JP5187861B2 - VOC removal liquid regeneration / recovery device and regeneration / recovery method - Google Patents

VOC removal liquid regeneration / recovery device and regeneration / recovery method Download PDF

Info

Publication number
JP5187861B2
JP5187861B2 JP2010096720A JP2010096720A JP5187861B2 JP 5187861 B2 JP5187861 B2 JP 5187861B2 JP 2010096720 A JP2010096720 A JP 2010096720A JP 2010096720 A JP2010096720 A JP 2010096720A JP 5187861 B2 JP5187861 B2 JP 5187861B2
Authority
JP
Japan
Prior art keywords
voc
removal liquid
voc removal
vacuum
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010096720A
Other languages
Japanese (ja)
Other versions
JP2011224469A (en
Inventor
茂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2010096720A priority Critical patent/JP5187861B2/en
Publication of JP2011224469A publication Critical patent/JP2011224469A/en
Application granted granted Critical
Publication of JP5187861B2 publication Critical patent/JP5187861B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

本発明は、VOC(揮発性有機化合物)を除去するために用いられたVOC除去液(以下、適宜、単に「除去液」という)から、そこに含まれるVOCを除去し、除去液を回収するためのVOC除去液再生・回収装置及び再生・回収方法に関する。   The present invention removes VOC contained in a VOC removal solution (hereinafter, simply referred to as “removal solution”) used to remove VOC (volatile organic compounds), and collects the removal solution. The present invention relates to a VOC removal liquid regeneration / recovery device and a regeneration / recovery method.

特許文献1が示すVOC除去装置(以下、適宜「従来の装置1」という)には、VOC(排ガス)に接触させた除去液(吸収液)を回収する吸収液回収槽が設けられている。吸収液回収槽にはヒータが設けられ、ヒータの加温によって除去液からVOCを蒸発除去するように構成されている。一方、脱気膜を用いた除去液回収機構として、特許文献2に記載された装置(以下、適宜「従来の装置2」という)がある。従来の装置2は、処理すべき液を気体透過膜の一方の側に導入し、他方の側の気相を減圧することにより、液中に含有される気体ないし揮発性物質を気相室へ除去するモジュールにより構成されている。従来の装置2は、さらに、減圧した気相室に搬送ガスとしての空気を導入するためのエアブリーダーが設けられている。特許文献2には、エアブリーダーは、脱気を促進するための手段であって、そこから導入されたガスが、気体透過膜を透過した揮発性物質を効率よく運び去るような位置に設けられることが好ましい、との記載、さらに、気体透過膜として、平膜、中空糸膜、管状膜の非多孔質膜や多孔質膜を適用できる、との記載がある。   The VOC removal device shown in Patent Document 1 (hereinafter referred to as “conventional device 1” as appropriate) is provided with an absorption liquid recovery tank for recovering a removal liquid (absorption liquid) brought into contact with VOC (exhaust gas). The absorption liquid recovery tank is provided with a heater, and is configured to evaporate and remove VOC from the removal liquid by heating the heater. On the other hand, there is an apparatus described in Patent Document 2 (hereinafter referred to as “conventional apparatus 2” as appropriate) as a removing liquid recovery mechanism using a deaeration membrane. The conventional apparatus 2 introduces the liquid to be treated into one side of the gas permeable membrane and depressurizes the gas phase on the other side, thereby transferring the gas or volatile substance contained in the liquid to the gas phase chamber. It consists of modules to be removed. The conventional apparatus 2 is further provided with an air bleeder for introducing air as a carrier gas into the decompressed gas phase chamber. In Patent Document 2, the air bleeder is a means for promoting deaeration, and the gas introduced from the air bleeder is provided at a position where the volatile substance that has permeated the gas permeable membrane is efficiently carried away. In addition, there is a description that it is preferable to use a flat membrane, a hollow fiber membrane, a non-porous membrane such as a tubular membrane or a porous membrane as the gas permeable membrane.

特開2002−273157号公報(段落0017、0018参照)JP 2002-273157 A (see paragraphs 0017 and 0018) 特許第2949732号公報(第3頁第5欄及び第6欄参照)Japanese Patent No. 2949732 (see page 3, column 5 and column 6)

しかしながら、従来の装置1は、除去液(吸収液)回収のためにヒータを用いているため、消費電力が大きくその分だけ余計にCOを排出するという課題がある。また、従来の装置2は気体透過膜を必要とするので、透過する際に揮発物質等が受ける悪影響により処理効率が悪いという課題がある。 However, since the conventional apparatus 1 uses a heater for recovering the removal liquid (absorbing liquid), there is a problem that power consumption is large and CO 2 is discharged by that much. Further, since the conventional apparatus 2 requires a gas permeable membrane, there is a problem in that the processing efficiency is poor due to an adverse effect of volatile substances and the like when permeating.

上記した2つの課題を解決するために発明者らは、鋭意研究を重ねた結果、ヒータを使用せずに効率的にVOC除去液を再生・回収できる技術を開発した。その詳しい内容については、項を改めて説明する。なお、いずれかの請求項記載の発明を説明するに当たって行う用語の定義等は、その記載順や発明のカテゴリーの違いに関わらず、その性質上可能な範囲において他の請求項記載の発明にも適用があるものとする。   In order to solve the above-described two problems, the inventors have conducted intensive research and developed a technology that can efficiently regenerate and recover the VOC removal liquid without using a heater. The details will be explained anew in the section. It should be noted that the definition of terms used to describe the invention described in any claim is not limited to the description order or the category of the invention, and is applicable to the invention described in the other claims as long as it is possible. There shall be application.

(請求項1記載の発明の特徴)
請求項1記載の発明に係るVOC除去液再生・回収装置(以下、適宜「請求項1の装置」という)は、VOC除去液中に含まれるVOCを除去してVOC除去液を再生・回収する装置であって、VOC除去液を噴霧する送液ポンプ及びノズルと、当該ノズルを内部に配した真空容器と、当該真空容器内部を減圧してVOC除去液に含まれるVOCを真空蒸発させるために当該真空容器に接続した真空ポンプと、当該真空容器内に蒸発促進気体を導入する気体導入機構と、当該真空容器から処理後のVOC除去液を排出する排液機構と、を備え、当該真空容器内における、当該ノズルと当該排液機構との間および当該ノズルと当該真空ポンプとの接続口との間に、VOC除去液の少なくとも一部と接触し接触したVOC除去液の通過を妨げずに一時的に保持するトラップを配してあることを特徴とする。ここで、「トラップ」には、たとえば、網状のもの、多孔体、連続気泡フォーム体、溢れるように構成した皿状のもの、がある。
(Characteristics of the invention of claim 1)
The VOC removal liquid regeneration / recovery device (hereinafter referred to as “the device of claim 1” as appropriate) according to the first aspect of the invention removes the VOC contained in the VOC removal liquid and regenerates / recovers the VOC removal liquid. an apparatus comprising: liquid feed pump and nozzle for spraying the VOC removal solution, and the vacuum container arranged the nozzle therein, the VOC which by reducing the internal pressure the vacuum chamber contained in the VOC removal solution in order to vacuum evaporation A vacuum pump connected to the vacuum vessel; a gas introduction mechanism for introducing an evaporation promoting gas into the vacuum vessel; and a drainage mechanism for discharging the processed VOC removal liquid from the vacuum vessel. Without interfering with the passage of the VOC removal liquid in contact with and in contact with at least a part of the VOC removal liquid between the nozzle and the drainage mechanism and between the nozzle and the connection port of the vacuum pump. By arranging a trap that time retained Oh, wherein the Rukoto. Here, examples of the “trap” include a net-like material, a porous material, an open-cell foam material, and a dish-shaped material configured to overflow.

請求項1の装置によれば、送液ポンプによって圧送されたVOC除去液が、真空容器内においてノズルから噴霧される。真空ポンプの働きにより真空容器内は減圧され、これによってVOC除去液からVOCが真空蒸発する。VOC除去液は噴霧によって霧状になっているので単に貯留してあるものに比べてその表面積が飛躍的に拡大している。これと相まって、気体導入機構を介した蒸発促進気体の導入が、真空蒸発の効率をよくする。すなわち、VOC除去液の再生・回収が効率よく行われる。ここで、「真空蒸発」とは、気相の圧力を減圧してVOC除去液から揮発性物質等を分離する方法のことをいう。蒸発の一種であるが、常圧蒸発のように温度を上昇させて揮発性物質等を分離する方法とはことなり、熱を必要とせず、VOC除去液の回収に当たって冷却する必要もない。もっとも、加温を完全排除する趣旨ではない。VOC除去液や含有される揮発性物質等の種類、さらに、処理環境の違い等にもよるが、VOC除去液を加温(たとえば、40〜80℃)することにより、真空蒸発をより効果的に行いうる場合もある。さらに、トラップの存在によりVOC除去液が真空容器内に留まる時間がトラップされている時間だけ長くなる。長くなった分だけ、VOCが真空蒸発しやすくなり、それが、VOC除去液の再生効率をさらに押し上げる。 According to the apparatus of the first aspect, the VOC removal liquid pumped by the liquid feed pump is sprayed from the nozzle in the vacuum container. The inside of the vacuum vessel is depressurized by the action of the vacuum pump, whereby VOC is vacuum evaporated from the VOC removal solution. Since the VOC removal liquid is atomized by spraying, its surface area is dramatically increased as compared with the one that is simply stored. Combined with this, the introduction of the evaporation promoting gas through the gas introduction mechanism improves the efficiency of vacuum evaporation. That is, the regeneration / recovery of the VOC removal liquid is efficiently performed. Here, “vacuum evaporation” refers to a method of reducing the pressure in the gas phase and separating volatile substances and the like from the VOC removal liquid. Although it is a kind of evaporation, it is different from the method of separating volatile substances and the like by raising the temperature as in atmospheric pressure evaporation, and does not require heat, and does not need to be cooled when recovering the VOC removal solution. However, it is not intended to completely eliminate heating. Depending on the type of VOC removal liquid and volatile substances contained, and the difference in the processing environment, vacuum evaporation is more effective by heating the VOC removal liquid (for example, 40 to 80 ° C.). There are cases where this can be done. Furthermore, due to the presence of the trap, the time during which the VOC removal liquid stays in the vacuum vessel is increased by the time during which it is trapped. The longer the VOC is, the easier it is to evaporate in vacuum, which further increases the regeneration efficiency of the VOC removal solution.

(請求項記載の発明の特徴)
請求項記載の発明に係るVOC除去液再生・回収装置(以下、適宜「請求項の装置」という)は、請求項の装置の好ましい態様として、前記トラップは、連続気泡フォーム体(たとえば、ウレタンフォーム)を含めて構成してある。
(Characteristics of the invention described in claim 2 )
VOC removal solution regeneration and recovery apparatus according to the second aspect of the present invention (hereinafter, appropriately referred to as "billing system section 2") is a preferable embodiment of the apparatus according to claim 1, wherein both trap, open-celled foam material ( For example, urethane foam) is included.

請求項の装置によれば、請求項の装置の作用効果に加え、連続気泡フォーム体はそのセル壁の総面積がたいへん広いので、それに付着したVOC除去液の総表面積もたいへん広くなる。広くなった分だけVOC蒸発が促進され、それによって、VOC除去液再生が効率よく行われる。 According to the apparatus of claim 2 , in addition to the function and effect of the apparatus of claim 1 , the total cell wall area of the open cell foam body is very large, so that the total surface area of the VOC removal liquid adhering thereto is also very large. VOC evaporation is promoted by the increased amount, whereby the VOC removal liquid regeneration is efficiently performed.

(請求項記載の発明の特徴)
請求項記載の発明に係るVOC除去液再生・回収装置(以下、適宜「請求項の装置」という)は、請求項1または2の装置の好ましい態様として、当該真空ポンプには、排気に含まれるVOCを処理するVOC処理機構を接続してある。
(Characteristics of Claim 3 )
According to a third aspect of the present invention, there is provided a VOC removal liquid regeneration / recovery device (hereinafter referred to as “the third device” as appropriate) as a preferred embodiment of the first or second device. A VOC processing mechanism for processing the included VOC is connected.

請求項の装置によれば、請求項1または2の装置の作用効果に加え、処理機構を設けることにより真空ポンプの排気に含まれるVOCを処理(たとえば、再生・回収、燃焼)することができる。特に、再生・回収した場合は、VOCの再生・回収ができるようになる。 According to the apparatus of claim 3 , in addition to the function and effect of the apparatus of claim 1 or 2 , it is possible to process (for example, regeneration / recovery, combustion) of VOC contained in the exhaust of the vacuum pump by providing a processing mechanism. it can. In particular, when the regeneration / recovery is performed, the VOC can be regenerated / recovered.

(請求項記載の発明の特徴)
請求項記載の発明に係るVOC除去液再生・回収方法(以下、適宜「請求項の方法」という)は、VOC除去液中に含まれるVOCを除去するためのVOC除去液再生・回収方法であって、真空容器内においてVOC除去液をノズルから噴霧するとともに真空ポンプによって減圧し、さらに、蒸発促進気体を気体導入機構から当該真空容器内に導入することによってVOC除去液に含まれるVOCを真空蒸発させる際に、当該ノズルと当該気体導入機構との間および当該ノズルと当該真空ポンプとの接続口との間に配したトラップにより、VOC除去液の少なくとも一部と接触し接触したVOC除去液の通過を妨げずに一時的に保持する。ここで、「トラップ」は、たとえば、網状のもの、多孔体、連続気泡フォーム体、溢れるように構成した皿状のもの、がある。
(Feature of the invention of claim 4 )
The VOC removal liquid regeneration / recovery method according to the invention described in claim 4 (hereinafter referred to as “method of claim 4 ” as appropriate) is a VOC removal liquid regeneration / recovery method for removing VOC contained in the VOC removal liquid. Then, the VOC removal liquid is sprayed from the nozzle in the vacuum container and the pressure is reduced by the vacuum pump, and further, the VOC contained in the VOC removal liquid is introduced by introducing the evaporation promoting gas into the vacuum container from the gas introduction mechanism. when Ru evaporated in vacuo, the trap disposed between and between the nozzle and the connection port between the vacuum pump with the nozzle and the gas introducing mechanism, VOC in contact in contact with at least a portion of the VOC removal solution It temporarily held without interfering with passage of the removing solution. Here, examples of the “trap” include a net-like material, a porous material, an open-cell foam material, and a dish-shaped material configured to overflow.

請求項の方法によれば、再生・回収対象となるVOC除去液が真空容器内において噴霧され、これとともに、真空ポンプの働きにより真空容器内が減圧される。これによってVOC除去液からVOCが真空蒸発する。真空容器内への蒸発促進気体の導入は、VOCの真空蒸発を促進する。VOC除去液は噴霧によって霧状になっているので単に貯留してあるものに比べてその表面積が飛躍的に拡大している。これと相まって、気体導入機構を介した蒸発促進気体の導入が、真空蒸発の効率をよくする。すなわち、VOC除去液の再生・回収が効率よく行われる。さらに、トラップの存在によりVOC除去液が真空容器内に留まる時間がトラップされている時間だけ長くなる。長くなった分だけ、VOCが真空蒸発しやすくなり、それが、VOC除去液の再生効率をさらに押し上げる。 According to the method of claim 4, the VOC removal liquid to be regenerated / collected is sprayed in the vacuum container, and the vacuum container is depressurized by the action of the vacuum pump. This causes VOC to evaporate in vacuum from the VOC removal solution. The introduction of the evaporation promoting gas into the vacuum vessel promotes the VOC vacuum evaporation. Since the VOC removal liquid is atomized by spraying, its surface area is dramatically increased as compared with the one that is simply stored. Combined with this, the introduction of the evaporation promoting gas through the gas introduction mechanism improves the efficiency of vacuum evaporation. That is, the regeneration / recovery of the VOC removal liquid is efficiently performed. Furthermore, due to the presence of the trap, the time during which the VOC removal liquid stays in the vacuum vessel is increased by the time during which it is trapped. The longer the VOC is, the easier it is to evaporate in vacuum, which further increases the regeneration efficiency of the VOC removal solution.

(請求項記載の発明の特徴)
請求項記載の発明に係るVOC除去液再生・回収方法(以下、適宜「請求項の方法」という)は、請求項の方法の好ましい態様として、前記トラップは、連続気泡フォーム体(たとえば、ウレタンフォーム)を含めて構成してある。
(Feature of the invention of claim 5 )
VOC removal solution regeneration and recovery method according to the invention of claim 5 wherein (hereinafter, appropriately referred to as "billing method of claim 5") is a preferable embodiment of the method according to claim 4, wherein both trap, open-celled foam material ( For example, urethane foam) is included.

請求項方法によれば、請求項方法の作用効果に加え、連続気泡フォーム体はそのセル壁の総面積がたいへん広いので、それに付着したVOC除去液の総表面積もたいへん広くなる。広くなった分だけVOC蒸発が促進され、それによって、VOC除去液再生が効率よく行われる。 According to the method of the fifth aspect , in addition to the effect of the method of the fourth aspect , since the total cell wall area of the open cell foam body is very large, the total surface area of the VOC removal liquid adhering thereto is also very large. VOC evaporation is promoted by the increased amount, whereby the VOC removal liquid regeneration is efficiently performed.

本発明によればヒータが不要であるため、用いているものに比べ電力を消費しない分CO排出が少ない。また、気体透過膜を必要としないので、透過する際に揮発物質等が受ける悪影響を受けない。 According to the present invention, since a heater is not required, CO 2 emission is less as much as it does not consume power as compared with the heater used. In addition, since no gas permeable membrane is required, there is no adverse effect on volatile substances and the like when permeating.

VOC除去液再生・回収装置の概略断面図である。It is a schematic sectional drawing of a VOC removal liquid reproduction | regeneration and collection | recovery apparatus. VOC再生・回収実験の結果を示す図である。It is a figure which shows the result of VOC reproduction | regeneration / collection | recovery experiment. VOC再生・回収実験の結果を示す図である。It is a figure which shows the result of VOC reproduction | regeneration / collection | recovery experiment. VOC再生・回収実験の結果を示す図である。It is a figure which shows the result of VOC reproduction | regeneration / collection | recovery experiment. VOC再生・回収実験の結果を示す図である。It is a figure which shows the result of VOC reproduction | regeneration / collection | recovery experiment. VOC再生・回収実験の結果を示す図である。It is a figure which shows the result of VOC reproduction | regeneration / collection | recovery experiment. VOC再生・回収実験の概念図である。It is a conceptual diagram of VOC reproduction | regeneration and collection | recovery experiment. VOC再生・回収実験の実験装置を示す図である。It is a figure which shows the experimental apparatus of VOC reproduction | regeneration / collection | recovery experiment. VOC再生・回収実験の結果を示す図である。It is a figure which shows the result of VOC reproduction | regeneration / collection | recovery experiment. VOC再生・回収実験の結果を示す図である。It is a figure which shows the result of VOC reproduction | regeneration / collection | recovery experiment. VOC除去液を噴霧するVOC再生・回収の実験装置を示す図である。It is a figure which shows the experimental apparatus of VOC reproduction | regeneration and collection | recovery which sprays a VOC removal liquid. VOC除去液を噴霧するVOC再生・回収の実験装置を示す図である。It is a figure which shows the experimental apparatus of VOC reproduction | regeneration and collection | recovery which sprays a VOC removal liquid. VOC再生・回収実験の結果を示す図である。It is a figure which shows the result of VOC reproduction | regeneration / collection | recovery experiment.

ここで、図面を参照しながら、本発明を実施するための形態(以下、適宜「本実施形態」という)について説明する。図1に示すように、本実施形態に係るVOC除去液再生・回収装置1(以下、適宜「再生・回収装置1」という)は、VOC(揮発性有機化合物)が含まれたVOC除去液(以下、適宜「被処理除去液」という)から、そのVOCを除去してVOC除去液(以下、適宜「再生除去液」という)を再生・回収する方法を実施する装置である。   Here, a form for carrying out the present invention (hereinafter referred to as “this embodiment” as appropriate) will be described with reference to the drawings. As shown in FIG. 1, the VOC removal liquid regeneration / recovery device 1 (hereinafter referred to as “regeneration / recovery device 1” as appropriate) according to the present embodiment includes a VOC removal solution containing VOC (volatile organic compound) ( This is an apparatus that implements a method for removing and regenerating the VOC from the “processed removal liquid” (hereinafter referred to as “processed removal liquid” as appropriate) and regenerating and collecting the VOC removal liquid (hereinafter referred to as “regeneration removal liquid” as appropriate).

(VOC除去液再生・回収装置の概略構造)
図1に示す再生・回収装置1は、貯留タンク3、送液ポンプ5、ノズル7、真空容器9、真空ポンプ11、気体導入機構13、排液機構15と、から概ね構成してある。貯留タンク3は、被処理除去液Ldを貯留するタンクである。貯留タンク3は、外部から注入された被処理除去液Ldを貯留するようになっているが、必要がなければ省略してもよい。たとえば、貯留タンク3の代わりにVOC除去装置(図示を省略)から直接、被処理除去液Ldを取り出したり、被処理除去液Ldの送液管(図示を省略)の途中に設けたりすることができる。送液ポンプ5は、貯留タンク3に貯留されている被処理除去液Ldを取り出してノズル7へ圧送するためのものである。ノズル7は、圧送された被処理除去液Ldを真空容器9内で噴霧するためのものである。真空ポンプ11の排気側にはVOC処理機構19を取り付けてある。
(Schematic structure of VOC removal liquid regeneration / recovery device)
The regeneration / collection device 1 shown in FIG. 1 is generally composed of a storage tank 3, a liquid feed pump 5, a nozzle 7, a vacuum container 9, a vacuum pump 11, a gas introduction mechanism 13, and a drainage mechanism 15. The storage tank 3 is a tank that stores the processing removal liquid Ld. The storage tank 3 stores the treatment removal liquid Ld injected from the outside, but may be omitted if not necessary. For example, instead of the storage tank 3, the to-be-removed removal liquid Ld may be directly taken out from the VOC removing device (not shown) or provided in the middle of the liquid feed pipe (not shown) for the to-be-treated removal liquid Ld. it can. The liquid feed pump 5 is for taking out the liquid to be removed Ld stored in the storage tank 3 and pumping it to the nozzle 7. The nozzle 7 is for spraying the to-be-processed removal liquid Ld fed in the vacuum vessel 9. A VOC processing mechanism 19 is attached to the exhaust side of the vacuum pump 11.

(真空容器の構造)
真空容器9は接続した真空ポンプ11によって内部が減圧されるようになっている筒状容器である。真空容器9内の上部には上述したノズル7を配してあり、その下部には気体導入機構13を、さらに最下部には排液機構15をそれぞれ配してある。これらに加え本実施形態では、真空容器9の高さ方向の途中に霧トラップ17を、同じく上部には霧トラップ17´をそれぞれ設けてある。
(Vacuum container structure)
The vacuum container 9 is a cylindrical container whose inside is decompressed by a connected vacuum pump 11. The above-described nozzle 7 is disposed in the upper part of the vacuum vessel 9, the gas introduction mechanism 13 is disposed in the lower part, and the drainage mechanism 15 is disposed in the lowermost part. In addition to these, in the present embodiment, a mist trap 17 is provided in the middle of the vacuum container 9 in the height direction, and a mist trap 17 ′ is provided at the upper part.

(トラップの構造)
本実施形態の霧トラップ17は、連続気泡フォーム体17aと、それを下支えする支持体17bと、により構成してある。連続気泡フォーム体17aには、ポリウレタンフォーム(スポンジ)を採用した。ここで、ポリウレタンフォームを採用したのは、それが軽量であり安価に入手できるので最適と考えたからである。さらに、ポリウレタンフォームによって構成した連続気泡フォーム体17aは、その一辺を1mの立方体である場合(すなわち、容積1立方メートル)に、その単位容積当たり1490mという膨大な表面積(セル壁の総面積)を有し、空隙率も0.97でVOC除去液の通過抵抗もほとんどないという利点もある。これに伴い、そのセル壁に付着する被処理除去液Ldの総面積も(付着しない部分があるとしても)膨大となり、これが、効率のよいVOCの真空蒸発を実現する。従来のセラミック製ガス吸着用多孔体と比較して軽量・安価(概ね1/10以下)であり、ウレタンフォームは非常に使い勝手がよい。もっとも隣接気泡間のセル壁が相互に連通している気泡構造の気泡体であって、被処理除去液Ldがそのセル壁に付着可能なものであれば、ポリウレタンフォーム以外のフォームを適宜採用することを妨げない。なお、霧トラップ17´は、真空容器9噴霧された除去液が真空ポンプ11に入らない様にブロックするために設けてある。霧トラップ17´には、上記した連続気泡フォーム17aと同様にポリウレタンフォームを採用したが、霧トラップの目的が達成できる限り他の連続気泡フォームその他の部材を採用してもよい。
(Trap structure)
The fog trap 17 of this embodiment is configured by an open-cell foam body 17a and a support body 17b that supports it. Polyurethane foam (sponge) was adopted as the open cell foam body 17a. Here, the polyurethane foam was adopted because it was considered optimal because it was lightweight and available at low cost. Further, the open-cell foam body 17a made of polyurethane foam has a huge surface area (total cell wall area) of 1490 m 2 per unit volume when one side is a cube of 1 m (that is, a volume of 1 cubic meter). It has an advantage that it has a porosity of 0.97 and almost no passage resistance of the VOC removal liquid. Along with this, the total area of the to-be-processed removal liquid Ld adhering to the cell wall also becomes enormous (even if there is a non-adhering part), and this realizes efficient VOC vacuum evaporation. Compared to conventional ceramic gas-adsorbing porous bodies, it is lighter and less expensive (approximately 1/10 or less), and urethane foam is very easy to use. Of course, if the cell wall between adjacent bubbles communicates with each other and has a bubble structure and the removal liquid Ld to be treated can adhere to the cell wall, a foam other than polyurethane foam is appropriately employed. I will not prevent it. The fog trap 17 ′ is provided to block the removal liquid sprayed from the vacuum container 9 from entering the vacuum pump 11. As the fog trap 17 ′, polyurethane foam is used in the same manner as the open cell foam 17 a described above, but other open cell foam and other members may be used as long as the purpose of the fog trap can be achieved.

支持体17bは、網状の部材であって真空容器9内部を横断するように取り付けてある。網状にしたのは、被処理除去液Ldが過度に滞留せずに連続気泡フォーム体17aから滴下できるようにするためである。したがって、支持体17bの網目は、連続気泡フォーム体17aを下支えするのに十分であり、かつ、VOC除去液の滴下が円滑に行われる程度の粗さであることが必要である。そのような目的が達成できるのであれば、この支持体17bは、網状のもの以外の、たとえば、簀の子状のもの、パンチングメタルのような多数の小穴を形成した板部材、によって構成することもできる。連続気泡フォーム体17aが充分に自立可能な硬さを持っている場合、連続気泡フォーム体以外の自立可能な部材をトラップとして採用した場合等、支持体17bが不要であれば、これを省略して構わない。   The support 17b is a net-like member and is attached so as to cross the inside of the vacuum vessel 9. The reason for forming the net is that the removal liquid Ld to be treated can be dripped from the open-cell foam body 17a without excessive retention. Accordingly, the mesh of the support 17b needs to be sufficient to support the open-cell foam body 17a and to have a roughness that allows the VOC removal liquid to be smoothly dropped. If such an object can be achieved, the support body 17b can be constituted by a plate member other than a net-like member, for example, a cocoon-like member, or a plate member formed with a large number of small holes such as punching metal. . If the open-cell foam body 17a has sufficient hardness to be self-supporting, or if a self-supporting member other than the open-cell foam body is employed as a trap, this is omitted if the support body 17b is unnecessary. It doesn't matter.

(除去液の噴霧)
ノズル7は、連続気泡フォーム体17aの上部に位置させ、噴霧した被処理除去液Ldが満遍なく行き渡るように噴霧角や連続気泡フォーム体17aとの距離、噴霧圧力、噴霧粒径等を調整する。ノズル7の個数は、これを1個としたが、真空容器9の容積や被処理除去液Ldの単位時間当たりの処理量等に合わせて、適宜増やすこともできる。
(Spraying removal liquid)
The nozzle 7 is positioned above the open-cell foam body 17a, and adjusts the spray angle, the distance from the open-cell foam body 17a, the spray pressure, the spray particle size, etc. so that the sprayed removal liquid Ld sprays evenly. The number of the nozzles 7 is one, but can be appropriately increased according to the volume of the vacuum container 9 and the processing amount per unit time of the liquid Ld to be processed.

(気体導入機構の構造)
気体導入機構13は、リーク弁である。真空ポンプ11を駆動させて真空容器9内を減圧した状態でこのリーク弁を開放すると、蒸発促進用気体(本実施形態では空気)を真空容器9内へ吸引導入するようになっている。ここで、図1に示すリーク弁を設ける代わりに、ノズル7を介して蒸発促進用気体を真空容器9内に導入するように構成してもよい。リーク弁とノズル7の両者によって気体導入を行ってもよい。これらの場合のノズル7は、被処理除去液を噴霧する機能と気体導入機構13の機能を兼ね備えることになる。
(Structure of gas introduction mechanism)
The gas introduction mechanism 13 is a leak valve. When this leak valve is opened in a state where the vacuum pump 11 is driven and the inside of the vacuum vessel 9 is decompressed, an evaporation promoting gas (air in this embodiment) is sucked into the vacuum vessel 9. Here, instead of providing the leak valve shown in FIG. 1, an evaporation promoting gas may be introduced into the vacuum vessel 9 through the nozzle 7. Gas introduction may be performed by both the leak valve and the nozzle 7. The nozzle 7 in these cases has both the function of spraying the liquid to be treated and the function of the gas introduction mechanism 13.

(本実施形態の作用効果)
再生・回収装置1によれば、貯留タンク3内に貯留されていた被処理除去液Ldは送液ポンプ5によって圧送されて真空容器9内のノズル7から噴霧される。一方、真空ポンプ11の働きにより真空容器9内は減圧され、これによって被処理除去液LdからVOCが真空蒸発する。被処理除去液Ldは噴霧によって霧状になっているので単に貯留してあるものに比べてその表面積が飛躍的に拡大している。霧状の被処理除去液Ldはやがて連続気泡フォーム体17aに到着してそのセル壁に付着する。セル壁に付着した被処理除去液Ldは、その表面積をさらに拡大する。拡大に拡大を重ねた被処理除去液Ldの表面積は膨大となる。これらと相まって、気体導入機構13を介した蒸発促進気体(空気)の導入が、真空蒸発の効率をよくする。すなわち、被処理除去液Ldの回収(再生除去液Lcへの転換)が効率よく行われる。被処理除去液Ldは、連続気泡フォーム体17aを通過(下降)しながら再生除去液Lcとなり、連続気泡フォーム体17a及び支持体17bを通過して滴下する。滴下した再生除去液Lcは排液機構15を介して真空容器9外へ排出され、再利用に供される。真空蒸発したVOCは真空ポンプ11に吸引され、その後、VOC処理機構19によって処理される。本実施形態のVOC処理機構19は、VOCを回収して再利用可能とする処理を行うようになっている。又、VOCの再利用が不要であれば、VOCを単に除去処理する。
(Operational effect of this embodiment)
According to the regeneration / recovery device 1, the to-be-processed removal liquid Ld stored in the storage tank 3 is pumped by the liquid pump 5 and sprayed from the nozzle 7 in the vacuum container 9. On the other hand, the inside of the vacuum vessel 9 is depressurized by the action of the vacuum pump 11, whereby VOC is evaporated in a vacuum from the removal liquid Ld to be processed. Since the to-be-processed removal liquid Ld is atomized by spraying, its surface area is dramatically increased as compared with the liquid just stored. The mist removal liquid Ld eventually arrives at the open-cell foam body 17a and adheres to the cell wall. The to-be-processed removal liquid Ld adhering to the cell wall further expands its surface area. The surface area of the removal liquid Ld to be processed which has been enlarged and enlarged is enormous. Combined with these, the introduction of the evaporation promoting gas (air) through the gas introduction mechanism 13 improves the efficiency of vacuum evaporation. That is, the recovery liquid Ld to be treated (recovery removal liquid Lc) is efficiently recovered. The to-be-processed removal liquid Ld becomes the regeneration removal liquid Lc while passing (falling) through the open-cell foam body 17a, and dropped through the open-cell foam body 17a and the support body 17b. The dropped regeneration removal liquid Lc is discharged out of the vacuum container 9 through the drainage mechanism 15 and is reused. The vacuum-evaporated VOC is sucked into the vacuum pump 11 and then processed by the VOC processing mechanism 19. The VOC processing mechanism 19 of the present embodiment performs processing for collecting VOC and making it reusable. If it is not necessary to reuse the VOC, the VOC is simply removed.

(真空蒸発法の実験結果)
気体導入機構13について付け加える。真空蒸発(空気流動真空蒸発)に際して気体導入機構であるリーク弁を介した空気を導入することにより、処理効率を高めることができる理由は、次の通りである。すなわち、VOCを含んだVOC除去液を再生させる従来の方法としては図2(a)に示す膜分離によるPV法(パーベーパレーション法)がある。しかし、この方法ではVOC除去液からのTolueneの回収率0.027%と非常に低い値となり、リアルタイムでのVOC除去液の再生は困難である。
(Experimental result of vacuum evaporation method)
The gas introduction mechanism 13 is added. The reason why the processing efficiency can be improved by introducing air through a leak valve, which is a gas introduction mechanism, in vacuum evaporation (air flow vacuum evaporation) is as follows. That is, as a conventional method for regenerating a VOC removal solution containing VOC, there is a PV method (pervaporation method) by membrane separation shown in FIG. However, with this method, the recovery rate of Toluene from the VOC removal solution is as low as 0.027%, and it is difficult to regenerate the VOC removal solution in real time.

図2(a)に示したシリコン膜やPTFE膜を用いたPV法では、VOC除去液中に含まれるVOCが蒸発する際に膜の透過抵抗があるためにVOC蒸発量が少なくリアルタイムで除去液からVOCを回収することができない。そこで、図2(b)に示すように膜の透過抵抗を小さくするために多孔質の膜を用いることでVOC蒸発量を多くすることができた。すなわち、図3に示すように、図2(a)に示すPV法によるToluene蒸発濃度は約70ppmで安定し、回収率は0.027%であった。一方、図4に示すように、PTFE多孔質膜を用いた真空蒸発法によるToluene蒸発濃度は約200ppmで安定した。このときの回収率は0.077%であり、PV法の場合に比べて3倍に向上したが、リアルタイムでのTolueneの回収は困難であった。   In the PV method using the silicon film or PTFE film shown in FIG. 2A, the VOC evaporation amount is small when the VOC contained in the VOC removal solution evaporates, so the VOC evaporation amount is small and the removal solution is real time. Cannot recover VOC. Therefore, as shown in FIG. 2B, the amount of VOC evaporation can be increased by using a porous film in order to reduce the permeation resistance of the film. That is, as shown in FIG. 3, the Toluene evaporation concentration by the PV method shown in FIG. 2A was stable at about 70 ppm, and the recovery rate was 0.027%. On the other hand, as shown in FIG. 4, the Toluene evaporation concentration by the vacuum evaporation method using a PTFE porous membrane was stabilized at about 200 ppm. The recovery rate at this time was 0.077%, which was three times that of the PV method, but it was difficult to recover Toluene in real time.

以上、図2(a)、図2(b)に示す方法では、数十Pa以下と高真空にするために空気の流動が無く蒸発したVOCを効率良く回収することができなかった。空気流動真空蒸発法は、図2(c)に示したように、真空容器をリークして空気を導入して真空度を低くした状態で、空気の流動によって蒸発したVOCをぬぐって回収する方法である。本法では、図5に示すように、Toluene蒸発には数千Paのような比較的低真空が好ましい。さらに図6に示すように、空気流動真空蒸発法によればToluene蒸発濃度は約3600ppmで安定し、このときの回収率は69%であった。本法により、VOC回収率69%と飛躍的に向上し、リアルタイムでの除去液の再生が可能となった。   As described above, in the method shown in FIGS. 2 (a) and 2 (b), the VOC evaporated without air flow cannot be efficiently recovered in order to obtain a high vacuum of several tens of Pa or less. In the air flow vacuum evaporation method, as shown in FIG. 2 (c), the VOC evaporated by the flow of air is wiped and recovered in a state where the vacuum vessel is leaked and air is introduced to lower the degree of vacuum. It is. In this method, as shown in FIG. 5, a relatively low vacuum such as several thousand Pa is preferable for Toluene evaporation. Further, as shown in FIG. 6, according to the air flow vacuum evaporation method, the Toluene evaporation concentration was stable at about 3600 ppm, and the recovery rate at this time was 69%. By this method, the VOC recovery rate has been dramatically improved to 69%, and the removal liquid can be regenerated in real time.

(空気流動真空蒸発法による除去液からのToluene理論的回収率の算出)
数1に示したAntoineの式より各温度によるTolueneの飽和蒸気圧(Psat)を算出することができる。これより25℃におけるTolueneの飽和蒸気圧は3792Pa(28.45mmHg)と算出される。
(Calculation of Toluene theoretical recovery rate from the removed liquid by air flow vacuum evaporation method)
The saturated vapor pressure (P sat ) of Toluene at each temperature can be calculated from the equation of Antoine shown in Equation 1. From this, the saturated vapor pressure of Toluene at 25 ° C. is calculated to be 3792 Pa (28.45 mmHg).

本実験において、VOC除去液にはDEHA(Di-2-ethylhexyl Adipate)を用いている。もしToluene/DEHAが理想溶液と仮定すれば25℃で1g/LのTolueneが溶解しているDEHA溶液と平衡な気相の全圧Πは数2のラウールの法則に従う。DEHAの分圧はToluene分圧に比べれば小さい値であり無視できる。これよりToluene/DEHA溶液の理論平衡濃度はTolueneの分圧のみ考慮することで算出できる(Toluene分子量92、DEHA分子量351)。   In this experiment, DEHA (Di-2-ethylhexyl Adipate) is used as the VOC removal solution. If Toluene / DEHA is assumed to be the ideal solution, the total pressure in the gas phase in equilibrium with the DEHA solution in which 1 g / L of Toluene is dissolved at 25 ° C. follows the Law of Raoul of formula 2. The DEHA partial pressure is smaller than the Toluene partial pressure and can be ignored. From this, the theoretical equilibrium concentration of the Toluene / DEHA solution can be calculated by considering only the partial pressure of Toluene (Toluene molecular weight 92, DEHA molecular weight 351).

Toluene/DEHAは非理想溶液であるので、Tolueneのモル分率(XT)、活量係数(γ)、温度を考慮することでTolueneの平衡蒸気圧を数3によって算出できる。Toluene/DEHA=1g/Lの場合における各温度での算出したToluene/DEHA溶液におけるToluene理論気相平衡蒸気圧の結果を表1に示す。 Since Toluene / DEHA is a non-ideal solution, the equilibrium vapor pressure of Toluene can be calculated by Equation 3 considering the Toluene mole fraction (X T ), activity coefficient (γ), and temperature. Table 1 shows the results of the Toluene theoretical vapor phase equilibrium vapor pressure in the Toluene / DEHA solution calculated at each temperature when Toluene / DEHA = 1 g / L.

表1に示すように、Toluene/DEHA溶液(1g/L)での25℃におけるTolueneの平衡蒸気圧(PT)は、8.1Paであり、本装置での任意の真空度における理論Tolueneの気相平衡濃度(CT)は数4で表される。 As shown in Table 1, the equilibrium vapor pressure (P T ) of Toluene at 25 ° C in a Toluene / DEHA solution (1 g / L) is 8.1 Pa, and the theoretical Toluene gas at any vacuum level in this device. The phase equilibrium concentration (C T ) is expressed by Equation 4.

図7に空気流動真空蒸発法による装置の概略を示す。真空容器内におけるTolueneの最大蒸発量(M)は、容器内のToluene気相平衡濃度(CT)と導入空気流量(v)との積となり数5で表される。又、Toluene気相平衡濃度(CT)は数4で表されるので、25℃での真空容器内におけるTolueneの最大蒸発量(M)は数6で表される。 FIG. 7 shows an outline of an apparatus by an air flow vacuum evaporation method. The maximum evaporation amount (M) of Toluene in the vacuum vessel is the product of the Toluene gas phase equilibrium concentration (C T ) and the introduced air flow rate (v) in the vessel, and is expressed by the following equation (5). Further, since the Toluene vapor phase equilibrium concentration (C T ) is expressed by Equation 4, the maximum evaporation amount (M) of Toluene in a vacuum vessel at 25 ° C. is expressed by Equation 6.

一方、除去液からのToluene回収率(y)は、数7によって表される。除去液(DEHA)中Toluene濃度は1g/Lであり、数7に数6を代入すると25℃における除去液からのToluene理論回収率(y)は数8で表される。   On the other hand, the Toluene recovery rate (y) from the removal liquid is expressed by Equation 7. The Toluene concentration in the removal liquid (DEHA) is 1 g / L, and when Equation 6 is substituted into Equation 7, the Toluene theoretical recovery rate (y) from the removal solution at 25 ° C. is expressed by Equation 8.

数8より、除去液からのToluene理論回収率(y)は、導入空気流量(v)に比例し、容器内の真空度(P)と除去液流量(m)に反比例する。そして、導入空気流量(v)と容器内の真空度(P)は、使用する真空容器と真空ポンプによって決定される。   From Equation 8, the Toluene theoretical recovery rate (y) from the removal liquid is proportional to the introduced air flow rate (v) and inversely proportional to the degree of vacuum (P) in the container and the removal liquid flow rate (m). The introduction air flow rate (v) and the degree of vacuum (P) in the container are determined by the vacuum container and the vacuum pump to be used.

(空気流動蒸発真空法による除去液中VOCの回収実験)
まず、回収実験に用いた実験装置について説明する。図8に、空気流動真空蒸発法による除去液(DEHA)中Toluene分離回収の実験装置の概要と概観を示した。ステンレス製真空容器(45L)内にセットした多孔質PTFE膜セル10枚には、ガラス製の分注器を利用してTolueneを溶け込ませた除去液(DEHA)を均等に導入した。真空容器内をスクリュー型ドライ真空ポンプTDA-051(大晃機械工業(株)製、排気速度 700L/min)で減圧し、多孔質PTFE膜を境界面として、除去液(DEHA)からのToluene蒸発濃度の測定を行った。また、除去液が真空ポンプに入るのを防ぐためにEVトラップを設置した。Tolueneの測定方法は、真空ポンプから排気された試料ガスをTVOC計 PID VX500(Industrial Scientific Corporation製)を用いて行った。
(Recovery experiment of VOC in removal liquid by air flow evaporation vacuum method)
First, the experimental apparatus used for the recovery experiment will be described. FIG. 8 shows an outline and an overview of an experimental apparatus for separating and recovering Toluene in a removal liquid (DEHA) by an air flow vacuum evaporation method. To 10 porous PTFE membrane cells set in a stainless steel vacuum vessel (45 L), a removal solution (DEHA) in which Toluene was dissolved was evenly introduced using a glass dispenser. The inside of the vacuum vessel is depressurized with a screw-type dry vacuum pump TDA-051 (Otsuki Machine Industry Co., Ltd., pumping speed 700L / min), and the Toluene evaporation from the removal liquid (DEHA) with the porous PTFE membrane as the interface The concentration was measured. In addition, an EV trap was installed to prevent the removal liquid from entering the vacuum pump. Toluene was measured using a TVOC meter PID VX500 (manufactured by Industrial Scientific Corporation) for the sample gas exhausted from the vacuum pump.

(実験による蒸発係数(β)の算出)
排気ガス中トルエン平衡濃度(C)は、数9で表される。
(Calculation of evaporation coefficient (β) by experiment)
The toluene equilibrium concentration (C) in the exhaust gas is expressed by Equation 9.

数9より、図9に示した1/Pに対するCの傾きはPsat×β×x×106で表される。よって蒸発係数(β)は、図9の傾き/(Psat×x×106)より求められる。多孔質PTFE膜セル10枚(除去液流量,m=120mL/min)の場合、Psat=4118Pa(26.6℃)、x=4.33×10-3より、β=6.18×106/106/4118/(4.33×10-3)=0.35と求められる。 From Equation 9, the slope of C with respect to 1 / P shown in FIG. 9 is expressed as P sat × β × x × 10 6 . Therefore, the evaporation coefficient (β) is obtained from the slope of FIG. 9 / (P sat × x × 10 6 ). 10 Like the porous PTFE membrane cells (removing liquid flow, m = 120mL / min) For, P sat = 4118Pa (26.6 ℃ ), from x = 4.33 × 10 -3, β = 6.18 × 10 6/10 6/4118 /(4.33×10 −3 ) = 0.35.

図10に、本実験装置による除去液(DEHA)中の酢酸エチルの回収率と除去液流量との関係を示した。除去液流量が50mL/min 程度(多孔質PTFE膜セル1枚当たり除去液流量5mL/min)であれば、除去液からの酢酸エチルの回収率は60%と高く、リアルタイムでの除去液の再生が可能であるが、除去液流量400mL/min(多孔質PTFE膜セル1枚当たり除去液流量40mL/min)と大きくなると回収率は20%程度に低下し、多孔質PTFE膜セル内の除去液からの酢酸エチルの蒸発が除去液流量の増加と共に大きくならないことが判った。この結果から、多孔質PTFE膜セルを用いて除去液中酢酸エチルを蒸発回収する最適な除去液流量は、多孔質PTFE膜セル1枚(蒸発表面積400cm2)当たり除去液流量5mL/minであり、除去液流量を大きくするためには、除去液流量に応じて多孔質PTFE膜セル数を増やす必要がある。 FIG. 10 shows the relationship between the recovery rate of ethyl acetate in the removal solution (DEHA) and the removal solution flow rate by this experimental apparatus. If the removal liquid flow rate is around 50 mL / min (removal liquid flow rate per porous PTFE membrane cell: 5 mL / min), the recovery rate of ethyl acetate from the removal liquid is as high as 60%, and regeneration of the removal liquid in real time. However, when the removal liquid flow rate is 400mL / min (removal liquid flow rate 40mL / min per porous PTFE membrane cell), the recovery rate decreases to about 20%, and the removal liquid in the porous PTFE membrane cell. It was found that the evaporation of ethyl acetate from did not increase with increasing removal liquid flow rate. From this result, the optimum removal liquid flow rate for evaporating and recovering ethyl acetate in the removal liquid using a porous PTFE membrane cell is 5 mL / min of the removal liquid flow rate per porous PTFE membrane cell (evaporation surface area 400 cm 2 ). In order to increase the removal liquid flow rate, it is necessary to increase the number of porous PTFE membrane cells in accordance with the removal liquid flow rate.

そこで、除去液流量の拡大を図るために、除去液をステンレス製真空容器(45L)内で噴霧する方法を検討した。その結果、図10に示されている様に、除去液流量400mL/minにおいても除去液中の酢酸エチルの回収率は90%以上となり、多孔質PTFE膜セル10枚の場合と比較して、リアルタイムで処理できる除去液流量を1桁近く拡大できることが判った。これは、除去液を噴霧することで、除去液は50μm程度の微小なミストとなり、除去液1Lが50μmの霧となった場合、その表面積は120m2となり、蒸発表面積が飛躍的に拡大した為である。 Therefore, in order to increase the removal liquid flow rate, a method of spraying the removal liquid in a stainless steel vacuum vessel (45 L) was examined. As a result, as shown in FIG. 10, the recovery rate of ethyl acetate in the removal liquid is 90% or more even at a removal liquid flow rate of 400 mL / min, compared with the case of 10 porous PTFE membrane cells. It was found that the removal liquid flow rate that can be processed in real time can be increased by almost one digit. This, by spraying a remover, removing liquid becomes small mist of about 50 [mu] m, if the removing solution 1L became 50 [mu] m fog, its surface area is 120 m 2, and the evaporation surface area for expanded dramatically It is.

(除去液噴霧による除去液中VOCの回収実験)
空気流動真空蒸発法(真空蒸発法)において、除去液中のVOCの蒸発を効率良く行うには、真空容器内に多孔質PTFE膜セルを設置して使用するよりは、除去液を真空容器内で噴霧することが有利であることが判った。そこで、図11と図12に、噴霧ノズルを用いた除去液噴霧方式による除去液中のVOC分離回収の実験装置の概略を示した。
(Recovery VOC recovery experiment by removing solution spray)
In the air flow vacuum evaporation method (vacuum evaporation method), in order to efficiently evaporate the VOC in the removal liquid, the removal liquid is placed in the vacuum container rather than using a porous PTFE membrane cell in the vacuum container. It has been found that spraying with is advantageous. Therefore, FIGS. 11 and 12 show an outline of an experimental apparatus for VOC separation / recovery in the removal liquid by the removal liquid spraying method using the spray nozzle.

ステンレス製真空容器(45L)の上板に噴霧ノズルを取り付け、真空容器の上部には噴霧された除去液が真空ポンプに入らない様に、ブロックとしてPUF(ポリウレタンフォーム)を設置し、下部にもPUFを設置して噴霧された除去液(DEHA)を回収する。真空容器内をスクロール型ドライ真空ポンプGVS-500(アネスト岩田(株)製)2台で減圧し、除去液からのVOC分離回収実験を行った。除去液が真空ポンプに入るのを防ぐためにEVトラップを設置した。Tolueneの測定方法は、真空ポンプから排気された試料ガスをTVOC計 PID VX500(Industrial Scientific Corporation製)を用いて行った。また、排気された試料ガスは、テドラーバックにも採取し、GC-MS QP2010(SHIMADZU製)によってVOC濃度の測定を行った。図12に示す実験装置は、図1に示すVOC回収・再生装置に該当する。   A spray nozzle is attached to the upper plate of a stainless steel vacuum vessel (45L), and PUF (polyurethane foam) is installed as a block on the upper part of the vacuum vessel to prevent the sprayed removal liquid from entering the vacuum pump. Install the PUF and collect the sprayed removal liquid (DEHA). The inside of the vacuum vessel was depressurized by two scroll-type dry vacuum pumps GVS-500 (manufactured by Anest Iwata Co., Ltd.), and a VOC separation / recovery experiment from the removed liquid was conducted. An EV trap was installed to prevent the removal liquid from entering the vacuum pump. Toluene was measured using a TVOC meter PID VX500 (manufactured by Industrial Scientific Corporation) for the sample gas exhausted from the vacuum pump. The exhausted sample gas was also collected in a Tedlar bag, and the VOC concentration was measured by GC-MS QP2010 (manufactured by SHIMADZU). The experimental apparatus shown in FIG. 12 corresponds to the VOC recovery / regeneration apparatus shown in FIG.

空気流動真空蒸発法によるToluene理論回収率(y)は、数8に記されている様に、導入空気流量と圧力の比(v/P)に比例し、除去液流量(m)に反比例する。ここで、v/Pは真空ポンプの性能に依存する値であり、v/Pが大きいほど回収率も大きくなる。実際に、図12に示す実験装置を用いて、除去液中のTolueneの分離回収実験を行った。   The Toluene theoretical recovery rate (y) by the air flow vacuum evaporation method is proportional to the ratio of the introduced air flow rate to the pressure (v / P) and inversely proportional to the removal liquid flow rate (m) as shown in Equation 8. . Here, v / P is a value that depends on the performance of the vacuum pump, and the recovery rate increases as v / P increases. Actually, using the experimental apparatus shown in FIG. 12, an experiment for separating and recovering Toluene in the removal liquid was performed.

実験結果を表2に記す。除去液中のToluene濃度1g/L、除去液流量0.4L/minの場合、導入空気流量10L/min、圧力(真空度)1400Paで53.1%のToluene回収率が得られ、空気流動真空蒸発法を用いることで除去液中のTolueneのリアルタイムでの分離回収を行うことが可能となった。また、実験結果を基に、Toluene回収率と導入空気流量と圧力の比(v/P)とを図13にプロットした。数8に示される様に、Toluene回収率と導入空気流量と圧力の比(v/P)との間には直線関係が得られ、v/Pが大きいほど回収率も大きくなることが確認できた。また、Toluene回収率の実験値は、理論的Toluene回収率の8割程度の値となり、数8により、本法のToluene回収率(y)を推定することは可能と言える。   The experimental results are shown in Table 2. When the Toluene concentration in the removal liquid is 1 g / L and the removal liquid flow rate is 0.4 L / min, a Toluene recovery rate of 53.1% is obtained at an introduction air flow rate of 10 L / min and a pressure (vacuum degree) of 1400 Pa. Using it, it became possible to separate and recover Toluene in the removal solution in real time. Further, based on the experimental results, the Toluene recovery rate, the introduced air flow rate and the pressure ratio (v / P) are plotted in FIG. As shown in Equation 8, a linear relationship is obtained between the Toluene recovery rate and the ratio of the introduced air flow rate to the pressure (v / P), and it can be confirmed that the recovery rate increases as v / P increases. It was. Further, the experimental value of Toluene recovery rate is about 80% of the theoretical Toluene recovery rate, and it can be said that the Toluene recovery rate (y) of this method can be estimated from Equation 8.

1 VOC除去液再生・回収装置
3 貯留タンク
5 送液ポンプ
7 ノズル
9 真空容器
11 真空ポンプ
13 気体導入機構
15 排液機構
17 霧トラップ
17a 連続気泡フォーム体(ポリウレタンフォーム)
17b 支持体
19 VOC処理機構
Ld 被処理除去液(VOC除去液)
Lc 再生除去液(VOC除去液)
DESCRIPTION OF SYMBOLS 1 VOC removal liquid reproduction | regeneration and collection | recovery apparatus 3 Storage tank 5 Liquid feed pump 7 Nozzle 9 Vacuum container 11 Vacuum pump 13 Gas introduction mechanism 15 Drainage mechanism 17 Fog trap 17a Open-cell foam body (polyurethane foam)
17b Support 19 VOC treatment mechanism Ld Removal liquid to be treated (VOC removal liquid)
Lc regeneration remover (VOC remover)

Claims (5)

VOC除去液中に含まれるVOCを除去してVOC除去液を再生・回収するVOC除去液再生・回収装置であって、
VOC除去液を噴霧するポンプ及びノズルと、
当該ノズルを内部に配した真空容器と、
当該真空容器内部を減圧してVOC除去液に含まれるVOCを真空蒸発させるために当該真空容器に接続した真空ポンプと、
当該真空容器内に蒸発促進気体を導入する気体導入機構と、
当該真空容器から処理後のVOC除去液を排出する排液機構と、を備え、
当該真空容器内における、当該ノズルと当該排液機構との間および当該ノズルと当該真空ポンプとの接続口との間に、VOC除去液の少なくとも一部と接触し接触したVOC除去液の通過を妨げずに一時的に保持するトラップを配してある
ことを特徴とするVOC除去液再生・回収装置。
A VOC removal liquid regeneration / recovery device that regenerates / recovers a VOC removal liquid by removing VOC contained in the VOC removal liquid,
A pump and nozzle for spraying the VOC removal liquid;
A vacuum container having the nozzle disposed therein;
A vacuum pump connected to the vacuum vessel in order to depressurize the inside of the vacuum vessel and vacuum-evaporate VOC contained in the VOC removal liquid;
A gas introduction mechanism for introducing an evaporation promoting gas into the vacuum vessel;
A drainage mechanism for discharging the processed VOC removal liquid from the vacuum vessel ,
In the vacuum vessel, between the nozzle and the drainage mechanism and between the nozzle and the connection port of the vacuum pump, the VOC removal liquid that has contacted and contacted at least a part of the VOC removal liquid is allowed to pass. There is a trap to hold temporarily without hindering
A VOC removal liquid regeneration / recovery device.
前記トラップは、連続気泡フォーム体を含めて構成してある
ことを特徴とする請求項記載のVOC除去液再生・回収装置。
The two traps, VOC removal solution regeneration and recovery apparatus according to claim 1, wherein the are configured to include an open cell foam material.
当該真空ポンプには、排気に含まれるVOCを処理するVOC処理機構を接続してある
ことを特徴とする請求項1または2記載のVOC除去液再生・回収装置。
The the vacuum pump, VOC removal solution regeneration and recovery apparatus according to claim 1 or 2, wherein the is connected to VOC processing mechanism for processing the VOC contained in the exhaust.
VOC除去液中に含まれるVOCを除去してVOC除去液を再生・回収するVOC除去液再生・回収方法であって、
真空容器内においてVOC除去液をノズルから噴霧するとともに真空ポンプによって減圧し、さらに、蒸発促進気体を気体導入機構から当該真空容器内に導入することによってVOC除去液に含まれるVOCを真空蒸発させる際に、
当該ノズルと当該気体導入機構との間および当該ノズルと当該真空ポンプとの接続口との間に配したトラップにより、VOC除去液の少なくとも一部と接触し接触したVOC除去液の通過を妨げずに一時的に保持する
ことを特徴とするVOC除去液再生・回収方法。
A VOC removal liquid regeneration / recovery method that removes VOC contained in a VOC removal liquid to regenerate / recover the VOC removal liquid,
Under reduced pressure by a vacuum pump with spraying the VOC removal solution from the nozzle in the vacuum vessel, further, Ru was vacuum evaporated VOC contained in the VOC removal solution by evaporation promoting gas introduced from the gas introducing mechanism to the vacuum vessel When
The trap disposed between the nozzle and the gas introduction mechanism and between the nozzle and the connection port of the vacuum pump does not prevent the passage of the VOC removal liquid in contact with and in contact with at least a part of the VOC removal liquid. A method for regenerating and collecting a VOC removal liquid, characterized in that it is temporarily retained .
前記トラップは、連続気泡フォーム体を含めて構成してある
ことを特徴とする請求項記載のVOC除去液再生・回収方法。
The VOC removal liquid regeneration / recovery method according to claim 4 , wherein the both traps include an open-cell foam body.
JP2010096720A 2010-04-20 2010-04-20 VOC removal liquid regeneration / recovery device and regeneration / recovery method Expired - Fee Related JP5187861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010096720A JP5187861B2 (en) 2010-04-20 2010-04-20 VOC removal liquid regeneration / recovery device and regeneration / recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010096720A JP5187861B2 (en) 2010-04-20 2010-04-20 VOC removal liquid regeneration / recovery device and regeneration / recovery method

Publications (2)

Publication Number Publication Date
JP2011224469A JP2011224469A (en) 2011-11-10
JP5187861B2 true JP5187861B2 (en) 2013-04-24

Family

ID=45040529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010096720A Expired - Fee Related JP5187861B2 (en) 2010-04-20 2010-04-20 VOC removal liquid regeneration / recovery device and regeneration / recovery method

Country Status (1)

Country Link
JP (1) JP5187861B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3412353A1 (en) 2017-06-06 2018-12-12 Panasonic Intellectual Property Management Co., Ltd. Voc refining apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5758638B2 (en) * 2011-01-31 2015-08-05 アネスト岩田株式会社 Vacuum evaporation type VOC recovery apparatus and method
CZ305017B6 (en) * 2014-01-31 2015-03-25 Vysoká škola báňská- Technická univerzita Ostrava Method of increasing efficiency of decontamination of water containing body organic substances by making use of solar energy
CN104960126A (en) * 2015-06-30 2015-10-07 天津伟思客塑胶制品有限公司 Glue solution vacuumizing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179113A (en) * 1983-03-30 1984-10-11 Mitsubishi Heavy Ind Ltd Degassing method of gas dissolved in oil
JP3615116B2 (en) * 1999-03-31 2005-01-26 株式会社東芝 Method and apparatus for treating volatile organochlorine compounds
JP2005255700A (en) * 2004-03-09 2005-09-22 Mitsui Eng & Shipbuild Co Ltd Biogas purification method and biogas purification system
JP2009262108A (en) * 2008-04-30 2009-11-12 Stac Co Ltd Vacuum evaporation method, vacuum evaporator, and vacuum evaporation element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3412353A1 (en) 2017-06-06 2018-12-12 Panasonic Intellectual Property Management Co., Ltd. Voc refining apparatus
US10758864B2 (en) 2017-06-06 2020-09-01 Panasonic Intellectual Property Management Co., Ltd. VOC refining apparatus

Also Published As

Publication number Publication date
JP2011224469A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
US9044711B2 (en) Osmotically driven membrane processes and systems and methods for draw solute recovery
CA3119547C (en) Methods and apparatuses for harvesting water from air
JP5187861B2 (en) VOC removal liquid regeneration / recovery device and regeneration / recovery method
AU2010319846A1 (en) Forward osmosis separation processes
JP5943924B2 (en) Osmotic pressure driven membrane process and system, and extraction solute recovery method
JP5758638B2 (en) Vacuum evaporation type VOC recovery apparatus and method
KR101667931B1 (en) Apparatus and method for anaerobic wastewater treatment with fluidized media membrane distillation
CN203469759U (en) Volatile organic waste gas recycling device
JP6391698B2 (en) Fresh water generator
JP5925852B2 (en) Vacuum evaporation type VOC recovery apparatus and method
JP2009066530A (en) Voc recovery apparatus
JP5248289B2 (en) Organic matter dehydration concentration apparatus and organic matter dehydration concentration method
JP5925853B2 (en) Vacuum evaporation type VOC recovery apparatus and method
JP2012055849A (en) System for removing volatile organic compound
KR20140034699A (en) Multiple membranes for removing voc from liquids
KR100566117B1 (en) A apparatus separating oxygen and nitrogen, and moisture removal device the same
JPH06226001A (en) Evaporator
JP2009262108A (en) Vacuum evaporation method, vacuum evaporator, and vacuum evaporation element
Anna A promising method of liquid separation in orbital station’s life support systems$
AU2015255210B2 (en) Osmotically driven membrane processes and systems and methods for draw solute recovery
JP3258469B2 (en) Gas-liquid separation device
JP2610062B2 (en) Steam drying method and its apparatus
JP2011083686A (en) Voc removing apparatus, and voc removing method
CN117258468A (en) Device and method for removing VOC by low-temperature condensation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120309

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees