JP2015005805A - Optical transmission system, and digital signal processor - Google Patents

Optical transmission system, and digital signal processor Download PDF

Info

Publication number
JP2015005805A
JP2015005805A JP2013128377A JP2013128377A JP2015005805A JP 2015005805 A JP2015005805 A JP 2015005805A JP 2013128377 A JP2013128377 A JP 2013128377A JP 2013128377 A JP2013128377 A JP 2013128377A JP 2015005805 A JP2015005805 A JP 2015005805A
Authority
JP
Japan
Prior art keywords
signal
output
phase
signals
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013128377A
Other languages
Japanese (ja)
Other versions
JP5968833B2 (en
Inventor
福太郎 濱岡
Fukutaro Hamaoka
福太郎 濱岡
崇文 深谷
Takafumi Fukatani
崇文 深谷
松田 俊哉
Toshiya Matsuda
俊哉 松田
明 那賀
Akira Naga
明 那賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013128377A priority Critical patent/JP5968833B2/en
Publication of JP2015005805A publication Critical patent/JP2015005805A/en
Application granted granted Critical
Publication of JP5968833B2 publication Critical patent/JP5968833B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical transmission system and a digital signal processor which are arranged so that after collectively receiving optical signals phase-modulated with the same bit pattern and sent, a redundant optical signal receiver performs phase synchronization and waveform equalization among the received signals by means of digital signal processing to synthesize signals.SOLUTION: An optical transmission system comprises a redundant optical signal receiver which collectively receives identical optical signals 1 to N transmitted through optical transmission lines, and synthesizes signals. The redundant optical signal receiver includes: N optical signal receivers which perform a coherent detection on optical signals 1 to N transmitted through the optical transmission lines, perform an analog-to-digital conversion on the resultant signals, and then output digital signals respectively; and a digital signal processor which accepts the input of the digital signals output from the N optical signal receivers, and performs phase synchronization and waveform equalization on the input signals thereby to synthesize and output signals.

Description

本発明は、冗長光信号送信機から同一の光信号を光伝送路を介して伝送し、冗長光信号受信機で一括受信し、位相同期および波形等化を行って信号合成を行う光伝送システムおよびデジタル信号処理装置に関する。   The present invention relates to an optical transmission system for transmitting the same optical signal from a redundant optical signal transmitter via an optical transmission line, collectively receiving the signal with a redundant optical signal receiver, and performing signal synchronization by performing phase synchronization and waveform equalization. And a digital signal processing apparatus.

1波長あたりの伝送速度が 100Gbit/s 以上の超高速伝送システムにおいて、コヒーレント光通信技術とデジタル信号処理技術を組み合わせたデジタルコヒーレント技術が広く用いられるようになってきた。例えば、 100Gbit/s 長距離光伝送システムにおける変復調方式として標準となっているDP−QPSK(Dual Polarization-Quadrature Phase Shift Keying )方式(非特許文献1)では、4値の位相変調を用いることで32Gbit/s の信号を2多重してコヒーレント光信号を生成し、さらに2つの偏波を用いることで2多重し、合わせて 128Gbit/s のコヒーレント光信号を生成する。受信側では、信号光と同じ波長のローカル光を用いてコヒーレント検波した信号を、AD(Analog to Digital)コンバータを用いてデジタル化した後、デジタル信号処理によって、周波数オフセット補償、伝送路の波長分散補償、偏波分散補償、偏波信号の分離等を行うことで優れた伝送特性を実現している。   In an ultra-high-speed transmission system with a transmission rate per wavelength of 100 Gbit / s or more, a digital coherent technology combining a coherent optical communication technology and a digital signal processing technology has been widely used. For example, in the DP-QPSK (Dual Polarization-Quadrature Phase Shift Keying) method (Non-patent Document 1), which is a standard modulation / demodulation method in a 100 Gbit / s long-haul optical transmission system, 32 Gbit is used by using quaternary phase modulation. Two coherent optical signals are generated by multiplexing two signals of / s, and further multiplexed by using two polarizations to generate a coherent optical signal of 128 Gbit / s. On the receiving side, the signal coherently detected using local light of the same wavelength as the signal light is digitized using an AD (Analog to Digital) converter, and then subjected to frequency offset compensation and wavelength dispersion of the transmission path by digital signal processing. Excellent transmission characteristics are realized by performing compensation, polarization dispersion compensation, polarization signal separation, and the like.

OIF,“100G Ultra Long Haul DWDM Framework Document”.OIF, “100G Ultra Long Haul DWDM Framework Document”. H.Y.Choi, T.Tsuritani, and I.Morita,“BER-adaptive flexible-format transmitter for elastic optical networks,”Optics Express, vol.20, no.17, pp.18652-18658, 2012.H.Y.Choi, T.Tsuritani, and I.Morita, “BER-adaptive flexible-format transmitter for elastic optical networks,” Optics Express, vol.20, no.17, pp.18652-18658, 2012. T.Tsuboi, M.Natori, and S.Mitachi,“Single-fiber optical protection ring architecture suitable for asymmetric traffic,”Global Telecommunications Conference, vol.7, pp.4044-4048, 2003.T.Tsuboi, M.Natori, and S.Mitachi, “Single-fiber optical protection ring architecture suitable for asymmetric traffic,” Global Telecommunications Conference, vol.7, pp.4044-4048, 2003. S.J.Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,”IEEE Journal of Selected Topics in Quantum Electronics, vol.16, no.5, pp.1164-1178, 2010.S.J.Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE Journal of Selected Topics in Quantum Electronics, vol.16, no.5, pp.1164-1178, 2010.

さらなる大容量伝送方式として、偏波多重16QAM(Quadrature Amplitude Modulation )等、変調信号の多値化が検討されている。しかし、変調信号の多値化により受信感度が低下するため、伝送距離に制限が生じてしまう(非特許文献2)。   As a further large-capacity transmission method, multi-value modulation signals such as polarization multiplexed 16QAM (Quadrature Amplitude Modulation) are being studied. However, since the reception sensitivity is lowered due to the multi-level modulation signal, the transmission distance is limited (Non-Patent Document 2).

また、従来の光伝送システムでは、光ネットワークの信頼性を高めるために、予め伝送路の冗長をとり、光ネットワークの障害が発生した際に現用回線から予備回線へ切り替える構成を用いる場合があるが(非特許文献3)、障害発生時の物理的な切替に数十ms程度の時間を要するため、その間は光信号断になってしまう。   In addition, in a conventional optical transmission system, there is a case in which a transmission line is redundant in advance to switch from a working line to a protection line when a failure occurs in the optical network in order to improve the reliability of the optical network. (Non-patent Document 3) Since it takes about several tens of milliseconds for physical switching when a failure occurs, the optical signal is interrupted during that time.

本発明は、同一のビットパターンで位相変調して送信された複数の光信号を冗長光信号受信機で一括受信した後に、デジタル信号処理を用いて受信信号間の位相同期および波形等化を行って信号合成することができる光伝送システムおよびデジタル信号処理装置を提供することを目的とする。   The present invention performs digital signal processing to perform phase synchronization and waveform equalization between received signals after a plurality of optical signals that have been phase modulated with the same bit pattern are collectively received by a redundant optical signal receiver. It is an object of the present invention to provide an optical transmission system and a digital signal processing apparatus that can synthesize signals.

第1の発明は、同一の光信号1〜N(Nは2以上の整数)を光伝送路を介して伝送し、冗長光信号受信機で一括受信して信号合成を行う光伝送システムにおいて、冗長光信号受信機は、光伝送路を介して伝送された光信号1〜Nをそれぞれコヒーレント検波し、さらにアナログデジタル変換してデジタル信号を出力するN個の光信号受信機と、N個の光信号受信機からそれぞれ出力されるデジタル信号を入力し、位相同期および波形等化を行った信号を合成して出力するデジタル信号処理装置とを備える。   The first invention is an optical transmission system in which the same optical signals 1 to N (N is an integer of 2 or more) are transmitted via an optical transmission line, and are collectively received by a redundant optical signal receiver to perform signal synthesis. The redundant optical signal receiver performs coherent detection on the optical signals 1 to N transmitted through the optical transmission path, further converts the signals from analog to digital, and outputs digital signals, and N optical signal receivers. A digital signal processing apparatus that inputs digital signals output from the optical signal receivers, synthesizes and outputs the signals that have undergone phase synchronization and waveform equalization;

第1の発明の光伝送システムにおいて、冗長光信号受信機の光信号受信機i(iは1〜Nの整数)は、光伝送路を介して伝送された光信号iをコヒーレント検波し、さらにアナログデジタル変換してデジタル信号を出力する構成であり、デジタル信号処理装置は、光信号受信機iから出力されるn番目(nは自然数)のデジタル信号xin,i(n) を入力し、適応等化信号xout,i(n)を出力する適応等化器iと、適応等化器iから出力される適応等化信号xout,i(n)を入力し、位相差φi(n)および位相同期信号x'out,i(n) を出力する位相同期器iと、位相同期器iから出力される位相同期信号x'out,i(n) を入力して合成し、合成信号Xout(n)を出力する信号合成器iとを備え、適応等化器iは、位相同期器iから出力される位相差φi(n)および位相同期信号x'out,i(n) を入力し、さらに任意の位相同期器k(kは1〜Nの整数)から出力される位相同期信号x'out,k(n) を入力し、デジタル信号xin,N(n) の位相同期および波形等化を行った適応等化信号xout,i(n)を出力する構成である。 In the optical transmission system of the first invention, the optical signal receiver i (i is an integer of 1 to N) of the redundant optical signal receiver performs coherent detection of the optical signal i transmitted through the optical transmission line, and The digital signal processing apparatus is configured to output a digital signal after analog-digital conversion. The digital signal processing apparatus inputs an n-th (n is a natural number) digital signal x in, i (n) output from the optical signal receiver i. adaptive equalization signal x out, inputs the adaptive equalizer i for outputting a i (n), the adaptive equalization signal x out output from the adaptive equalizer i, i an (n), the phase difference phi i ( n) and the phase synchronization signal x 'out, and a phase synchronizer i for outputting a i (n), the phase synchronization signal x is output from the phase synchronizer i' enter out, i (n) is synthesized, synthesized and a signal combiner i for outputting a signal X out (n), adaptive equalizer i the phase difference output from the phase synchronizer i phi i (n) and the phase synchronization No. x 'out, enter the i (n), and optionally of a phase synchronizer k (k is an integer of 1 to N) phase locked signal x is output from the' Type out, k a (n), a digital signal This is a configuration for outputting an adaptive equalization signal x out, i (n) obtained by performing phase synchronization and waveform equalization of x in, N (n).

第1の発明の光伝送システムにおいて、冗長光信号受信機の光信号受信機i(iは1〜Nの整数)は、光伝送路を介して伝送された光信号iを偏波分離してそれぞれコヒーレント検波し、さらにアナログデジタル変換してデジタル信号を出力する構成であり、デジタル信号処理装置は、光信号受信機iから出力される偏波分離したn番目(nは自然数)のデジタル信号xin,i(n) およびyin,i(n) を入力し、適応等化信号xout,i(n)およびyout,i(n)を出力する適応等化器xiおよびyiと、適応等化器xiおよびyiから出力される適応等化信号xout,i(n)およびyout,i(n)を入力し、位相差φxi(n) およびφyi(n) と位相同期信号x'out,i(n) およびy'out,i(n) を出力する位相同期器xiおよびyiと、位相同期器xiおよびyiから出力される位相同期信号x'out,i(n) およびy'out,i(n) を入力し、それぞれ合成信号Xout(n)およびYout(n)を出力する信号合成器xiおよびyiとを備え、適応等化器xiおよびyiは、位相同期器xiおよびyiから出力される位相差φxi(n) およびφyi(n) と位相同期信号x'out,i(n) およびy'out,i(n) を入力し、さらに任意の位相同期器xkおよびyk(kは1〜Nの整数)から出力される位相同期信号x'out,k(n) およびy'out,k(n) を入力し、デジタル信号xin,N(n)およびyin,N(n)の位相同期および波形等化を行った適応等化信号xout,i(n)およびyout,i(n)を出力する構成である。 In the optical transmission system of the first invention, the optical signal receiver i (i is an integer of 1 to N) of the redundant optical signal receiver performs polarization separation on the optical signal i transmitted through the optical transmission line. The digital signal processing apparatus is configured to output a digital signal by performing coherent detection and further analog-to-digital conversion. The digital signal processing apparatus outputs an n-th (n is a natural number) digital signal x that is output from the optical signal receiver i. adaptive equalizers xi and yi that input in, i (n) and y in, i (n) and output adaptive equalization signals x out, i (n) and y out, i (n), and adaptive The adaptive equalization signals x out, i (n) and y out, i (n) output from the equalizers xi and yi are input, the phase differences φ xi (n) and φ yi (n) and the phase synchronization signal x 'out, i (n) and y' out, and a phase synchronizer xi and yi outputs a i (n), the phase output from the phase synchronizer xi and yi Period signal x 'out, i (n) and y' out, enter the i (n), and a respective combined signal X out (n) and Y out (n) signal combiner xi and yi outputs a, The adaptive equalizers xi and yi are connected to the phase differences φ xi (n) and φ yi (n) output from the phase synchronizers xi and yi and the phase synchronization signals x ′ out, i (n) and y ′ out, i. (n) is inputted, and phase synchronization signals x ′ out, k (n) and y ′ out, k (n) outputted from arbitrary phase synchronizers xk and yk (k is an integer of 1 to N) are further inputted. The input equalized signals x out, i (n) and y out, i (n) are obtained by performing phase synchronization and waveform equalization of the digital signals x in, N (n) and y in, N (n). It is the structure which outputs.

第2の発明は、第1の発明の光伝送システムの冗長光信号受信機のデジタル信号処理装置において、光信号受信機i(iは1〜Nの整数)から出力されるn番目(nは自然数)のデジタル信号xin,i(n) を入力し、適応等化信号xout,i(n)を出力する適応等化器iと、適応等化器iから出力される適応等化信号xout,i(n)を入力し、位相差φi(n)および位相同期信号x'out,i(n) を出力する位相同期器iと、位相同期器iから出力される位相同期信号x'out,i(n) を入力して合成し、合成信号Xout(n)を出力する信号合成器iとを備え、適応等化器iは、位相同期器iから出力される位相差φi(n)および位相同期信号x' out,i(n)を入力し、さらに任意の位相同期器k(kは1〜Nの整数)から出力される位相同期信号x'out,k(n) を入力し、デジタル信号xin,N(n) の位相同期および波形等化を行った適応等化信号xout,i(n)を出力する構成である。 According to a second aspect of the present invention, in the digital signal processing apparatus of the redundant optical signal receiver of the optical transmission system according to the first aspect of the invention, the nth output (n is an integer from 1 to N) output from the optical signal receiver i. A natural number) digital signal x in, i (n) and an adaptive equalization signal x out, i (n), and an adaptive equalization signal output from the adaptive equalizer i a phase synchronizer i that inputs x out, i (n) and outputs a phase difference φ i (n) and a phase synchronization signal x ′ out, i (n), and a phase synchronization signal output from the phase synchronizer i x ' out, i (n) is inputted and synthesized, and a signal synthesizer i that outputs a synthesized signal X out (n) is provided, and the adaptive equalizer i outputs a phase difference output from the phase synchronizer i. phi i (n) and the phase synchronization signal x 'out, enter the i (n), and optionally of a phase synchronizer k (k is an integer of 1 to n) phase locked signal x is output from the' out, k ( n) Enter a digital signal in, the phase synchronization and waveform equalization adaptive equalization signal x out of performing, configured to output a i (n) of N (n).

第2の発明のデジタル信号処理装置において、適応等化器iは、n番目のデジタル信号xin,N(n) を順次遅延させるM−1個(Mは2以上の整数)の遅延器と、M個のタップ係数hi(=[hi(1),hi(2),…, hi(M)])と、n番目のデジタル信号xin,N(n) およびM−1個の遅延器で遅延したデジタル信号xin,i(n-1) ,…,xin,i(n-M+1) へ、M個のタップ係数hi をそれぞれ乗じたデジタル信号を加算し、適応等化信号
out,i (n) =hi T in,i(n) (xT in,i(n) はxin,i(n) の転置行列)
を出力する加算器と、任意の位相同期器kから出力する位相同期信号x'out,k(n) を入力し、参照信号dk(n)を出力する参照信号生成部と、加算器から出力される適応等化信号xout,i(n)と、位相同期器iから出力される位相差φi(n)および位相同期信号x'out,i(n) と、参照信号生成部から出力される参照信号dk(n)を入力し、タップ係数hi を更新し、誤差信号εi(n)を出力するタップ係数計算部と、タップ係数計算部から出力される誤差信号εi(n)を入力して収束判定を行う収束判定部とを備え、収束判定部は、タップ係数計算部から出力される誤差信号εi(n)を用いて収束判定を行い、収束後にタップ係数計算部は、参照信号生成部から出力される参照信号dk(n)を用いてタップ係数hi を更新する構成である。
In the digital signal processing apparatus according to the second aspect of the invention, the adaptive equalizer i includes M−1 delay units (M is an integer of 2 or more) delaying the nth digital signal x in, N (n) sequentially. , M tap coefficients h i (= [h i (1), h i (2),..., H i (M)]) and the nth digital signal x in, N (n) and M−1. The digital signals multiplied by M tap coefficients h i are added to the digital signals x in, i (n−1),..., X in, i (n−M + 1) delayed by the delay units. (transposed matrix of x T in, i (n) is x in, i (n)) adaptive equalization signal x out, i (n) = h i x T in, i (n)
From an adder that outputs a reference signal, a phase synchronization signal x ′ out, k (n) output from an arbitrary phase synchronizer k, a reference signal generator that outputs a reference signal d k (n), and an adder The output adaptive equalization signal x out, i (n), the phase difference φ i (n) and phase synchronization signal x ′ out, i (n) output from the phase synchronizer i, and the reference signal generator enter the reference signal d k which is output (n), to update the tap coefficients h i, and the tap coefficient calculating section for outputting the error signal epsilon i a (n), the error signal epsilon i output from the tap coefficient calculating section a convergence determination unit that performs convergence determination by inputting (n), the convergence determination unit performs convergence determination using the error signal ε i (n) output from the tap coefficient calculation unit, and tap coefficients after convergence The calculation unit is configured to update the tap coefficient h i using the reference signal d k (n) output from the reference signal generation unit.

第3の発明は、第1の発明の光伝送システムの冗長光信号受信機のデジタル信号処理装置において、光信号受信機i(iは1〜Nの整数)から出力される偏波分離したn番目(nは自然数)のデジタル信号xin,i(n) およびyin,i(n) を入力し、適応等化信号xout,i(n)およびyout,i(n)を出力する適応等化器xiおよびyiと、適応等化器xiおよびyiから出力される適応等化信号xout,i(n)およびyout,i(n)を入力し、位相差φxi(n) およびφyi(n) と位相同期信号x'out,i(n) およびy'out,i(n)を出力する位相同期器xiおよびyiと、位相同期器xiおよびyiから出力される位相同期信号x'out,i(n) およびy'out,i(n) を入力し、それぞれ合成信号Xout(n)およびYout(n)を出力する信号合成器xiおよびyiとを備え、適応等化器xiおよびyiは、位相同期器xiおよびyiから出力される位相差φxi(n) およびφyi(n) と位相同期信号x'out,i(n) およびy'out,i(n) を入力し、さらに任意の位相同期器xkおよびyk(kは1〜Nの整数)から出力される位相同期信号x'out,k(n) およびy'out,k(n) を入力し、デジタル信号xin,N(n) およびyin,N(n) の位相同期および波形等化を行った適応等化信号xout,i(n)およびyout,i(n)を出力する構成である。 According to a third aspect of the present invention, there is provided a digital signal processing apparatus for a redundant optical signal receiver in the optical transmission system according to the first aspect of the present invention. The nth (n is a natural number) digital signal x in, i (n) and y in, i (n) are input, and adaptive equalization signals x out, i (n) and y out, i (n) are output. The adaptive equalizers xi and yi and the adaptive equalization signals x out, i (n) and y out, i (n) output from the adaptive equalizers xi and yi are input, and the phase difference φ xi (n) And φ yi (n) and phase synchronizers xi and yi that output phase synchronization signals x ′ out, i (n) and y ′ out, i (n), and phase synchronization output from the phase synchronizers xi and yi Signal synthesizers xi and yi for inputting signals x ′ out, i (n) and y ′ out, i (n) and outputting synthesized signals X out (n) and Y out (n), respectively, are adaptive Equalizers xi and y , Type phase difference phi xi output from the phase synchronizer xi and yi (n) and φ yi (n) phase synchronization signal x 'out, i (n) and y' out, i a (n), Further, phase synchronization signals x ′ out, k (n) and y ′ out, k (n) output from arbitrary phase synchronizers xk and yk (k is an integer of 1 to N) are input, and digital signal x in , N (n) and y in, N (n) are subjected to phase synchronization and waveform equalization to output adaptive equalization signals x out, i (n) and y out, i (n).

第3の発明のデジタル信号処理装置において、適応等化器xiは、n番目のデジタル信号xin,N(n) を順次遅延させる2(M−1)個(Mは2以上の整数)の遅延器xと、それぞれM個のタップ係数hxx,i(=[hxx,i(1), hxx,i(2), …, hxx,i(M)] )およびhxy,i(=[hxy,i(1), hxy,i(2), …, hxy,i(M)] )と、n番目のデジタル信号xin,N(n) およびyin,N(n) と、それぞれM−1個の遅延器xで遅延したデジタル信号xin,i(n-1) ,…,xin,i(n-M+1) およびyin,i(n-1) ,…,yin,i(n-M+1) へ、M個のタップ係数hxx,iおよびhxy,iをそれぞれ乗じたデジタル信号を加算し、適応等化信号
out,i (n) =hxx,ix'T in,i(n)+hxy,iy'T in,i(n)
を出力する加算器xと、任意の位相同期器xkから出力する位相同期信号x'out,k(n) を入力し、参照信号dxk(n) を出力する参照信号生成部xと、加算器xから出力される適応等化信号xout,i(n)と、位相同期器xiから出力される位相差φxi(n) および位相同期信号x'out,i(n) と、参照信号生成部xから出力される参照信号dxk(n) を入力し、タップ係数hxx,iおよびhxy,iを更新し、誤差信号εxi(n) を出力するタップ係数計算部xと、タップ係数計算部xから出力される誤差信号εxi(n) を入力して収束判定を行う収束判定部xとを備え、収束判定部xは、タップ係数計算部xから出力される誤差信号εxi(n) を用いて収束判定を行い、収束後にタップ係数計算部xは、参照信号生成部xから出力される参照信号dxk(n) を用いてタップ係数hxx,iおよびhxy,iを更新する構成であり、適応等化器yiは、n番目のデジタル信号yin,N(n) を順次遅延させる2(M−1)個(Mは2以上の整数)の遅延器yと、それぞれM個のタップ係数hyx,i(=[hyx,i(1), hyx,i(2), …, hyx,i(M)] )およびhyy,i(=[hyy,i(1), hyy,i(2), …, hyy,i(M)] )と、n番目のデジタル信号xin,N(n) およびyin,N(n) と、それぞれM−1個の遅延器yで遅延したデジタル信号xin,i(n-1) ,…,xin,i(n-M+1) およびyin,i(n-1) ,…,yin,i(n-M+1) へ、M個のタップ係数hyx,iおよびhyy,iをそれぞれ乗じたデジタル信号を加算し、適応等化信号
out,i (n) =hyx,ix'T in,i(n)+hyy,iy'T in,i(n)
を出力する加算器yと、任意の位相同期器ykから出力する位相同期信号y'out,k(n) を入力し、参照信号dyk(n) を出力する参照信号生成部yと、加算器yから出力される適応等化信号yout,i(n)と、位相同期器yから出力される位相差φyi(n) および位相同期信号y'out,i(n) と、参照信号生成部yから出力される参照信号dyk(n) を入力し、タップ係数hyx,iおよびhyy,iを更新し、誤差信号εyi(n) を出力するタップ係数計算部yと、タップ係数計算部yから出力される誤差信号εyi(n) を入力して収束判定を行う収束判定部yとを備え、収束判定部yは、タップ係数計算部yから出力される誤差信号εyi(n) を用いて収束判定を行い、収束後にタップ係数計算部yは、参照信号生成部yから出力される参照信号dyk(n) を用いてタップ係数hyx,iおよびhyy,iを更新する構成である。
In the digital signal processing apparatus of the third invention, the adaptive equalizer xi sequentially delays the nth digital signal x in, N (n) 2 (M−1) (M is an integer of 2 or more). Delay unit x and M tap coefficients h xx, i (= [h xx, i (1), h xx, i (2),..., H xx, i (M)]) and h xy, i (= [H xy, i (1), h xy, i (2),..., H xy, i (M)]) and the nth digital signal x in, N (n) and y in, N ( n) and digital signals x in, i (n-1),..., x in, i (n-M + 1) and y in, i (n-1) delayed by M-1 delay units x, respectively. ),..., Y in, i (n−M + 1) are added with digital signals multiplied by M tap coefficients h xx, i and h xy, i , respectively, and the adaptive equalized signal x out, i ( n) = h xx, i x ' T in, i (n) + h xy, i y' T in, i (n)
And a reference signal generation unit x that outputs a reference signal d xk (n), and an adder x that outputs the reference signal d ′ and a phase synchronization signal x ′ out, k (n) output from an arbitrary phase synchronizer xk Adaptive equalization signal x out, i (n) output from the device x, phase difference φ xi (n) and phase synchronization signal x ′ out, i (n) output from the phase synchronizer xi, reference signal A tap coefficient calculator x that receives the reference signal d xk (n) output from the generator x, updates the tap coefficients h xx, i and h xy, i , and outputs an error signal ε xi (n); A convergence determination unit x that receives the error signal ε xi (n) output from the tap coefficient calculation unit x and performs convergence determination. The convergence determination unit x includes the error signal ε output from the tap coefficient calculation unit x. xi (n) is used to determine convergence. After convergence, the tap coefficient calculation unit x uses the reference signal d xk (n) output from the reference signal generation unit x to perform tap coefficient h xx, The adaptive equalizer yi is configured to update i and h xy, i , and the adaptive equalizer yi sequentially delays the nth digital signal y in, N (n) (M is an integer of 2 or more). ) Delay unit y and M tap coefficients h yx, i (= [h yx, i (1), h yx, i (2),..., H yx, i (M)]) and h yy , i (= [h yy, i (1), h yy, i (2),..., h yy, i (M)]) and the nth digital signal x in, N (n) and y in, N (n) and digital signals x in, i (n-1),..., X in, i (n-M + 1) and y in, i (n −1),..., Y in, i (n−M + 1) are added with digital signals obtained by multiplying M tap coefficients h yx, i and h yy, i , respectively, and the adaptive equalization signal y out, i (n) = h yx, i x ′ T in, i (n) + h yy, i y ′ T in, i (n)
And a reference signal generation unit y for inputting a phase synchronization signal y ′ out, k (n) output from an arbitrary phase synchronizer yk and outputting a reference signal d yk (n), and addition The adaptive equalization signal y out, i (n) output from the unit y, the phase difference φ yi (n) and the phase synchronization signal y ′ out, i (n) output from the phase synchronizer y , and the reference signal A tap coefficient calculator y that inputs the reference signal d yk (n) output from the generator y, updates the tap coefficients h yx, i and h yy, i , and outputs an error signal ε yi (n); A convergence determination unit y that receives the error signal ε yi (n) output from the tap coefficient calculation unit y and performs convergence determination, and the convergence determination unit y includes the error signal ε output from the tap coefficient calculation unit y. performs the convergence determination using yi (n), the tap coefficient calculation unit y after convergence, the tap coefficients using the reference signal d yk output from the reference signal generator y (n) h yx, i And h yy, is configured to update the i.

本発明は、同一のビットパターンで位相変調して送信された複数の光信号を冗長光信号受信機で一括受信した後に、デジタル信号処理を用いて受信信号間の位相同期および波形等化を行って信号合成することができる。これにより、伝送品質を改善して大容量伝送を容易にし、さらに光ネットワーク障害発生時の光信号断を防止して安定性を向上させることができる。   The present invention performs digital signal processing to perform phase synchronization and waveform equalization between received signals after a plurality of optical signals that have been phase modulated with the same bit pattern are collectively received by a redundant optical signal receiver. Signal synthesis. As a result, transmission quality can be improved to facilitate large-capacity transmission, and optical signal disconnection when an optical network failure occurs can be prevented to improve stability.

本発明の光伝送システムの実施例1の構成を示す図である。It is a figure which shows the structure of Example 1 of the optical transmission system of this invention. 本発明の光伝送システムの実施例2の構成を示す図である。It is a figure which shows the structure of Example 2 of the optical transmission system of this invention. 実施例1,2の適応等化器23−iの構成例を示す図である。It is a figure which shows the structural example of the adaptive equalizer 23-i of Example 1,2. 本発明の光伝送システムの実施例3におけるデジタル信号処理装置22の構成例を示す図である。It is a figure which shows the structural example of the digital signal processing apparatus 22 in Example 3 of the optical transmission system of this invention. 実施例3の適応等化器23x−iの構成例を示す図である。It is a figure which shows the structural example of the adaptive equalizer 23x-i of Example 3. FIG. 実施例3の適応等化器23y−iの構成例を示す図である。It is a figure which shows the structural example of the adaptive equalizer 23y-i of Example 3. FIG. DP−QPSK信号のデジタル信号処理後のコンスタレーションマップを示す図である。It is a figure which shows the constellation map after digital signal processing of DP-QPSK signal. 光伝送路3を切断した場合におけるDP−QPSK信号のデジタル信号処理後のコンスタレーションマップを示す図である。It is a figure which shows the constellation map after the digital signal processing of the DP-QPSK signal at the time of cut | disconnecting the optical transmission line 3. FIG.

図1は、本発明の光伝送システムの実施例1の構成を示す。
図1において、冗長光信号送信機10Aは、同一の電気信号を入力して同一の光信号1〜N(Nは2以上の整数)に変換し、光伝送路に並列出力する光信号送信器11−1〜11−Nにより構成される。
FIG. 1 shows a configuration of a first embodiment of an optical transmission system according to the present invention.
In FIG. 1, a redundant optical signal transmitter 10A receives the same electrical signal, converts it to the same optical signal 1 to N (N is an integer of 2 or more), and outputs it in parallel to the optical transmission line. 11-1 to 11-N.

同一の光信号1〜Nを伝送する光伝送路は、例えば、1コアの光ファイバをN本用いた構成、あるいはコア数LのマルチコアファイバをK本用いてL×K(=N)の並列伝送を行う構成でもよい。また、光信号1〜Nを波長多重し、1コアのファイバもしくはマルチコアファイバを用いて伝送する構成でもよい。   The optical transmission path for transmitting the same optical signals 1 to N is, for example, a configuration using N single-core optical fibers, or L × K (= N) parallel using K multi-core fibers with L cores. It may be configured to perform transmission. Alternatively, the optical signals 1 to N may be wavelength-multiplexed and transmitted using a one-core fiber or a multi-core fiber.

冗長光信号受信機20は、光伝送路を介して伝送された光信号1〜Nをそれぞれコヒーレント検波し、AD変換してデジタル信号を出力する光信号受信器21−1〜21−Nと、光信号受信器21−1〜21−Nから出力されるデジタル信号を入力し、位相同期および波形等化を行って信号合成するデジタル信号処理装置22とにより構成される。   The redundant optical signal receiver 20 coherently detects the optical signals 1 to N transmitted through the optical transmission path, and performs AD conversion to output a digital signal, respectively. The digital signal processing device 22 is configured to receive digital signals output from the optical signal receivers 21-1 to 21-N and perform signal synchronization by performing phase synchronization and waveform equalization.

本発明の特徴とするデジタル信号処理装置22は、適応等化器23−1〜23−N、位相同期器24−1〜24−N、信号合成器25により構成される。適応等化器23−1〜23−Nは、光信号受信器21−1〜21−Nから出力されるn番目のデジタル信号xin,1(n) 〜xin,N(n) をそれぞれ入力し、適応等化信号xout,1(n)〜xout,N(n)を出力する。位相同期器24−1〜24−Nは、適応等化器23−1〜23−Nから出力される適応等化信号xout,1(n)〜xout,N(n)をそれぞれ入力し、位相差φ1(n)〜φN(n)および位相同期信号x'out,1(n)〜x'out,N(n)を出力する。信号合成器25は、位相同期器24−1〜24−Nから出力される位相同期信号x'out,1(n)〜x'out,N(n)を入力し、等利得合成または最大比合成して合成信号Xout(n)を出力する。また、位相同期器24−1〜24−Nから出力される位相差φ1(n)〜φN(n)および位相同期信号x'out,1(n)〜x'out,N(n)と、基準とする任意の位相同期器24−k(k=1〜Nのいずれか)から出力される位相同期信号x'out,k(n) は、適応等化器23−1〜23−Nにそれぞれフィードバックされる。 The digital signal processing device 22 which is a feature of the present invention includes an adaptive equalizer 23-1 to 23 -N, a phase synchronizer 24-1 to 24 -N, and a signal synthesizer 25. The adaptive equalizers 23-1 to 23-N respectively receive the nth digital signals x in, 1 (n) to x in, N (n) output from the optical signal receivers 21-1 to 21-N. The adaptive equalization signals x out, 1 (n) to x out, N (n) are output. The phase synchronizers 24-1 to 24-N receive the adaptive equalization signals x out, 1 (n) to x out, N (n) output from the adaptive equalizers 23-1 to 23-N, respectively. , Phase differences φ 1 (n) to φ N (n) and phase synchronization signals x ′ out, 1 (n) to x ′ out, N (n) are output. The signal synthesizer 25 inputs the phase synchronization signals x ′ out, 1 (n) to x ′ out, N (n) output from the phase synchronizers 24-1 to 24-N, and equal gain synthesis or maximum ratio The combined signal X out (n) is output. Further, the phase differences φ 1 (n) to φ N (n) output from the phase synchronizers 24-1 to 24-N and the phase synchronization signals x ′ out, 1 (n) to x ′ out, N (n) And a phase synchronization signal x ′ out, k (n) output from an arbitrary phase synchronizer 24-k (k = 1 to N) as a reference is an adaptive equalizer 23-1 to 23-. N is fed back to each.

位相同期器24−i(i=1〜N)では、光信号受信器21−iにおけるコヒーレント検波時の周波数オフセット等に起因する位相同期外れの成分を位相差φi (n) として推定して出力する。位相差φi (n) は、例えば、非特許文献4に記載の計算アルゴリズムによって、推定することができる。位相同期器24−iでは、推定した位相差φi (n) を用いて、適応等化信号xout,i(n) から位相差φi(n) を修正して、位相同期信号x'out,i(n) =xout,i(n)exp(-jφi(n))として出力する(jは虚数単位) 。そして、位相同期器24−iから出力される位相差φi(n)および位相同期信号x'out,i(n) を適応等化器23−iへ入力し、さらに任意の位相同期器24−kから出力される位相同期信号x'out,k(n) を適応等化器23−iへ入力することにより、位相同期および波形等化が行われる。適応等化器23−iの構成および動作については後述する。 The phase synchronizer 24-i (i = 1 to N) estimates a component out of phase synchronization caused by a frequency offset at the time of coherent detection in the optical signal receiver 21-i as a phase difference φ i (n). Output. The phase difference φ i (n) can be estimated by, for example, a calculation algorithm described in Non-Patent Document 4. In the phase synchronizer 24-i, the estimated phase difference φ i (n) is used to correct the phase difference φ i (n) from the adaptive equalization signal x out, i (n), and the phase synchronization signal x ′. out, i (n) = x out, i (n) exp (-jφ i (n)) is output (j is an imaginary unit). Then, the phase difference φ i (n) and the phase synchronization signal x ′ out, i (n) output from the phase synchronizer 24-i are input to the adaptive equalizer 23-i, and an arbitrary phase synchronizer 24 By inputting the phase synchronization signal x ′ out, k (n) output from −k to the adaptive equalizer 23-i, phase synchronization and waveform equalization are performed. The configuration and operation of the adaptive equalizer 23-i will be described later.

図2は、本発明の光伝送システムの実施例2の構成を示す。
図2において、冗長光信号送信機10Bは、電気信号を入力して光信号に変換して出力する光信号送信器11と、光信号送信器11から出力される光信号を光信号1〜Nに分岐し、光伝送路に出力する光信号分岐器12とにより構成される。冗長光信号受信機20の構成は、図1に示す実施例1と同じである。
FIG. 2 shows the configuration of Embodiment 2 of the optical transmission system of the present invention.
In FIG. 2, the redundant optical signal transmitter 10 </ b> B includes an optical signal transmitter 11 that inputs an electrical signal, converts the electrical signal into an optical signal, and outputs the optical signal. And an optical signal branching device 12 that outputs to the optical transmission line. The configuration of the redundant optical signal receiver 20 is the same as that of the first embodiment shown in FIG.

なお、図1および図2に示すデジタル信号処理装置22の構成において、光伝送路で生じた波長分散による信号劣化を補償するために、適応等化器23−1〜23−Nの前段に波長分散補償器を配置し、デジタル信号xin,1(n) 〜xin,N(n) を波長分散補償したデジタル信号x'in,1(n) 〜x'in,N(n) に変換してそれぞれ適応等化器23−1〜23−Nへ入力する構成としてもよい。また、非線形光学効果による波形歪みの補償等、任意の補償器をデジタル信号処理装置22へ組み込むこともできる。 In the configuration of the digital signal processing device 22 shown in FIG. 1 and FIG. 2, in order to compensate for signal degradation caused by chromatic dispersion occurring in the optical transmission line, a wavelength is placed before the adaptive equalizers 23-1 to 23-N. a dispersion compensator disposed conversion, a digital signal x in, 1 (n) ~x in the digital signal x and n (n) is the chromatic dispersion compensation 'in, 1 (n) ~x ' in, the n (n) Then, it may be configured to input to the adaptive equalizers 23-1 to 23-N, respectively. Further, an arbitrary compensator such as compensation for waveform distortion due to a nonlinear optical effect can be incorporated into the digital signal processing device 22.

図3は、実施例1,2の適応等化器23−iの構成例を示す(i=1〜N)。
図3において、適応等化器23−iは、M−1個(Mは2以上の整数)の遅延器31と、M個のタップ係数hi(=[ hi(1),hi(2),…, hi(M)])32と、加算器33と、タップ係数計算部34と、収束判定部35と、参照信号生成部36とにより構成される。
FIG. 3 shows a configuration example of the adaptive equalizer 23-i of the first and second embodiments (i = 1 to N).
3, the adaptive equalizer 23-i is, M-1 or a delay unit 31 (M is an integer of 2 or more), M number of tap coefficients h i (= [h i ( 1), h i ( 2,..., H i (M)]) 32, an adder 33, a tap coefficient calculation unit 34, a convergence determination unit 35, and a reference signal generation unit 36.

加算器33は、デジタル信号xin,i(n) およびM−1個の遅延器31で遅延したデジタル信号xin,i(n-1) ,…,xin,i(n-M+1) へ、M個のタップ係数hi 32をそれぞれ乗じたデジタル信号を加算し、適応等化信号
out,i (n) =hi T in,i(n) (xT in,i(n) はxin,i(n) 転置行列)
を出力する。
The adder 33 includes the digital signal x in, i (n) and the digital signals x in, i (n−1),..., X in, i (n−M + 1) delayed by the M−1 delay units 31. to) by adding the digital signals obtained by multiplying each of M tap coefficients h i 32, the adaptive equalization signal x out, i (n) = h i x T in, i (n) (x T in, i ( n) is x in, i (n) transpose matrix)
Is output.

参照信号生成部36は、基準となる任意の位相同期器24−kから出力される位相同期信号x'out,k(n) を用いて、所定のタップ係数更新アルゴリズムに応じた参照信号dk(n)を出力する。 The reference signal generator 36 uses the phase synchronization signal x ′ out, k (n) output from the arbitrary arbitrary phase synchronizer 24-k as a reference signal d k according to a predetermined tap coefficient update algorithm. Output (n).

タップ係数計算部34は、加算器33から出力される適応等化信号xout,i(n)と、位相同期器24−iから出力される位相差φi(n)および位相同期信号x'out,i(n) と、参照信号生成部36から出力される参照信号dk(n)を用いてタップ係数hi を更新し、誤差信号εi(n)を出力する。 The tap coefficient calculation unit 34 includes the adaptive equalization signal x out, i (n) output from the adder 33, the phase difference φ i (n) output from the phase synchronizer 24-i, and the phase synchronization signal x ′. The tap coefficient h i is updated using out, i (n) and the reference signal d k (n) output from the reference signal generator 36, and the error signal ε i (n) is output.

収束判定部35は、タップ係数計算部34から出力される誤差信号εi(n)を用いて収束判定を行い、収束後に、タップ係数計算部34で、参照信号生成部36から出力される参照信号dk(n)を用いてタップ係数hi を更新する。 The convergence determination unit 35 performs convergence determination using the error signal ε i (n) output from the tap coefficient calculation unit 34, and after convergence, the tap coefficient calculation unit 34 outputs a reference output from the reference signal generation unit 36. The tap coefficient h i is updated using the signal d k (n).

タップ係数の更新方法について、QPSK信号を例として説明する。タップ係数計算部34において、収束前のタップ係数は、例えばブラインドアルゴリズムであるCMA(Constant Modulus Algorithm)を用いて、次式で更新することができる。   A tap coefficient updating method will be described by taking a QPSK signal as an example. In the tap coefficient calculation unit 34, the tap coefficient before convergence can be updated by the following equation using, for example, a CMA (Constant Modulus Algorithm) which is a blind algorithm.

Figure 2015005805
μはステップサイズパラメータ、x* in,i(n)はxin,i(n) の複素共役を示す。
Figure 2015005805
μ represents a step size parameter, and x * in, i (n) represents a complex conjugate of x in, i (n).

収束後は、例えば判定帰還型アルゴリズムであるDD−LMS(Decision Directed Least Mean Square )アルゴリズムを用いて、タップ係数を次式で更新することにより、信号間の位相を同期して波形等化することができる。   After convergence, for example, by using a decision-directed least mean square (DD-LMS) algorithm, which is a decision feedback algorithm, the tap coefficients are updated by the following equation to synchronize the phase between signals and perform waveform equalization. Can do.

Figure 2015005805
Figure 2015005805

この時、参照信号dk(n)は、参照信号生成部36において、任意の位相同期器24−kから出力される位相同期信号x'out,k(n) を用いて生成する。QPSK信号の場合、参照信号dk(n)は次式で決定される。 At this time, the reference signal d k (n) is generated by the reference signal generation unit 36 using the phase synchronization signal x ′ out, k (n) output from the arbitrary phase synchronizer 24-k. In the case of a QPSK signal, the reference signal d k (n) is determined by the following equation.

Figure 2015005805
Figure 2015005805

また、収束後に、ブラインドアルゴリズムであるCMAを用いて、タップ係数を次式で更新することにより、適応等化信号xout,1(n)〜xout,N(n)の位相を同期して波形等化することもできる。 Further, after convergence, the phase of the adaptive equalization signal x out, 1 (n) to x out, N (n) is synchronized by updating the tap coefficient by the following formula using CMA which is a blind algorithm. Waveform equalization can also be performed.

Figure 2015005805
Figure 2015005805

この時、参照信号dk(n)として位相同期信号x'out,k(n) を用いるため、参照信号生成部36では、任意の位相同期器24−kから出力される位相同期信号x'out,k(n) をそのまま出力する。 At this time, since the phase synchronization signal x ′ out, k (n) is used as the reference signal d k (n), the reference signal generator 36 uses the phase synchronization signal x ′ output from the arbitrary phase synchronizer 24-k. out, k (n) is output as is.

以上、タップ係数の更新例としてQPSK信号の場合について説明したが、任意の変調方式で変調された信号へも本発明のデジタル信号処理装置を適用することができる。また、収束前にCMA、収束後にDD−LMSアルゴリズムもしくはCMAを用いているが、任意の適応等化アルゴリズムを用いることができる。   As described above, the case of the QPSK signal has been described as an example of updating the tap coefficient. However, the digital signal processing apparatus of the present invention can be applied to a signal modulated by an arbitrary modulation method. Further, although CMA is used before convergence and DD-LMS algorithm or CMA is used after convergence, any adaptive equalization algorithm can be used.

図4は、本発明の光伝送システムの実施例3におけるデジタル信号処理装置22の構成例を示す。   FIG. 4 shows a configuration example of the digital signal processing device 22 in the third embodiment of the optical transmission system of the present invention.

本実施例の光伝送システムにおける冗長光信号送信機(図示せず)は、 128Gpbs DP−QPSK方式で変調および偏波多重された同一の光信号を光伝送路1〜3に出力する。各光伝送路は、光アンプ間を1区間として4区間で構成され、1区間の光ファイバの損失は29 dB としている。なお、実施例1および実施例2との関係では、N=3、k=2の場合に相当する構成例を示す。   A redundant optical signal transmitter (not shown) in the optical transmission system of the present embodiment outputs the same optical signal modulated and polarization multiplexed by the 128 Gpbs DP-QPSK system to the optical transmission lines 1 to 3. Each optical transmission line is composed of four sections with one section between the optical amplifiers, and the loss of the optical fiber in one section is 29 dB. In addition, in the relationship with Example 1 and Example 2, the structural example equivalent to the case where N = 3 and k = 2 is shown.

冗長光信号受信機の光信号受信器21−1〜21−3は、光伝送路1〜3を介して偏波多重伝送された光信号をそれぞれx偏波およびy偏波へ偏波分離してコヒーレント検波し、AD変換してn番目のx偏波のデジタル信号xin,1(n) 〜xin,3(n) およびy偏波のデジタル信号yin,1(n) 〜yin,3(n) を出力する。x偏波の信号を実線、y偏波の信号を破線で示す。デジタル信号処理装置22は、光信号受信器21−1〜21−3から出力されるn番目のx偏波のデジタル信号xin,1(n) 〜xin,3(n) およびy偏波のデジタル信号yin,1(n) 〜yin,3(n) をそれぞれ入力し、位相同期および波形等化を行って信号合成する構成である。なお、図4では、n番目のデジタル信号であることを示す(n) の表記は省略している。 The optical signal receivers 21-1 to 21-3 of the redundant optical signal receivers separate the polarization-multiplexed optical signals via the optical transmission lines 1 to 3 into x-polarized waves and y-polarized waves, respectively. Coherent detection, AD conversion, and the n-th x-polarized digital signal x in, 1 (n) to x in, 3 (n) and y-polarized digital signal y in, 1 (n) to y in , 3 (n) is output. An x-polarized signal is indicated by a solid line, and a y-polarized signal is indicated by a broken line. The digital signal processing device 22 includes n-th x polarization digital signals x in, 1 (n) to x in, 3 (n) and y polarization output from the optical signal receivers 21-1 to 21-3. Digital signals y in, 1 (n) to y in, 3 (n) are inputted, and the signals are synthesized by phase synchronization and waveform equalization. In FIG. 4, the notation (n) indicating the nth digital signal is omitted.

本実施例の特徴とするデジタル信号処理装置22は、x偏波に対応する波長分散補償器26x−1〜26x−3、適応等化器23x−1〜23x−3、位相同期器24x−1〜24x−3、信号合成器25xと、y偏波に対応する波長分散補償器26y−1〜26y−3、適応等化器23y−1〜23y−3、位相同期器24y−1〜24y−3、信号合成器25yにより構成される。   The digital signal processing device 22 characterized by the present embodiment includes a chromatic dispersion compensator 26x-1 to 26x-3 corresponding to x polarization, an adaptive equalizer 23x-1 to 23x-3, and a phase synchronizer 24x-1. 24x-3, signal synthesizer 25x, chromatic dispersion compensators 26y-1 to 26y-3 corresponding to y polarization, adaptive equalizers 23y-1 to 23y-3, phase synchronizers 24y-1 to 24y- 3. Consists of a signal synthesizer 25y.

x偏波に対応する波長分散補償器26x−1〜26x−3は、n番目のx偏波のデジタル信号xin,1(n) 〜xin,3(n) を入力し、波長分散を補償した波長分散補償信号x' in,1(n) 〜x' in,3(n) を出力する。y偏波に対応する波長分散補償器26y−1〜26y−3は、n番目のy偏波のデジタル信号yin,1(n) 〜yin,3(n) を入力し、波長分散を補償した波長分散補償信号y'in,1(n)〜y'in,3(n)を出力する。 The chromatic dispersion compensators 26x-1 to 26x-3 corresponding to the x polarization input the digital signal xin , 1 (n) to xin , 3 (n) of the nth x polarization, and the chromatic dispersion is obtained. Compensated chromatic dispersion compensation signals x ′ in, 1 (n) to x ′ in, 3 (n) are output. The chromatic dispersion compensators 26y-1 to 26y-3 corresponding to the y polarization input digital signals y in, 1 (n) to y in, 3 (n) of the nth y polarization , and perform chromatic dispersion. Compensated chromatic dispersion compensation signals y ′ in, 1 (n) to y ′ in, 3 (n) are output.

x偏波に対応する適応等化器23x−1〜23x−3は、波長分散補償信号x'in,1(n)〜x'in,3(n)およびy'in,1(n)〜y'in,3(n)をそれぞれ入力し、適応等化信号xout,1(n)〜xout,3(n)を出力する。位相同期器24x−1〜24x−3は、適応等化信号xout,1(n)〜xout,3(n)をそれぞれ入力し、位相差φx1(n)〜φx3(n) および位相同期信号x'out,1(n)〜x'out,3(n) を出力する。信号合成器25xは、位相同期信号x'out,1(n) 〜x' out,3(n)を入力し、等利得合成または最大比合成して合成信号Xout(n)を出力する。また、位相同期器24x−1〜24x−3から出力される位相差φx1(n) 〜φx3(n) および位相同期信号x'out,1(n)〜x'out,3(n)と、基準とする位相同期器24−2から出力される位相同期信号x'out,2(n) は、適応等化器23x−1〜23x−3にそれぞれフィードバックされる。 The adaptive equalizers 23x-1 to 23x-3 corresponding to x-polarizations are chromatic dispersion compensation signals x'in , 1 (n) to x'in , 3 (n) and y'in , 1 (n) to y ′ in, 3 (n) is input, and adaptive equalization signals x out, 1 (n) to x out, 3 (n) are output. The phase synchronizers 24x-1 to 24x-3 receive the adaptive equalization signals xout , 1 (n) to xout , 3 (n), respectively, and the phase differences φ x1 (n) to φ x3 (n) and The phase synchronization signals x ′ out, 1 (n) to x ′ out, 3 (n) are output. The signal synthesizer 25x receives the phase synchronization signals x ′ out, 1 (n) to x ′ out, 3 (n), and outputs the synthesized signal X out (n) by performing equal gain synthesis or maximum ratio synthesis. Further, the phase differences φ x1 (n) to φ x3 (n) output from the phase synchronizers 24x-1 to 24x-3 and the phase synchronization signals x ′ out, 1 (n) to x ′ out, 3 (n) The phase synchronization signal x ′ out, 2 (n) output from the reference phase synchronizer 24-2 is fed back to the adaptive equalizers 23x-1 to 23x-3.

y偏波に対応する適応等化器23y−1〜23y−3は、波長分散補償信号x'in,1(n)〜x'in,3(n)およびy'in,1(n)〜y'in,3(n)をそれぞれ入力し、適応等化信号yout,1(n)〜yout,3(n)を出力する。位相同期器24y−1〜24y−3は、適応等化信号yout,1(n)〜yout,3(n)をそれぞれ入力し、位相差φy1(n)〜φy3(n) および位相同期信号y'out,1(n)〜y'out,3(n) を出力する。信号合成器25yは、位相同期信号y'out,1(n) 〜y' out,3(n)を入力し、等利得合成または最大比合成して合成信号Yout(n)を出力する。また、位相同期器24y−1〜24y−3から出力される位相差φy1(n) 〜φy3(n) および位相同期信号y'out,1(n)〜y'out,3(n)と、基準とする位相同期器24−2から出力される位相同期信号y'out,2(n) は、適応等化器23y−1〜23y−3にそれぞれフィードバックされる。 The adaptive equalizers 23y-1 to 23y-3 corresponding to the y-polarizations are chromatic dispersion compensation signals x'in , 1 (n) to x'in , 3 (n) and y'in , 1 (n) to y ′ in, 3 (n) is input, and adaptive equalization signals y out, 1 (n) to y out, 3 (n) are output. The phase synchronizers 24y-1 to 24y-3 receive the adaptive equalization signals y out, 1 (n) to y out, 3 (n), respectively, and the phase differences φ y1 (n) to φ y3 (n) and The phase synchronization signal y ′ out, 1 (n) to y ′ out, 3 (n) is output. The signal synthesizer 25y receives the phase synchronization signals y ′ out, 1 (n) to y ′ out, 3 (n) , and performs equal gain synthesis or maximum ratio synthesis to output a synthesized signal Y out (n). Further, the phase differences φ y1 (n) to φ y3 (n) and the phase synchronization signals y ′ out, 1 (n) to y ′ out, 3 (n) output from the phase synchronizers 24y-1 to 24y-3. The phase synchronization signal y ′ out, 2 (n) output from the reference phase synchronizer 24-2 is fed back to the adaptive equalizers 23y-1 to 23y-3.

このように、実施例3のデジタル信号処理装置22では、光伝送路1〜3で生じた波長分散による信号劣化を補償するために、適応等化器23x−1〜23x−3、23y−1〜23y−3の前段に波長分散補償器26x−1〜26x−3および26y−1〜26y−3を配置する構成としているが、その他の位相同期器24x−1〜24x−3および24y−1〜24y−3と、信号合成器25xおよび25yは、実施例1および実施例2と同様の機能を有している。   As described above, in the digital signal processing device 22 according to the third embodiment, the adaptive equalizers 23x-1 to 23x-3 and 23y-1 are used to compensate for signal degradation caused by chromatic dispersion occurring in the optical transmission lines 1 to 3. To 23y-3, the chromatic dispersion compensators 26x-1 to 26x-3 and 26y-1 to 26y-3 are arranged, but the other phase synchronizers 24x-1 to 24x-3 and 24y-1 are arranged. To 24y-3 and the signal synthesizers 25x and 25y have the same functions as those of the first and second embodiments.

図5は、実施例3の適応等化器23x−iの構成例を示す(i=1,2,3)。
図5において、適応等化器23x−iは、2(M−1)個の遅延器31と、M個のタップ係数hxx,i(=[ hxx,i(1),hxx,i(2),…, hxx,i(M)])およびM個のタップ係数hxy,i(=[ hxy,i(1),hxy,i(2),…, hxy,i(M)])32と、加算器33と、タップ係数計算部34と、収束判定部35と、参照信号生成部36とにより構成される。
FIG. 5 illustrates a configuration example of the adaptive equalizer 23x-i according to the third embodiment (i = 1, 2, 3).
In FIG. 5, the adaptive equalizer 23x-i includes 2 (M-1) delay units 31 and M tap coefficients h xx, i (= [h xx, i (1), h xx, i (2), ..., h xx, i (M)]) and M tap coefficients h xy, i (= [h xy, i (1), h xy, i (2), ..., h xy, i (M)]) 32, an adder 33, a tap coefficient calculation unit 34, a convergence determination unit 35, and a reference signal generation unit 36.

加算器33は、波長分散補償信号x'in,i(n) およびy'in,i(n) と、それぞれM−1個の遅延器31で遅延した波長分散補償信号x'in,i(n-1) ,…,x'in,i(n-M+1) およびy'in,i(n-1) ,…,y'in,i(n-M+1) へ、それぞれM個のタップ係数hxx,iおよびhxy,i32をそれぞれ乗じた波長分散補償信号を加算し、適応等化信号
out,i(n) =hxx,ix'T in,i(n)+hxy,iy'T in,i(n)
を出力する。
The adder 33 receives the chromatic dispersion compensation signals x ′ in, i (n) and y ′ in, i (n) and the chromatic dispersion compensation signals x ′ in, i (delayed by M−1 delay units 31). n-1), ..., x'in , i (n-M + 1) and y'in , i (n-1), ..., y'in , i (n-M + 1), respectively. The chromatic dispersion compensation signals multiplied by the tap coefficients h xx, i and h xy, i 32 respectively are added, and the adaptive equalization signal x out, i (n) = h xx, i x ′ T in, i (n) + H xy, i y ' T in, i (n)
Is output.

参照信号生成部36は、基準となる任意の位相同期器24−2から出力される位相同期信号x'out,2(n) を用いて、上記のタップ係数更新アルゴリズムに応じた参照信号d2(n)を出力する。 The reference signal generator 36 uses the phase synchronization signal x ′ out, 2 (n) output from the arbitrary arbitrary phase synchronizer 24-2 as a reference signal d 2 according to the tap coefficient update algorithm. Output (n).

タップ係数計算部34は、加算器33から出力される適応等化信号xout,i(n)と、位相同期器24−iから出力される位相差φxi(n) および位相同期信号x'out,i(n) と、参照信号生成部36から出力される参照信号dx2(n) を用いてタップ係数hxx,iおよびhxy,iを更新し、誤差信号εxi(n) を出力する。 The tap coefficient calculation unit 34 includes the adaptive equalization signal x out, i (n) output from the adder 33, the phase difference φ xi (n) output from the phase synchronizer 24-i, and the phase synchronization signal x ′. The tap coefficients h xx, i and h xy, i are updated using out, i (n) and the reference signal d x2 (n) output from the reference signal generator 36 , and the error signal ε xi (n) is updated. Output.

収束判定部35は、タップ係数計算部34から出力される誤差信号εxi(n) を用いて収束判定を行い、収束後に、タップ係数計算部34で、参照信号生成部36から出力される参照信号dxk(n) を用いてタップ係数hxx,iおよびhxy,iを更新する。 The convergence determination unit 35 performs convergence determination using the error signal ε xi (n) output from the tap coefficient calculation unit 34, and the reference is output from the reference signal generation unit 36 in the tap coefficient calculation unit 34 after the convergence. The tap coefficients h xx, i and h xy, i are updated using the signal d xk (n).

図6は、実施例3の適応等化器23y−iの構成例を示す(i=1,2,3)。
図6において、適応等化器23y−iは、2(M−1)個の遅延器31と、M個のタップ係数hyx,i(=[ hyx,i(1),hyx,i(2),…, hyx,i(M)])およびM個のタップ係数hyy,i(=[ hyy,i(1),hyy,i(2),…, hyy,i(M)])32と、加算器33と、タップ係数計算部34と、収束判定部35と、参照信号生成部36とにより構成される。各部は、図5に示す適応等化器23x−iの各部と同様の機能を有する。
FIG. 6 illustrates a configuration example of the adaptive equalizer 23y-i according to the third embodiment (i = 1, 2, 3).
In FIG. 6, the adaptive equalizer 23y-i includes 2 (M-1) delay devices 31 and M tap coefficients h yx, i (= [h yx, i (1), h yx, i (2), ..., h yx, i (M)]) and M tap coefficients h yy, i (= [h yy, i (1), h yy, i (2), ..., h yy, i (M)]) 32, an adder 33, a tap coefficient calculation unit 34, a convergence determination unit 35, and a reference signal generation unit 36. Each unit has the same function as each unit of the adaptive equalizer 23x-i illustrated in FIG.

図5および図6のタップ係数計算部34では、例えば実施例1,2と同様に、収束前はCMAを、収束後は参照信号dx2(n) およびdy2(n) を用いたDD−LMSアルゴリズムへ切り替えて更新することにより、信号間の位相を同期して波形等化することができる。 5 and 6, for example, as in the first and second embodiments, DD− using CMA before convergence and reference signals d x2 (n) and d y2 (n) after convergence. By switching to the LMS algorithm and updating, it is possible to perform waveform equalization in synchronization with the phase between signals.

タップ係数計算部34において、収束前のCMAによるタップ係数更新式は、次のようになる。

Figure 2015005805
In the tap coefficient calculation unit 34, the tap coefficient update formula by the CMA before convergence is as follows.
Figure 2015005805

また、参照信号dx2(n) およびdy2(n) を用いた収束後のDD−LMSアルゴリズムによるタップ係数更新式は、次のようになる。

Figure 2015005805
Further, the tap coefficient update formula by the DD-LMS algorithm after convergence using the reference signals d x2 (n) and d y2 (n) is as follows.
Figure 2015005805

ここで、参照信号dx2(n) およびdy2(n) は、参照信号生成部34において、位相同期器24x−2,24y−2から出力される位相同期信号x'out,2(n)およびy'out,2(n)を用いて実施例1,2と同様に生成する。 Here, the reference signals d x2 (n) and d y2 (n) are output from the phase synchronization signals x ′ out, 2 (n) output from the phase synchronizers 24 x−2 and 24 y−2 in the reference signal generator 34. And y ′ out, 2 (n) are generated in the same manner as in Examples 1 and 2.

また、実施例1,2と同様に、収束前後のタップ係数更新アルゴリズムは、任意の適応等化アルゴリズムを用いることもできる。   As in the first and second embodiments, an arbitrary adaptive equalization algorithm can be used as the tap coefficient update algorithm before and after convergence.

図7は、DP−QPSK信号のデジタル信号処理後のコンスタレーションマップを示す。光伝送路1〜3を伝送後の信号を、通常のデジタルコヒーレント受信した場合の伝送特性は、それぞれQ値で、8.45 dB 、8.68 dB 、8.90 dB であった。   FIG. 7 shows a constellation map after digital signal processing of the DP-QPSK signal. The transmission characteristics when the signals after transmission through the optical transmission lines 1 to 3 were received by normal digital coherent were 8.45 dB, 8.68 dB, and 8.90 dB as Q values, respectively.

次に、実施例3に記載の構成でデジタル信号処理を行った。図7に示すように、収束前は信号間の位相が同期されていないため光伝送路1〜3の合成信号はQPSKの位相点配置が得られていないが、収束後に上記の参照信号を用いたDD−LMSアルゴリズムに切り替えると、信号間の位相を同期して波形等化し合成することができるため、QPSKの位相点配置が得られている。この時の伝送特性はQ値で12.72 dBであり、3.82 dB の伝送特性改善が確認できた。   Next, digital signal processing was performed with the configuration described in Example 3. As shown in FIG. 7, since the phase between the signals is not synchronized before convergence, the combined signal of the optical transmission lines 1 to 3 does not have the QPSK phase point arrangement, but the reference signal is used after convergence. When switching to the DD-LMS algorithm, the QPSK phase point arrangement is obtained because the waveforms can be equalized and synthesized in synchronism with the phase between the signals. The transmission characteristic at this time was 12.72 dB in terms of Q value, confirming an improvement in transmission characteristic of 3.82 dB.

図8は、光伝送路3を切断した場合におけるDP−QPSK信号のデジタル信号処理後のコンスタレーションマップを示す。これは、光伝送路に障害が発生した場合を想定したものである。   FIG. 8 shows a constellation map after digital signal processing of the DP-QPSK signal when the optical transmission line 3 is disconnected. This assumes that a failure has occurred in the optical transmission line.

本発明の光伝送システムにおけるデジタル信号処理では、参照信号を用いたタップ係数更新を行うため、図8に示すように、光伝送路断時に生じるノイズ成分を抑制することができる。光伝送路3の切断時において、光伝送路1〜3の合成信号の伝送特性は、Q値で11.37 dBとなった。光伝送路に障害が発生した場合においても、単独の伝送時に比べて伝送特性が改善しており、例えば、2つの光伝送路を合成した伝送特性で伝送距離を決定し、通常時に3伝送路で運用することで、いずれかの方路で障害が発生しても、信号断することなく伝送を継続することができる。   In the digital signal processing in the optical transmission system of the present invention, since the tap coefficient is updated using the reference signal, as shown in FIG. 8, noise components generated when the optical transmission line is interrupted can be suppressed. When the optical transmission line 3 was disconnected, the transmission characteristic of the combined signal of the optical transmission lines 1 to 3 was 11.37 dB in terms of Q value. Even when a failure occurs in the optical transmission line, the transmission characteristics are improved as compared with the single transmission. For example, the transmission distance is determined by the transmission characteristic obtained by combining two optical transmission lines, and three transmission lines are normally used. In this way, even if a failure occurs in any of the routes, transmission can be continued without disconnecting the signal.

10A,10B 冗長光信号送信機
11,11−1〜11−N 光信号送信器
12 光信号分岐器
20 冗長光信号受信機
21−1〜21−N 光信号受信器
22 デジタル信号処理装置
23−1〜23−N,23x−1〜23x−3,23y−1〜23y−3 適応等化器 24−1〜24−N,24x−1〜24x−3,24y−1〜24y−3 位相同期器 25,25x,25y 信号合成器
26x−1〜26x−3 波長分散補償器
26y−1〜26y−3 波長分散補償器
31 遅延器
32 タップ係数hi
33 加算器
34 タップ係数計算部
35 収束判定部
36 参照信号生成部
10A, 10B Redundant optical signal transmitter 11, 11-1 to 11-N Optical signal transmitter 12 Optical signal splitter 20 Redundant optical signal receiver 21-1 to 21-N Optical signal receiver 22 Digital signal processing device 23- 1-23-N, 23x-1 to 23x-3, 23y-1 to 23y-3 Adaptive equalizer 24-1 to 24-N, 24x-1 to 24x-3, 24y-1 to 24y-3 Phase synchronization vessels 25,25x, 25y signal combiner 26x-1~26x-3 chromatic dispersion compensator 26y-1~26y-3 chromatic dispersion compensator 31 delayer 32 tap coefficients h i
33 Adder 34 Tap Coefficient Calculation Unit 35 Convergence Determination Unit 36 Reference Signal Generation Unit

Claims (7)

同一の光信号1〜N(Nは2以上の整数)を光伝送路を介して伝送し、冗長光信号受信機で一括受信して信号合成を行う光伝送システムにおいて、
前記冗長光信号受信機は、
前記光伝送路を介して伝送された前記光信号1〜Nをそれぞれコヒーレント検波し、さらにアナログデジタル変換してデジタル信号を出力するN個の光信号受信機と、
前記N個の光信号受信機からそれぞれ出力される前記デジタル信号を入力し、位相同期および波形等化を行った信号を合成して出力するデジタル信号処理装置と
を備えたことを特徴とする光伝送システム。
In an optical transmission system in which the same optical signals 1 to N (N is an integer of 2 or more) are transmitted through an optical transmission line, and received by a redundant optical signal receiver in a lump for signal synthesis,
The redundant optical signal receiver is:
N optical signal receivers that coherently detect the optical signals 1 to N transmitted through the optical transmission line, and further perform analog-digital conversion to output a digital signal;
And a digital signal processing device for inputting the digital signals respectively output from the N optical signal receivers and synthesizing and outputting the signals subjected to phase synchronization and waveform equalization. Transmission system.
請求項1に記載の光伝送システムにおいて、
前記冗長光信号受信機の光信号受信機i(iは1〜Nの整数)は、前記光伝送路を介して伝送された前記光信号iをコヒーレント検波し、さらにアナログデジタル変換してデジタル信号を出力する構成であり、
前記デジタル信号処理装置は、
前記光信号受信機iから出力されるn番目(nは自然数)のデジタル信号xin,i(n) を入力し、適応等化信号xout,i(n)を出力する適応等化器iと、
前記適応等化器iから出力される前記適応等化信号xout,i(n)を入力し、位相差φi(n)および位相同期信号x'out,i(n)を出力する位相同期器iと、
前記位相同期器iから出力される前記位相同期信号x'out,i(n)を入力して合成し、合成信号Xout(n)を出力する信号合成器iと
を備え、
前記適応等化器iは、前記位相同期器iから出力される前記位相差φi(n)および位相同期信号x'out,i(n) を入力し、さらに任意の位相同期器k(kは1〜Nの整数)から出力される位相同期信号x'out,k(n) を入力し、前記デジタル信号xin,N(n) の位相同期および波形等化を行った前記適応等化信号xout,i(n)を出力する構成である
ことを特徴とする光伝送システム。
The optical transmission system according to claim 1,
The optical signal receiver i (i is an integer from 1 to N) of the redundant optical signal receiver performs coherent detection on the optical signal i transmitted through the optical transmission path, and further converts the signal into analog to digital form to obtain a digital signal. Is output, and
The digital signal processing device includes:
An adaptive equalizer i that inputs an n-th (n is a natural number) digital signal x in, i (n) output from the optical signal receiver i and outputs an adaptive equalization signal x out, i (n). When,
Phase synchronization that inputs the adaptive equalization signal x out, i (n) output from the adaptive equalizer i and outputs a phase difference φ i (n) and a phase synchronization signal x ′ out, i (n) Vessel i,
A signal synthesizer i that inputs and synthesizes the phase synchronization signal x ′ out, i (n) output from the phase synchronizer i and outputs a synthesized signal X out (n);
The adaptive equalizer i receives the phase difference φ i (n) and the phase synchronization signal x ′ out, i (n) output from the phase synchronizer i , and an arbitrary phase synchronizer k (k Is a phase synchronization signal x ′ out, k (n) output from 1 to N), and the digital signal x in, N (n) is subjected to phase synchronization and waveform equalization. An optical transmission system characterized in that the signal x out, i (n) is output.
請求項1に記載の光伝送システムにおいて、
前記冗長光信号受信機の前記光信号受信機i(iは1〜Nの整数)は、前記光伝送路を介して伝送された前記光信号iを偏波分離してそれぞれコヒーレント検波し、さらにアナログデジタル変換してデジタル信号を出力する構成であり、
前記デジタル信号処理装置は、
前記光信号受信機iから出力される偏波分離したn番目(nは自然数)のデジタル信号xin,i(n) およびyin,i(n) を入力し、適応等化信号xout,i(n)およびyout,i(n)を出力する適応等化器xiおよびyiと、
前記適応等化器xiおよびyiから出力される前記適応等化信号xout,i(n)およびyout,i(n)を入力し、位相差φxi(n) およびφyi(n) と位相同期信号x'out,i(n) およびy'out,i(n)を出力する位相同期器xiおよびyiと、
前記位相同期器xiおよびyiから出力される前記位相同期信号x'out,i(n) およびy'out,i(n) を入力し、それぞれ合成信号Xout(n)およびYout(n)を出力する信号合成器xiおよびyiと
を備え、
前記適応等化器xiおよびyiは、前記位相同期器xiおよびyiから出力される位相差φxi(n) およびφyi(n) と位相同期信号x'out,i(n) およびy'out,i(n) を入力し、さらに任意の位相同期器xkおよびyk(kは1〜Nの整数)から出力される位相同期信号x'out,k(n) およびy'out,k(n) を入力し、前記デジタル信号xin,N(n)およびyin,N(n)の位相同期および波形等化を行った前記適応等化信号xout,i(n)およびyout,i(n)を出力する構成である
ことを特徴とする光伝送システム。
The optical transmission system according to claim 1,
The optical signal receiver i (i is an integer from 1 to N) of the redundant optical signal receiver performs polarization separation on the optical signal i transmitted through the optical transmission path, and performs coherent detection, respectively. It is configured to output a digital signal after analog-digital conversion.
The digital signal processing device includes:
The polarization-separated nth (n is a natural number) digital signal x in, i (n) and y in, i (n) output from the optical signal receiver i are input, and the adaptive equalization signal x out, adaptive equalizers xi and yi that output i (n) and y out, i (n);
The adaptive equalization signals x out, i (n) and y out, i (n) output from the adaptive equalizers xi and yi are input, and phase differences φ xi (n) and φ yi (n) and Phase synchronizers xi and yi for outputting phase synchronization signals x ′ out, i (n) and y ′ out, i (n);
The phase synchronization signals x ′ out, i (n) and y ′ out, i (n) output from the phase synchronizers xi and yi are input, and the combined signals X out (n) and Y out (n) are input, respectively. And signal synthesizers xi and yi for outputting
The adaptive equalizers xi and yi are connected to the phase differences φ xi (n) and φ yi (n) output from the phase synchronizers xi and yi and the phase synchronization signals x ′ out, i (n) and y ′ out. , i (n) and phase synchronization signals x ′ out, k (n) and y ′ out, k (n) output from arbitrary phase synchronizers xk and yk (k is an integer of 1 to N). ) And the adaptive equalized signals x out, i (n) and y out, i obtained by performing phase synchronization and waveform equalization of the digital signals x in, N (n) and y in, N (n) An optical transmission system characterized in that (n) is output.
請求項1に記載の光伝送システムの冗長光信号受信機のデジタル信号処理装置において、
前記光信号受信機i(iは1〜Nの整数)から出力されるn番目(nは自然数)のデジタル信号xin,i(n) を入力し、適応等化信号xout,i(n)を出力する適応等化器iと、
前記適応等化器iから出力される前記適応等化信号xout,i(n)を入力し、位相差φi(n)および位相同期信号x'out,i(n) を出力する位相同期器iと、
前記位相同期器iから出力される前記位相同期信号x'out,i(n) を入力して合成し、合成信号Xout(n)を出力する信号合成器iと
を備え、
前記適応等化器iは、前記位相同期器iから出力される前記位相差φi(n)および位相同期信号x'out,i(n) を入力し、さらに任意の位相同期器k(kは1〜Nの整数)から出力される位相同期信号x'out,k(n) を入力し、前記デジタル信号xin,N(n) の位相同期および波形等化を行った前記適応等化信号xout,i(n)を出力する構成である
ことを特徴とするデジタル信号処理装置。
In the digital signal processing apparatus of the redundant optical signal receiver of the optical transmission system according to claim 1,
An n-th (n is a natural number) digital signal x in, i (n) output from the optical signal receiver i (i is an integer from 1 to N) is input, and an adaptive equalization signal x out, i (n ) To output an adaptive equalizer i;
The phase synchronization that inputs the adaptive equalization signal x out, i (n) output from the adaptive equalizer i and outputs the phase difference φ i (n) and the phase synchronization signal x ′ out, i (n) Vessel i,
A signal synthesizer i that inputs and synthesizes the phase synchronization signal x ′ out, i (n) output from the phase synchronizer i and outputs a synthesized signal X out (n);
The adaptive equalizer i receives the phase difference φ i (n) and the phase synchronization signal x ′ out, i (n) output from the phase synchronizer i , and an arbitrary phase synchronizer k (k Is a phase synchronization signal x ′ out, k (n) output from 1 to N), and the digital signal x in, N (n) is subjected to phase synchronization and waveform equalization. A digital signal processing device characterized by being configured to output a signal x out, i (n).
請求項4に記載のデジタル信号処理装置において、
前記適応等化器iは、
前記n番目のデジタル信号xin,N(n) を順次遅延させるM−1個(Mは2以上の整数)の遅延器と、
M個のタップ係数hi(=[hi(1),hi(2),…, hi(M)])と、
前記n番目のデジタル信号xin,N(n) および前記M−1個の遅延器で遅延したデジタル信号xin,i(n-1) ,…,xin,i(n-M+1) へ、前記M個のタップ係数hi をそれぞれ乗じたデジタル信号を加算し、適応等化信号
out,i (n) =hi T in,i(n) (xT in,i(n) はxin,i(n) の転置行列)
を出力する加算器と、
前記任意の位相同期器kから出力する前記位相同期信号x'out,k(n) を入力し、参照信号dk(n)を出力する参照信号生成部と、
前記加算器から出力される前記適応等化信号xout,i(n)と、前記位相同期器iから出力される前記位相差φi(n)および位相同期信号x'out,i(n) と、前記参照信号生成部から出力される前記参照信号dk(n)を入力し、前記タップ係数hi を更新し、誤差信号εi(n)を出力するタップ係数計算部と、
前記タップ係数計算部から出力される前記誤差信号εi(n)を入力して収束判定を行う収束判定部と
を備え、
前記収束判定部は、前記タップ係数計算部から出力される前記誤差信号εi(n)を用いて収束判定を行い、収束後に前記タップ係数計算部は、前記参照信号生成部から出力される参照信号dk(n)を用いて前記タップ係数hi を更新する構成である
ことを特徴とするデジタル信号処理装置。
The digital signal processing device according to claim 4.
The adaptive equalizer i is
M-1 delay units (M is an integer of 2 or more) for sequentially delaying the nth digital signal x in, N (n);
M tap coefficients h i (= [h i (1), h i (2),..., H i (M)]),
The nth digital signal x in, N (n) and the digital signals x in, i (n−1),..., X in, i (n−M + 1) delayed by the M−1 delay units. to, the M tap coefficients h i by adding the digital signals obtained by multiplying each adaptive equalization signal x out, i (n) = h i x T in, i (n) (x T in, i (n ) Is the transposed matrix of x in, i (n))
An adder that outputs
A reference signal generation unit that inputs the phase synchronization signal x ′ out, k (n) output from the arbitrary phase synchronizer k and outputs a reference signal d k (n);
The adaptive equalization signal x out, i (n) output from the adder, the phase difference φ i (n) and the phase synchronization signal x ′ out, i (n) output from the phase synchronizer i. A tap coefficient calculator that inputs the reference signal d k (n) output from the reference signal generator, updates the tap coefficient h i , and outputs an error signal ε i (n);
A convergence determination unit that performs the convergence determination by inputting the error signal ε i (n) output from the tap coefficient calculation unit, and
The convergence determination unit performs a convergence determination using the error signal ε i (n) output from the tap coefficient calculation unit, and after convergence, the tap coefficient calculation unit is a reference output from the reference signal generation unit A digital signal processing apparatus, wherein the tap coefficient h i is updated using a signal d k (n).
請求項1に記載の光伝送システムの冗長光信号受信機のデジタル信号処理装置において、
前記光信号受信機i(iは1〜Nの整数)から出力される偏波分離したn番目(nは自然数)のデジタル信号xin,i(n) およびyin,i(n) を入力し、適応等化信号xout,i(n)およびyout,i(n)を出力する適応等化器xiおよびyiと、
前記適応等化器xiおよびyiから出力される前記適応等化信号xout,i(n)およびyout,i(n)を入力し、位相差φxi(n) およびφyi(n) と位相同期信号x'out,i(n) およびy'out,i(n)を出力する位相同期器xiおよびyiと、
前記位相同期器xiおよびyiから出力される前記位相同期信号x'out,i(n) およびy'out,i(n) を入力し、それぞれ合成信号Xout(n)およびYout(n)を出力する信号合成器xiおよびyiと
を備え、
前記適応等化器xiおよびyiは、前記位相同期器xiおよびyiから出力される位相差φxi(n) およびφyi(n) と位相同期信号x'out,i(n) およびy'out,i(n) を入力し、さらに任意の位相同期器xkおよびyk(kは1〜Nの整数)から出力される位相同期信号x'out,k(n) およびy'out,k(n) を入力し、前記デジタル信号xin,N(n)およびyin,N(n)の位相同期および波形等化を行った前記適応等化信号xout,i(n)およびyout,i(n)を出力する構成である
ことを特徴とするデジタル信号処理装置。
In the digital signal processing apparatus of the redundant optical signal receiver of the optical transmission system according to claim 1,
Inputs the n-th (n is a natural number) digital signal x in, i (n) and y in, i (n) separated from polarization output from the optical signal receiver i (i is an integer of 1 to N). And adaptive equalizers xi and yi that output adaptive equalization signals x out, i (n) and y out, i (n),
The adaptive equalization signals x out, i (n) and y out, i (n) output from the adaptive equalizers xi and yi are input, and phase differences φ xi (n) and φ yi (n) and Phase synchronizers xi and yi for outputting phase synchronization signals x ′ out, i (n) and y ′ out, i (n);
The phase synchronization signals x ′ out, i (n) and y ′ out, i (n) output from the phase synchronizers xi and yi are input, and the combined signals X out (n) and Y out (n) are input, respectively. And signal synthesizers xi and yi for outputting
The adaptive equalizers xi and yi are connected to the phase differences φ xi (n) and φ yi (n) output from the phase synchronizers xi and yi and the phase synchronization signals x ′ out, i (n) and y ′ out. , i (n) and phase synchronization signals x ′ out, k (n) and y ′ out, k (n) output from arbitrary phase synchronizers xk and yk (k is an integer of 1 to N). ) And the adaptive equalized signals x out, i (n) and y out, i obtained by performing phase synchronization and waveform equalization of the digital signals x in, N (n) and y in, N (n) A digital signal processing device characterized in that it is configured to output (n).
請求項6に記載のデジタル信号処理装置において、
前記適応等化器xiは、
前記n番目のデジタル信号xin,N(n) を順次遅延させる2(M−1)個(Mは2以上の整数)の遅延器xと、
それぞれM個のタップ係数hxx,i(=[hxx,i(1), hxx,i(2), …, hxx,i(M)] )およびhxy,i(=[hxy,i(1), hxy,i(2), …, hxy,i(M)] )と、
前記n番目のデジタル信号xin,N(n) およびyin,N(n) と、それぞれ前記M−1個の遅延器xで遅延したデジタル信号xin,i(n-1) ,…,xin,i(n-M+1) およびyin,i(n-1) ,…,yin,i(n-M+1) へ、前記M個のタップ係数hxx,iおよびhxy,iをそれぞれ乗じたデジタル信号を加算し、適応等化信号
out,i (n) =hxx,ix'T in,i(n)+hxy,iy'T in,i(n)
(Tは転置行列を示す)
を出力する加算器xと、
前記任意の位相同期器xkから出力する前記位相同期信号x'out,k(n) を入力し、参照信号dxk(n) を出力する参照信号生成部xと、
前記加算器xから出力される前記適応等化信号xout,i(n)と、前記位相同期器xiから出力される前記位相差φxi(n) および位相同期信号x'out,i(n) と、前記参照信号生成部xから出力される前記参照信号dxk(n) を入力し、前記タップ係数hxx,iおよびhxy,iを更新し、誤差信号εxi(n) を出力するタップ係数計算部xと、
前記タップ係数計算部xから出力される前記誤差信号εxi(n) を入力して収束判定を行う収束判定部xと
を備え、
前記収束判定部xは、前記タップ係数計算部xから出力される前記誤差信号εxi(n) を用いて収束判定を行い、収束後に前記タップ係数計算部xは、前記参照信号生成部xから出力される参照信号dxk(n) を用いて前記タップ係数hxx,iおよびhxy,iを更新する構成であり、
前記適応等化器yiは、
前記n番目のデジタル信号yin,N(n) を順次遅延させる2(M−1)個(Mは2以上の整数)の遅延器yと、
それぞれM個のタップ係数hyx,i(=[hyx,i(1), hyx,i(2), …, hyx,i(M)] )およびhyy,i(=[hyy,i(1), hyy,i(2), …, hyy,i(M)] )と、
前記n番目のデジタル信号xin,N(n) およびyin,N(n) と、それぞれ前記M−1個の遅延器yで遅延したデジタル信号xin,i(n-1) ,…,xin,i(n-M+1) およびyin,i(n-1) ,…,yin,i(n-M+1) へ、前記M個のタップ係数hyx,iおよびhyy,iをそれぞれ乗じたデジタル信号を加算し、適応等化信号
out,i (n) =hyx,ix'T in,i(n)+hyy,iy'T in,i(n)
を出力する加算器yと、
前記任意の位相同期器ykから出力する前記位相同期信号y'out,k(n) を入力し、参照信号dyk(n) を出力する参照信号生成部yと、
前記加算器yから出力される前記適応等化信号yout,i(n)と、前記位相同期器yから出力される前記位相差φyi(n) および位相同期信号y'out,i(n) と、前記参照信号生成部yから出力される前記参照信号dyk(n) を入力し、前記タップ係数hyx,iおよびhyy,iを更新し、誤差信号εyi(n) を出力するタップ係数計算部yと、
前記タップ係数計算部yから出力される前記誤差信号εyi(n) を入力して収束判定を行う収束判定部yと
を備え、
前記収束判定部yは、前記タップ係数計算部yから出力される前記誤差信号εyi(n) を用いて収束判定を行い、収束後に前記タップ係数計算部yは、前記参照信号生成部yから出力される参照信号dyk(n) を用いて前記タップ係数hyx,iおよびhyy,iを更新する構成である
ことを特徴とするデジタル信号処理装置。
The digital signal processing apparatus according to claim 6.
The adaptive equalizer xi is
2 (M-1) delay units x (M is an integer of 2 or more) for sequentially delaying the n-th digital signal x in, N (n);
M tap coefficients h xx, i (= [h xx, i (1), h xx, i (2),..., H xx, i (M)]) and h xy, i (= [h xy , i (1), h xy, i (2),…, h xy, i (M)]),
The nth digital signals x in, N (n) and y in, N (n) and the digital signals x in, i (n−1),... Delayed by the M−1 delay units x, respectively. x in, i (n−M + 1) and y in, i (n−1),..., y in, i (n−M + 1), the M tap coefficients h xx, i and h xy , i are added to each other and the adaptive equalization signal x out, i (n) = h xx, i x ′ T in, i (n) + h xy, i y ′ T in, i (n)
(T represents a transposed matrix)
An adder x that outputs
A reference signal generation unit x that inputs the phase synchronization signal x ′ out, k (n) output from the arbitrary phase synchronizer xk and outputs a reference signal d xk (n);
The adaptive equalization signal x out, i (n) output from the adder x, the phase difference φ xi (n) output from the phase synchronizer xi, and the phase synchronization signal x ′ out, i (n ) And the reference signal d xk (n) output from the reference signal generation unit x, the tap coefficients h xx, i and h xy, i are updated, and an error signal ε xi (n) is output. A tap coefficient calculation unit x,
A convergence determination unit x that inputs the error signal ε xi (n) output from the tap coefficient calculation unit x and performs a convergence determination;
The convergence determination unit x performs convergence determination using the error signal ε xi (n) output from the tap coefficient calculation unit x, and after convergence, the tap coefficient calculation unit x receives from the reference signal generation unit x. The tap coefficients h xx, i and h xy, i are updated using the output reference signal d xk (n),
The adaptive equalizer yi is
2 (M-1) delay units y (M is an integer of 2 or more) for sequentially delaying the nth digital signal y in, N (n);
M tap coefficients h yx, i (= [h yx, i (1), h yx, i (2),..., H yx, i (M)]) and h yy, i (= [h yy , i (1), h yy, i (2),…, h yy, i (M)]),
The nth digital signals x in, N (n) and y in, N (n) and the digital signals x in, i (n−1),... Delayed by the M−1 delay units y, respectively. x in, i (n-M + 1) and y in, i (n-1),..., y in, i (n-M + 1), the M tap coefficients h yx, i and h yy , i are added to each other, and an adaptive equalization signal y out, i (n) = h yx, i x ′ T in, i (n) + h yy, i y ′ T in, i (n)
An adder y that outputs
A reference signal generation unit y that inputs the phase synchronization signal y ′ out, k (n) output from the arbitrary phase synchronizer yk and outputs a reference signal d yk (n);
The adaptive equalization signal y out, i (n) output from the adder y, the phase difference φ yi (n) output from the phase synchronizer y, and the phase synchronization signal y ′ out, i (n ) And the reference signal d yk (n) output from the reference signal generation unit y, the tap coefficients h yx, i and h yy, i are updated, and an error signal ε yi (n) is output. Tap coefficient calculator y to
A convergence determination unit y that inputs the error signal ε yi (n) output from the tap coefficient calculation unit y and performs a convergence determination;
The convergence determination unit y performs convergence determination using the error signal ε yi (n) output from the tap coefficient calculation unit y. After the convergence, the tap coefficient calculation unit y receives the reference signal generation unit y from the reference signal generation unit y. A digital signal processing device , wherein the tap coefficients h yx, i and h yy, i are updated using the output reference signal d yk (n).
JP2013128377A 2013-06-19 2013-06-19 Optical transmission system and digital signal processing apparatus Expired - Fee Related JP5968833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013128377A JP5968833B2 (en) 2013-06-19 2013-06-19 Optical transmission system and digital signal processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013128377A JP5968833B2 (en) 2013-06-19 2013-06-19 Optical transmission system and digital signal processing apparatus

Publications (2)

Publication Number Publication Date
JP2015005805A true JP2015005805A (en) 2015-01-08
JP5968833B2 JP5968833B2 (en) 2016-08-10

Family

ID=52301385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013128377A Expired - Fee Related JP5968833B2 (en) 2013-06-19 2013-06-19 Optical transmission system and digital signal processing apparatus

Country Status (1)

Country Link
JP (1) JP5968833B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016139977A (en) * 2015-01-28 2016-08-04 日本電信電話株式会社 Diversity-combined optical transmission system
JP2016163268A (en) * 2015-03-04 2016-09-05 日本電信電話株式会社 Optical transmission system and optical transmission method
WO2018079598A1 (en) * 2016-10-28 2018-05-03 日本電信電話株式会社 Optical receiver, optical reception method and optical communication system
US10511409B2 (en) 2015-11-04 2019-12-17 Nec Corporation Received signal processor and method for processing received signal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10117172A (en) * 1996-10-11 1998-05-06 Matsushita Electric Ind Co Ltd Optical transmission system
JP2002198906A (en) * 2000-11-28 2002-07-12 At & T Corp Signal reception system
JP2013046230A (en) * 2011-08-24 2013-03-04 Oita Univ Diversity optical transmission device and method
WO2013084391A1 (en) * 2011-12-08 2013-06-13 日本電気株式会社 Digital receiver and waveform compensation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10117172A (en) * 1996-10-11 1998-05-06 Matsushita Electric Ind Co Ltd Optical transmission system
JP2002198906A (en) * 2000-11-28 2002-07-12 At & T Corp Signal reception system
JP2013046230A (en) * 2011-08-24 2013-03-04 Oita Univ Diversity optical transmission device and method
WO2013084391A1 (en) * 2011-12-08 2013-06-13 日本電気株式会社 Digital receiver and waveform compensation method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016139977A (en) * 2015-01-28 2016-08-04 日本電信電話株式会社 Diversity-combined optical transmission system
JP2016163268A (en) * 2015-03-04 2016-09-05 日本電信電話株式会社 Optical transmission system and optical transmission method
US10511409B2 (en) 2015-11-04 2019-12-17 Nec Corporation Received signal processor and method for processing received signal
WO2018079598A1 (en) * 2016-10-28 2018-05-03 日本電信電話株式会社 Optical receiver, optical reception method and optical communication system
CN109845144A (en) * 2016-10-28 2019-06-04 日本电信电话株式会社 Photoreceiver, method for optical reception and optical communication system
US10826620B2 (en) 2016-10-28 2020-11-03 Nippon Telegraph And Telephone Corporation Optical receiver, optical reception method, and optical communication system
CN109845144B (en) * 2016-10-28 2022-07-22 日本电信电话株式会社 Optical receiver, optical receiving method and optical communication system

Also Published As

Publication number Publication date
JP5968833B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
JP5850041B2 (en) Optical receiver, polarization separation device, and optical reception method
JP6485095B2 (en) Optical transmission device, optical transmission system, and polarization dependent loss monitor
US8831081B2 (en) Digital filter device, digital filtering method and control program for the digital filter device
JP5437858B2 (en) Optical transmission system
JP5873575B2 (en) Coherent communication system, communication method, and transmission method
US8335440B2 (en) Method, system, and apparatus for blind equalization of BPSK signals
WO2018198891A1 (en) Signal synthesizing device and signal synthesizing method
JP2015512189A (en) System and method for polarization demultiplexing in a coherent optical receiver
JP5968833B2 (en) Optical transmission system and digital signal processing apparatus
Bai et al. Experimental demonstration of adaptive frequency-domain equalization for mode-division multiplexed transmission
JP2015008349A (en) Optical transmission system
JP5931759B2 (en) Optical transmission system and optical transmission method
Roudas Coherent optical communication systems
JP5943891B2 (en) Optical transmission system
JP6052938B2 (en) Optical transmission system
JP6319309B2 (en) Optical receiver, optical transmission system, optical reception method, and optical transmission method
WO2014119270A1 (en) Light reception apparatus, light communication system, light reception method, and light reception apparatus control program storage medium
Luís et al. Impact of GVD on polarization-insensitive self-homodyne detection receiver
JP2015162723A (en) Optical transmitter, optical receiver, optical transmission method, and optical reception method
JP6400444B2 (en) Multi-carrier optical transmission system
Hamaoka et al. Mode and polarization division multiplexed signal detection with single coherent receiver using mode-selective coherent detection technique
WO2023073927A1 (en) Digital signal processing circuit, method, receiver, and communication system
JP7420238B2 (en) MIMO processing device, signal receiving device, signal transmission system, and filter coefficient update method
WO2023067641A1 (en) Digital signal processing circuit, method, receiver, and communication system
WO2010131323A1 (en) Polarization demultiplexing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160706

R150 Certificate of patent or registration of utility model

Ref document number: 5968833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees