WO2010131323A1 - Polarization demultiplexing apparatus - Google Patents

Polarization demultiplexing apparatus Download PDF

Info

Publication number
WO2010131323A1
WO2010131323A1 PCT/JP2009/058762 JP2009058762W WO2010131323A1 WO 2010131323 A1 WO2010131323 A1 WO 2010131323A1 JP 2009058762 W JP2009058762 W JP 2009058762W WO 2010131323 A1 WO2010131323 A1 WO 2010131323A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
signal
unit
matrix
output
Prior art date
Application number
PCT/JP2009/058762
Other languages
French (fr)
Japanese (ja)
Inventor
剛 吉田
聖史 斧原
竜也 小林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2009/058762 priority Critical patent/WO2010131323A1/en
Publication of WO2010131323A1 publication Critical patent/WO2010131323A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers

Definitions

  • the present invention relates to a polarization multiplexing / demultiplexing device that separates a polarization multiplexed signal.
  • the bit rate per wavelength is being increased. Since optical fibers have dispersion characteristics and the transmission distance is limited in proportion to the square of the symbol rate, it is essential to reduce the symbol rate. For this reason, transmission schemes that increase the number of bits per symbol are being studied, and polarization multiplexing schemes are particularly attracting attention.
  • the following non-patent document 1 and the following non-patent document 2 disclose a technique based on a 40 Gbit / sec polarization multiplexed quadrature phase-shift keying (PDM-QPSK) system. As shown in the following Non-Patent Document 2, it has already been put into practical use.
  • the PDM-QPSK system can transmit 40 Gbit / sec while suppressing the symbol rate to 10 G symbol / sec, and has high dispersion tolerance.
  • a polarization multiplexed signal transmitter assigns a signal to each of the orthogonal x and y polarization components independently and transmits a multiplexed polarization signal that is multiplexed.
  • the polarization multiplexed signal receiving unit receives the polarization multiplexed signal via the transmission path. In the transmission line, waveform distortion and noise superposition occur, and the polarization state also changes.
  • the polarization multiplexed signal receiving unit the polarization multiplexed signal distributed to the wavelength unit by the digital signal processing in the electric domain is tracked while tracking the polarization state changing with time in the transmission path.
  • optical polarization demultiplexing has been studied as shown in Patent Document 1 below, but in recent years, polarization separation by digital signal processing is becoming the mainstream of investigation.
  • the polarization multiplexed signal receiving unit multiplies the reception signal vector by the inverse matrix of the Jones matrix.
  • CMA Constant Modulus Algorithm
  • the polarization multiplexed signal receiving unit requires a high-resolution ADC (Analog to Digital Converter) that operates at high speed in synchronization with the symbol rate. This is because high-speed operation corresponding to the symbol rate of the received signal and high resolution for accurately calculating the inverse matrix are required.
  • ADC Analog to Digital Converter
  • a 40 Gbit / sec PDM-QPSK ADC shown in Non-Patent Document 3 below requires a sampling rate of 20 Gsample / sec when performing double oversampling.
  • the resolution of the ADC needs to be about 6 bits.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a polarization multiplexing / demultiplexing apparatus capable of performing polarization multiplexing / demultiplexing using an ADC with reduced technical and cost difficulty. .
  • the present invention provides a polarization multiplexing method in which a received signal is polarization-demultiplexed in a receiving device that receives a polarization-multiplexed signal in a transmitting device via a transmission line.
  • a separation device wherein a light source means for outputting an optical signal at the same frequency as the carrier frequency of the received signal, and the received signal and the optical signal output from the light source means are each converted into two orthogonal polarization components It corresponds to the difference component of the electric field based on two polarized light signals having the same polarization direction among the polarized light separating means to be separated and output and the polarized light signals outputted from the polarized light separating means.
  • the optical signal corresponding to the sum component is output, and the electric field of one polarization optical signal of the two polarization optical signals is held, and the electric field of the other polarization optical signal is phase-shifted.
  • Optical interference means for outputting an optical signal corresponding to the component and an optical signal corresponding to the sum component, and the light of the sum component and the difference component generated with the polarization direction aligned and without phase shifting of the electric field Based on the signal, the difference between the values obtained by photoelectric conversion of the respective optical signals is output as an electric signal, and the sum component and the difference component of the difference component are generated by aligning the polarization direction and shifting the phase of the electric field.
  • the balanced photon detection means for outputting the difference between the values obtained by photoelectric conversion of the respective optical signals as an electrical signal, and the electrical signal output from the balanced photon detection means are input and branched into two.
  • the analog signal branching means to output and one of the two branched electrical signals are input and converted to discrete values with N1 (N1> 1) bit resolution at a time period T1 oversampled with respect to the symbol rate.
  • the real time ADC means for outputting a digital signal and the other of the two branched electric signals are input and converted into discrete values with N2 (N2> N1) bit resolution in a time period T2 longer than the time period T1.
  • a low-speed ADC means for outputting a digital signal, and a complex matrix indicating the inverse characteristic of the polarization characteristic of the transmission line is generated based on the digital signal outputted from the low-speed ADC means.
  • Matrix generating means for updating a complex matrix
  • matrix multiplying means for generating a complex vector indicating a received signal vector based on the digital signal output from the real-time ADC means; and multiplying the complex vector by the complex matrix; It is characterized by providing.
  • the polarization multiplexing / demultiplexing device has an effect that polarization multiplexing / demultiplexing can be realized by using an ADC that is technically and cost-effective.
  • FIG. 1 is a diagram illustrating a configuration example of a polarization multiplexing transmission system.
  • FIG. 2 is a diagram illustrating a configuration example of the polarization multiplexing / demultiplexing apparatus.
  • Real time processing unit 7 Low speed processing unit 61-1, 61-2, 61-3, 61-4 Real time ADC unit 62
  • Matrix generation unit 100 Polarization multiplexed signal transmission unit 101, 102 Wavelength multiplexing unit 103 Polarization multiplexing unit 200 Transmission path unit 300 Polarization multiplexed signal receiving unit 301 Wavelength multiplexing separation Part 302 Polarization demultiplexing part
  • FIG. 1 is a diagram illustrating a configuration example of a polarization multiplexing transmission system.
  • the polarization multiplexing transmission system includes a polarization multiplexing signal transmission unit 100, a transmission path unit 200, and a polarization multiplexing signal reception unit 300.
  • the polarization multiplexed signal transmission unit 100 assigns a signal to each of the orthogonal x and y polarizations independently, and transmits a wavelength multiplexed / polarized multiplexed signal obtained by multiplexing the signals.
  • the polarization multiplexing signal transmission unit 100 includes wavelength multiplexing units 101 and 102 and a polarization multiplexing unit 103.
  • the wavelength multiplexing unit 101 performs wavelength multiplexing on the x polarization signal.
  • the wavelength multiplexing unit 102 multiplexes the wavelength of the y polarization signal.
  • the polarization multiplexing unit 103 polarization multiplexes the wavelength-multiplexed signal.
  • the transmission path unit 200 is, for example, a single-mode fiber (SMF), an erbium-doped fiber amplifier (EDFA), a band-pass optical filter (OBPF), and reconfigurable. It consists of an optical add / drop multiplexer (ROADM: Reconfigurable Optical Add-Drop Multiplexer), which causes waveform distortion and noise superposition, and changes the polarization state. The change in polarization state reaches the order of microseconds (1 MHz) at the fastest speed.
  • SMF single-mode fiber
  • EDFA erbium-doped fiber amplifier
  • OBPF band-pass optical filter
  • the polarization multiplexed signal receiving unit 300 performs polarization separation by digital signal processing in the electrical domain while tracking the polarization state that changes with time in the transmission path unit 200.
  • the polarization multiplexing signal receiving unit 300 includes a wavelength multiplexing / separating unit 301 and a polarization multiplexing / separating unit 302.
  • the wavelength demultiplexing unit 301 distributes the wavelength multiplexed / polarized multiplexed signal in units of wavelengths.
  • the polarization multiplexing / separating unit 302 separates the polarization multiplexed signal distributed in wavelength units into x and y polarization components before being polarization multiplexed.
  • the wavelength multiplexing unit 101 performs wavelength multiplexing on x-polarized signals of all wavelengths, and the wavelength multiplexing unit 102 performs wavelength multiplexing on y-polarized signals of all wavelengths. Thereafter, the polarization multiplexing unit 103 performs polarization multiplexing on the x-polarization wavelength multiplexed signal and the y-polarization wavelength multiplexed signal and then transmits them. In this case, it is desirable to generate the x polarization signal and the y polarization signal having the same wavelength based on the same light source.
  • the wavelength multiplexing / separating unit 301 distributes the wavelength multiplexed / polarized multiplexed signal in units of wavelengths.
  • the polarization multiplexing / separating unit 302 separates the polarization multiplexed signal distributed in wavelength units into x and y polarization components before polarization multiplexing.
  • CMA is used for calculation of the inverse matrix T ⁇ 1 (t) as in the conventional case.
  • the Jones matrix T (t) is represented by the following formula (1).
  • the polarization multiplexing / demultiplexing device shows the internal configuration of the polarization multiplexing / demultiplexing unit 302 in FIG.
  • FIG. 2 is a diagram illustrating a configuration example of a polarization multiplexing / demultiplexing device.
  • the polarization multiplexing / demultiplexing device includes a light source unit 1, polarization separation units 2-1, 2-2, optical interference units 3-1, 3-2, balanced photon detection units 4-1, 4-2, 4-3, 4-4, analog signal branching units 5-1, 5-2, 5-3 and 5-4, a real time processing unit 6, and a low speed processing unit 7.
  • the light source unit 1 is a light source that emits CW (Continuous Wave) light.
  • the polarization separation unit 2-1 separates the received light into X and Y polarization components.
  • the polarization separation unit 2-2 separates the CW from the light source unit 1 into X and Y polarization components.
  • the optical interference units 3-1 and 3-2 obtain a difference component and a sum component of the two input lights based on the two input lights, and further, shift the electric field of one of the input lights by 90 degrees to obtain the difference component and the sum component. Ask for.
  • the balanced photon detectors 4-1 to 4-4 output a difference electric signal obtained by photoelectric conversion based on the two received input lights.
  • the analog signal branching units 5-1 to 5-4 branch the input electric signal into two and output them to the real time processing unit 6 and the low speed processing unit 7.
  • the real-time processing unit 6 outputs four signals that have been polarization multiplexed and demultiplexed based on the four input signals and the inverse matrix input from the low-speed processing unit 7.
  • the real time processing unit 6 includes real time ADC (Analog to Digital Converter) units 61-1, 61-2, 61-3, 61-4, and a matrix multiplication unit 62.
  • the real-time ADC units 61-1 to 61-4 perform analog-digital (AD) conversion on the input analog signal and output the digital signal to the matrix multiplication unit 62.
  • the matrix multiplication unit 62 outputs four signals that have been polarization multiplexed and demultiplexed based on the four digital signals and the inverse matrix from the low-speed processing unit 7.
  • the low speed processing unit 7 calculates an inverse matrix of a matrix representing the polarization state of the transmission path based on the four input signals.
  • the low speed processing unit 7 includes low speed ADC units 71-1, 71-2, 71-3, 71-4, and a matrix generation unit 72.
  • the low-speed ADC units 71-1 to 71-4 perform AD conversion on the input analog signal and output the digital signal to the matrix generation unit 72.
  • the matrix generation unit 72 calculates an inverse matrix based on the four digital signals and outputs the inverse matrix to the matrix multiplication unit 62.
  • the polarization multiplexing / demultiplexing apparatus first receives E S (t) of an optical signal that is a polarization multiplexed signal.
  • the carrier frequency of the received light E S (t) is 1550.2 nm
  • the bit rate is 43 Gbit / sec
  • the modulation method is PDM-QPSK.
  • the symbol rate is 11 Gbit / sec.
  • the light source unit 1 continues to emit CW light having a wavelength of 1550.2 nm that is the same as the carrier frequency of the received light E S (t) as the local oscillation light E LO (t).
  • the polarization separation unit 2-1 separates the received light E S (t) into two orthogonal X and Y polarization components E S, X (t), E S, Y (t) and outputs them.
  • the polarization separation unit 2-2 separates the local oscillation light E LO (t) into two orthogonal X and Y polarization components E LO, X (t) and E LO, Y (t) and outputs them. To do.
  • the balanced photon detector 4-1 receives E Xd (t) and E Xc (t) as inputs and receives the balance.
  • the sensitivity of each photon detector is equal to R [A / W]
  • 2 ⁇ Is output.
  • the balanced photon detector 4-2 receives E Xdj (t) and E Xcj (t) as inputs and receives the balance.
  • the balanced photon detection unit 4-4 receives E Ydj (t) and E Ycj (t) as inputs and performs balanced reception.
  • the sensitivity of each photon detector is equal to R [A / W]
  • 2 ⁇ Is output.
  • Analog signal branching unit 5-1 an electrical signal Re ⁇ E X (t) ⁇ input from the balanced photon detector 4-1 2 branches, outputs one to the real time ADC 61-1, and the other Output to the low-speed ADC unit 71-1.
  • Analog signal branching unit 5-2 an electrical signal Im ⁇ E X (t) ⁇ input from the balanced photon detector 4-2 2 branches, outputs one to the real time ADC unit 61-2, the other Output to the low-speed ADC unit 71-2.
  • the analog signal branching unit 5-3 branches the electrical signal Re ⁇ E Y (t) ⁇ input from the balanced photon detection unit 4-3 into two, outputs one to the real-time ADC unit 61-3, and outputs the other Output to the low-speed ADC 71-3.
  • the analog signal branching unit 5-4 branches the electrical signal Im ⁇ E Y (t) ⁇ input from the balanced photon detection unit 4-4 into two, and outputs one to the real time ADC unit 61-4. Output to the low-speed ADC 71-4.
  • a method for the analog signal branching units 5-1 to 5-4 to branch the electric signal into two there is a method of branching into two with equal amplitude, but the method is not limited to this.
  • the low-speed processing unit 7 AD-converts four pairs of 11 G symbol / sec analog signals input from the analog signal branching units 5-1 to 5-4, and performs CMA (Constant Modulus Argorithm) based on the AD-converted digital signals. used to calculate the matrix T 0 -1 (t) and continues to update the T 0 -1 (t) at a rate of 110 MHz.
  • CMA Constant Modulus Argorithm
  • Slow ADC unit 71-1 the analog signal Re ⁇ E X (t) ⁇ of the input 11Gsymbol / sec, and as an example, the sampling rate 110Msample / sec, and the AD conversion resolution 6bit, and outputs to the matrix generation unit 72.
  • Slow ADC unit 71-2 the analog signal Im ⁇ E X (t) ⁇ of the input 11Gsymbol / sec, and as an example, the sampling rate 110Msample / sec, and the AD conversion resolution 6bit, and outputs to the matrix generation unit 72.
  • the low-speed ADC 71-3 performs AD conversion on the input 11 G symbol / sec analog signal Re ⁇ E Y (t) ⁇ at a sampling rate of 110 Msample / sec and a resolution of 6 bits, and outputs the result to the matrix generator 72.
  • the low-speed ADC unit 71-4 converts the input analog signal Im ⁇ E Y (t) ⁇ of 11 G symbol / sec at a sampling rate of 110 Msample / sec and a resolution of 6 bits, and outputs it to the matrix generation unit 72.
  • the matrix generation unit 72 continues to update the inverse matrix T ⁇ 1 (t) at a period corresponding to the sampling rate of the low-speed ADC units 71-1 to 71-4.
  • the real-time processing unit 6 AD-converts 11 Gsymbol / sec analog signal pairs input from the analog signal branching units 5-1 to 5-4, respectively, and converts the AD converted digital signal and the matrix T input from the low-speed processing unit 7 A matrix operation is performed based on 0 ⁇ 1 (t), and 4 pairs of signals subjected to polarization demultiplexing are output.
  • Real-time ADC unit 61-1 the analog signal Re of inputted 11Gsymbol / sec ⁇ E X (t ) ⁇ , as an example, the sampling rate 22Gsample / sec, and the AD conversion resolution 4bit, digital signal matrix generator 72 Output to.
  • Real-time ADC unit 61-2 the analog signal Im of the inputted 11Gsymbol / sec ⁇ E X (t ) ⁇ , as an example, the sampling rate 22Gsample / sec, and the AD conversion resolution 4bit, digital signal matrix generator 72 Output to.
  • the real-time ADC unit 61-3 AD-converts the input 11 G symbol / sec analog signal Re ⁇ E Y (t) ⁇ at a sampling rate of 22 G sample / sec and a resolution of 4 bits, and converts the digital signal into a matrix generation unit 72. Output to.
  • the real-time ADC unit 61-4 AD-converts the input 11 G symbol / sec analog signal Im ⁇ E Y (t) ⁇ at a sampling rate of 22 G sample / sec and a resolution of 4 bits, and converts the digital signal into a matrix generation unit 72. Output to.
  • the symbol rate was oversampled twice in order to set the sampling rate to 22 Gsample / sec, but it is generally about 2 to 4 times.
  • the sampling rate in the real-time ADC units 61-1 to 61-4 is about 100 to 1000 times the sampling rate of the low-speed ADC units 71-1 to 71-4 (the low-speed ADC units 71-1 to 71-71).
  • -4 has a cycle for outputting a digital signal 100 to 1000 times longer than the cycle of the real-time ADC units 61-1 to 61-4).
  • the four elements of the restored transmission vector E ′ T0 (t), Re ⁇ E ′ x0 (t) ⁇ , Im ⁇ E ′ x0 (t) ⁇ , Re ⁇ E ′ y0 (t) ⁇ , Im ⁇ E ' y0 (t) ⁇ is output as a polarization-demultiplexed signal.
  • the frequency / phase estimation of the carrier wave may be performed after the matrix calculation unit 62, and adaptive equalization of chromatic dispersion may be performed, but this is not particularly shown.
  • wavelength dispersion equalization it is common for wavelength dispersion equalization to be performed by a FIR (Finite Impulse Response) filter between the balanced photon detection units 4-1 to 4-4 and the analog signal branching units 5-1 to 5-4. Not shown.
  • FIR Finite Impulse Response
  • a matrix generation / calculation unit having the functions of both the matrix calculation unit 62 and the matrix generation unit 72 may be connected in series in a subsequent stage of the matrix calculation unit 62.
  • T T
  • An inverse matrix T 1 ⁇ 1 (t) is generated by CMA.
  • E ′ T1 (t) T 1 ⁇ 1 (t) E ′ T0 (t)” is taken, and the four elements Re ⁇ E ′ x1 (t) ⁇ of E ′ T1 (t), Im ⁇ E ' x1 (t) ⁇ , Re ⁇ E'y1 (t) ⁇ , Im ⁇ E'y1 (t) ⁇ are output.
  • the k-th (k is a natural number) matrix generation / operation unit outputs Re ⁇ E ′ xk ⁇ 1 (t) ⁇ and Im ⁇ E ′ xk ⁇ 1 (t) output from the matrix operation unit 62.
  • E ′ Tk (t) T k ⁇ 1 (t) E ′ Tk ⁇ 1 (t)” is taken, and the four elements Re ⁇ E ′ xk (t) ⁇ of E ′ Tk (t), Im ⁇ E 'xk (t) ⁇ , Re ⁇ E' yk (t) ⁇ , and outputs the Im ⁇ E 'yk (t) ⁇ .
  • the polarization multiplexing / demultiplexing apparatus uses a high-speed, low-resolution ADC for a signal to be polarization-demultiplexed, and uses the inverse matrix of the polarization change of the transmission line.
  • Polarization demultiplexing was performed using a low-speed, high-resolution ADC for the signal required for the determination.
  • high-speed and high-resolution ADC is not used, polarization multiplexing / demultiplexing with reduced technical and cost difficulty is possible.
  • the polarization multiplexing / demultiplexing device is useful for communication using optical fibers, and is particularly suitable for high-capacity communication using optical fibers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

There are included a light source part (1) that emits a light at a frequency identical to the carrier frequency of a received signal; polarization splitting parts (2-1, 2-2) that polarize the optical signals; optical interfering parts (3-1, 3-2) that output optical signals having difference and sum components of the electric fields of the polarized optical signals; balanced photon detecting parts (4-1 to 4-4) that perform photoelectric conversions of the optical signals having the sum and difference components to output the differences as electric signals; analog signal branching parts (5-1 to 5-4) each of which bifurcates the respective electric signal; real time ADC parts (61-1 to 61-4) each of which converts one of the bifurcated electric signals to a discrete value of N1-bit resolution (where N1 > 1) in a time period (T1); low-speed ADC parts (71-1 to 71-4) each of which converts the other of the bifurcated electric signals to a discrete value of N2-bit resolution (where N2 > N1) in a time period (T2) longer than the foregoing time period (T1); a matrix generating part (72) that generates a complex matrix based on the outputs from the low-speed ADC parts (71-1 to 71-4); and a matrix multiplying part (62) that generates, based on the outputs from the real time ADC parts (61-1 to 61-4), complex vectors and multiplies the complex matrix by the generated complex vectors.

Description

偏波多重分離装置Polarization demultiplexer
 本発明は、偏波多重された信号を分離する偏波多重分離装置に関する。 The present invention relates to a polarization multiplexing / demultiplexing device that separates a polarization multiplexed signal.
 光ファイバ通信により大容量通信を行うため、1波長当たりのビットレートの高速化が進められている。光ファイバには分散特性があり、シンボルレートの2乗に比例して伝送距離が制限されるため、シンボルレートの低減は必須である。このため、1シンボル当たりのビット数を増やす伝送方式が検討されており、特に偏波多重方式が注目されている。例えば、下記非特許文献1、下記非特許文献2において、40Gbit/sec偏波多重4位相偏移変調(PDM-QPSK:Polarization Division Multiplexing-Quadrature Phase-shift Keying)方式による技術が開示されている。下記非特許文献2が示すように既に実用化されている。PDM-QPSK方式では、シンボルレートを10Gsymbol/secに抑えつつ40Gbit/secを伝送でき、高い分散耐力を有する。 In order to perform large-capacity communication by optical fiber communication, the bit rate per wavelength is being increased. Since optical fibers have dispersion characteristics and the transmission distance is limited in proportion to the square of the symbol rate, it is essential to reduce the symbol rate. For this reason, transmission schemes that increase the number of bits per symbol are being studied, and polarization multiplexing schemes are particularly attracting attention. For example, the following non-patent document 1 and the following non-patent document 2 disclose a technique based on a 40 Gbit / sec polarization multiplexed quadrature phase-shift keying (PDM-QPSK) system. As shown in the following Non-Patent Document 2, it has already been put into practical use. The PDM-QPSK system can transmit 40 Gbit / sec while suppressing the symbol rate to 10 G symbol / sec, and has high dispersion tolerance.
 偏波多重方式を行うシステムでは、偏波多重信号送信部が、直交するx、y偏波成分のそれぞれに独立に信号を割り当て、それらを多重化した偏波多重信号を送信する。偏波多重信号受信部は、伝送路を経由して偏波多重信号を受信する。伝送路では、波形歪みや雑音重畳が生じ偏波状態も変化する。偏波多重信号受信部では、伝送路中で時間変化する偏波状態を追跡しつつ、電気領域でのデジタル信号処理により、波長単位に振り分けられた偏波多重信号を、偏波多重信号送信部で偏波多重化する前のx、y偏波成分に分離する。従来、下記特許文献1に示すように光学的な偏波多重分離が検討されてきたが、近年、デジタル信号処理による偏波分離が検討の主流となりつつある。 In a system that performs polarization multiplexing, a polarization multiplexed signal transmitter assigns a signal to each of the orthogonal x and y polarization components independently and transmits a multiplexed polarization signal that is multiplexed. The polarization multiplexed signal receiving unit receives the polarization multiplexed signal via the transmission path. In the transmission line, waveform distortion and noise superposition occur, and the polarization state also changes. In the polarization multiplexed signal receiving unit, the polarization multiplexed signal distributed to the wavelength unit by the digital signal processing in the electric domain is tracked while tracking the polarization state changing with time in the transmission path. Are separated into x and y polarization components before polarization multiplexing. Conventionally, optical polarization demultiplexing has been studied as shown in Patent Document 1 below, but in recent years, polarization separation by digital signal processing is becoming the mainstream of investigation.
 具体的には、伝送路での偏波変化は送信信号ベクトルにJones行列を乗算して表すことができるため、偏波多重信号受信部は、受信信号ベクトルにJones行列の逆行列を乗算して送信信号ベクトルを得ることで偏波多重分離が可能となる。実際には雑音や波形歪みの影響により送信信号ベクトルそのものは復元できないが、符号識別上問題ない程度の復元が可能である。このような偏波多重分離を行うためには、光・電流変換の方式として、光電界情報を直接得ることが可能な同期検波方式を用いる必要がある。また、偏波状態は最速でマイクロ秒(1MHz)オーダで変化するため、逆行列も偏波状態の変化に追随して更新する必要がある。逆行列の計算には、強度方向に多値をとらないQPSKのような変復調方式ではCMA(Constant Modulus Argorithm)が用いられる。 Specifically, since the polarization change in the transmission line can be expressed by multiplying the transmission signal vector by the Jones matrix, the polarization multiplexed signal receiving unit multiplies the reception signal vector by the inverse matrix of the Jones matrix. By obtaining a transmission signal vector, polarization multiplexing / demultiplexing is possible. Actually, the transmission signal vector itself cannot be restored due to the influence of noise and waveform distortion, but it can be restored to the extent that there is no problem in code identification. In order to perform such polarization multiplexing / demultiplexing, it is necessary to use a synchronous detection method capable of directly obtaining optical electric field information as a method of light / current conversion. In addition, since the polarization state changes at the fastest in the order of microseconds (1 MHz), the inverse matrix needs to be updated following the change in the polarization state. For the calculation of the inverse matrix, CMA (Constant Modulus Algorithm) is used in a modulation / demodulation method such as QPSK which does not take multiple values in the intensity direction.
 このような偏波多重分離を行うため、偏波多重信号受信部では、シンボルレートに同期して高速動作する高分解能のADC(Analog to Digital Converter)が必要とされている。これは、受信信号のシンボルレートに対応する高速動作と、逆行列を精度よく算出するための高い分解能が求められているためである。例えば、下記非特許文献3に示す40Gbit/secPDM-QPSK用のADCは、2倍オーバーサンプリングを行う場合、20Gsample/secのサンプリングレートが求められる。さらに、十分に干渉を抑えて偏波多重分離を行うために、ADCの分解能は6bit程度必要である。 In order to perform such polarization multiplexing / demultiplexing, the polarization multiplexed signal receiving unit requires a high-resolution ADC (Analog to Digital Converter) that operates at high speed in synchronization with the symbol rate. This is because high-speed operation corresponding to the symbol rate of the received signal and high resolution for accurately calculating the inverse matrix are required. For example, a 40 Gbit / sec PDM-QPSK ADC shown in Non-Patent Document 3 below requires a sampling rate of 20 Gsample / sec when performing double oversampling. Furthermore, in order to perform polarization demultiplexing while sufficiently suppressing interference, the resolution of the ADC needs to be about 6 bits.
特開2007-306248号公報JP 2007-306248 A
 しかしながら、上記従来の技術によれば、偏波多重信号受信部側でシンボルレートに同期して高速動作する高分解能のADCが必要であるが、このようなADCの開発が技術的、コスト的に困難である、という問題があった。上記で示すサンプリングレート20Gsample/sec、分解能6bitのADCを実用化している例は業界でも限られており、技術的、コスト的に難度が非常に高い。一方、偏波変化はシンボルレートに比べて1000倍以上低速であるため、逆行列の行列要素の更新をシンボルレート級の速度で行う必要はなく、10~100倍程度低速で行うことが可能である。 However, according to the above-described conventional technique, a high-resolution ADC that operates at high speed in synchronization with the symbol rate is required on the polarization multiplexed signal receiver side. However, the development of such an ADC is technically and costly. There was a problem that it was difficult. Examples of the practical application of the ADC with the sampling rate of 20 Gsample / sec and the resolution of 6 bits shown above are limited in the industry, and are extremely difficult in terms of technology and cost. On the other hand, since the polarization change is 1000 times or more slower than the symbol rate, it is not necessary to update the matrix elements of the inverse matrix at the symbol rate class speed, and can be performed at a speed of about 10 to 100 times. is there.
 本発明は、上記に鑑みてなされたものであって、技術的、コスト的な難度を抑えたADCを用いて偏波多重分離することが可能な偏波多重分離装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a polarization multiplexing / demultiplexing apparatus capable of performing polarization multiplexing / demultiplexing using an ADC with reduced technical and cost difficulty. .
 上述した課題を解決し、目的を達成するために、本発明は、送信装置で偏波多重された信号を伝送路経由で受信する受信装置内で、受信信号を偏波多重分離する偏波多重分離装置であって、前記受信信号の搬送周波数と同一の周波数で光信号を出力する光源手段と、前記受信信号および前記光源手段から出力された光信号を、それぞれ2つの直交する偏波成分に分離して出力する偏波分離手段と、前記偏波分離手段から出力された偏波光信号のうち、偏波方向の揃った2つの偏波光信号に基づいて、それらの電界の差成分に相当する光信号と和成分に相当する光信号とを出力し、また、2つの偏波光信号のうち、一方の偏波光信号の電界を保持し、他方の偏波光信号の電界を位相シフトさせた2つの偏波光信号に基づいて、それらの電界の差成分に相当する光信号と和成分に相当する光信号とを出力する光干渉手段と、偏波方向が揃い、かつ、電界を位相シフトせずに生成された前記和成分および前記差成分の光信号に基づいて、それぞれの光信号を光電変換した値の差分を電気信号として出力し、また、偏波方向が揃い、かつ、電界を位相シフトさせて生成された前記和成分および前記差成分の光信号に基づいて、それぞれの光信号を光電変換した値の差分を電気信号として出力するバランス型光子検出手段と、前記バランス型光子検出手段から出力された電気信号を入力し、2分岐して出力するアナログ信号分岐手段と、2分岐された電気信号の一方を入力とし、シンボルレートに対してオーバーサンプリングした時間周期T1でN1(N1>1)ビット分解能の離散値に変換してデジタル信号を出力する実時間ADC手段と、2分岐された電気信号の他方を入力とし、時間周期T1に比べて長い時間周期T2でN2(N2>N1)ビット分解能の離散値に変換してデジタル信号を出力する低速ADC手段と、前記低速ADC手段から出力されたデジタル信号に基づいて、伝送路の偏波特性の逆特性を示す複素行列を生成し、また、時間周期T2で当該複素行列を更新する行列生成手段と、前記実時間ADC手段から出力されたデジタル信号に基づいて、受信信号ベクトルを示す複素ベクトルを生成し、当該複素ベクトルと前記複素行列を乗算する行列乗算手段と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a polarization multiplexing method in which a received signal is polarization-demultiplexed in a receiving device that receives a polarization-multiplexed signal in a transmitting device via a transmission line. A separation device, wherein a light source means for outputting an optical signal at the same frequency as the carrier frequency of the received signal, and the received signal and the optical signal output from the light source means are each converted into two orthogonal polarization components It corresponds to the difference component of the electric field based on two polarized light signals having the same polarization direction among the polarized light separating means to be separated and output and the polarized light signals outputted from the polarized light separating means. The optical signal corresponding to the sum component is output, and the electric field of one polarization optical signal of the two polarization optical signals is held, and the electric field of the other polarization optical signal is phase-shifted. Based on the polarization optical signal, Optical interference means for outputting an optical signal corresponding to the component and an optical signal corresponding to the sum component, and the light of the sum component and the difference component generated with the polarization direction aligned and without phase shifting of the electric field Based on the signal, the difference between the values obtained by photoelectric conversion of the respective optical signals is output as an electric signal, and the sum component and the difference component of the difference component are generated by aligning the polarization direction and shifting the phase of the electric field. Based on the optical signal, the balanced photon detection means for outputting the difference between the values obtained by photoelectric conversion of the respective optical signals as an electrical signal, and the electrical signal output from the balanced photon detection means are input and branched into two. The analog signal branching means to output and one of the two branched electrical signals are input and converted to discrete values with N1 (N1> 1) bit resolution at a time period T1 oversampled with respect to the symbol rate. Then, the real time ADC means for outputting a digital signal and the other of the two branched electric signals are input and converted into discrete values with N2 (N2> N1) bit resolution in a time period T2 longer than the time period T1. A low-speed ADC means for outputting a digital signal, and a complex matrix indicating the inverse characteristic of the polarization characteristic of the transmission line is generated based on the digital signal outputted from the low-speed ADC means. Matrix generating means for updating a complex matrix; matrix multiplying means for generating a complex vector indicating a received signal vector based on the digital signal output from the real-time ADC means; and multiplying the complex vector by the complex matrix; It is characterized by providing.
 本発明にかかる偏波多重分離装置は、技術的、コスト的に難度を抑えたADCを用いて偏波多重分離を実現できる、という効果を奏する。 The polarization multiplexing / demultiplexing device according to the present invention has an effect that polarization multiplexing / demultiplexing can be realized by using an ADC that is technically and cost-effective.
図1は、偏波多重伝送システムの構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a polarization multiplexing transmission system. 図2は、偏波多重分離装置の構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of the polarization multiplexing / demultiplexing apparatus.
 1 光源部
 2-1、2-2 偏波分離部
 3-1、3-2 光干渉部
 4-1、4-2、4-3、4-4 バランス型光子検出部
 5-1、5-2、5-3、5-4 アナログ信号分岐部
 6 実時間処理部
 7 低速処理部
 61-1、61-2、61-3、61-4 実時間ADC部
 62 行列乗算部
 71-1、71-2、71-3、71-4 低速ADC部
 72 行列生成部
 100 偏波多重信号送信部
 101、102 波長多重部
 103 偏波多重部
 200 伝送路部
 300 偏波多重信号受信部
 301 波長多重分離部
 302 偏波多重分離部
1 Light source unit 2-1, 2-2 Polarization separation unit 3-1, 3-2 Optical interference unit 4-1, 4-2, 4-3, 4-4 Balanced photon detection unit 5-1, 5- 2, 5-3, 5-4 Analog signal branching unit 6 Real time processing unit 7 Low speed processing unit 61-1, 61-2, 61-3, 61-4 Real time ADC unit 62 Matrix multiplication unit 71-1, 71 -2, 71-3, 71-4 Low-speed ADC unit 72 Matrix generation unit 100 Polarization multiplexed signal transmission unit 101, 102 Wavelength multiplexing unit 103 Polarization multiplexing unit 200 Transmission path unit 300 Polarization multiplexed signal receiving unit 301 Wavelength multiplexing separation Part 302 Polarization demultiplexing part
 以下に、本発明にかかる偏波多重分離装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a polarization multiplexing / demultiplexing device according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 最初に、本実施の形態の偏波多重分離装置を含む偏波多重伝送システムについて簡単に説明する。図1は、偏波多重伝送システムの構成例を示す図である。偏波多重伝送システムは、偏波多重信号送信部100と、伝送路部200と、偏波多重信号受信部300と、を備える。偏波多重信号送信部100は、直交するx、y偏波それぞれに独立に信号を割り当て、それらを多重化した波長多重・偏波多重信号を送信する。偏波多重信号送信部100は、波長多重部101、102と、偏波多重部103を備える。波長多重部101は、x偏波信号について波長多重する。波長多重部102は、y偏波信号について波長多重する。偏波多重部103は、波長多重された信号を偏波多重する。
Embodiment.
First, the polarization multiplexing transmission system including the polarization multiplexing / demultiplexing device according to the present embodiment will be briefly described. FIG. 1 is a diagram illustrating a configuration example of a polarization multiplexing transmission system. The polarization multiplexing transmission system includes a polarization multiplexing signal transmission unit 100, a transmission path unit 200, and a polarization multiplexing signal reception unit 300. The polarization multiplexed signal transmission unit 100 assigns a signal to each of the orthogonal x and y polarizations independently, and transmits a wavelength multiplexed / polarized multiplexed signal obtained by multiplexing the signals. The polarization multiplexing signal transmission unit 100 includes wavelength multiplexing units 101 and 102 and a polarization multiplexing unit 103. The wavelength multiplexing unit 101 performs wavelength multiplexing on the x polarization signal. The wavelength multiplexing unit 102 multiplexes the wavelength of the y polarization signal. The polarization multiplexing unit 103 polarization multiplexes the wavelength-multiplexed signal.
 伝送路部200は、例えば、シングルモード光ファイバ(SMF:Single-Mode Fiber)、エルビウム添加ファイバ増幅器(EDFA:Erbium-Doped Fiber Amplifier)、帯域通過光フィルタ(OBPF:Optical Bandpass Filter)、再構成可能光分岐挿入装置(ROADM:Reconfigurable Optical Add-Drop Multiplexer)等からなり、波形歪みや雑音重畳が生じ、偏波状態も変化する。偏波状態の変化は、最速でマイクロ秒(1MHz)オーダに達する。 The transmission path unit 200 is, for example, a single-mode fiber (SMF), an erbium-doped fiber amplifier (EDFA), a band-pass optical filter (OBPF), and reconfigurable. It consists of an optical add / drop multiplexer (ROADM: Reconfigurable Optical Add-Drop Multiplexer), which causes waveform distortion and noise superposition, and changes the polarization state. The change in polarization state reaches the order of microseconds (1 MHz) at the fastest speed.
 偏波多重信号受信部300は、伝送路部200で時間変化する偏波状態を追跡しつつ、電気領域でのデジタル信号処理により偏波分離を行う。偏波多重信号受信部300は、波長多重分離部301と、偏波多重分離部302を備える。波長多重分離部301は、波長多重・偏波多重信号を、波長単位に振り分る。偏波多重分離部302は、波長単位に振り分けられた偏波多重信号を、偏波多重化される前の各x、y偏波成分に分離する。 The polarization multiplexed signal receiving unit 300 performs polarization separation by digital signal processing in the electrical domain while tracking the polarization state that changes with time in the transmission path unit 200. The polarization multiplexing signal receiving unit 300 includes a wavelength multiplexing / separating unit 301 and a polarization multiplexing / separating unit 302. The wavelength demultiplexing unit 301 distributes the wavelength multiplexed / polarized multiplexed signal in units of wavelengths. The polarization multiplexing / separating unit 302 separates the polarization multiplexed signal distributed in wavelength units into x and y polarization components before being polarization multiplexed.
 つづいて、偏波多重伝送システムの動作について説明する。波長多重部101が、すべての波長のx偏波信号について波長多重化を行い、波長多重部102が、すべての波長のy偏波信号について波長多重化を行う。その後、偏波多重部103が、x偏波波長多重信号とy偏波波長多重信号について偏波多重化してから送信する。この場合、同じ波長のx偏波信号とy偏波信号は、同じ光源を元にして生成することが望ましい。異なる光源に基づいてx偏波信号とy偏波信号をそれぞれ生成した場合、光源の位相雑音の影響も異なり、偏波多重信号受信部300における偏波多重分離の性能を劣化させるためである。 Next, the operation of the polarization multiplexing transmission system will be described. The wavelength multiplexing unit 101 performs wavelength multiplexing on x-polarized signals of all wavelengths, and the wavelength multiplexing unit 102 performs wavelength multiplexing on y-polarized signals of all wavelengths. Thereafter, the polarization multiplexing unit 103 performs polarization multiplexing on the x-polarization wavelength multiplexed signal and the y-polarization wavelength multiplexed signal and then transmits them. In this case, it is desirable to generate the x polarization signal and the y polarization signal having the same wavelength based on the same light source. This is because when the x-polarization signal and the y-polarization signal are generated based on different light sources, the influence of the phase noise of the light source is also different, and the polarization multiplexing / demultiplexing performance in the polarization multiplexing signal receiving unit 300 is deteriorated.
 偏波多重信号受信部300では、波長多重分離部301が、波長多重・偏波多重信号を、波長単位に振り分ける。偏波多重分離部302が、波長単位に振り分けられた偏波多重信号を、偏波多重化される前の各x、y偏波成分に分離する。ここで、伝送路部200での偏波変化は、送信信号ベクトル「ET(t)=[Ex(t)、Ey(t)]T」に、Jones行列T(t)(2×2行列で、各要素は複素数)を掛け合わせた「T(t)ET(t)」で表現される。そのため、受信信号ベクトル「ER(t)=[EX(t)、EY(t)]T」に行列T(t)の逆行列T-1(t)を乗算して「E'T(t)=T-1(t)ER(t)=ET(t)」となり、送信信号ベクトルET(t)を得ることができ、偏波多重分離が可能となる。逆行列T-1(t)の計算には従来同様CMAを用いる。Jones行列T(t)を下記式(1)で表す。 In the polarization multiplexed signal receiving unit 300, the wavelength multiplexing / separating unit 301 distributes the wavelength multiplexed / polarized multiplexed signal in units of wavelengths. The polarization multiplexing / separating unit 302 separates the polarization multiplexed signal distributed in wavelength units into x and y polarization components before polarization multiplexing. Here, the polarization change in the transmission line unit 200 is represented by the Jones matrix T (t) (2 × in the transmission signal vector “E T (t) = [E x (t), E y (t)] T ”. It is expressed by “T (t) E T (t)” obtained by multiplying two elements by a complex number. Therefore, the received signal vector “E R (t) = [E X (t), E Y (t)] T ” is multiplied by the inverse matrix T −1 (t) of the matrix T (t) to obtain “E ′ T (T) = T −1 (t) E R (t) = E T (t) ”, the transmission signal vector E T (t) can be obtained, and polarization multiplexing / demultiplexing is possible. CMA is used for calculation of the inverse matrix T −1 (t) as in the conventional case. The Jones matrix T (t) is represented by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 つぎに、本実施の形態にかかる偏波多重分離装置について説明する。偏波多重分離装置は、図1における偏波多重分離部302の内部構成を示すものである。 Next, the polarization multiplexing / demultiplexing device according to the present embodiment will be described. The polarization multiplexing / demultiplexing device shows the internal configuration of the polarization multiplexing / demultiplexing unit 302 in FIG.
 図2は、偏波多重分離装置の構成例を示す図である。偏波多重分離装置は、光源部1と、偏波分離部2-1、2-2と、光干渉部3-1、3-2と、バランス型光子検出部4-1、4-2、4-3、4-4と、アナログ信号分岐部5-1、5-2、5-3,5-4と、実時間処理部6と、低速処理部7と、を備える。 FIG. 2 is a diagram illustrating a configuration example of a polarization multiplexing / demultiplexing device. The polarization multiplexing / demultiplexing device includes a light source unit 1, polarization separation units 2-1, 2-2, optical interference units 3-1, 3-2, balanced photon detection units 4-1, 4-2, 4-3, 4-4, analog signal branching units 5-1, 5-2, 5-3 and 5-4, a real time processing unit 6, and a low speed processing unit 7.
 光源部1は、CW(Continuous Wave)光を発光する光源である。偏波分離部2-1は、受信光をX、Y偏波成分に分離する。偏波分離部2-2は、光源部1からのCWをX、Y偏波成分に分離する。光干渉部3-1~3-2は、2つの入力光に基づいて、それらの差成分と和成分を求め、さらに、一方の入力光の電界を90度位相シフトさせて差成分と和成分を求める。バランス型光子検出部4-1~4-4は、受信した2つの入力光に基づいて、光電変換した差分の電気信号を出力する。アナログ信号分岐部5-1~5-4は、入力した電気信号を2分岐し、実時間処理部6と低速処理部7へ出力する。 The light source unit 1 is a light source that emits CW (Continuous Wave) light. The polarization separation unit 2-1 separates the received light into X and Y polarization components. The polarization separation unit 2-2 separates the CW from the light source unit 1 into X and Y polarization components. The optical interference units 3-1 and 3-2 obtain a difference component and a sum component of the two input lights based on the two input lights, and further, shift the electric field of one of the input lights by 90 degrees to obtain the difference component and the sum component. Ask for. The balanced photon detectors 4-1 to 4-4 output a difference electric signal obtained by photoelectric conversion based on the two received input lights. The analog signal branching units 5-1 to 5-4 branch the input electric signal into two and output them to the real time processing unit 6 and the low speed processing unit 7.
 実時間処理部6は、入力した4つの信号と低速処理部7から入力した逆行列とに基づいて、偏波多重分離した4つの信号を出力する。実時間処理部6は、実時間ADC(Analog to Digital Converter)部61-1、61-2、61-3、61-4と、行列乗算部62を備える。実時間ADC部61-1~61-4は、入力したアナログ信号をアナログ-デジタル(AD)変換し、デジタル信号を行列乗算部62へ出力する。行列乗算部62は、4つのデジタル信号と低速処理部7からの逆行列とに基づいて、偏波多重分離した4つの信号を出力する。 The real-time processing unit 6 outputs four signals that have been polarization multiplexed and demultiplexed based on the four input signals and the inverse matrix input from the low-speed processing unit 7. The real time processing unit 6 includes real time ADC (Analog to Digital Converter) units 61-1, 61-2, 61-3, 61-4, and a matrix multiplication unit 62. The real-time ADC units 61-1 to 61-4 perform analog-digital (AD) conversion on the input analog signal and output the digital signal to the matrix multiplication unit 62. The matrix multiplication unit 62 outputs four signals that have been polarization multiplexed and demultiplexed based on the four digital signals and the inverse matrix from the low-speed processing unit 7.
 低速処理部7は、入力した4つの信号に基づいて、伝送路の偏波状態を表す行列の逆行列を算出する。低速処理部7は、低速ADC部71-1、71-2、71-3、71-4と、行列生成部72を備える。低速ADC部71-1~71-4は、入力したアナログ信号をAD変換し、デジタル信号を行列生成部72へ出力する。行列生成部72は、4つのデジタル信号に基づいて逆行列を算出し、行列乗算部62へ出力する。 The low speed processing unit 7 calculates an inverse matrix of a matrix representing the polarization state of the transmission path based on the four input signals. The low speed processing unit 7 includes low speed ADC units 71-1, 71-2, 71-3, 71-4, and a matrix generation unit 72. The low-speed ADC units 71-1 to 71-4 perform AD conversion on the input analog signal and output the digital signal to the matrix generation unit 72. The matrix generation unit 72 calculates an inverse matrix based on the four digital signals and outputs the inverse matrix to the matrix multiplication unit 62.
 つづいて、偏波多重分離装置の動作について説明する。偏波多重分離装置は、まず、偏波多重信号である光信号のES(t)を受信する。一例として、受信光ES(t)の搬送波周波数を1550.2nm、ビットレートを43Gbit/sec、変調方式をPDM-QPSKとする。このとき、シンボルレートは11Gbit/secである。光源部1は、局部発振光ELO(t)として、受信光ES(t)の搬送波周波数と同一の1550.2nmのCW光を発し続ける。 Next, the operation of the polarization multiplexing / demultiplexing device will be described. The polarization multiplexing / demultiplexing apparatus first receives E S (t) of an optical signal that is a polarization multiplexed signal. As an example, the carrier frequency of the received light E S (t) is 1550.2 nm, the bit rate is 43 Gbit / sec, and the modulation method is PDM-QPSK. At this time, the symbol rate is 11 Gbit / sec. The light source unit 1 continues to emit CW light having a wavelength of 1550.2 nm that is the same as the carrier frequency of the received light E S (t) as the local oscillation light E LO (t).
 偏波分離部2-1は、受信光ES(t)を2つの直交するX、Y偏波成分ES,X(t)、ES,Y(t)に分離して出力する。また、偏波分離部2-2は、局部発振光ELO(t)を2つの直交するX、Y偏波成分ELO,X(t)、ELO,Y(t)に分離して出力する。 The polarization separation unit 2-1 separates the received light E S (t) into two orthogonal X and Y polarization components E S, X (t), E S, Y (t) and outputs them. The polarization separation unit 2-2 separates the local oscillation light E LO (t) into two orthogonal X and Y polarization components E LO, X (t) and E LO, Y (t) and outputs them. To do.
 光干渉部3-1は、偏波の揃った2つの入力光ES,X(t)、ELO,X(t)に対し、それらの差成分「EXd(t)=ES,X(t)-ELO,X(t)」と和成分「EXc(t)=ES,X(t)+ELO,X(t)」とを出力する。また、前記2つの入力光のうちの一方の電界を90度位相シフトさせ、差成分「EXdj(t)=ES,X(t)-jELO,X(t)」と和成分「EXcj(t)=ES,X(t)+jELO,X(t)」とを出力する。光干渉部3-2は、偏波の揃った2つの入力光ES,Y(t)、ELO,Y(t)に対し、それらの差成分「EYd(t)=ES,Y(t)-ELO,Y(t)」と和成分「EYc(t)=ES,Y(t)+ELO,Y(t)」とを出力する。また、前記2つの入力光のうちの一方の電界を90度位相シフトさせ、差成分「EYdj(t)=ES,Y(t)-jELO,Y(t)」と和成分「EYcj(t)=ES,Y(t)+jELO,Y(t)」とを出力する。 The optical interfering unit 3-1 makes difference components “E Xd (t) = E S, X with respect to two input lights E S, X (t) and E LO, X (t) having the same polarization. (T) −E LO, X (t) ”and the sum component“ E Xc (t) = E S, X (t) + E LO, X (t) ”are output. Also, the electric field of one of the two input lights is phase-shifted by 90 degrees, and the difference component “E Xdj (t) = E S, X (t) −jE LO, X (t)” and the sum component “E Xcj (t) = ES , X (t) + jE LO, X (t) "is output. The optical interfering unit 3-2 applies the difference component “E Yd (t) = E S, Y to the two input lights E S, Y (t) and E LO, Y (t) having the same polarization. (T) −E LO, Y (t) ”and the sum component“ E Yc (t) = E S, Y (t) + E LO, Y (t) ”are output. Further, the electric field of one of the two input lights is phase-shifted by 90 degrees, and the difference component “E Ydj (t) = E S, Y (t) −jE LO, Y (t)” and the sum component “E Ycj (t) = ES , Y (t) + jE LO, Y (t) "is output.
 バランス型光子検出部4-1は、EXd(t)、EXc(t)を入力とし、バランス受信する。各光子検出器の感度が等しくR[A/W]である場合、電気信号として「Re{EX(t)}∝R{|EXd(t)|2-|EXc(t)|2}」を出力する。バランス型光子検出部4-2は、EXdj(t)、EXcj(t)を入力とし、バランス受信する。各光子検出器の感度が等しくR[A/W]である場合、電気信号として「Im{EX(t)}∝R{|EXdj(t)|2-|EXcj(t)|2}」を出力する。バランス型光子検出部4-3は、EYd(t)、EYc(t)を入力とし、バランス受信する。各光子検出器の感度が等しくR[A/W]である場合、電気信号として「Re{EY(t)}∝R{|EYd(t)|2-|EYc(t)|2}」を出力する。バランス型光子検出部4-4は、EYdj(t)、EYcj(t)を入力とし、バランス受信する。各光子検出器の感度が等しくR[A/W]である場合、電気信号として「Im{EY(t)}∝R{|EYdj(t)|2-|EYcj(t)|2}」を出力する。 The balanced photon detector 4-1 receives E Xd (t) and E Xc (t) as inputs and receives the balance. When the sensitivity of each photon detector is equal to R [A / W], “Re {E X (t)} ∝R {| E Xd (t) | 2 − | E Xc (t) | 2 } "Is output. The balanced photon detector 4-2 receives E Xdj (t) and E Xcj (t) as inputs and receives the balance. When the sensitivity of each photon detector is equal to R [A / W], “Im {E X (t)} ∝R {| E Xdj (t) | 2 − | E Xcj (t) | 2 } "Is output. The balanced photon detector 4-3 receives E Yd (t) and E Yc (t) as inputs and receives the balance. When the sensitivity of each photon detector is equal to R [A / W], “Re {E Y (t)} ∝R {| E Yd (t) | 2 − | E Yc (t) | 2 } "Is output. The balanced photon detection unit 4-4 receives E Ydj (t) and E Ycj (t) as inputs and performs balanced reception. When the sensitivity of each photon detector is equal to R [A / W], “Im {E Y (t)} ∝R {| E Ydj (t) | 2 − | E Ycj (t) | 2 } "Is output.
 アナログ信号分岐部5-1は、バランス型光子検出部4-1から入力した電気信号Re{EX(t)}を2分岐し、一方を実時間ADC部61-1へ出力し、他方を低速ADC部71-1へ出力する。アナログ信号分岐部5-2は、バランス型光子検出部4-2から入力した電気信号Im{EX(t)}を2分岐し、一方を実時間ADC部61-2へ出力し、他方を低速ADC部71-2へ出力する。アナログ信号分岐部5-3は、バランス型光子検出部4-3から入力した電気信号Re{EY(t)}を2分岐し、一方を実時間ADC部61-3へ出力し、他方を低速ADC部71-3へ出力する。アナログ信号分岐部5-4は、バランス型光子検出部4-4から入力した電気信号Im{EY(t)}を2分岐し、一方を実時間ADC部61-4へ出力し、他方を低速ADC部71-4へ出力する。アナログ信号分岐部5-1~5-4が電気信号を2分岐する方法として、等振幅で2分岐する方法があるが、これに限定するものではない。 Analog signal branching unit 5-1, an electrical signal Re {E X (t)} input from the balanced photon detector 4-1 2 branches, outputs one to the real time ADC 61-1, and the other Output to the low-speed ADC unit 71-1. Analog signal branching unit 5-2, an electrical signal Im {E X (t)} input from the balanced photon detector 4-2 2 branches, outputs one to the real time ADC unit 61-2, the other Output to the low-speed ADC unit 71-2. The analog signal branching unit 5-3 branches the electrical signal Re {E Y (t)} input from the balanced photon detection unit 4-3 into two, outputs one to the real-time ADC unit 61-3, and outputs the other Output to the low-speed ADC 71-3. The analog signal branching unit 5-4 branches the electrical signal Im {E Y (t)} input from the balanced photon detection unit 4-4 into two, and outputs one to the real time ADC unit 61-4. Output to the low-speed ADC 71-4. As a method for the analog signal branching units 5-1 to 5-4 to branch the electric signal into two, there is a method of branching into two with equal amplitude, but the method is not limited to this.
 低速処理部7は、アナログ信号分岐部5-1~5-4から入力した11Gsymbol/secのアナログ信号4対をそれぞれAD変換し、AD変換したデジタル信号に基づいて、CMA(Constant Modulus Argorithm)を用いて行列T0 -1(t)を算出し、110MHzの速度でT0 -1(t)を更新し続ける。 The low-speed processing unit 7 AD-converts four pairs of 11 G symbol / sec analog signals input from the analog signal branching units 5-1 to 5-4, and performs CMA (Constant Modulus Argorithm) based on the AD-converted digital signals. used to calculate the matrix T 0 -1 (t) and continues to update the T 0 -1 (t) at a rate of 110 MHz.
 低速ADC部71-1は、入力した11Gsymbol/secのアナログ信号Re{EX(t)}を、一例として、サンプリングレート110Msample/sec、分解能6bitでAD変換し、行列生成部72へ出力する。低速ADC部71-2は、入力した11Gsymbol/secのアナログ信号Im{EX(t)}を、一例として、サンプリングレート110Msample/sec、分解能6bitでAD変換し、行列生成部72へ出力する。低速ADC部71-3は、入力した11Gsymbol/secのアナログ信号Re{EY(t)}を、一例として、サンプリングレート110Msample/sec、分解能6bitでAD変換し、行列生成部72へ出力する。低速ADC部71-4は、入力した11Gsymbol/secのアナログ信号Im{EY(t)}を、一例として、サンプリングレート110Msample/sec、分解能6bitでAD変換し、行列生成部72へ出力する。 Slow ADC unit 71-1, the analog signal Re {E X (t)} of the input 11Gsymbol / sec, and as an example, the sampling rate 110Msample / sec, and the AD conversion resolution 6bit, and outputs to the matrix generation unit 72. Slow ADC unit 71-2, the analog signal Im {E X (t)} of the input 11Gsymbol / sec, and as an example, the sampling rate 110Msample / sec, and the AD conversion resolution 6bit, and outputs to the matrix generation unit 72. For example, the low-speed ADC 71-3 performs AD conversion on the input 11 G symbol / sec analog signal Re {E Y (t)} at a sampling rate of 110 Msample / sec and a resolution of 6 bits, and outputs the result to the matrix generator 72. For example, the low-speed ADC unit 71-4 converts the input analog signal Im {E Y (t)} of 11 G symbol / sec at a sampling rate of 110 Msample / sec and a resolution of 6 bits, and outputs it to the matrix generation unit 72.
 行列生成部72は、低速ADC部71-1~71-4から入力した4つのデジタル信号(X/Y偏波、I/Q軸)から低速の受信信号ベクトル「ERS(t)=[EX(t)、EY(t)]T」を形成し、CMAにより逆行列T-1(t)を算出し、行列乗算部62へ出力する。行列生成部72は、逆行列T-1(t)を、低速ADC部71-1~4のサンプリングレートに対応した周期で更新し続ける。 The matrix generation unit 72 uses the four digital signals (X / Y polarization, I / Q axis) input from the low-speed ADC units 71-1 to 71-4 to generate a low-speed received signal vector “E RS (t) = [E X (t), E Y (t)] T ”, an inverse matrix T −1 (t) is calculated by CMA, and output to the matrix multiplier 62. The matrix generation unit 72 continues to update the inverse matrix T −1 (t) at a period corresponding to the sampling rate of the low-speed ADC units 71-1 to 71-4.
 実時間処理部6は、アナログ信号分岐部5-1~5-4から入力した11Gsymbol/secのアナログ信号4対をそれぞれAD変換し、AD変換したデジタル信号と低速処理部7から入力した行列T0 -1(t)とに基づいて行列演算を行い、偏波多重分離した信号4対を出力する。 The real-time processing unit 6 AD-converts 11 Gsymbol / sec analog signal pairs input from the analog signal branching units 5-1 to 5-4, respectively, and converts the AD converted digital signal and the matrix T input from the low-speed processing unit 7 A matrix operation is performed based on 0 −1 (t), and 4 pairs of signals subjected to polarization demultiplexing are output.
 実時間ADC部61-1は、入力した11Gsymbol/secのアナログ信号Re{EX(t)}を、一例として、サンプリングレート22Gsample/sec、分解能4bitでAD変換し、デジタル信号を行列生成部72へ出力する。実時間ADC部61-2は、入力した11Gsymbol/secのアナログ信号Im{EX(t)}を、一例として、サンプリングレート22Gsample/sec、分解能4bitでAD変換し、デジタル信号を行列生成部72へ出力する。実時間ADC部61-3は、入力した11Gsymbol/secのアナログ信号Re{EY(t)}を、一例として、サンプリングレート22Gsample/sec、分解能4bitでAD変換し、デジタル信号を行列生成部72へ出力する。実時間ADC部61-4は、入力した11Gsymbol/secのアナログ信号Im{EY(t)}を、一例として、サンプリングレート22Gsample/sec、分解能4bitでAD変換し、デジタル信号を行列生成部72へ出力する。 Real-time ADC unit 61-1, the analog signal Re of inputted 11Gsymbol / sec {E X (t )}, as an example, the sampling rate 22Gsample / sec, and the AD conversion resolution 4bit, digital signal matrix generator 72 Output to. Real-time ADC unit 61-2, the analog signal Im of the inputted 11Gsymbol / sec {E X (t )}, as an example, the sampling rate 22Gsample / sec, and the AD conversion resolution 4bit, digital signal matrix generator 72 Output to. For example, the real-time ADC unit 61-3 AD-converts the input 11 G symbol / sec analog signal Re {E Y (t)} at a sampling rate of 22 G sample / sec and a resolution of 4 bits, and converts the digital signal into a matrix generation unit 72. Output to. For example, the real-time ADC unit 61-4 AD-converts the input 11 G symbol / sec analog signal Im {E Y (t)} at a sampling rate of 22 G sample / sec and a resolution of 4 bits, and converts the digital signal into a matrix generation unit 72. Output to.
 サンプリングレートを22Gsample/secにするため、シンボルレートを2倍オーバーサンプリングしたが、一般的には2~4倍程度である。また、実時間ADC部61-1~61-4におけるサンプリングレートを、低速ADC部71-1~71-4のサンプリングレートの100~1000倍程度の速さとする(低速ADC部71-1~71-4からデジタル信号を出力する周期は、実時間ADC部61-1~61-4の周期よりも100~1000倍程度長い)。 The symbol rate was oversampled twice in order to set the sampling rate to 22 Gsample / sec, but it is generally about 2 to 4 times. In addition, the sampling rate in the real-time ADC units 61-1 to 61-4 is about 100 to 1000 times the sampling rate of the low-speed ADC units 71-1 to 71-4 (the low-speed ADC units 71-1 to 71-71). -4 has a cycle for outputting a digital signal 100 to 1000 times longer than the cycle of the real-time ADC units 61-1 to 61-4).
 行列演算部62は、実時間ADC部61-1~61-4から入力した4つのデジタル信号(X/Y偏波、I/Q軸)から実時間の受信信号ベクトル「ERR(t)=[EX(t)、EY(t)]T」を形成し、行列生成部72から入力した逆行列T0 -1(t)との積「E'T0(t)=T0 -1(t)ERR(t)」をとる。これにより、復元した送信ベクトルE'T0(t)の4要素、Re{E'x0(t)}、Im{E'x0(t)}、Re{E'y0(t)}、Im{E'y0(t)}を偏波多重分離した信号として出力する。 The matrix calculation unit 62 calculates the real-time received signal vector “E RR (t) = from the four digital signals (X / Y polarization, I / Q axis) input from the real-time ADC units 61-1 to 61-4. [E X (t), E Y (t)] T ”and the product“ E ′ T0 (t) = T 0 −1 ”with the inverse matrix T 0 −1 (t) input from the matrix generation unit 72. (T) E RR (t) ”. Thus, the four elements of the restored transmission vector E ′ T0 (t), Re {E ′ x0 (t)}, Im {E ′ x0 (t)}, Re {E ′ y0 (t)}, Im {E ' y0 (t)} is output as a polarization-demultiplexed signal.
 なお、行列演算部62の後段において、搬送波の周波数・位相推定が行われ、波長分散の適応的な等化が行われる場合があるが、特に図示しない。 It should be noted that the frequency / phase estimation of the carrier wave may be performed after the matrix calculation unit 62, and adaptive equalization of chromatic dispersion may be performed, but this is not particularly shown.
 また、バランス型光子検出部4-1~4-4とアナログ信号分岐部5-1~5-4との間において、FIR(Finite Impulse Response)フィルタによる波長分散の等化が行われることが一般的であるが、特に図示しない。 In addition, it is common for wavelength dispersion equalization to be performed by a FIR (Finite Impulse Response) filter between the balanced photon detection units 4-1 to 4-4 and the analog signal branching units 5-1 to 5-4. Not shown.
 また、行列演算部62の後段において、行列演算部62と行列生成部72の双方の機能を備えた行列生成・演算部を直列に多段接続する構成とすることも可能である。この場合、初段(1段目)の行列生成・演算部では、行列演算部62から出力されたRe{E'x0(t)}、Im{E'x0(t)}、Re{E'y0(t)}、Im{E'y0(t)}に基づいて、信号ベクトル「E'T0(t)=[E'x0(t)、E'y0(t)]T」を再形成し、CMAにより逆行列T1 -1(t)を生成する。その後、積「E'T1(t)=T1 -1(t)E'T0(t)」をとり、E'T1(t)の4要素Re{E'x1(t)}、Im{E'x1(t)}、Re{E'y1(t)}、Im{E'y1(t)}を出力する。一般化すると、k段目(kは自然数)の行列生成・演算部では、行列演算部62から出力されたRe{E'xk-1(t)}、Im{E'xk-1(t)}、Re{E'yk-1(t)}、Im{E'yk-1(t)}に基づいて、信号ベクトル「E'Tk(t)=[E'xk-1(t)、E'yk-1(t)]T」を再形成し、CMAにより逆行列Tk -1(t)を生成する。その後、積「E'Tk(t)=Tk -1(t)E'Tk-1(t)」をとり、E'Tk(t)の4要素Re{E'xk(t)}、Im{E'xk(t)}、Re{E'yk(t)}、Im{E'yk(t)}を出力する。 Further, a matrix generation / calculation unit having the functions of both the matrix calculation unit 62 and the matrix generation unit 72 may be connected in series in a subsequent stage of the matrix calculation unit 62. In this case, in the first stage (first stage) matrix generation / operation unit, Re {E ′ x0 (t)}, Im {E ′ x0 (t)}, Re {E ′ y0 output from the matrix operation unit 62. (T)}, Im {E ′ y0 (t)}, the signal vector “E ′ T0 (t) = [E ′ x0 (t), E ′ y0 (t)] T ” is reformed, An inverse matrix T 1 −1 (t) is generated by CMA. Thereafter, the product “E ′ T1 (t) = T 1 −1 (t) E ′ T0 (t)” is taken, and the four elements Re {E ′ x1 (t)} of E ′ T1 (t), Im {E ' x1 (t)}, Re { E'y1 (t)}, Im { E'y1 (t)} are output. When generalized, the k-th (k is a natural number) matrix generation / operation unit outputs Re {E ′ xk−1 (t)} and Im {E ′ xk−1 (t) output from the matrix operation unit 62. }, Re {E ′ yk−1 (t)}, Im {E ′ yk−1 (t)}, the signal vector “E ′ Tk (t) = [E ′ xk−1 (t), E ' yk-1 (t)] T "is recreated and the inverse matrix T k -1 (t) is generated by CMA. Thereafter, the product “E ′ Tk (t) = T k −1 (t) E ′ Tk−1 (t)” is taken, and the four elements Re {E ′ xk (t)} of E ′ Tk (t), Im {E 'xk (t)} , Re {E' yk (t)}, and outputs the Im {E 'yk (t) }.
 以上説明したように、本実施の形態では、偏波多重分離装置は、偏波多重分離する対象の信号に対して高速・低分解能なADCを使用し、伝送路の偏波変化の逆行列を求める際に必要な信号に対して低速・高分解能なADCを使用して、偏波多重分離することとした。これにより、高速・高分解能なADCを使用しないため、技術的、コスト的な難度を抑えた偏波多重分離が可能となる。 As described above, in this embodiment, the polarization multiplexing / demultiplexing apparatus uses a high-speed, low-resolution ADC for a signal to be polarization-demultiplexed, and uses the inverse matrix of the polarization change of the transmission line. Polarization demultiplexing was performed using a low-speed, high-resolution ADC for the signal required for the determination. As a result, since high-speed and high-resolution ADC is not used, polarization multiplexing / demultiplexing with reduced technical and cost difficulty is possible.
 以上のように、本発明にかかる偏波多重分離装置は、光ファイバによる通信に有用であり、特に、光ファイバを用いた大容量の通信に適している。 As described above, the polarization multiplexing / demultiplexing device according to the present invention is useful for communication using optical fibers, and is particularly suitable for high-capacity communication using optical fibers.

Claims (5)

  1.  送信装置で偏波多重された信号を伝送路経由で受信する受信装置内で、受信信号を偏波多重分離する偏波多重分離装置であって、
     前記受信信号の搬送周波数と同一の周波数で光信号を出力する光源手段と、
     前記受信信号および前記光源手段から出力された光信号を、それぞれ2つの直交する偏波成分に分離して出力する偏波分離手段と、
     前記偏波分離手段から出力された偏波光信号のうち、偏波方向の揃った2つの偏波光信号に基づいて、それらの電界の差成分に相当する光信号と和成分に相当する光信号とを出力し、また、2つの偏波光信号のうち、一方の偏波光信号の電界を保持し、他方の偏波光信号の電界を位相シフトさせた2つの偏波光信号に基づいて、それらの電界の差成分に相当する光信号と和成分に相当する光信号とを出力する光干渉手段と、
     偏波方向が揃い、かつ、電界を位相シフトせずに生成された前記和成分および前記差成分の光信号に基づいて、それぞれの光信号を光電変換した値の差分を電気信号として出力し、また、偏波方向が揃い、かつ、電界を位相シフトさせて生成された前記和成分および前記差成分の光信号に基づいて、それぞれの光信号を光電変換した値の差分を電気信号として出力するバランス型光子検出手段と、
     前記バランス型光子検出手段から出力された電気信号を入力し、2分岐して出力するアナログ信号分岐手段と、
     2分岐された電気信号の一方を入力とし、シンボルレートに対してオーバーサンプリングした時間周期T1でN1(N1>1)ビット分解能の離散値に変換してデジタル信号を出力する実時間ADC手段と、
     2分岐された電気信号の他方を入力とし、時間周期T1に比べて長い時間周期T2でN2(N2>N1)ビット分解能の離散値に変換してデジタル信号を出力する低速ADC手段と、
     前記低速ADC手段から出力されたデジタル信号に基づいて、伝送路の偏波特性の逆特性を示す複素行列を生成し、また、時間周期T2で当該複素行列を更新する行列生成手段と、
     前記実時間ADC手段から出力されたデジタル信号に基づいて、受信信号ベクトルを示す複素ベクトルを生成し、当該複素ベクトルと前記複素行列を乗算する行列乗算手段と、
     を備えることを特徴とする偏波多重分離装置。
    A polarization multiplexing / demultiplexing device that performs polarization multiplexing / demultiplexing on a received signal in a receiving device that receives a polarization multiplexed signal by a transmission device via a transmission line,
    Light source means for outputting an optical signal at the same frequency as the carrier frequency of the received signal;
    Polarization separation means for separating and outputting the received signal and the optical signal output from the light source means, respectively, into two orthogonal polarization components;
    Based on two polarized optical signals having the same polarization direction among the polarized optical signals output from the polarization separating means, an optical signal corresponding to the difference component of the electric field and an optical signal corresponding to the sum component In addition, based on two polarized optical signals that hold the electric field of one of the two polarized optical signals and phase-shift the electric field of the other polarized optical signal, An optical interference means for outputting an optical signal corresponding to the difference component and an optical signal corresponding to the sum component;
    Based on the optical signals of the sum component and the difference component that are generated with the polarization directions aligned and without shifting the phase of the electric field, the difference between the values obtained by photoelectric conversion of the respective optical signals is output as an electrical signal, Further, based on the optical signals of the sum component and the difference component generated by aligning the polarization directions and phase-shifting the electric field, a difference between values obtained by photoelectrically converting the optical signals is output as an electric signal. Balanced photon detection means;
    An analog signal branching unit that inputs the electrical signal output from the balanced photon detection unit, splits and outputs the electrical signal, and
    Real-time ADC means for taking one of the two-branched electrical signals as an input, converting it into a discrete value with N1 (N1> 1) bit resolution at a time period T1 oversampled with respect to the symbol rate, and outputting a digital signal;
    Low-speed ADC means for inputting the other of the two-branched electrical signals and converting it to a discrete value with N2 (N2> N1) bit resolution in a time period T2 longer than the time period T1 and outputting a digital signal;
    Based on the digital signal output from the low-speed ADC unit, a matrix generating unit that generates a complex matrix indicating an inverse characteristic of the polarization characteristic of the transmission path, and that updates the complex matrix at a time period T2,
    Matrix multiplication means for generating a complex vector indicating a received signal vector based on the digital signal output from the real-time ADC means, and multiplying the complex vector by the complex matrix;
    A polarization multiplexing / demultiplexing device.
  2.  前記位相シフトの大きさを90度とすることを特徴とする請求項1に記載の偏波多重分離装置。 The polarization multiplexing / demultiplexing device according to claim 1, wherein the magnitude of the phase shift is 90 degrees.
  3.  前記オーバーサンプリングをシンボルレートの2~4倍とすることを特徴とする請求項1に記載の偏波多重分離装置。 2. The polarization multiplexing / demultiplexing device according to claim 1, wherein the oversampling is performed at 2 to 4 times a symbol rate.
  4.  前記オーバーサンプリングをシンボルレートの2~4倍とすることを特徴とする請求項2に記載の偏波多重分離装置。 3. The polarization multiplexing / demultiplexing device according to claim 2, wherein the oversampling is performed at 2 to 4 times a symbol rate.
  5.  前記時間周期T2の長さを、前記時間周期T1の100~1000倍とすることを特徴とする請求項1~4のいずれか1つに記載の偏波多重分離装置。 The polarization multiplexing / demultiplexing device according to any one of claims 1 to 4, wherein the length of the time period T2 is 100 to 1000 times the time period T1.
PCT/JP2009/058762 2009-05-11 2009-05-11 Polarization demultiplexing apparatus WO2010131323A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058762 WO2010131323A1 (en) 2009-05-11 2009-05-11 Polarization demultiplexing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058762 WO2010131323A1 (en) 2009-05-11 2009-05-11 Polarization demultiplexing apparatus

Publications (1)

Publication Number Publication Date
WO2010131323A1 true WO2010131323A1 (en) 2010-11-18

Family

ID=43084713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058762 WO2010131323A1 (en) 2009-05-11 2009-05-11 Polarization demultiplexing apparatus

Country Status (1)

Country Link
WO (1) WO2010131323A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013124986A1 (en) * 2012-02-22 2013-08-29 三菱電機株式会社 Polarization estimator, polarization splitter, optical receiver, polarization estimation method, and polarization splitting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020567A (en) * 2002-06-18 2004-01-22 Agilent Technol Inc Method and device for determining scattering parameters of light device
WO2007045070A1 (en) * 2005-10-21 2007-04-26 Nortel Networks Limited Efficient data transmission and training of data processing functions
WO2007045071A1 (en) * 2005-10-21 2007-04-26 Nortel Networks Limited Clock recovery from an optical signal received through an optical communications network
WO2007045072A1 (en) * 2005-10-21 2007-04-26 Nortel Networks Limited Polarization compensation in a coherent optical receiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020567A (en) * 2002-06-18 2004-01-22 Agilent Technol Inc Method and device for determining scattering parameters of light device
WO2007045070A1 (en) * 2005-10-21 2007-04-26 Nortel Networks Limited Efficient data transmission and training of data processing functions
WO2007045071A1 (en) * 2005-10-21 2007-04-26 Nortel Networks Limited Clock recovery from an optical signal received through an optical communications network
WO2007045072A1 (en) * 2005-10-21 2007-04-26 Nortel Networks Limited Polarization compensation in a coherent optical receiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013124986A1 (en) * 2012-02-22 2013-08-29 三菱電機株式会社 Polarization estimator, polarization splitter, optical receiver, polarization estimation method, and polarization splitting method
JP5657168B2 (en) * 2012-02-22 2015-01-21 三菱電機株式会社 Polarization estimator, polarization separator, optical receiver, polarization estimation method, and polarization separation method

Similar Documents

Publication Publication Date Title
JP5372180B2 (en) Transmission method, transmission / reception method, transmission device, and transmission / reception device
JP5850041B2 (en) Optical receiver, polarization separation device, and optical reception method
JP5227407B2 (en) Restoration of two polarization components of optical signal field
US8180227B2 (en) Digital coherent detection of multi-carrier optical signal
JP7128420B2 (en) Signal processing method, signal processing device and communication system
US8275267B2 (en) Method, system, and apparatus for filter implementation using hermitian conjugates
JP2010161721A (en) Delay processing device, signal amplifying device, photoelectric conversion device, analog/digital conversion device, receiving device and receiving method
EP2498423A1 (en) Coherent optical detection and signal processing method and system
JP5838971B2 (en) Coherent optical receiver, system and method
Xie Local oscillator phase noise induced penalties in optical coherent detection systems using electronic chromatic dispersion compensation
JP2016536819A (en) Frequency diversity MIMO processing for optical transmission
JP7006716B2 (en) Receiver, optical transmission device, and method of compensating for birefringence fluctuation of fiber
JP5523591B2 (en) Optical receiver, nonlinear equalization circuit, and digital signal processing circuit
JP2013034065A (en) Polarization-multiplexing optical receiver, polarization-multiplexing system, and polarization-multiplexing optical receiving method
US9608732B2 (en) Optical transmitter, optical communication system, and optical communication method
JP2009218837A (en) Optical receiving apparatus and optical receiving method
JP5968833B2 (en) Optical transmission system and digital signal processing apparatus
WO2010131323A1 (en) Polarization demultiplexing apparatus
JP6344378B2 (en) Optical transmission system, optical receiver, and optical transmission method
JP6380403B2 (en) Carrier frequency deviation estimation apparatus and carrier frequency deviation estimation method
Hamaoka et al. Mode and polarization division multiplexed signal detection with single coherent receiver using mode-selective coherent detection technique
JP2005123934A (en) Optical communication method, optical transmitter, optical receiver and optical communication system
JP5542546B2 (en) Receiver in polarization multiplexed differential phase modulation optical transmission system
Wu et al. A Low-Complexity and Fast Adaptive Stokes-Space-Based Polarization Demultiplexing Technique for Optical Fiber Transmissions with Low Polarization Mode Dispersion
JP2021061507A (en) Optical transmitter and optical communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP