed in the uppermost stream .
A cooler that is located downstream of the gas-liquid separator and cools the hydrogen;
A hydrogen generation system characterized in that is provided.
請求項1又は2記載の水素生成システムにおいて、少なくとも最下流に配置される前記吸着塔は、上流側の他の前記吸着塔よりも小さな容積に設定されることを特徴とする水素生成システム。   3. The hydrogen generation system according to claim 1, wherein the adsorption tower disposed at least on the most downstream side is set to have a smaller volume than the other adsorption towers on the upstream side.
JP2008019089A 2008-01-30 2008-01-30 Hydrogen generation system Expired - Fee Related JP5269426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008019089A JP5269426B2 (en) 2008-01-30 2008-01-30 Hydrogen generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008019089A JP5269426B2 (en) 2008-01-30 2008-01-30 Hydrogen generation system

Publications (2)

Publication Number Publication Date
JP2009179842A JP2009179842A (en) 2009-08-13
JP5269426B2 true JP5269426B2 (en) 2013-08-21

Family

ID=41034044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008019089A Expired - Fee Related JP5269426B2 (en) 2008-01-30 2008-01-30 Hydrogen generation system

Country Status (1)

Country Link
JP (1) JP5269426B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2377972B1 (en) * 2010-04-19 2014-03-05 GP Joule Holding GmbH & Co. KG Device for electric generation of hydrogen
JP5462754B2 (en) * 2010-09-24 2014-04-02 本田技研工業株式会社 Operation method of high pressure water electrolysis system
JP5825929B2 (en) * 2011-08-24 2015-12-02 株式会社神鋼環境ソリューション Dehumidifying device and method of manufacturing dehumidifying device
EP2749345A4 (en) * 2011-08-24 2015-08-26 Kobelco Eco Solutions Co Ltd Dehumidifying device, and manufacturing method for same
JP5825928B2 (en) * 2011-08-24 2015-12-02 株式会社神鋼環境ソリューション Dehumidifier
JP5798166B2 (en) * 2013-10-23 2015-10-21 本田技研工業株式会社 Differential pressure type high pressure water electrolysis system and its starting method
TWI639765B (en) * 2017-01-24 2018-11-01 黃柏瑜 Composite green energy purifier
JP7038016B2 (en) * 2018-07-05 2022-03-17 本田技研工業株式会社 Hydrogen station
JP6667151B1 (en) 2018-12-03 2020-03-18 パナソニックIpマネジメント株式会社 Hydrogen pressurization system
WO2020240967A1 (en) 2019-05-31 2020-12-03 パナソニックIpマネジメント株式会社 Hydrogen system and method of driving hydrogen system
JP6876998B1 (en) 2019-07-24 2021-05-26 パナソニックIpマネジメント株式会社 Compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3313916B2 (en) * 1994-11-16 2002-08-12 高砂熱学工業株式会社 Rotor Deterioration Diagnosis Method and Rotor Replacement Prediction Method in Two-Stage Dry Dehumidification System
JP2003194297A (en) * 2001-07-06 2003-07-09 Honda Motor Co Ltd Hydrogen station
JP2007100204A (en) * 2005-10-07 2007-04-19 Mitsubishi Corp Method and apparatus for producing high pressure hydrogen

Also Published As

Publication number Publication date
JP2009179842A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5269426B2 (en) Hydrogen generation system
JP5220432B2 (en) Hydrogen generation system
JP6473221B2 (en) System and method for regenerating an absorbent bed for drying compressed wet hydrogen
TWI521056B (en) Methane recovery method and methane recovery unit
JP5906074B2 (en) Hydrogen production system
KR101709867B1 (en) Apparatus for capturing of carbon dioxide
WO2008099976A1 (en) Carbon dioxide capturing device including water vapor pretreatment apparatus
JP6659717B2 (en) Hydrogen recovery method
DK2963107T3 (en) PROCESS OF REFINING A BIOMETHAN BIOGAS CIRCUIT AND ACCOMPANYING IMPLEMENTATION THEREOF
JP4673283B2 (en) Hydrogen generation system and adsorption device regeneration method thereof
CN109641746A (en) The method that hydrogen is recycled in gas is decomposed from biomass thermal
KR101310174B1 (en) Method for treatment of drain in hydrogen production and hydrogen production system
JP5896467B2 (en) Argon gas purification method and purification apparatus
JP2010229248A (en) Method for deoxygenation of digestion gas and apparatus
JP2007308600A (en) Gas refiner and method for producing methane
JP5220511B2 (en) Adsorber regeneration method for hydrogen generation system
JP2006112488A (en) Concentrating method and storing device of methane derived from sewage sludge
JP2007231383A (en) Hydrogen generation system
CN210001582U (en) Low-moisture-content hydrogen chloride synthesis system
JP7181151B2 (en) dehumidifier
JP2013216555A (en) Hydrogen generating device
JP4228144B2 (en) Solid polymer water electrolysis hydrogen production system
CN205137496U (en) System for gas boiler and gas turbine flue gas are used for gas to transfer storage
JP2005285626A (en) Fuel gas manufacturing power generation system
KR102526672B1 (en) Method for operating water electrolysis system capable of stably maintaining quality of hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5269426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees