WO2013124986A1 - Polarization estimator, polarization splitter, optical receiver, polarization estimation method, and polarization splitting method - Google Patents
Polarization estimator, polarization splitter, optical receiver, polarization estimation method, and polarization splitting method Download PDFInfo
- Publication number
- WO2013124986A1 WO2013124986A1 PCT/JP2012/054284 JP2012054284W WO2013124986A1 WO 2013124986 A1 WO2013124986 A1 WO 2013124986A1 JP 2012054284 W JP2012054284 W JP 2012054284W WO 2013124986 A1 WO2013124986 A1 WO 2013124986A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polarization
- unit
- signals
- systems
- input
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers
- H04B10/616—Details of the electronic signal processing in coherent optical receivers
- H04B10/6166—Polarisation demultiplexing, tracking or alignment of orthogonal polarisation components
Definitions
- the present invention relates to a polarization estimator, a polarization separator, an optical receiver, a polarization estimation method, and a polarization separation method, and more particularly to a polarization estimator, a polarization separator, and an optical device using a digital coherent method.
- the present invention relates to a receiver, a polarization estimation method, and a polarization separation method.
- BPSK binary phase-shift keying
- OOK on-off keying
- QPSK Phase-Shift Keying
- QPSK amplitude modulation
- I axis phase axis
- Q axis quadrature phase axis
- chromatic dispersion and polarization mode dispersion generated in a transmission line are achieved by linear photoelectric conversion by synchronous detection and fixed, semi-fixed and adaptive linear equalization by digital signal processing. It is possible to realize excellent equalization characteristics and excellent noise tolerance against linear waveform distortion caused by PMD).
- the polarization multiplexed signal is separated by a linear equalizer in the receiver.
- the filter parameters of the linear equalizer are normally updated sequentially by digital signal processing based on an adaptive algorithm including a feedback path as described in Non-Patent Documents 1 to 4 and Patent Documents 1 to 3.
- Non-Patent Documents 1 to 4 and Patent Documents 1 to 3 the feedback path is required for updating the filter parameters. There was a problem that separation did not function effectively and communication was lost.
- Non-Patent Document 4 the ability to follow polarization fluctuation is 50 kHz at the maximum, and when the polarization fluctuates in the order of MHz, the polarization cannot be appropriately separated and communication is impossible. There was a problem of falling into.
- the present invention has been made to solve such a problem, and can prevent deterioration in transmission quality even when the polarization fluctuates at high speed.
- the polarization estimator, the polarization separator, and the optical It is an object to obtain a receiver, a polarization estimation method, and a polarization separation method.
- the present invention provides a polarization rotation unit that receives two polarization signals, separates the polarization signals into four systems, and applies different polarization rotations for each system to the two polarization signals included in each system And an inter-polarization differential detection unit that performs differential detection between the two polarization signals by inputting a two-polarization signal that has been polarized by the polarization rotation unit for each of the four systems.
- a real part acquisition unit that acquires only a real part from the output of the inter-polarization differential detection unit, and two sets of two sets formed as two sets of the four systems
- a complex multiplication unit that performs multiplication between the two real parts included in the set, and a square sum operation that calculates a square sum of the two real parts included in the set in each set
- the calculation result of the complex multiplication unit in each set is the calculation result of the square sum calculation unit.
- the polarization estimator includes a polarization rotation angle calculation unit that calculates an estimated value of the polarization rotation angle of the two input polarization signals.
- the present invention provides a polarization rotation unit that receives two polarization signals, separates the polarization signals into four systems, and applies different polarization rotations for each system to the two polarization signals included in each system And an inter-polarization differential detection unit that performs differential detection between the two polarization signals by inputting a two-polarization signal that has been polarized by the polarization rotation unit for each of the four systems.
- a real part acquisition unit that acquires only a real part from the output of the inter-polarization differential detection unit, and two sets of two sets formed as two sets of the four systems
- a complex multiplication unit that performs multiplication between the two real parts included in the set, and a square sum operation that calculates a square sum of the two real parts included in the set in each set
- the calculation result of the complex multiplication unit in each set is the calculation result of the square sum calculation unit.
- Embodiments of a polarization estimator, a polarization separator, and an optical receiver according to the present invention will be described below in detail with reference to the drawings.
- embodiment described below is one form at the time of actualizing this invention, Comprising: It is not for limiting this invention in the range.
- FIG. FIG. 2 is a block diagram showing the configuration of the polarization estimator 301 according to Embodiment 1 of the present invention.
- the polarization estimator 301 according to the first embodiment is mounted and used in a polarization separator or an optical receiver described later.
- the polarization estimator 301 of the first embodiment receives two polarization signals (Erx, Ery), performs polarization estimation based on them, and outputs an estimated value ⁇ est of the polarization rotation angle. is there.
- 41 and 43 are both X polarization received optical signals (Erx)
- 42 and 44 are both Y polarization received optical signals (Ery).
- These polarization signals (Erx, Ery) are all digital signals.
- the polarization estimator 301 divides the input two-polarization signals (Erx, Ery) into four systems and has their own polarization rotations (0, ⁇ ⁇ / 4, + ⁇ / 8, - ⁇ / 8), and a polarization differential detector (complex conjugate calculation) that performs differential detection between two polarizations that have the same polarization rotation.
- the 128 Gbit / s polarization multiplexed QPSK optical signal can communicate 4 bits per symbol, and the symbol repetition frequency fs is 32 GHz.
- the first embodiment can be applied to other transmission rates and various modulation schemes, and is not limited to this example.
- the input two-polarized signals (Erx, Ery) are electric signals that have undergone substantially linear optical / electrical conversion by synchronous detection (intradyne detection) of polarization multiplexed optical signals.
- the polarization rotation units 51 to 54 apply polarization rotation based on a 2 ⁇ 2 complex matrix (Jones matrix) to the input two polarization signals (Erx, Ery), respectively, and 2 after applying polarization rotation. Outputs a polarization signal.
- the polarization rotation angle in the polarization rotation unit 51 is 0, the polarization rotation angle in the polarization rotation unit 52 is ⁇ / 4, the polarization rotation angle in the polarization rotation unit 53 is + ⁇ / 8, and the polarization rotation unit
- the polarization rotation angle at 54 may be ⁇ / 8.
- these combinations are merely examples, and the polarization rotation angles of the polarization rotation units 51 to 54 may be appropriately set to arbitrary angles, and are not limited to the above angles.
- the polarization rotation unit 51 applies polarization rotation to each of the polarization signals 41 and 42 (Erx, Ery) at a polarization rotation angle of 0, and outputs two polarization signals (ErIxp, ErIyp).
- the polarization rotation unit 52 applies polarization rotation to each of the polarization signals 41 and 42 (Erx, Ery) at a polarization rotation angle of ⁇ / 4, and outputs two polarization signals (ErIxn, ErIyn).
- the polarization rotation unit 53 applies polarization rotation to each of the polarization signals 43 and 44 (Erx, Ery) at a polarization rotation angle + ⁇ / 8, and outputs a two-polarization signal (ErRxp, ErRyp).
- the polarization rotation unit 54 applies polarization rotation to each of the polarization signals 43 and 44 (Erx, Ery) at a polarization rotation angle of ⁇ / 8, and outputs two polarization signals (ErRxn, ErRy
- the complex conjugate calculation unit 61 receives ErIyp as an input and outputs the complex conjugate ErIyp * to the complex multiplication unit 71.
- the complex conjugate calculation unit 62 receives ErIyn as an input and outputs the complex conjugate ErIyn * to the complex multiplication unit 72.
- the complex conjugate calculation unit 63 receives ErRyp as an input and outputs the complex conjugate ErRyp * to the complex multiplication unit 73.
- the complex conjugate calculation unit 64 receives ErRyn as an input and outputs the complex conjugate ErRyn * to the complex multiplication unit 74.
- the complex multiplication unit 71 performs complex multiplication of ErIxp and ErIyp *, and outputs the resulting complex signal to the real part acquisition unit 81.
- the complex multiplier 72 performs a complex multiplication of ErIxn and ErIyn *, and outputs the resulting complex signal to the real part acquisition unit 82.
- the complex multiplier 73 performs a complex multiplication of ErRxp and ErRyp * and outputs the resulting complex signal to the real part acquisition unit 83.
- the complex multiplier 74 performs complex multiplication of ErRxn and ErRyn * and outputs the resulting complex signal to the real part acquisition unit 84.
- the real part acquisition unit 81 acquires the real part of the complex signal output from the complex multiplication unit 71 and outputs the real part signal A I to the multiplication unit 101 and the square calculation unit 111.
- the real part acquisition unit 82 acquires the real part of the complex signal output from the complex multiplier 72 and outputs the real part signal BI to the multiplier 101 and the square calculator 112.
- the real part acquisition unit 83 acquires the real part of the complex signal output from the complex multiplication unit 73 and outputs the real part signal A R to the multiplication unit 102 and the square calculation unit 113.
- the real part acquisition unit 84 acquires the real part of the complex signal output from the complex multiplication unit 74 and outputs the real part signal BR to the multiplication unit 102 and the square calculation unit 114.
- the square calculation unit 111 squares the real part signal A I input from the real part acquisition unit 81, and outputs the square result (A I 2 ) to the addition unit 121.
- the square calculation unit 112 squares the real part signal B I input from the real part acquisition unit 82, and outputs the square result (B I 2 ) to the addition unit 121.
- the square calculation unit 113 squares the real part signal A R input from the real part acquisition unit 83 and outputs the square result (A R 2 ) to the addition unit 122.
- Square calculation unit 114 squares the real part signal B R input from the real acquisition unit 84, and outputs the squared result (B R 2) to the adder 122.
- the adding unit 121 adds the square result A I 2 input from the square calculation unit 111 and the square result B I 2 input from the square calculation unit 112, and divides the addition result (A I 2 + B I 2 ).
- the adding unit 122 adds the square result A R 2 input from the square calculation unit 113 and the square result B R 2 input from the square calculation unit 114, and divides the addition result (A R 2 + B R 2 ). Output to the unit 132.
- the division unit 131 divides the multiplication result 2A I B I input from the multiplication unit 101 by the addition result A I 2 + B I 2 input from the addition unit 121, and the division result C I to the averaging unit 141. Output.
- Divider 132 a multiplication result 2A R B R input from the multiplication unit 102, divided by the sum A R 2 + B R 2 input from the addition section 122, the averaging unit 142 and the division result C R Output.
- the averaging unit 141 averages the division result C I input from the division unit 131 and outputs the average result C I, avg to the polarization rotation angle calculation unit 151. For example, although it is assumed that a moving average for 20 samples is taken, the present invention is not limited to this, and any other averaging process may be performed. Further, without averaging, it may be output as it is C I.
- the averaging unit 142 averages the division result C R input from the division unit 132 and outputs the averaged result C R, avg to the polarization rotation angle calculation unit 151. For example, although it is assumed that a moving average for 20 samples is taken, the present invention is not limited to this, and any other averaging process may be performed.
- the polarization rotation angle calculation unit 151 is based on C I, avg input from the averaging unit 141 and C R, avg input from the averaging unit 142 , and polarization of the two-polarization signal (Erx, Ery).
- An estimated value ⁇ est of the rotation angle is obtained by the following equation (1) and output to the outside.
- Arg ⁇ is a function for obtaining the argument of a complex number.
- the polarization rotation angle of the input polarization signal (Erx, Ery) by the polarization estimator 301 according to the first embodiment can be obtained only by feed-forward processing and (pilot tone etc. Can be estimated by blind processing.
- the polarization multiplexed signal can be separated by estimating the polarization rotation angle.
- the polarization state changes variously.
- the polarization state is generally represented by elliptical polarization, and as a special case, linear polarization or circular polarization can be taken. These polarization state changes are caused by a delay difference in the wavelength order between orthogonal polarizations.
- polarization multiplexed signals independent signals are superimposed on two orthogonal polarizations.
- two systems of linearly polarized unmodulated signals are independently modulated, and the polarization relationship is orthogonalized and multiplexed.
- the polarization multiplexed signal can be handled as two linearly polarized signals that are independent up to the receiving end in the linear analysis.
- an optical signal is converted into an electric signal.
- the response of the electrical device does not follow the polarization that changes in the wavelength order of the light, for example, when receiving a circularly polarized optical signal
- the X polarization and Y polarization of the polarization diversity receiver In both cases, it is simply received with half the power.
- the X-polarized wave and Y-polarized wave of the polarization diversity receiver appear to be received with a certain proportion of power.
- Optical Internetworking Forum “100G Ultra Long Haul DWDM Framework Document”, (http://www.oiforum.com/ public / documents / OIF-FD-100G-DWDM-01.0 .pdf), refer to the receiver described in June 2009.
- the polarization state fluctuation in the transmission line may be formulated by polarization rotation of linearly polarized waves.
- FIG. 1 shows polarization state fluctuations in an optical transmission line described by polarization rotation using a Jones matrix.
- 11 is an X polarization transmission optical signal (Etx)
- 12 is a Y polarization transmission optical signal (Ety)
- 31 is an X polarization reception optical signal (Erx)
- 32 is a Y polarization reception optical signal.
- (Ery) and 21 are optical transmission lines. It is only necessary to simplify the transmission optical signals 11 and 12 and the reception optical signals 31 and 32 so that two orthogonal linearly polarized waves are data-modulated. You can think of the waves rotating.
- FIG. 3 is a diagram showing the input polarization dependence of the polarization estimation result by the polarization estimator 301 according to the first embodiment.
- the horizontal axis represents the input polarization rotation angle
- the vertical axis represents the estimated value of the polarization rotation angle.
- the polarization state estimation capability does not change even if the number of phases of the phase modulation signal changes. That is, even if 8-value PSK or 16-value PSK is adopted, the polarization estimation capability is not changed at all. However, it is not suitable for application to a modulation method in which the amplitude level is multilevel.
- the polarization estimator 301 receives two polarization signals, separates the polarization signals into four systems, and is included in each system.
- Polarization rotating units 51 to 54 that apply different polarization rotations to the polarization signal for each system, and two polarization signals that are polarized by the polarization rotation unit for each of the four systems.
- the real part acquisition units 81 to 84 that acquire only the real part from the output of the inter-wave differential detection unit, and two sets formed by setting two systems out of the four systems as one set In the complex multipliers 101 and 102 that perform multiplication of the real parts of two systems, A sum of squares computing unit (square computing units 111 to 114 and adding units 121 and 122) for calculating the sum of squares of the two real parts included in the set, and the computation result of the complex multiplication unit in each set
- the division units 131 and 132 that divide by the calculation result of the square sum calculation unit, the averaging units 141 and 142 that store and average the calculation result of the division unit in each set, and the two sets of the above
- a polarization rotation angle calculation unit 151 that calculates an estimated value of the polarization rotation angle of the two polarization signals input to the polarization rotation unit based on the calculation result of the averaging unit;
- the polarization rotation angle estimation in the transmission path can be performed only by feedforward processing and blind processing, and
- FIG. 4 is a block diagram showing a configuration example of the polarization separator and its peripheral circuit according to the second embodiment of the present invention.
- reference numerals 204 and 206 denote polarization separators according to the second embodiment, and the other is a peripheral circuit thereof.
- the peripheral circuit includes a preprocessing unit 201, a chromatic dispersion compensation unit 202, a timing extraction unit 203, an adaptive equalization unit 205, a carrier frequency offset compensation unit 207, a carrier phase offset compensation unit 208, and an identification unit. 209.
- the polarization separator 204 is provided between the timing extraction unit 203 and the adaptive equalization unit 205.
- the polarization separator 206 is provided between the adaptive equalization unit 205 and the carrier frequency offset compensation unit 207.
- FIG. 4B is a diagram showing the internal configuration of the polarization separators 204 and 206. As shown in FIG. 4B, the polarization separators 204 and 206 are composed of the polarization estimator 301 of FIG. 2 described in the first embodiment and the polarization rotation unit 302. Details will be described later.
- the pre-processing unit 201 receives a 4-lane digital signal from the outside. These digital signals are composed of an I-ch signal and a Q-ch signal, respectively, for the X polarization signal and the Y polarization signal. Therefore, in the following, the 4-lane digital signals are represented as XI, XQ, YI, and YQ.
- the preprocessing unit 201 corrects amplitude variations, delay errors, and the like of the 4-lane digital signals (XI, XQ, YI, YQ), and outputs the corrected 4-lane signal to the chromatic dispersion compensation unit 202.
- the chromatic dispersion compensator 202 compensates the chromatic dispersion received on the optical transmission line by digital signal processing for the 4-lane signal input from the preprocessor 201 and outputs the compensated 4-lane signal to the timing extractor 203. .
- the timing extraction unit 203 extracts symbol timing information based on the 4-lane signal input from the chromatic dispersion compensation unit 202, and reproduces the identification point.
- the discrimination lane regenerated 4-lane signal is output to the polarization separator 204.
- the polarization separator 204 includes the polarization estimator 301 described in the first embodiment and the polarization rotation unit 302 connected thereto.
- the polarization estimator 301 estimates the polarization rotation angle based on the 4-lane signal input from the timing extraction unit 203, and outputs the polarization rotation angle estimated value ⁇ est to the polarization rotation unit 302. Since the operation of the polarization estimator 301 is the same as that described in Embodiment 1, the description thereof is omitted here. However, here, XI and YI are considered to be Erx41 and Ery42 shown in the first embodiment, and similarly, XQ and YQ are considered to be Erx43 and Ery44 shown in the first embodiment.
- the polarization rotation unit 302 gives a reverse rotation of the estimated value ⁇ est of the polarization rotation angle input from the polarization estimator 301 to the 4-lane signal (two polarization signals) input from the timing extraction unit 203. Then, a 4-lane signal (two-polarized signal) obtained by reversely rotating the polarization is output to the adaptive equalization unit 205.
- the adaptive equalization unit 205 adaptively equalizes linear waveform distortion due to residual chromatic dispersion, polarization mode dispersion, bandwidth limitation, and the like with respect to the 4-lane signal input from the polarization separator 204, and after equalization Are output to the polarization separator 206.
- the transmission polarization is generally restored by the polarization separator 204, the polarization separator 204 can only give a polarization rotation, so an adaptive equalization unit 205 that performs waveform equalization is necessary in many cases. It is. However, it can be made unnecessary when a signal that has passed through a transmission path in good condition is received.
- the polarization separator 206 is basically the same in configuration and operation as the polarization separation unit 204, and includes a polarization estimator 301 and a polarization rotation unit 302 as shown in FIG. Yes.
- the polarization separator 206 is used to remove the remaining polarization interference component that cannot be separated by the polarization separator 204.
- the polarization estimator 301 estimates the polarization rotation angle based on the 4-lane signal input from the adaptive equalization unit 205, and uses the polarization rotation angle estimated value ⁇ est as the polarization. Output to the rotating unit 302.
- the polarization rotation unit 302 reverses the estimated value ⁇ est of the polarization rotation angle input from the polarization estimator 301 with respect to the 4-lane signal (two polarization signals) input from the timing extraction unit 203.
- a four-lane signal (two-polarized signal) that is rotated and reversely polarized is output to the carrier frequency offset compensator 207.
- the carrier frequency offset compensation unit 207 compensates for the frequency difference between the carrier wave of the received signal and the local oscillation wave for the 4-lane signal input from the polarization separation unit 206, and converts the 4-lane signal after frequency difference compensation to the carrier phase. Output to the offset compensator 208.
- the carrier phase offset compensation unit 208 compensates the phase difference between the carrier wave of the received signal and the local oscillation wave for the 4-lane signal input from the carrier frequency offset compensation unit 207, and identifies the 4-lane signal after the phase offset compensation Output to the unit 209.
- the identification unit 209 performs a hard decision on the 4-lane signal input from the carrier phase offset compensation unit 208, adds reliability information in some cases, and outputs the 4-lane signal to the outside.
- FIG. 5 shows a block diagram for off-line analysis for confirming the polarization separation capability of the polarization separators 204 and 206 according to the present invention.
- 210 is a polarization rotation emulator unit that simulates polarization fluctuations
- 211 is a sampling rate conversion unit that eliminates the mismatch between the sampling rate and the symbol repetition frequency, and sets the sampling rate to an approximately integer multiple of the symbol repetition frequency
- Reference numeral 212 denotes a Q value calculation unit.
- the polarization rotation emulator unit 210 intentionally rotated the polarization in the off-line analysis, and confirmed the reception characteristics.
- FIG. 6 is a result of confirming the polarization separation capability of the polarization separation unit according to the present invention by the configuration of FIG.
- a standard CMA was used as a comparison target.
- Noise is added to a 43 Gb / s polarization multiplexed quaternary phase shift keying signal, and sine is intentionally received at the receiving end signal processing under the condition of optical signal power to noise power ratio of 10.9 dB (noise band 0.1 nm).
- Waveform polarization rotation: ⁇ (t) ⁇ sin ( ⁇ ft) was given to confirm the Q value characteristic.
- FIG. 6 shows the following three cases.
- the adaptive equalization unit 205 is configured by a butterfly finite impulse response filter with a 9-tap 1/2 symbol interval, and is optimized for a series of 1024 symbol received signals by standard CMA.
- the vertical axis in FIG. 6 indicates the Q value characteristic.
- the polarization separators 204 and 206 have the polarization estimator 301 described in the first embodiment and the polarization rotation angle estimated by the polarization estimator 301.
- the polarization rotation unit 302 that reversely rotates the polarization based on the polarization rotation angle estimation in the transmission line can be performed only by the feedforward process and the blind process. It is possible to maintain the transmission quality even when the polarization separation of the wave-multiplexed signal is significantly faster than in the past and the polarization fluctuates at high speed.
- FIG. 4 and 5 show examples in which the polarization separators 204 and 206 are provided in the front stage and the rear stage of the adaptive equalization unit 205, respectively. However, only one of the polarization separators 204 and 206 may be provided. Even in such a case, sufficient effects can be obtained as shown in FIG.
- FIG. 7 is a block diagram showing a configuration of an optical receiver according to Embodiment 3 of the present invention.
- the optical receiver according to the third embodiment includes a local oscillation light source 401, an optical interference unit 402, a photoelectric conversion unit 403, an analog / digital conversion unit 404, and a digital signal processing unit 405.
- the local oscillation light source 401, the optical interference unit 402, and the photoelectric conversion unit 403 constitute an optical receiving unit that receives an optical signal (hereinafter referred to as a received optical signal) from the outside and performs reception processing. .
- the local oscillation light source 401 generates CW (Continuous Wave) light having a center wavelength approximately coincident with the center wavelength of the optical signal after transmission, and outputs the CW light to the optical interference unit 402.
- CW Continuous Wave
- the optical interference unit 402 receives the received optical signal from the outside and also receives the CW light from the local oscillation light source 401, interfers and mixes the received optical signal and the CW light, and converts the optical signal after the interference into an electrical signal.
- the data is output to the conversion unit 403.
- the photoelectric converter 403 performs synchronous detection (intradyne detection) by converting the optical signal after interference input from the optical interference unit 402 into an electrical signal, and outputs the electrical signal to the analog / digital conversion unit 404. .
- the analog / digital conversion unit 404 converts the 4-lane analog electrical signal input from the photoelectric conversion unit 403 into a discrete-time digital signal, and outputs the discrete-time digital signal to the digital signal processing unit 404.
- analog-digital conversion both discrete time conversion of continuous-time signals and quantization of amplitude levels are performed.
- the ratio of the sampling rate by the discrete time to the symbol rate is set to 1 Sample / symbol or higher, and is generally set to 2 Sample / symbol in many cases.
- the digital signal processing unit 405 includes the polarization separators 204 and / or 206 shown in the second embodiment as shown in FIG. Based on the 4-lane signal input from the analog / digital conversion unit 404, the digital signal processing unit 405 performs reception electric signal processing including the polarization separation processing described in the second embodiment, and outputs the signal processing result. Output.
- the configuration of the polarization separators 204 and 206 is as shown in FIG. 4 of the second embodiment, that is, the polarization estimator 301 shown in the first embodiment is provided. is doing. Since the configurations and operations of the polarization separators 204 and 206 are as described in the second embodiment, a detailed description thereof is omitted here.
- the digital signal processing unit 405 may include both of the polarization separators 204 and 206 shown in FIG. 4, or may include only one of them.
- the digital signal processing 405 may include all the configurations (201 to 209) of FIG. 4 shown in the second embodiment. In that case, the digital signal processing unit 405 receives electric power received from the preprocessing unit 201 to the identification unit 209 described in the second embodiment based on the 4-lane signal input from the analog / digital conversion unit 404. Perform signal processing and output signal processing results. Since each process from the preprocessing unit 201 to the identification unit 209 is as described in the second embodiment, the description thereof is omitted here.
- the optical receiver oscillates the CW light at the center wavelength substantially coincident with the received optical signal, and the CW light generated by the local oscillation light source 401. And an optical signal output from the optical receiver.
- the optical receiver includes an optical interference unit 402 that interferes with the received optical signal, and an optical / electrical converter 403 that converts an output from the optical interference unit 402 into an electrical signal. Is converted to a digital signal, and a digital signal processing unit 405 that performs polarization separation is provided, so that the polarization rotation angle estimation in the transmission path can be performed only by feedforward processing and blind processing.
- polarization separation of orthogonal polarization multiplexed signals can be made much faster than before, and transmission quality can be maintained even when the polarization fluctuates at high speed. Kill.
- the polarization estimator, the polarization separator, and the optical receiver according to the present invention are useful for an optical transmission system using a digital coherent method, and in particular, light whose polarization changes rapidly. Suitable for transmission system.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
A polarization estimator (301) imparts different polarization rotations to an inputted signal with two polarizations (two polarization signals), carries out differential detection for each set of two polarization signals to which the same polarization rotation is imparted, acquires only the real parts of the outputs, divides the results of multiplying the real parts with each other by the sum of squares of the real parts, and on the basis of the results of division, calculates an estimated value for the polarization rotation angle of the two polarization signals. As a result, polarization splitting can be carried out significantly faster than in the prior art, and even if the polarizations fluctuate rapidly, transmission quality can be maintained.
Description
この発明は偏波推定器、偏波分離器、光受信器、偏波推定方法、および、偏波分離方法に関し、特に、デジタルコヒーレント方式を用いた、偏波推定器、偏波分離器、光受信器、偏波推定方法、および、偏波分離方法に関する。
The present invention relates to a polarization estimator, a polarization separator, an optical receiver, a polarization estimation method, and a polarization separation method, and more particularly to a polarization estimator, a polarization separator, and an optical device using a digital coherent method. The present invention relates to a receiver, a polarization estimation method, and a polarization separation method.
大容量光伝送のためには、光信号対雑音電力限界の克服や高密度波長多重化が課題である。光信号電力対雑音電力限界を克服する技術として、従来のオンオフキーイング(On-Off Keying:OOK)に対して、2値位相偏移変調(Binary Phase-Shift Keying:BPSK)や4値PSK(Quaternary Phase-Shift Keying:QPSK)が用いられる。また、高密度波長多重化のためには、直交する2つの偏波成分に独立の信号を割り当てる偏波多重によって、1シンボル当たりの伝送ビット数を2倍に増やす方式や、QPSKや16値直交振幅変調(Quadrature Amplitude Modulation:QAM)のように、信号多重度を上げて、1シンボル当たりの伝送ビット数を増やす方式が知られている。QPSKや16QAMは、光送信器において、同位相軸(In-Phase軸:I軸)と、直交位相軸(Quadrature-Phase軸:Q軸)とに信号を割り当てて伝送する。
For high-capacity optical transmission, overcoming the optical signal-to-noise power limit and high-density wavelength multiplexing are challenges. As a technology to overcome the optical signal power vs. noise power limit, binary phase-shift keying (BPSK) and quaternary PSK (Quaternary) are compared to conventional on-off keying (OOK). Phase-Shift Keying (QPSK) is used. For high-density wavelength multiplexing, a method of doubling the number of transmission bits per symbol by polarization multiplexing that assigns independent signals to two orthogonal polarization components, QPSK, or 16-value orthogonal There is known a method of increasing the signal multiplicity and increasing the number of transmission bits per symbol, such as amplitude modulation (QAM). QPSK and 16QAM are transmitted by assigning signals to the same phase axis (In-Phase axis: I axis) and quadrature phase axis (Quadrature-Phase axis: Q axis) in the optical transmitter.
また、同期検波方式にデジタル信号処理を組み合わせて、これらの光変調信号を受信するデジタルコヒーレント方式が注目されている。この方式では、同期検波による線形な光電気変換と、デジタル信号処理による固定的、半固定的および適応的な線形等化により、伝送路で生じる波長分散、偏波モード分散(Polarization-Mode Dispersion:PMD)等に起因する線形な波形歪みに対する優れた等化特性や優れた雑音耐力を実現できる。
Also, a digital coherent method that receives these optical modulation signals by combining digital signal processing with the synchronous detection method has attracted attention. In this method, chromatic dispersion and polarization mode dispersion (Polarization-Mode Dispersion) generated in a transmission line are achieved by linear photoelectric conversion by synchronous detection and fixed, semi-fixed and adaptive linear equalization by digital signal processing. It is possible to realize excellent equalization characteristics and excellent noise tolerance against linear waveform distortion caused by PMD).
偏波多重信号は、受信器における線形等化器により分離される。この線形等化器のフィルタパラメータは、通常、非特許文献1~4及び特許文献1~3に記載のようなフィードバックパスを含む適応アルゴリズムに基づくデジタル信号処理により逐次更新される。
The polarization multiplexed signal is separated by a linear equalizer in the receiver. The filter parameters of the linear equalizer are normally updated sequentially by digital signal processing based on an adaptive algorithm including a feedback path as described in Non-Patent Documents 1 to 4 and Patent Documents 1 to 3.
しかしながら、上記の非特許文献1~4及び特許文献1~3に記載の従来技術によれば、フィルタパラメータ更新のためにフィードバックパスを必要とするため、急峻に偏波が変動する条件では偏波分離が有効に機能せず、通信不能に陥るという問題があった。
However, according to the conventional techniques described in Non-Patent Documents 1 to 4 and Patent Documents 1 to 3, the feedback path is required for updating the filter parameters. There was a problem that separation did not function effectively and communication was lost.
例えば、非特許文献4に記載の例では、偏波変動への追随能力は最大50kHzであり、MHzオーダで偏波が変動する場合には、適切に偏波分離することができず、通信不能に陥るという問題があった。
For example, in the example described in Non-Patent Document 4, the ability to follow polarization fluctuation is 50 kHz at the maximum, and when the polarization fluctuates in the order of MHz, the polarization cannot be appropriately separated and communication is impossible. There was a problem of falling into.
この発明は、かかる問題点を解決するためになされたものであり、偏波が高速に変動する場合であっても、伝送品質の劣化を防止できる、偏波推定器、偏波分離器、光受信器、偏波推定方法、および、偏波分離方法を得ることを目的とする。
The present invention has been made to solve such a problem, and can prevent deterioration in transmission quality even when the polarization fluctuates at high speed. The polarization estimator, the polarization separator, and the optical It is an object to obtain a receiver, a polarization estimation method, and a polarization separation method.
この発明は、2つの偏波信号が入力され、それらの偏波信号を4系統に分離し、各系統に含まれる2偏波信号に対し各系統ごとに異なる偏波回転を与える偏波回転部と、前記4系統の各系統ごとに、前記偏波回転部により偏波回転を与えられた2偏波信号が入力され、2偏波信号間の差動検波を行う偏波間差動検波部と、前記4系統の各系統ごとに、前記偏波間差動検波部の出力から実部のみを取得する実部取得部と、前記4系統のうち2系統毎を一組として形成した2つの組の各組において、前記組に含まれる2系統の前記実部同士の乗算を行う複素乗算部と、前記各組において、前記組に含まれる2系統の前記実部の二乗和を計算する二乗和演算部と、前記各組において、前記複素乗算部の演算結果を、前記二乗和演算部の演算結果で除算する除算部と、前記各組において、前記除算部の演算結果を蓄えて平均化する平均化部と、前記2つの組の前記平均化部の演算結果に基づいて、前記偏波回転部に入力された前記2つの偏波信号の偏波回転角の推定値を計算する偏波回転角演算部とを備えた偏波推定器である。
The present invention provides a polarization rotation unit that receives two polarization signals, separates the polarization signals into four systems, and applies different polarization rotations for each system to the two polarization signals included in each system And an inter-polarization differential detection unit that performs differential detection between the two polarization signals by inputting a two-polarization signal that has been polarized by the polarization rotation unit for each of the four systems. , For each of the four systems, a real part acquisition unit that acquires only a real part from the output of the inter-polarization differential detection unit, and two sets of two sets formed as two sets of the four systems In each set, a complex multiplication unit that performs multiplication between the two real parts included in the set, and a square sum operation that calculates a square sum of the two real parts included in the set in each set And the calculation result of the complex multiplication unit in each set is the calculation result of the square sum calculation unit. A division unit for calculating, an averaging unit for storing and averaging the calculation results of the division unit in each set, and the polarization rotation unit based on the calculation results of the averaging units of the two sets The polarization estimator includes a polarization rotation angle calculation unit that calculates an estimated value of the polarization rotation angle of the two input polarization signals.
この発明は、2つの偏波信号が入力され、それらの偏波信号を4系統に分離し、各系統に含まれる2偏波信号に対し各系統ごとに異なる偏波回転を与える偏波回転部と、前記4系統の各系統ごとに、前記偏波回転部により偏波回転を与えられた2偏波信号が入力され、2偏波信号間の差動検波を行う偏波間差動検波部と、前記4系統の各系統ごとに、前記偏波間差動検波部の出力から実部のみを取得する実部取得部と、前記4系統のうち2系統毎を一組として形成した2つの組の各組において、前記組に含まれる2系統の前記実部同士の乗算を行う複素乗算部と、前記各組において、前記組に含まれる2系統の前記実部の二乗和を計算する二乗和演算部と、前記各組において、前記複素乗算部の演算結果を、前記二乗和演算部の演算結果で除算する除算部と、前記各組において、前記除算部の演算結果を蓄えて平均化する平均化部と、前記2つの組の前記平均化部の演算結果に基づいて、前記偏波回転部に入力された前記2つの偏波信号の偏波回転角の推定値を計算する偏波回転角演算部とを備えた偏波推定器であるので、伝送路における偏波回転角推定を、フィードフォワード処理のみで、かつ、ブラインド処理で行うことができ、従来よりも格段に高速に偏波分離を行うことができ、偏波が高速に変動する場合であっても、伝送品質を維持させることができる。
The present invention provides a polarization rotation unit that receives two polarization signals, separates the polarization signals into four systems, and applies different polarization rotations for each system to the two polarization signals included in each system And an inter-polarization differential detection unit that performs differential detection between the two polarization signals by inputting a two-polarization signal that has been polarized by the polarization rotation unit for each of the four systems. , For each of the four systems, a real part acquisition unit that acquires only a real part from the output of the inter-polarization differential detection unit, and two sets of two sets formed as two sets of the four systems In each set, a complex multiplication unit that performs multiplication between the two real parts included in the set, and a square sum operation that calculates a square sum of the two real parts included in the set in each set And the calculation result of the complex multiplication unit in each set is the calculation result of the square sum calculation unit. A division unit for calculating, an averaging unit for storing and averaging the calculation results of the division unit in each set, and the polarization rotation unit based on the calculation results of the averaging units of the two sets Since the polarization estimator includes a polarization rotation angle calculation unit that calculates an estimation value of the polarization rotation angle of the two input polarization signals, the polarization rotation angle estimation in the transmission path is performed in a feedforward manner. Can be performed only by processing and blind processing, polarization separation can be performed much faster than before, and transmission quality can be maintained even when the polarization fluctuates at high speed. it can.
以下に、この発明にかかる偏波推定器、偏波分離器、および、光受信器の実施の形態を図面に基づいて詳細に説明する。なお、以下に説明する実施の形態は、本発明を具体化する際の一形態であって、本発明をその範囲内に限定するためのものではない。
Embodiments of a polarization estimator, a polarization separator, and an optical receiver according to the present invention will be described below in detail with reference to the drawings. In addition, embodiment described below is one form at the time of actualizing this invention, Comprising: It is not for limiting this invention in the range.
実施の形態1.
図2は、この発明の実施の形態1に係る偏波推定器301の構成を示すブロック図である。本実施の形態1の偏波推定器301は、後述する偏波分離器や光受信器の中に搭載されて使用される。本実施の形態1の偏波推定器301は、2つの偏波信号(Erx,Ery)が入力され、それらに基づいて偏波推定を行い、偏波回転角の推定値θestを出力するものである。図2において、41,43は共にX偏波受信光信号(Erx)であり、42,44は共にY偏波受信光信号(Ery)である。なお、これらの偏波信号(Erx,Ery)はすべてデジタル信号である。Embodiment 1 FIG.
FIG. 2 is a block diagram showing the configuration of thepolarization estimator 301 according to Embodiment 1 of the present invention. The polarization estimator 301 according to the first embodiment is mounted and used in a polarization separator or an optical receiver described later. The polarization estimator 301 of the first embodiment receives two polarization signals (Erx, Ery), performs polarization estimation based on them, and outputs an estimated value θest of the polarization rotation angle. is there. In FIG. 2, 41 and 43 are both X polarization received optical signals (Erx), and 42 and 44 are both Y polarization received optical signals (Ery). These polarization signals (Erx, Ery) are all digital signals.
図2は、この発明の実施の形態1に係る偏波推定器301の構成を示すブロック図である。本実施の形態1の偏波推定器301は、後述する偏波分離器や光受信器の中に搭載されて使用される。本実施の形態1の偏波推定器301は、2つの偏波信号(Erx,Ery)が入力され、それらに基づいて偏波推定を行い、偏波回転角の推定値θestを出力するものである。図2において、41,43は共にX偏波受信光信号(Erx)であり、42,44は共にY偏波受信光信号(Ery)である。なお、これらの偏波信号(Erx,Ery)はすべてデジタル信号である。
FIG. 2 is a block diagram showing the configuration of the
図2に示すように、本実施の形態1の偏波推定器301は、入力された2偏波信号(Erx,Ery)を4系統に分離してそれぞれに固有の偏波回転(0,-π/4,+π/8,-π/8)を与える偏波回転部51~54と、同じ偏波回転を与えた2偏波間で差動検波を行う偏波間差動検波部(複素共役演算部61~64及び複素乗算部71~74)と、偏波間差動検波結果のうち実部のみを取得する実部取得部81~84と、前記4系統のうち2系統毎を一組として二つの組を形成し、前記実部間の乗算を行う複素乗算部101,102と、複素乗算部101,102に所定の係数を入力する係数入力部91,92(ここでは、係数=2とする。)と、前記一組内で前記実部の二乗和を計算する二乗和演算部(二乗演算部111~114及び加算部121,122)と、前記複素乗算結果を前記二乗和演算結果で除算する除算部131,132と、前記除算結果を蓄えて平均化する平均化部141,142と、二組の前記平均化結果に基づいて偏波回転角を計算する偏波回転角演算部151とで構成される。
As shown in FIG. 2, the polarization estimator 301 according to the first embodiment divides the input two-polarization signals (Erx, Ery) into four systems and has their own polarization rotations (0, − π / 4, + π / 8, -π / 8), and a polarization differential detector (complex conjugate calculation) that performs differential detection between two polarizations that have the same polarization rotation. Sections 61 to 64 and complex multiplication sections 71 to 74), real part acquisition sections 81 to 84 for acquiring only the real part of the differential detection results between the polarizations, and two sets of the four systems as two sets. Complex multipliers 101 and 102 that form two sets and perform multiplication between the real parts, and coefficient input units 91 and 92 that input predetermined coefficients to the complex multipliers 101 and 102 (here, coefficient = 2) )), And a sum of squares calculation unit (square calculation units 111 to 114 and Adders 121 and 122), division units 131 and 132 that divide the complex multiplication result by the square sum operation result, averaging units 141 and 142 that store and average the division result, and two sets of the averages And a polarization rotation angle calculation unit 151 that calculates a polarization rotation angle based on the conversion result.
以下、本実施の形態1にかかる偏波推定器301の動作を説明する。以下、128Gbit/s偏波多重QPSK光信号を生成する例について説明する。128Gbit/s偏波多重QPSK光信号は1シンボル当たり4ビットの通信が可能であり、シンボル繰り返し周波数fsは32GHzである。また、シンボル繰り返し周期はTs(=1/fs)とする。なお、本実施の形態1は、他の伝送レート、各種の変調方式に適用可能であり、この例に限定されるものではない。
Hereinafter, the operation of the polarization estimator 301 according to the first embodiment will be described. Hereinafter, an example of generating a 128 Gbit / s polarization multiplexed QPSK optical signal will be described. The 128 Gbit / s polarization multiplexed QPSK optical signal can communicate 4 bits per symbol, and the symbol repetition frequency fs is 32 GHz. The symbol repetition period is Ts (= 1 / fs). The first embodiment can be applied to other transmission rates and various modulation schemes, and is not limited to this example.
入力する2偏波信号(Erx,Ery)は、偏波多重された光信号を同期検波(イントラダイン検波)することで、略線形な光・電気変換が行われた電気信号である。
The input two-polarized signals (Erx, Ery) are electric signals that have undergone substantially linear optical / electrical conversion by synchronous detection (intradyne detection) of polarization multiplexed optical signals.
偏波回転部51~54は、それぞれ入力する2偏波信号(Erx,Ery)に対して、2×2複素行列(Jones行列)による偏波回転を与え、偏波回転を与えた後の2偏波信号を出力する。
The polarization rotation units 51 to 54 apply polarization rotation based on a 2 × 2 complex matrix (Jones matrix) to the input two polarization signals (Erx, Ery), respectively, and 2 after applying polarization rotation. Outputs a polarization signal.
例えば、偏波回転部51における偏波回転角は0、偏波回転部52における偏波回転角は-π/4、偏波回転部53における偏波回転角は+π/8、偏波回転部54における偏波回転角は-π/8とすればよい。ただし、これらの組合せは一例であり、各偏波回転部51~54の偏波回転角は任意の角度に適宜設定してよく、上記の角度に限定されるものではない。
For example, the polarization rotation angle in the polarization rotation unit 51 is 0, the polarization rotation angle in the polarization rotation unit 52 is −π / 4, the polarization rotation angle in the polarization rotation unit 53 is + π / 8, and the polarization rotation unit The polarization rotation angle at 54 may be −π / 8. However, these combinations are merely examples, and the polarization rotation angles of the polarization rotation units 51 to 54 may be appropriately set to arbitrary angles, and are not limited to the above angles.
偏波回転部51は、偏波回転角0で、偏波信号41,42(Erx,Ery)のそれぞれに偏波回転を与え、2偏波信号(ErIxp,ErIyp)を出力する。
偏波回転部52は、偏波回転角-π/4で、偏波信号41,42(Erx,Ery)のそれぞれに偏波回転を与え、2偏波信号(ErIxn,ErIyn)を出力する。
偏波回転部53は、偏波回転角+π/8で、偏波信号43,44(Erx,Ery)のそれぞれに偏波回転を与え、2偏波信号(ErRxp,ErRyp)を出力する。
偏波回転部54は、偏波回転角-π/8で、偏波信号43,44(Erx,Ery)のそれぞれに偏波回転を与え、2偏波信号(ErRxn,ErRyn)を出力する。 Thepolarization rotation unit 51 applies polarization rotation to each of the polarization signals 41 and 42 (Erx, Ery) at a polarization rotation angle of 0, and outputs two polarization signals (ErIxp, ErIyp).
Thepolarization rotation unit 52 applies polarization rotation to each of the polarization signals 41 and 42 (Erx, Ery) at a polarization rotation angle of −π / 4, and outputs two polarization signals (ErIxn, ErIyn).
Thepolarization rotation unit 53 applies polarization rotation to each of the polarization signals 43 and 44 (Erx, Ery) at a polarization rotation angle + π / 8, and outputs a two-polarization signal (ErRxp, ErRyp).
Thepolarization rotation unit 54 applies polarization rotation to each of the polarization signals 43 and 44 (Erx, Ery) at a polarization rotation angle of −π / 8, and outputs two polarization signals (ErRxn, ErRyn).
偏波回転部52は、偏波回転角-π/4で、偏波信号41,42(Erx,Ery)のそれぞれに偏波回転を与え、2偏波信号(ErIxn,ErIyn)を出力する。
偏波回転部53は、偏波回転角+π/8で、偏波信号43,44(Erx,Ery)のそれぞれに偏波回転を与え、2偏波信号(ErRxp,ErRyp)を出力する。
偏波回転部54は、偏波回転角-π/8で、偏波信号43,44(Erx,Ery)のそれぞれに偏波回転を与え、2偏波信号(ErRxn,ErRyn)を出力する。 The
The
The
The
複素共役演算部61は、ErIypを入力とし、その複素共役ErIyp*を複素乗算部71に出力する。
複素共役演算部62は、ErIynを入力とし、その複素共役ErIyn*を複素乗算部72に出力する。
複素共役演算部63は、ErRypを入力とし、その複素共役ErRyp*を複素乗算部73に出力する。
複素共役演算部64は、ErRynを入力とし、その複素共役ErRyn*を複素乗算部74に出力する。 The complexconjugate calculation unit 61 receives ErIyp as an input and outputs the complex conjugate ErIyp * to the complex multiplication unit 71.
The complexconjugate calculation unit 62 receives ErIyn as an input and outputs the complex conjugate ErIyn * to the complex multiplication unit 72.
The complexconjugate calculation unit 63 receives ErRyp as an input and outputs the complex conjugate ErRyp * to the complex multiplication unit 73.
The complexconjugate calculation unit 64 receives ErRyn as an input and outputs the complex conjugate ErRyn * to the complex multiplication unit 74.
複素共役演算部62は、ErIynを入力とし、その複素共役ErIyn*を複素乗算部72に出力する。
複素共役演算部63は、ErRypを入力とし、その複素共役ErRyp*を複素乗算部73に出力する。
複素共役演算部64は、ErRynを入力とし、その複素共役ErRyn*を複素乗算部74に出力する。 The complex
The complex
The complex
The complex
複素乗算部71は、ErIxpとErIyp*との複素乗算を行い、その結果得られた複素信号を実部取得部81に出力する。
複素乗算部72は、ErIxnとErIyn*との複素乗算を行い、その結果得られた複素信号を実部取得部82に出力する。
複素乗算部73は、ErRxpとErRyp*との複素乗算を行い、その結果得られた複素信号を実部取得部83に出力する。
複素乗算部74は、ErRxnとErRyn*との複素乗算を行い、その結果得られた複素信号を実部取得部84に出力する。 Thecomplex multiplication unit 71 performs complex multiplication of ErIxp and ErIyp *, and outputs the resulting complex signal to the real part acquisition unit 81.
Thecomplex multiplier 72 performs a complex multiplication of ErIxn and ErIyn *, and outputs the resulting complex signal to the real part acquisition unit 82.
Thecomplex multiplier 73 performs a complex multiplication of ErRxp and ErRyp * and outputs the resulting complex signal to the real part acquisition unit 83.
Thecomplex multiplier 74 performs complex multiplication of ErRxn and ErRyn * and outputs the resulting complex signal to the real part acquisition unit 84.
複素乗算部72は、ErIxnとErIyn*との複素乗算を行い、その結果得られた複素信号を実部取得部82に出力する。
複素乗算部73は、ErRxpとErRyp*との複素乗算を行い、その結果得られた複素信号を実部取得部83に出力する。
複素乗算部74は、ErRxnとErRyn*との複素乗算を行い、その結果得られた複素信号を実部取得部84に出力する。 The
The
The
The
実部取得部81は、複素乗算部71から出力された前記複素信号の実部を取得して、実部信号AIを乗算部101及び二乗演算部111に出力する。
実部取得部82は、複素乗算部72から出力された前記複素信号の実部を取得して、実部信号BIを乗算部101及び二乗演算部112に出力する。
実部取得部83は、複素乗算部73から出力された前記複素信号の実部を取得して、実部信号ARを乗算部102及び二乗演算部113に出力する。
実部取得部84は、複素乗算部74から出力された前記複素信号の実部を取得して、実部信号BRを乗算部102及び二乗演算部114に出力する。 The realpart acquisition unit 81 acquires the real part of the complex signal output from the complex multiplication unit 71 and outputs the real part signal A I to the multiplication unit 101 and the square calculation unit 111.
The realpart acquisition unit 82 acquires the real part of the complex signal output from the complex multiplier 72 and outputs the real part signal BI to the multiplier 101 and the square calculator 112.
The realpart acquisition unit 83 acquires the real part of the complex signal output from the complex multiplication unit 73 and outputs the real part signal A R to the multiplication unit 102 and the square calculation unit 113.
The realpart acquisition unit 84 acquires the real part of the complex signal output from the complex multiplication unit 74 and outputs the real part signal BR to the multiplication unit 102 and the square calculation unit 114.
実部取得部82は、複素乗算部72から出力された前記複素信号の実部を取得して、実部信号BIを乗算部101及び二乗演算部112に出力する。
実部取得部83は、複素乗算部73から出力された前記複素信号の実部を取得して、実部信号ARを乗算部102及び二乗演算部113に出力する。
実部取得部84は、複素乗算部74から出力された前記複素信号の実部を取得して、実部信号BRを乗算部102及び二乗演算部114に出力する。 The real
The real
The real
The real
乗算部101は、実部取得部81から入力される実部信号AIと、実部取得部82から入力される実部信号BIと、係数入力部91から入力される係数(係数=2)との積をとり、その積(2AIBI)を除算部131に出力する。
乗算部102は、実部取得部83から入力される実部信号ARと、実部取得部84から入力される実部信号BRと、係数入力部92から入力される係数(係数=2)との積をとり、その積(2ARBR)を除算部132に出力する。 Themultiplication unit 101 includes a real part signal A I input from the real part acquisition unit 81, a real part signal B I input from the real part acquisition unit 82, and a coefficient (coefficient = 2) input from the coefficient input unit 91. ) And the product (2A I B I ) is output to the division unit 131.
Themultiplication unit 102 receives the real part signal A R input from the real part acquisition unit 83, the real part signal B R input from the real part acquisition unit 84, and the coefficient input from the coefficient input unit 92 (coefficient = 2). ) And the product (2A R B R ) is output to the division unit 132.
乗算部102は、実部取得部83から入力される実部信号ARと、実部取得部84から入力される実部信号BRと、係数入力部92から入力される係数(係数=2)との積をとり、その積(2ARBR)を除算部132に出力する。 The
The
二乗演算部111は、実部取得部81から入力される実部信号AIを二乗し、その二乗結果(AI
2)を加算部121に出力する。
二乗演算部112は、実部取得部82から入力される実部信号BIを二乗し、その二乗結果(BI 2)を加算部121に出力する。
二乗演算部113は、実部取得部83から入力される実部信号ARを二乗し、その二乗結果(AR 2)を加算部122に出力する。
二乗演算部114は、実部取得部84から入力される実部信号BRを二乗し、その二乗結果(BR 2)を加算部122に出力する。 Thesquare calculation unit 111 squares the real part signal A I input from the real part acquisition unit 81, and outputs the square result (A I 2 ) to the addition unit 121.
Thesquare calculation unit 112 squares the real part signal B I input from the real part acquisition unit 82, and outputs the square result (B I 2 ) to the addition unit 121.
Thesquare calculation unit 113 squares the real part signal A R input from the real part acquisition unit 83 and outputs the square result (A R 2 ) to the addition unit 122.
Square calculation unit 114 squares the real part signal B R input from the real acquisition unit 84, and outputs the squared result (B R 2) to the adder 122.
二乗演算部112は、実部取得部82から入力される実部信号BIを二乗し、その二乗結果(BI 2)を加算部121に出力する。
二乗演算部113は、実部取得部83から入力される実部信号ARを二乗し、その二乗結果(AR 2)を加算部122に出力する。
二乗演算部114は、実部取得部84から入力される実部信号BRを二乗し、その二乗結果(BR 2)を加算部122に出力する。 The
The
The
加算部121は、二乗演算部111から入力される二乗結果AI
2と、二乗演算部112から入力される二乗結果BI
2とを加算し、加算結果(AI
2+BI
2)を除算部131に出力する。
加算部122は、二乗演算部113から入力される二乗結果AR 2と、二乗演算部114から入力される二乗結果BR 2とを加算し、加算結果(AR 2+BR 2)を除算部132に出力する。 The addingunit 121 adds the square result A I 2 input from the square calculation unit 111 and the square result B I 2 input from the square calculation unit 112, and divides the addition result (A I 2 + B I 2 ). To the unit 131.
The addingunit 122 adds the square result A R 2 input from the square calculation unit 113 and the square result B R 2 input from the square calculation unit 114, and divides the addition result (A R 2 + B R 2 ). Output to the unit 132.
加算部122は、二乗演算部113から入力される二乗結果AR 2と、二乗演算部114から入力される二乗結果BR 2とを加算し、加算結果(AR 2+BR 2)を除算部132に出力する。 The adding
The adding
除算部131は、乗算部101から入力される乗算結果2AIBIを、加算部121から入力される加算結果AI
2+BI
2で除算し、その除算結果CIを平均化部141に出力する。
除算部132は、乗算部102から入力される乗算結果2ARBRを、加算部122から入力される加算結果AR 2+BR 2で除算し、その除算結果CRを平均化部142に出力する。 Thedivision unit 131 divides the multiplication result 2A I B I input from the multiplication unit 101 by the addition result A I 2 + B I 2 input from the addition unit 121, and the division result C I to the averaging unit 141. Output.
Divider 132, a multiplication result 2A R B R input from the multiplication unit 102, divided by the sum A R 2 + B R 2 input from the addition section 122, the averaging unit 142 and the division result C R Output.
除算部132は、乗算部102から入力される乗算結果2ARBRを、加算部122から入力される加算結果AR 2+BR 2で除算し、その除算結果CRを平均化部142に出力する。 The
平均化部141は、除算部131から入力される除算結果CIを平均化し、平均化結果CI,avgを偏波回転角演算部151に出力する。例えば、20サンプル分の移動平均をとることが想定されるが、それに限定されることなく、他のどのような平均化処理を行ってもよい。また、平均化せずに、そのままCIを出力してもよい。
平均化部142は、除算部132から入力される除算結果CRを平均化し、平均化結果CR,avgを偏波回転角演算部151に出力する。例えば、20サンプル分の移動平均をとることが想定されるが、それに限定されることなく、他のどのような平均化処理を行ってもよい。また、平均化せずに、そのままCRを出力してもよい。
基本的には平均化処理を行うことで雑音成分の抑圧が可能になるが、平均化時間を長くするほど伝送路の変動への追随能力が低下するので、伝送路に応じた最適な平均化処理を選択することが最も望ましい。また、簡単には、平均化しなくてもよい。 The averagingunit 141 averages the division result C I input from the division unit 131 and outputs the average result C I, avg to the polarization rotation angle calculation unit 151. For example, although it is assumed that a moving average for 20 samples is taken, the present invention is not limited to this, and any other averaging process may be performed. Further, without averaging, it may be output as it is C I.
The averagingunit 142 averages the division result C R input from the division unit 132 and outputs the averaged result C R, avg to the polarization rotation angle calculation unit 151. For example, although it is assumed that a moving average for 20 samples is taken, the present invention is not limited to this, and any other averaging process may be performed. Further, without averaging, it may be output as it is C R.
Basically, it is possible to suppress noise components by performing averaging processing, but the longer the averaging time, the lower the ability to follow the fluctuation of the transmission line, so optimal averaging according to the transmission line It is most desirable to select a treatment. Further, simply, it is not necessary to average.
平均化部142は、除算部132から入力される除算結果CRを平均化し、平均化結果CR,avgを偏波回転角演算部151に出力する。例えば、20サンプル分の移動平均をとることが想定されるが、それに限定されることなく、他のどのような平均化処理を行ってもよい。また、平均化せずに、そのままCRを出力してもよい。
基本的には平均化処理を行うことで雑音成分の抑圧が可能になるが、平均化時間を長くするほど伝送路の変動への追随能力が低下するので、伝送路に応じた最適な平均化処理を選択することが最も望ましい。また、簡単には、平均化しなくてもよい。 The averaging
The averaging
Basically, it is possible to suppress noise components by performing averaging processing, but the longer the averaging time, the lower the ability to follow the fluctuation of the transmission line, so optimal averaging according to the transmission line It is most desirable to select a treatment. Further, simply, it is not necessary to average.
偏波回転角演算部151は、平均化部141から入力されるCI,avgと平均化部142から入力されるCR,avgとに基づき、2偏波信号(Erx,Ery)の偏波回転角の推定値θestを下記の式(1)により求め、外部に出力する。Arg{・}は複素数の偏角を求める関数である。
The polarization rotation angle calculation unit 151 is based on C I, avg input from the averaging unit 141 and C R, avg input from the averaging unit 142 , and polarization of the two-polarization signal (Erx, Ery). An estimated value θest of the rotation angle is obtained by the following equation (1) and output to the outside. Arg {·} is a function for obtaining the argument of a complex number.
θest=1/4×Arg{(CR,avg)+j(CI,avg)} (1)
θest = 1/4 × Arg {(CR , avg ) + j (CI , avg )} (1)
以上のように、本実施の形態1に係る偏波推定器301により、入力された偏波信号(Erx,Ery)の偏波回転角を、フィード・フォワード処理のみで、かつ、(パイロットトーン等を不要とする)ブラインド処理により、推定することが可能である。
As described above, the polarization rotation angle of the input polarization signal (Erx, Ery) by the polarization estimator 301 according to the first embodiment can be obtained only by feed-forward processing and (pilot tone etc. Can be estimated by blind processing.
以下、偏波回転角を推定することで偏波多重信号の分離が可能であることを説明する。
Hereinafter, it will be explained that the polarization multiplexed signal can be separated by estimating the polarization rotation angle.
光伝送路において、偏波状態はさまざまに変化する。無変調光をとりあげて考えると、一般に偏波状態は楕円偏波で表され、その特殊な場合として直線偏波や円偏波をとりうる。これらの偏波状態変化は、直交偏波間での波長オーダでの遅延差により生じるものである。
In the optical transmission line, the polarization state changes variously. Considering unmodulated light, the polarization state is generally represented by elliptical polarization, and as a special case, linear polarization or circular polarization can be taken. These polarization state changes are caused by a delay difference in the wavelength order between orthogonal polarizations.
偏波多重信号では直交する2偏波に独立な信号を重畳する。このとき、送信器においては、例えば、2系統の直線偏波の無変調信号を、それぞれ独立に変調し、偏波関係を直交化した上で多重化する。
In polarization multiplexed signals, independent signals are superimposed on two orthogonal polarizations. At this time, in the transmitter, for example, two systems of linearly polarized unmodulated signals are independently modulated, and the polarization relationship is orthogonalized and multiplexed.
偏波多重化された信号は、線形な解析においては、受信端まで独立な2つの直線偏波信号として扱っても特に問題はない。
The polarization multiplexed signal can be handled as two linearly polarized signals that are independent up to the receiving end in the linear analysis.
受信器においては光信号を電気信号に変換する。このとき、光の波長オーダで変化する偏波に電気デバイスの応答は追随しないので、例えば、円偏波の光信号を受信する場合には、偏波ダイバーシチ受信器のX偏波とY偏波との双方において、単純に半分ずつの電力で受信されて見えることになる。より一般化した楕円偏波の場合においても、同様に、偏波ダイバーシチ受信器のX偏波とY偏波との双方において、ある割合ずつの電力で受信されて見えるのみである。なお、偏波ダイバーシチ受信器については、例えば、Optical Internetworking Forum, “100G Ultra Long Haul DWDM Framework Document”, (http://www.oiforum.com/ public/documents/OIF-FD-100G-DWDM-01.0.pdf), June 2009 に記載の受信器を参照されたい。
In the receiver, an optical signal is converted into an electric signal. At this time, since the response of the electrical device does not follow the polarization that changes in the wavelength order of the light, for example, when receiving a circularly polarized optical signal, the X polarization and Y polarization of the polarization diversity receiver In both cases, it is simply received with half the power. Even in the case of the more generalized elliptically polarized wave, similarly, only the X-polarized wave and Y-polarized wave of the polarization diversity receiver appear to be received with a certain proportion of power. As for the polarization diversity receiver, for example, Optical Internetworking Forum, “100G Ultra Long Haul DWDM Framework Document”, (http://www.oiforum.com/ public / documents / OIF-FD-100G-DWDM-01.0 .pdf), refer to the receiver described in June 2009.
これらは直線偏波信号を受信する場合で一般化される。直線偏波信号の偏波角を変えて受信すると、偏波ダイバーシチ受信器のX偏波とY偏波とにおける、電力比が変化するためである。したがって、伝送路での偏波状態変動は、直線偏波の偏波回転により定式化してよい。
These are generalized when receiving linearly polarized signals. This is because when the polarization angle of the linearly polarized signal is changed and received, the power ratio between the X polarization and the Y polarization of the polarization diversity receiver changes. Therefore, the polarization state fluctuation in the transmission line may be formulated by polarization rotation of linearly polarized waves.
図1は、光伝送路における偏波状態変動をJones行列による偏波回転で記述したものである。図1において、11はX偏波送信光信号(Etx)、12はY偏波送信光信号(Ety)、31はX偏波受信光信号(Erx)であり、32はY偏波受信光信号(Ery)、21は光伝送路である。送信光信号11,12および受信光信号31,32は、ともに、直交する2つの直線偏波がデータ変調されていると簡単化して考えればよく、光伝送路21において、直交関係を保ちながら偏波が回転している、と考えればよい。
FIG. 1 shows polarization state fluctuations in an optical transmission line described by polarization rotation using a Jones matrix. In FIG. 1, 11 is an X polarization transmission optical signal (Etx), 12 is a Y polarization transmission optical signal (Ety), 31 is an X polarization reception optical signal (Erx), and 32 is a Y polarization reception optical signal. (Ery) and 21 are optical transmission lines. It is only necessary to simplify the transmission optical signals 11 and 12 and the reception optical signals 31 and 32 so that two orthogonal linearly polarized waves are data-modulated. You can think of the waves rotating.
以上のことから、光伝送路における偏波回転角を推定することで、偏波ダイバーシチ受信器のX偏波とY偏波とにおける、信号の電力比がわかり、元の直線偏波状態を復元することが可能になることがわかる。このことは、送信側で偏波多重されているか否かには依存しない。
From the above, by estimating the polarization rotation angle in the optical transmission line, the signal power ratio between the X polarization and Y polarization of the polarization diversity receiver can be found, and the original linear polarization state is restored. It turns out that it will be possible. This does not depend on whether the transmission side is polarization multiplexed.
図3は、本実施の形態1に係る偏波推定器301による偏波推定結果の、入力偏波依存性を示す図である。図3において、横軸は入力偏波回転角であり、縦軸は偏波回転角の推定値である。これは、同じ同期検波(イントラダイン検波)の受信器で必要になる、搬送波位相推定の処理を行うのに適した方法であるViterbi&Viterbiアルゴリズムにより、QPSK信号の位相推定を行った場合と同様の特性であり、QPSK信号の位相推定と同じレベルで偏波状態推定が可能であることを示すものである。なお、Viterbi&Viterbiアルゴリズムについては、例えば、Andrew J. Viterbi and Audrey M. Viterbi, “Nonlinear Estimation of PSK-Modulated Carrier Phase with Application to Burst Digital Transmission”, IEEE Transactions on Information Theory, Vol.IT-29, No.4, pp.543-551, 1983 を参照されたい。
FIG. 3 is a diagram showing the input polarization dependence of the polarization estimation result by the polarization estimator 301 according to the first embodiment. In FIG. 3, the horizontal axis represents the input polarization rotation angle, and the vertical axis represents the estimated value of the polarization rotation angle. This is the same characteristic as when the phase estimation of the QPSK signal is performed by the Viterbi & Viterbi algorithm, which is a method suitable for performing the carrier phase estimation process, which is necessary for the receiver of the same synchronous detection (intradyne detection). This indicates that the polarization state can be estimated at the same level as the phase estimation of the QPSK signal. As for the Viterbi & Viterbi algorithm, for example, Andrew J. Viterbi and Audrey M. Viterbi, “Nonlinear Estimation of PSK-Modulated Carrier Phase with Application to Burst Digital Transmission”, IEEE Transactions on Information Theory,. Please refer to 4, pp.543-551, 1983.
また、本実施の形態1に係る偏波推定器301によれば、偏波状態推定能力は、位相変調信号の位相数が変化しても変化しない。すなわち、8値PSKや16値PSKを採用しても、その偏波推定能力に何ら変化を与えない。ただし、振幅レベルを多値にする変調方式への適用には向かない。
Also, according to the polarization estimator 301 according to the first embodiment, the polarization state estimation capability does not change even if the number of phases of the phase modulation signal changes. That is, even if 8-value PSK or 16-value PSK is adopted, the polarization estimation capability is not changed at all. However, it is not suitable for application to a modulation method in which the amplitude level is multilevel.
以上のように、この発明の実施の形態1によれば、偏波推定器301が、2つの偏波信号が入力され、それらの偏波信号を4系統に分離し、各系統に含まれる2偏波信号に対し各系統ごとに異なる偏波回転を与える偏波回転部51~54と、前記4系統の各系統ごとに、前記偏波回転部により偏波回転を与えられた2偏波信号が入力され、2偏波信号間の差動検波を行う偏波間差動検波部(複素共役演算部61~64及び複素乗算部71~74)と、前記4系統の各系統ごとに、前記偏波間差動検波部の出力から実部のみを取得する実部取得部81~84と、前記4系統のうち2系統毎を一組として形成した2つの組の各組において、前記組に含まれる2系統の前記実部同士の乗算を行う複素乗算部101,102と、前記各組において、前記組に含まれる2系統の前記実部の二乗和を計算する二乗和演算部(二乗演算部111~114及び加算部121,122)と、前記各組において、前記複素乗算部の演算結果を、前記二乗和演算部の演算結果で除算する除算部131,132と、前記各組において、前記除算部の演算結果を蓄えて平均化する平均化部141,142と、前記2つの組の前記平均化部の演算結果に基づいて、前記偏波回転部に入力された前記2つの偏波信号の偏波回転角の推定値を計算する偏波回転角演算部151とを備えるようにしたので、伝送路における偏波回転角推定をフィードフォワード処理のみ、かつ、ブラインド処理で行うことができ、偏波が高速に変動する場合であっても、偏波推定能力が変化せず、伝送品質を維持させることができる。
As described above, according to the first embodiment of the present invention, the polarization estimator 301 receives two polarization signals, separates the polarization signals into four systems, and is included in each system. Polarization rotating units 51 to 54 that apply different polarization rotations to the polarization signal for each system, and two polarization signals that are polarized by the polarization rotation unit for each of the four systems. Are input for each of the four systems, and differential polarization detectors (complex conjugate arithmetic units 61 to 64 and complex multipliers 71 to 74) for differential detection between two polarization signals. Included in the set are the real part acquisition units 81 to 84 that acquire only the real part from the output of the inter-wave differential detection unit, and two sets formed by setting two systems out of the four systems as one set In the complex multipliers 101 and 102 that perform multiplication of the real parts of two systems, A sum of squares computing unit (square computing units 111 to 114 and adding units 121 and 122) for calculating the sum of squares of the two real parts included in the set, and the computation result of the complex multiplication unit in each set The division units 131 and 132 that divide by the calculation result of the square sum calculation unit, the averaging units 141 and 142 that store and average the calculation result of the division unit in each set, and the two sets of the above A polarization rotation angle calculation unit 151 that calculates an estimated value of the polarization rotation angle of the two polarization signals input to the polarization rotation unit based on the calculation result of the averaging unit; The polarization rotation angle estimation in the transmission path can be performed only by feedforward processing and blind processing, and even when the polarization fluctuates at high speed, the polarization estimation capability does not change and transmission quality is improved. Can be maintained.
実施の形態2.
図4は、この発明の本実施の形態2に係る偏波分離器及びその周辺回路の構成例を示すブロック図である。図4(a)において、204,206は、本実施の形態2に係る偏波分離器であり、他はその周辺回路である。従って、周辺回路は、前処理部201と、波長分散補償部202と、タイミング抽出部203と、適応等化部205と、搬送波周波数オフセット補償部207と、搬送波位相オフセット補償部208と、識別部209とで構成される。Embodiment 2. FIG.
FIG. 4 is a block diagram showing a configuration example of the polarization separator and its peripheral circuit according to the second embodiment of the present invention. In FIG. 4A, reference numerals 204 and 206 denote polarization separators according to the second embodiment, and the other is a peripheral circuit thereof. Accordingly, the peripheral circuit includes a preprocessing unit 201, a chromatic dispersion compensation unit 202, a timing extraction unit 203, an adaptive equalization unit 205, a carrier frequency offset compensation unit 207, a carrier phase offset compensation unit 208, and an identification unit. 209.
図4は、この発明の本実施の形態2に係る偏波分離器及びその周辺回路の構成例を示すブロック図である。図4(a)において、204,206は、本実施の形態2に係る偏波分離器であり、他はその周辺回路である。従って、周辺回路は、前処理部201と、波長分散補償部202と、タイミング抽出部203と、適応等化部205と、搬送波周波数オフセット補償部207と、搬送波位相オフセット補償部208と、識別部209とで構成される。
FIG. 4 is a block diagram showing a configuration example of the polarization separator and its peripheral circuit according to the second embodiment of the present invention. In FIG. 4A,
偏波分離器204は、図4(a)に示すように、タイミング抽出部203と適応等化部205との間に設けられている。また、偏波分離器206は、適応等化部205と搬送波周波数オフセット補償部207との間に設けられている。
As shown in FIG. 4A, the polarization separator 204 is provided between the timing extraction unit 203 and the adaptive equalization unit 205. The polarization separator 206 is provided between the adaptive equalization unit 205 and the carrier frequency offset compensation unit 207.
偏波分離器204と偏波分離器206とは、同一の構成を有している。図4(b)は、偏波分離器204,206の内部構成を示した図である。図4(b)に示すように、偏波分離器204,206は、上記の実施の形態1で説明した図2の偏波推定器301と、偏波回転部302とから構成されている。詳細については後述する。
The polarization separator 204 and the polarization separator 206 have the same configuration. FIG. 4B is a diagram showing the internal configuration of the polarization separators 204 and 206. As shown in FIG. 4B, the polarization separators 204 and 206 are composed of the polarization estimator 301 of FIG. 2 described in the first embodiment and the polarization rotation unit 302. Details will be described later.
以下、本実施の形態2に係る偏波分離器及びその周辺回路について説明する。
Hereinafter, the polarization separator and its peripheral circuit according to the second embodiment will be described.
前処理部201は、外部から、4レーンのデジタル信号が入力される。これらのデジタル信号は、X偏波信号およびY偏波信号のそれぞれをI-chとQ-chとで構成したものである。従って、以下では、4レーンのデジタル信号を、XI、XQ、YI、YQとして表すこととする。前処理部201は、4レーンのデジタル信号(XI、XQ、YI、YQ)の振幅ばらつきや遅延誤差等を補正し、補正後の4レーン信号を波長分散補償部202に出力する。
The pre-processing unit 201 receives a 4-lane digital signal from the outside. These digital signals are composed of an I-ch signal and a Q-ch signal, respectively, for the X polarization signal and the Y polarization signal. Therefore, in the following, the 4-lane digital signals are represented as XI, XQ, YI, and YQ. The preprocessing unit 201 corrects amplitude variations, delay errors, and the like of the 4-lane digital signals (XI, XQ, YI, YQ), and outputs the corrected 4-lane signal to the chromatic dispersion compensation unit 202.
波長分散補償部202は、前処理部201から入力される4レーン信号について、光伝送路で受けた波長分散をデジタル信号処理により補償し、補償後の4レーン信号をタイミング抽出部203に出力する。
The chromatic dispersion compensator 202 compensates the chromatic dispersion received on the optical transmission line by digital signal processing for the 4-lane signal input from the preprocessor 201 and outputs the compensated 4-lane signal to the timing extractor 203. .
タイミング抽出部203は、波長分散補償部202から入力される4レーン信号に基づき、シンボルタイミング情報を抽出し、識別点を再生する。前記識別点再生された4レーン信号を偏波分離器204に出力する。
The timing extraction unit 203 extracts symbol timing information based on the 4-lane signal input from the chromatic dispersion compensation unit 202, and reproduces the identification point. The discrimination lane regenerated 4-lane signal is output to the polarization separator 204.
偏波分離器204は、実施の形態1で説明した偏波推定器301と、それに接続された偏波回転部302とで構成される。
The polarization separator 204 includes the polarization estimator 301 described in the first embodiment and the polarization rotation unit 302 connected thereto.
偏波推定器301は、タイミング抽出部203から入力される4レーン信号に基づき偏波回転角を推定し、偏波回転角の推定値θestを偏波回転部302に出力する。偏波推定器301の動作については、実施の形態1で説明した通りであるため、ここでは、説明を省略する。但し、ここでは、XIおよびYIを、実施の形態1で示したErx41,Ery42と考え、同様に、XQ、YQを実施の形態1で示したErx43,Ery44と考える。
The polarization estimator 301 estimates the polarization rotation angle based on the 4-lane signal input from the timing extraction unit 203, and outputs the polarization rotation angle estimated value θest to the polarization rotation unit 302. Since the operation of the polarization estimator 301 is the same as that described in Embodiment 1, the description thereof is omitted here. However, here, XI and YI are considered to be Erx41 and Ery42 shown in the first embodiment, and similarly, XQ and YQ are considered to be Erx43 and Ery44 shown in the first embodiment.
偏波回転部302は、タイミング抽出部203から入力される4レーン信号(2偏波信号)に対して、偏波推定器301から入力される偏波回転角の推定値θestの逆回転を与え、偏波を逆回転させた4レーン信号(2偏波信号)を、適応等化部205に出力する。
The polarization rotation unit 302 gives a reverse rotation of the estimated value θest of the polarization rotation angle input from the polarization estimator 301 to the 4-lane signal (two polarization signals) input from the timing extraction unit 203. Then, a 4-lane signal (two-polarized signal) obtained by reversely rotating the polarization is output to the adaptive equalization unit 205.
適応等化部205は、偏波分離器204から入力される4レーン信号に対して、残留波長分散、偏波モード分散、帯域制限等による線形な波形歪みを適応的に等化し、等化後の4レーン信号を偏波分離器206に出力する。送信偏波は概ね偏波分離器204で復元されるが、偏波分離器204では単純に偏波回転を与えるのみしかできないため、多くの場合で波形等化を行う適応等化部205が必要である。ただし、状態のよい伝送路を通過した信号を受信した場合には、不要とすることができる。
The adaptive equalization unit 205 adaptively equalizes linear waveform distortion due to residual chromatic dispersion, polarization mode dispersion, bandwidth limitation, and the like with respect to the 4-lane signal input from the polarization separator 204, and after equalization Are output to the polarization separator 206. Although the transmission polarization is generally restored by the polarization separator 204, the polarization separator 204 can only give a polarization rotation, so an adaptive equalization unit 205 that performs waveform equalization is necessary in many cases. It is. However, it can be made unnecessary when a signal that has passed through a transmission path in good condition is received.
偏波分離器206は、構成および動作は、偏波分離部204と基本的に同一であり、図4(b)に示すように、偏波推定器301と偏波回転部302とを備えている。偏波分離器206は、偏波分離器204で分離できずに残った偏波干渉成分を除去するために用いる。偏波分離器206においては、まず、偏波推定器301は、適応等化部205から入力される4レーン信号に基づき偏波回転角を推定し、偏波回転角の推定値θestを偏波回転部302に出力する。次に、偏波回転部302は、タイミング抽出部203から入力される4レーン信号(2偏波信号)に対して、偏波推定器301から入力される偏波回転角の推定値θestの逆回転を与え、偏波を逆回転させた4レーン信号(2偏波信号)を搬送波周波数オフセット補償部207に出力する。
The polarization separator 206 is basically the same in configuration and operation as the polarization separation unit 204, and includes a polarization estimator 301 and a polarization rotation unit 302 as shown in FIG. Yes. The polarization separator 206 is used to remove the remaining polarization interference component that cannot be separated by the polarization separator 204. In the polarization separator 206, first, the polarization estimator 301 estimates the polarization rotation angle based on the 4-lane signal input from the adaptive equalization unit 205, and uses the polarization rotation angle estimated value θest as the polarization. Output to the rotating unit 302. Next, the polarization rotation unit 302 reverses the estimated value θest of the polarization rotation angle input from the polarization estimator 301 with respect to the 4-lane signal (two polarization signals) input from the timing extraction unit 203. A four-lane signal (two-polarized signal) that is rotated and reversely polarized is output to the carrier frequency offset compensator 207.
搬送波周波数オフセット補償部207は、偏波分離部206から入力される4レーン信号に対し、受信信号の搬送波と局部発振波との周波数差を補償し、周波数差補償後の4レーン信号を搬送波位相オフセット補償部208に出力する。
The carrier frequency offset compensation unit 207 compensates for the frequency difference between the carrier wave of the received signal and the local oscillation wave for the 4-lane signal input from the polarization separation unit 206, and converts the 4-lane signal after frequency difference compensation to the carrier phase. Output to the offset compensator 208.
搬送波位相オフセット補償部208は、搬送波周波数オフセット補償部207から入力される4レーン信号に対し、受信信号の搬送波と局部発振波との位相差を補償し、位相オフセット補償後の4レーン信号を識別部209に出力する。
The carrier phase offset compensation unit 208 compensates the phase difference between the carrier wave of the received signal and the local oscillation wave for the 4-lane signal input from the carrier frequency offset compensation unit 207, and identifies the 4-lane signal after the phase offset compensation Output to the unit 209.
識別部209は、搬送波位相オフセット補償部208から入力される4レーン信号に対し、硬判定を行い、場合によっては信頼性情報を付加して、4レーン信号を外部に出力する。
The identification unit 209 performs a hard decision on the 4-lane signal input from the carrier phase offset compensation unit 208, adds reliability information in some cases, and outputs the 4-lane signal to the outside.
図5に、この発明による偏波分離器204,206の偏波分離能力を確認するためのオフライン解析のためのブロック図を示す。図4と同一の構成については、同一符号を付して、ここでは説明を省略する。図5において、210は偏波変動を模擬する偏波回転エミュレータ部、211はサンプリング速度とシンボル繰り返し周波数との不一致を解消し、サンプリング速度をシンボル繰り返し周波数の略整数倍とするサンプリングレート変換部、212はQ値計算部である。偏波回転エミュレータ部210により、オフライン解析においてあえて偏波を回転させ、受信特性を確認した。
FIG. 5 shows a block diagram for off-line analysis for confirming the polarization separation capability of the polarization separators 204 and 206 according to the present invention. The same components as those in FIG. 4 are denoted by the same reference numerals, and description thereof is omitted here. In FIG. 5, 210 is a polarization rotation emulator unit that simulates polarization fluctuations, 211 is a sampling rate conversion unit that eliminates the mismatch between the sampling rate and the symbol repetition frequency, and sets the sampling rate to an approximately integer multiple of the symbol repetition frequency, Reference numeral 212 denotes a Q value calculation unit. The polarization rotation emulator unit 210 intentionally rotated the polarization in the off-line analysis, and confirmed the reception characteristics.
図6は、図5の構成により、この発明による偏波分離部の偏波分離能力を確認した結果である。フィードバックパスをもつ通常の偏波分離方式の例として、標準CMAを比較対象とした。43Gb/s偏波多重4値位相偏移変調信号に対して雑音付加し、光信号電力対雑音電力比10.9dB(雑音帯域0.1nm)の条件で、受信端信号処理で意図的に正弦波状の偏波回転:θ(t)=πsin(πft)を与えてQ値特性を確認した。図6では、以下の3つの場合を示している。
FIG. 6 is a result of confirming the polarization separation capability of the polarization separation unit according to the present invention by the configuration of FIG. As an example of a normal polarization separation method having a feedback path, a standard CMA was used as a comparison target. Noise is added to a 43 Gb / s polarization multiplexed quaternary phase shift keying signal, and sine is intentionally received at the receiving end signal processing under the condition of optical signal power to noise power ratio of 10.9 dB (noise band 0.1 nm). Waveform polarization rotation: θ (t) = πsin (πft) was given to confirm the Q value characteristic. FIG. 6 shows the following three cases.
1)この発明の偏波分離器を用いない場合(標準CMA)
2)この発明の偏波分離器を、適応等化部205の前段のみで用いた場合(すなわち、図5の偏波分離器204のみを用いた場合)
3)この発明の偏波分離器を、適応等化部205の前段および後段の双方で用いた場合(すなわち、図5の偏波分離器204,206を用いた場合) 1) When not using the polarization separator of the present invention (standard CMA)
2) When the polarization separator of the present invention is used only in the preceding stage of the adaptive equalization unit 205 (that is, when only thepolarization separator 204 of FIG. 5 is used)
3) When the polarization separator of the present invention is used in both the front stage and the rear stage of the adaptive equalization unit 205 (that is, when the polarization separators 204 and 206 in FIG. 5 are used).
2)この発明の偏波分離器を、適応等化部205の前段のみで用いた場合(すなわち、図5の偏波分離器204のみを用いた場合)
3)この発明の偏波分離器を、適応等化部205の前段および後段の双方で用いた場合(すなわち、図5の偏波分離器204,206を用いた場合) 1) When not using the polarization separator of the present invention (standard CMA)
2) When the polarization separator of the present invention is used only in the preceding stage of the adaptive equalization unit 205 (that is, when only the
3) When the polarization separator of the present invention is used in both the front stage and the rear stage of the adaptive equalization unit 205 (that is, when the
適応等化部205は、9タップ1/2シンボル間隔のバタフライ型有限インパルス応答フィルタにより構成され、標準CMAにより1024シンボルの一連の受信信号に対して最適化されるものとした。図6の横軸は、最大偏波変化速度fをシンボル繰り返し周波数Bs=10.7GHzで正規化した偏波回転速度である。図6の縦軸は、Q値特性を示す。0.5dBQ値劣化点で規定する場合、この発明の偏波分離器204,206により、本条件において偏波追随速度が2桁高速化されることがわかる。その高速化への寄与は適応等化部前段の偏波分離部によるものが支配的である。
The adaptive equalization unit 205 is configured by a butterfly finite impulse response filter with a 9-tap 1/2 symbol interval, and is optimized for a series of 1024 symbol received signals by standard CMA. The horizontal axis of FIG. 6 represents the polarization rotation speed obtained by normalizing the maximum polarization change speed f with the symbol repetition frequency Bs = 10.7 GHz. The vertical axis in FIG. 6 indicates the Q value characteristic. When it is specified by the 0.5 dBQ value deterioration point, it can be seen that the polarization followers 204 and 206 of the present invention increase the polarization tracking speed by two digits under this condition. The contribution to the increase in speed is dominated by the polarization separation unit in front of the adaptive equalization unit.
以上のように、本実施の形態2によれば、偏波分離器204,206が、実施の形態1で説明した偏波推定器301と、偏波推定器301において推定した偏波回転角に基づいて偏波に逆回転を与える偏波回転部302とを備えるようにしたので、伝送路における偏波回転角推定をフィードフォワード処理のみ、かつ、ブラインド処理で行うことができ、また、直交偏波多重信号の偏波分離を、従来よりも格段に高速化し、偏波が高速に変動する場合であっても、伝送品質を維持させることができる。
As described above, according to the second embodiment, the polarization separators 204 and 206 have the polarization estimator 301 described in the first embodiment and the polarization rotation angle estimated by the polarization estimator 301. And the polarization rotation unit 302 that reversely rotates the polarization based on the polarization rotation angle estimation in the transmission line can be performed only by the feedforward process and the blind process. It is possible to maintain the transmission quality even when the polarization separation of the wave-multiplexed signal is significantly faster than in the past and the polarization fluctuates at high speed.
なお、図4および図5は、適応等化部205の前段と後段とにそれぞれ偏波分離器204,206を設ける例について示している。しかしながら、偏波分離器204及び206のいずれか一方だけを備えるようにしてもよい。その場合においても、図6に示すように、十分な効果が得られる。
4 and 5 show examples in which the polarization separators 204 and 206 are provided in the front stage and the rear stage of the adaptive equalization unit 205, respectively. However, only one of the polarization separators 204 and 206 may be provided. Even in such a case, sufficient effects can be obtained as shown in FIG.
実施の形態3.
図7は、この発明の実施の形態3に係る光受信器の構成を示すブロック図である。本実施の形態3に係る光受信器は、局部発振光源401、光干渉部402、光電気変換部403、アナログ・デジタル変換部404、及び、デジタル信号処理部405を備える。Embodiment 3 FIG.
FIG. 7 is a block diagram showing a configuration of an optical receiver according toEmbodiment 3 of the present invention. The optical receiver according to the third embodiment includes a local oscillation light source 401, an optical interference unit 402, a photoelectric conversion unit 403, an analog / digital conversion unit 404, and a digital signal processing unit 405.
図7は、この発明の実施の形態3に係る光受信器の構成を示すブロック図である。本実施の形態3に係る光受信器は、局部発振光源401、光干渉部402、光電気変換部403、アナログ・デジタル変換部404、及び、デジタル信号処理部405を備える。
FIG. 7 is a block diagram showing a configuration of an optical receiver according to
局部発振光源401、光干渉部402、及び、光電気変換部403は、外部から、光信号(以下、受信光信号とする。)を受信し、受信処理を行う光受信部を構成している。
The local oscillation light source 401, the optical interference unit 402, and the photoelectric conversion unit 403 constitute an optical receiving unit that receives an optical signal (hereinafter referred to as a received optical signal) from the outside and performs reception processing. .
局部発振光源401は、伝送後の光信号の中心波長に概略一致した中心波長を有するCW(Continuous Wave)光を生成し、CW光を光干渉部402に出力する。
The local oscillation light source 401 generates CW (Continuous Wave) light having a center wavelength approximately coincident with the center wavelength of the optical signal after transmission, and outputs the CW light to the optical interference unit 402.
光干渉部402は、外部から受信光信号が入力されるとともに、局部発振光源401からCW光が入力されて、受信光信号とCW光とを干渉混合させて、干渉後の光信号を光電気変換部403に出力する。
The optical interference unit 402 receives the received optical signal from the outside and also receives the CW light from the local oscillation light source 401, interfers and mixes the received optical signal and the CW light, and converts the optical signal after the interference into an electrical signal. The data is output to the conversion unit 403.
光電気変換器403は、光干渉部402から入力される干渉後の光信号を電気信号に変換することで同期検波(イントラダイン検波)を行い、電気信号をアナログ・デジタル変換部404に出力する。
The photoelectric converter 403 performs synchronous detection (intradyne detection) by converting the optical signal after interference input from the optical interference unit 402 into an electrical signal, and outputs the electrical signal to the analog / digital conversion unit 404. .
アナログ・デジタル変換部404は、光電気変換部403から入力される4レーンのアナログ電気信号を離散時間デジタル信号に変換し、離散時間デジタル信号をデジタル信号処理部404に出力する。アナログ・デジタル変換においては、連続時間信号の離散時間化と、振幅レベルの量子化との双方が行われる。離散時間化によるサンプリング速度のシンボルレートに対する比は、1Sample/symbol以上に設定され、一般には2Sample/symbolに設定されることが多い。
The analog / digital conversion unit 404 converts the 4-lane analog electrical signal input from the photoelectric conversion unit 403 into a discrete-time digital signal, and outputs the discrete-time digital signal to the digital signal processing unit 404. In analog-digital conversion, both discrete time conversion of continuous-time signals and quantization of amplitude levels are performed. The ratio of the sampling rate by the discrete time to the symbol rate is set to 1 Sample / symbol or higher, and is generally set to 2 Sample / symbol in many cases.
デジタル信号処理部405は、図7に示すように、上記の実施の形態2で示した偏波分離器204及び/または206を有している。デジタル信号処理部405は、アナログ・デジタル変換部404から入力される4レーン信号に基づき、上記の実施の形態2で示した偏波分離処理を含む、受信電気信号処理を行い、信号処理結果を出力する。
The digital signal processing unit 405 includes the polarization separators 204 and / or 206 shown in the second embodiment as shown in FIG. Based on the 4-lane signal input from the analog / digital conversion unit 404, the digital signal processing unit 405 performs reception electric signal processing including the polarization separation processing described in the second embodiment, and outputs the signal processing result. Output.
本実施の形態3においても、偏波分離器204,206の構成は、実施の形態2の図4に示す通りであり、すなわち、上記の実施の形態1で示した偏波推定器301を有している。偏波分離器204,206の構成および動作については、上記の実施の形態2で示した通りであるため、ここでは、詳細な説明は省略する。
Also in the third embodiment, the configuration of the polarization separators 204 and 206 is as shown in FIG. 4 of the second embodiment, that is, the polarization estimator 301 shown in the first embodiment is provided. is doing. Since the configurations and operations of the polarization separators 204 and 206 are as described in the second embodiment, a detailed description thereof is omitted here.
なお、デジタル信号処理部405は、図4に示す偏波分離器204及び206の両方を備えるようにしてもよく、あるいは、いずれか一方だけを備えるようにしてもよい。
Note that the digital signal processing unit 405 may include both of the polarization separators 204 and 206 shown in FIG. 4, or may include only one of them.
さらに、デジタル信号処理405は、上記の実施の形態2で示した図4の構成(201~209)をすべて備えるようにしてもよい。その場合には、デジタル信号処理部405は、アナログ・デジタル変換部404から入力される4レーン信号に基づき、上記の実施の形態2で示した、前処理部201から識別部209までの受信電気信号処理を行い、信号処理結果を出力する。前処理部201から識別部209までの各処理については、実施の形態2で説明した通りであるため、ここでは、その説明を省略する。
Furthermore, the digital signal processing 405 may include all the configurations (201 to 209) of FIG. 4 shown in the second embodiment. In that case, the digital signal processing unit 405 receives electric power received from the preprocessing unit 201 to the identification unit 209 described in the second embodiment based on the 4-lane signal input from the analog / digital conversion unit 404. Perform signal processing and output signal processing results. Since each process from the preprocessing unit 201 to the identification unit 209 is as described in the second embodiment, the description thereof is omitted here.
以上のように、本実施の形態3によれば、光受信器が、受信光信号と略一致した中心波長でCW光を発振する局部発振光源401と、局部発振光源401によって生成されたCW光と受信光信号とを干渉させる光干渉部402と、光干渉部402からの出力を電気信号に変換する光電気変換部403とを有する光受信部と、前記光受信部から出力される電気信号をデジタル信号に変換するアナログ・デジタル変換部404と、偏波分離を行うデジタル信号処理部405を備えるようにしたので、伝送路における偏波回転角推定をフィードフォワード処理のみ、かつ、ブラインド処理で行うことができ、また、直交偏波多重信号の偏波分離を、従来よりも格段に高速化し、偏波が高速に変動する場合であっても、伝送品質を維持させることができる。
As described above, according to the third embodiment, the optical receiver oscillates the CW light at the center wavelength substantially coincident with the received optical signal, and the CW light generated by the local oscillation light source 401. And an optical signal output from the optical receiver. The optical receiver includes an optical interference unit 402 that interferes with the received optical signal, and an optical / electrical converter 403 that converts an output from the optical interference unit 402 into an electrical signal. Is converted to a digital signal, and a digital signal processing unit 405 that performs polarization separation is provided, so that the polarization rotation angle estimation in the transmission path can be performed only by feedforward processing and blind processing. In addition, polarization separation of orthogonal polarization multiplexed signals can be made much faster than before, and transmission quality can be maintained even when the polarization fluctuates at high speed. Kill.
以上のように、本発明に係る偏波推定器、偏波分離器、および、光受信器は、デジタルコヒーレント方式を用いた光伝送システムに有用であり、特に、偏波が高速に変動する光伝送システムに適している。
As described above, the polarization estimator, the polarization separator, and the optical receiver according to the present invention are useful for an optical transmission system using a digital coherent method, and in particular, light whose polarization changes rapidly. Suitable for transmission system.
11 X偏波送信光信号、12 Y偏波送信光信号、21 光伝送路、31 X偏波受信光信号、32 Y偏波受信光信号、41,43 X偏波受信信号、42,44 Y偏波受信信号、51,52,53,54 偏波間差動検波部、61,62,63,64 複素共役演算部、71,72,73,74 複素乗算部、81,82,83,84 実部取得部、101,102 複素乗算部、111,112,113,114 二乗演算部、121,122 加算部、131,132 除算部、141,142 平均化部、151 偏波回転角演算部、201 前処理部、202 波長分散補償部、203 タイミング抽出部、204 偏波分離部、205 適応等化部、206 偏波分離部、207 搬送波周波数オフセット補償部、208 搬送波位相オフセット補償部、209 識別部、301 偏波推定器、302 偏波回転部、401 局部発振光源、402 光干渉部、403 光電気変換部、404 アナログ・デジタル変換部、405 デジタル信号処理部。
11 X polarization transmission optical signal, 12 Y polarization transmission optical signal, 21 optical transmission line, 31 X polarization reception optical signal, 32 Y polarization reception optical signal, 41, 43 X polarization reception signal, 42, 44 Y Polarization reception signal, 51, 52, 53, 54 Inter-polarization differential detection unit, 61, 62, 63, 64 Complex conjugate operation unit, 71, 72, 73, 74 Complex multiplication unit, 81, 82, 83, 84 Part acquisition unit, 101, 102 complex multiplication unit, 111, 112, 113, 114 square operation unit, 121, 122 addition unit, 131, 132 division unit, 141, 142 averaging unit, 151 polarization rotation angle calculation unit, 201 Pre-processing unit, 202 chromatic dispersion compensation unit, 203 timing extraction unit, 204 polarization separation unit, 205 adaptive equalization unit, 206 polarization separation unit, 207 carrier frequency offset compensation unit, 20 Carrier phase offset compensation unit, 209 identification unit, 301 polarization estimator, 302 polarization rotation unit, 401 local oscillation light source, 402 optical interference unit, 403 photoelectric conversion unit, 404 analog / digital conversion unit, 405 digital signal processing unit .
Claims (5)
- 2つの偏波をもつ信号(=2偏波信号)が入力され、その2偏波信号を4系統に分離し、各系統に含まれる2偏波信号に対し各系統ごとに異なる偏波回転を与える偏波回転部と、
前記4系統の各系統ごとに、前記偏波回転部により偏波回転を与えられた2偏波信号が入力され、2偏波信号のうち一方の偏波の信号と他方の偏波の信号との間で差動検波を行う偏波間差動検波部と、
前記4系統の各系統ごとに、前記偏波間差動検波部の出力から実部のみを取得する実部取得部と、
前記4系統のうち2系統毎を一組として形成した2つの組の各組において、前記組に含まれる2系統の前記実部同士の乗算を行う複素乗算部と、
前記各組において、前記組に含まれる2系統の前記実部の二乗和を計算する二乗和演算部と、
前記各組において、前記複素乗算部の演算結果を、前記二乗和演算部の演算結果で除算する除算部と、
前記各組において、前記除算部の演算結果を蓄えて平均化する平均化部と、
前記2つの組の前記平均化部の演算結果に基づいて、前記偏波回転部に入力された前記2つの偏波信号の偏波回転角の推定値を計算する偏波回転角演算部と
を備えたことを特徴とする偏波推定器。 A signal having two polarizations (= 2 polarization signals) is inputted, the two polarization signals are separated into four systems, and different polarization rotations are performed for each system with respect to the two polarization signals included in each system. A polarization rotator to give,
For each of the four systems, a two-polarization signal that is polarized by the polarization rotation unit is input, and one of the two polarization signals and the other of the polarization signals A differential detection section between polarized waves that performs differential detection between
For each of the four systems, a real part acquisition unit that acquires only a real part from the output of the differential detection section between polarizations,
A complex multiplier that performs multiplication of the two real parts included in the set in each of two sets formed as a set for every two systems of the four systems,
In each set, a sum of squares calculation unit that calculates the sum of squares of the real parts of the two systems included in the set;
In each set, a division unit that divides the calculation result of the complex multiplication unit by the calculation result of the square sum calculation unit;
In each set, an averaging unit that accumulates and averages the calculation results of the division unit;
A polarization rotation angle calculation unit that calculates an estimated value of the polarization rotation angle of the two polarization signals input to the polarization rotation unit based on the calculation results of the two sets of the averaging units; A polarization estimator characterized by comprising. - 2偏波信号が入力され、その2偏波信号を4系統に分離し、各系統に含まれる2偏波信号に対し各系統ごとに異なる偏波回転を与える偏波回転部と、
前記4系統の各系統ごとに、前記偏波回転部により偏波回転を与えられた2偏波信号が入力され、2偏波信号のうち一方の偏波の信号と他方の偏波の信号との間で差動検波を行う偏波間差動検波部と、
前記4系統の各系統ごとに、前記偏波間差動検波部の出力から実部のみを取得する実部取得部と、
前記4系統のうち2系統毎を一組として形成した2つの組の各組において、前記組に含まれる2系統の前記実部同士の乗算を行う複素乗算部と、
前記各組において、前記組に含まれる2系統の前記実部の二乗和を計算する二乗和演算部と、
前記各組において、前記複素乗算部の演算結果を、前記二乗和演算部の演算結果で除算する除算部と、
前記各組において、前記除算部の演算結果を蓄えて平均化する平均化部と、
前記2つの組の前記平均化部の演算結果に基づいて、前記偏波回転部に入力された前記2つの偏波信号の偏波回転角の推定値を計算する偏波回転角演算部と、
前記偏波回転部に入力された前記2つの偏波信号と同一の2つの偏波信号が入力され、前記偏波回転角演算部から出力される偏波回転角の推定値に基づいて、入力された前記2つの偏波信号に逆回転を与えることにより、前記2偏波信号の偏波分離を行う偏波回転部と
を備えたことを特徴とする偏波分離器。 A polarization rotation unit that receives two polarization signals, separates the two polarization signals into four systems, and applies different polarization rotations for each system to the two polarization signals included in each system;
For each of the four systems, a two-polarization signal that is polarized by the polarization rotation unit is input, and one of the two polarization signals and the other of the polarization signals A differential detection section between polarized waves that performs differential detection between
For each of the four systems, a real part acquisition unit that acquires only a real part from the output of the differential detection section between polarizations,
A complex multiplier that performs multiplication of the two real parts included in the set in each of two sets formed as a set for every two systems of the four systems,
In each set, a sum of squares calculation unit that calculates the sum of squares of the real parts of the two systems included in the set;
In each set, a division unit that divides the calculation result of the complex multiplication unit by the calculation result of the square sum calculation unit;
In each set, an averaging unit that accumulates and averages the calculation results of the division unit;
A polarization rotation angle calculation unit that calculates an estimated value of the polarization rotation angle of the two polarization signals input to the polarization rotation unit, based on the calculation results of the two sets of the averaging units;
Two polarization signals identical to the two polarization signals input to the polarization rotation unit are input, and input based on the estimated value of the polarization rotation angle output from the polarization rotation angle calculation unit And a polarization rotation unit that performs polarization separation of the two polarization signals by applying reverse rotation to the two polarization signals. - 受信光信号と略一致した中心波長で光を発振する局部発振光源と、前記受信光信号と前記局部発振光源によって生成された光とを干渉させる光干渉部と、前記光干渉部からの出力を電気信号に変換する光電気変換部とを有する光受信部と、
前記光受信部から出力される電気信号をデジタル信号に変換するアナログ・デジタル変換部と、
前記アナログ・デジタル変換部から出力されるデジタル信号に対し偏波分離を行うデジタル信号処理部と
を備え、
前記デジタル信号処理部は、
前記アナログ・デジタル変換部から、2偏波信号を4系統に分離して生成した4つのデジタル信号が入力され、
各系統に含まれる2偏波信号に対し各系統ごとに異なる偏波回転を与える偏波回転部と、
前記4系統の各系統ごとに、前記偏波回転部により偏波回転を与えられた2偏波信号が入力され、2偏波信号のうち一方の偏波の信号と他方の偏波の信号との間で差動検波を行う偏波間差動検波部と、
前記4系統の各系統ごとに、前記偏波間差動検波部の出力から実部のみを取得する実部取得部と、
前記4系統のうち2系統毎を一組として形成した2つの組の各組において、前記組に含まれる2系統の前記実部同士の乗算を行う複素乗算部と、
前記各組において、前記組に含まれる2系統の前記実部の二乗和を計算する二乗和演算部と、
前記各組において、前記複素乗算部の演算結果を、前記二乗和演算部の演算結果で除算する除算部と、
前記各組において、前記除算部の演算結果を蓄えて平均化する平均化部と、
前記2つの組の前記平均化部の演算結果に基づいて、前記偏波回転部に入力された前記2つの偏波信号の偏波回転角の推定値を計算する偏波回転角演算部と、
前記偏波回転部に入力された前記2つの偏波信号と同一の2つの偏波信号が入力され、前記偏波回転角演算部から出力される偏波回転角の推定値に基づいて、入力された前記2つの偏波信号に逆回転を与えることにより、前記2つの偏波信号の偏波分離を行う偏波回転部と
を有していることを特徴とする光受信器。 A local oscillation light source that oscillates light at a center wavelength substantially coincident with the received optical signal, an optical interference unit that causes interference between the received optical signal and the light generated by the local oscillation light source, and an output from the optical interference unit An optical receiver having a photoelectric converter for converting into an electrical signal;
An analog / digital converter that converts an electrical signal output from the optical receiver into a digital signal;
A digital signal processing unit that performs polarization separation on the digital signal output from the analog-digital conversion unit,
The digital signal processor is
Four digital signals generated by separating the two polarized signals into four systems are input from the analog / digital converter,
A polarization rotation unit that applies different polarization rotations for each system to the two polarization signals included in each system;
For each of the four systems, a two-polarization signal that is polarized by the polarization rotation unit is input, and one of the two polarization signals and the other of the polarization signals A differential detection section between polarized waves that performs differential detection between
For each of the four systems, a real part acquisition unit that acquires only a real part from the output of the differential detection section between polarizations,
A complex multiplier that performs multiplication of the two real parts included in the set in each of two sets formed as a set for every two systems of the four systems,
In each set, a sum of squares calculation unit that calculates the sum of squares of the real parts of the two systems included in the set;
In each set, a division unit that divides the calculation result of the complex multiplication unit by the calculation result of the square sum calculation unit;
In each set, an averaging unit that accumulates and averages the calculation results of the division unit;
A polarization rotation angle calculation unit that calculates an estimated value of the polarization rotation angle of the two polarization signals input to the polarization rotation unit, based on the calculation results of the two sets of the averaging units;
Two polarization signals identical to the two polarization signals input to the polarization rotation unit are input, and input based on the estimated value of the polarization rotation angle output from the polarization rotation angle calculation unit An optical receiver comprising: a polarization rotation unit that performs polarization separation of the two polarization signals by applying reverse rotation to the two polarization signals. - 2つの偏波信号が入力され、それらの偏波信号を4系統に分離し、各系統に含まれる2偏波信号に対し各系統ごとに異なる偏波回転を与える偏波回転ステップと、
前記4系統の各系統ごとに、前記偏波回転ステップにより偏波回転を与えられた2偏波信号が入力され、2偏波信号のうち一方の偏波の信号と他方の偏波の信号との間で差動検波を行う偏波間差動検波ステップと、
前記4系統の各系統ごとに、前記偏波間差動検波ステップの出力から実部のみを取得する実部取得ステップと、
前記4系統のうち2系統毎を一組として形成した2つの組の各組において、前記組に含まれる2系統の前記実部同士の乗算を行う複素乗算ステップと、
前記各組において、前記組に含まれる2系統の前記実部の二乗和を計算する二乗和演算ステップと、
前記各組において、前記複素乗算ステップの演算結果を、前記二乗和演算ステップの演算結果で除算する除算ステップと、
前記各組において、前記除算ステップの演算結果を蓄えて平均化する平均化ステップと、
前記2つの組の前記平均化ステップの演算結果に基づいて、前記偏波回転ステップで入力された前記2つの偏波信号の偏波回転角の推定値を計算する偏波回転角演算ステップと
を備えたことを特徴とする偏波推定方法。 Two polarization signals are input, the polarization signals are separated into four systems, and a polarization rotation step for applying different polarization rotations for each system to the two polarization signals included in each system,
For each of the four systems, a two-polarization signal to which polarization rotation is given by the polarization rotation step is input, and one of the two polarization signals and the other polarization signal are A differential detection step between polarizations for differential detection between
For each of the four systems, a real part acquisition step for acquiring only a real part from the output of the differential detection step between polarizations;
A complex multiplication step of multiplying the two real parts of the two systems included in the set in each of two sets formed as a set for every two systems of the four systems,
In each set, a square sum operation step of calculating the sum of squares of the real part of the two systems included in the set;
In each set, a division step of dividing the operation result of the complex multiplication step by the operation result of the square sum operation step;
In each set, an averaging step for storing and averaging the calculation results of the division step;
A polarization rotation angle calculation step for calculating an estimated value of the polarization rotation angle of the two polarization signals input in the polarization rotation step based on the calculation results of the two sets of the averaging steps; A polarization estimation method comprising: - 2つの偏波信号が入力され、それらの偏波信号を4系統に分離し、各系統に含まれる2偏波信号に対し各系統ごとに異なる偏波回転を与える偏波回転ステップと、
前記4系統の各系統ごとに、前記偏波回転ステップにより偏波回転を与えられた2偏波信号が入力され、2偏波信号のうち一方の偏波の信号と他方の偏波の信号との間で差動検波を行う偏波間差動検波ステップと、
前記4系統の各系統ごとに、前記偏波間差動検波ステップの出力から実部のみを取得する実部取得ステップと、
前記4系統のうち2系統毎を一組として形成した2つの組の各組において、前記組に含まれる2系統の前記実部同士の乗算を行う複素乗算ステップと、
前記各組において、前記組に含まれる2系統の前記実部の二乗和を計算する二乗和演算ステップと、
前記各組において、前記複素乗算ステップの演算結果を、前記二乗和演算ステップの演算結果で除算する除算ステップと、
前記各組において、前記除算ステップの演算結果を蓄えて平均化する平均化ステップと、
前記2つの組の前記平均化ステップの演算結果に基づいて、前記偏波回転ステップで入力された前記2つの偏波信号の偏波回転角の推定値を計算する偏波回転角演算ステップと
前記偏波回転ステップで入力された前記2つの偏波信号と同一の2つの偏波信号が入力され、前記偏波回転角演算ステップで出力される偏波回転角の推定値に基づいて、入力された前記2つの偏波信号に逆回転を与えることにより、前記2つの偏波信号の偏波分離を行う偏波回転ステップと
を備えたことを特徴とする偏波分離方法。 Two polarization signals are input, the polarization signals are separated into four systems, and a polarization rotation step for applying different polarization rotations for each system to the two polarization signals included in each system,
For each of the four systems, a two-polarization signal to which polarization rotation is given by the polarization rotation step is input, and one of the two polarization signals and the other polarization signal are A differential detection step between polarizations for differential detection between
For each of the four systems, a real part acquisition step for acquiring only a real part from the output of the differential detection step between polarizations;
A complex multiplication step of multiplying the two real parts of the two systems included in the set in each of two sets formed as a set for every two systems of the four systems,
In each set, a square sum operation step of calculating the sum of squares of the real part of the two systems included in the set;
In each set, a division step of dividing the operation result of the complex multiplication step by the operation result of the square sum operation step;
In each set, an averaging step for storing and averaging the calculation results of the division step;
A polarization rotation angle calculating step for calculating an estimated value of the polarization rotation angle of the two polarization signals input in the polarization rotation step based on the calculation results of the two sets of the averaging steps; Two polarization signals identical to the two polarization signals input in the polarization rotation step are input and input based on the estimated value of the polarization rotation angle output in the polarization rotation angle calculation step. And a polarization rotation step for performing polarization separation of the two polarization signals by applying reverse rotation to the two polarization signals.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/054284 WO2013124986A1 (en) | 2012-02-22 | 2012-02-22 | Polarization estimator, polarization splitter, optical receiver, polarization estimation method, and polarization splitting method |
JP2014500796A JP5657168B2 (en) | 2012-02-22 | 2012-02-22 | Polarization estimator, polarization separator, optical receiver, polarization estimation method, and polarization separation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/054284 WO2013124986A1 (en) | 2012-02-22 | 2012-02-22 | Polarization estimator, polarization splitter, optical receiver, polarization estimation method, and polarization splitting method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013124986A1 true WO2013124986A1 (en) | 2013-08-29 |
Family
ID=49005208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/054284 WO2013124986A1 (en) | 2012-02-22 | 2012-02-22 | Polarization estimator, polarization splitter, optical receiver, polarization estimation method, and polarization splitting method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5657168B2 (en) |
WO (1) | WO2013124986A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015025468A1 (en) * | 2013-08-21 | 2015-02-26 | 日本電気株式会社 | Frequency deviation compensation scheme, frequency deviation compensation method, and storage medium |
WO2016031187A1 (en) * | 2014-08-28 | 2016-03-03 | 日本電気株式会社 | Polarization dispersion adder and light receiver |
JP2020043492A (en) * | 2018-09-11 | 2020-03-19 | 日本電信電話株式会社 | Digital coherent receiver and digital coherent reception method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010128577A1 (en) * | 2009-05-07 | 2010-11-11 | 日本電気株式会社 | Coherent receiver |
WO2010131323A1 (en) * | 2009-05-11 | 2010-11-18 | 三菱電機株式会社 | Polarization demultiplexing apparatus |
JP2011009956A (en) * | 2009-06-24 | 2011-01-13 | Fujitsu Ltd | Digital coherent receiving apparatus |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007218628A (en) * | 2006-02-14 | 2007-08-30 | Nippon Telegr & Teleph Corp <Ntt> | Polarization state measuring device and optical sampling device |
-
2012
- 2012-02-22 WO PCT/JP2012/054284 patent/WO2013124986A1/en active Application Filing
- 2012-02-22 JP JP2014500796A patent/JP5657168B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010128577A1 (en) * | 2009-05-07 | 2010-11-11 | 日本電気株式会社 | Coherent receiver |
WO2010131323A1 (en) * | 2009-05-11 | 2010-11-18 | 三菱電機株式会社 | Polarization demultiplexing apparatus |
JP2011009956A (en) * | 2009-06-24 | 2011-01-13 | Fujitsu Ltd | Digital coherent receiving apparatus |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015025468A1 (en) * | 2013-08-21 | 2015-02-26 | 日本電気株式会社 | Frequency deviation compensation scheme, frequency deviation compensation method, and storage medium |
US9913234B2 (en) | 2013-08-21 | 2018-03-06 | Nec Corporation | Frequency deviation compensation scheme, frequency deviation compensation method, and storage medium |
WO2016031187A1 (en) * | 2014-08-28 | 2016-03-03 | 日本電気株式会社 | Polarization dispersion adder and light receiver |
JPWO2016031187A1 (en) * | 2014-08-28 | 2017-06-01 | 日本電気株式会社 | Polarization dispersion adder and optical receiver |
US10338316B2 (en) | 2014-08-28 | 2019-07-02 | Nec Corporation | Polarization dispersion adder and optical receiver |
JP2020043492A (en) * | 2018-09-11 | 2020-03-19 | 日本電信電話株式会社 | Digital coherent receiver and digital coherent reception method |
WO2020054393A1 (en) * | 2018-09-11 | 2020-03-19 | 日本電信電話株式会社 | Digital coherent receiver and digital coherent reception method |
JP7057506B2 (en) | 2018-09-11 | 2022-04-20 | 日本電信電話株式会社 | Digital coherent receiver and digital coherent receiving method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013124986A1 (en) | 2015-05-21 |
JP5657168B2 (en) | 2015-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Faruk et al. | Digital signal processing for coherent transceivers employing multilevel formats | |
Faruk et al. | Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation | |
EP2498421B1 (en) | Coherent optical detection and signal processing method and system | |
US10122470B2 (en) | Clock recovery for optical transmission systems | |
Spinnler | Equalizer design and complexity for digital coherent receivers | |
US8913901B2 (en) | System and method for blind equalization and carrier phase recovery in a quadrature amplitude modulated system | |
JP5406989B2 (en) | Optical receiver and optical transmission system | |
US8041233B2 (en) | Adaptive equalization in coherent fiber optic communication | |
Li et al. | Spectrally efficient quadrature duobinary coherent systems with symbol-rate digital signal processing | |
US20090208224A1 (en) | Optical field receiver, optical multilevel signal receiver, and optical transmission system | |
US20090252216A1 (en) | Multidimensional decision-directed trained adaptive equalization | |
US20130136451A1 (en) | Optical transfer system, optical transmission device, and optical reception device | |
CN103141064A (en) | Adaptive equaliser with asynchronous detection and inhibit signal generator | |
JP5657168B2 (en) | Polarization estimator, polarization separator, optical receiver, polarization estimation method, and polarization separation method | |
US10505641B2 (en) | Clock recovery for band-limited optical channels | |
Zhou | Digital signal processing for coherent multi-level modulation formats | |
Payyazhi et al. | Recursive blind phase search architecture for phase recovery at high error rates | |
EP3110043A1 (en) | Carrier phase estimation at a coherent optical receiver | |
Zhou | Carrier recovery in coherent optical communication systems | |
Yu et al. | Basic Digital Signal Processing for Single-Carrier Signals | |
Chang et al. | Digital signal processing in 112-Gb/s polarization-multiplexed 16-QAM coherent optical receiver | |
Savory et al. | Ultra Long-Haul QPSK Transmission using a Digital Coherent Receiver | |
Gao | Digital signal processing for laser phase noise compensation in high-capacity digital coherent transmission systems | |
EP2362557A1 (en) | MLSE in coherent optical receiver for optical filtering tolerance | |
Chagnon | Digital signal processing assessment for optical coherent receiver using dual-polarization Quadrature phase shift keying modulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12869110 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014500796 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12869110 Country of ref document: EP Kind code of ref document: A1 |