JP2007218628A - Polarization state measuring device and optical sampling device - Google Patents

Polarization state measuring device and optical sampling device Download PDF

Info

Publication number
JP2007218628A
JP2007218628A JP2006036783A JP2006036783A JP2007218628A JP 2007218628 A JP2007218628 A JP 2007218628A JP 2006036783 A JP2006036783 A JP 2006036783A JP 2006036783 A JP2006036783 A JP 2006036783A JP 2007218628 A JP2007218628 A JP 2007218628A
Authority
JP
Japan
Prior art keywords
polarization
light
current
balanced
separation element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006036783A
Other languages
Japanese (ja)
Inventor
Keiji Okamoto
圭司 岡本
Fumihiko Ito
文彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006036783A priority Critical patent/JP2007218628A/en
Publication of JP2007218628A publication Critical patent/JP2007218628A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarization state measuring device of high sensitivity that can measure the polarization state of a light signal varying at high speed and can also measure a light signal of high speed and low power. <P>SOLUTION: Polarization splitting elements 11 and 12 split signal light and sampling light into P polarized waves and S polarized waves having polarization planes different by 90°, respectively. The split P polarized waves and S polarized waves output first and second currents corresponding to the P polarized waves and third and fourth currents corresponding to the S polarized waves with balanced type photodetectors 41-44 via optical 90° hybrids 31 and 32. Arithmetic processors 71 and 72 calculate the first to fourth currents and determine the P polarization component and S polarization component of the signal light, phase difference between P polarized waves, and phase difference between S polarized waves. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超高速光通信システムにおいて高速に変動する光信号の偏波状態を測定することのできる偏波状態測定器、及び光信号の偏波状態に依存することのない偏波無依存型の光サンプリング装置に関する。   The present invention relates to a polarization state measuring device that can measure the polarization state of an optical signal that fluctuates at high speed in an ultra-high-speed optical communication system, and a polarization-independent type that does not depend on the polarization state of an optical signal. The present invention relates to an optical sampling device.

光の偏波状態を測定することは、光通信、光計測、光物性の分野において非常に重要である。殊に、今後の光通信分野において信号速度はますます増加することが予想され、光伝送路や光部品の偏波分散(偏波状態により群速度が異なる現象)が光信号の信号品質を劣化させる要因として無視できなくなる。この偏波分散を評価・補償する上で、偏波状態の測定は不可欠になる。   Measuring the polarization state of light is very important in the fields of optical communication, optical measurement, and optical properties. In particular, the signal speed is expected to increase in the future optical communication field, and the polarization dispersion of optical transmission lines and optical components (a phenomenon in which the group speed varies depending on the polarization state) degrades the signal quality of the optical signal. Can no longer be ignored. In evaluating and compensating for this polarization dispersion, measurement of the polarization state is indispensable.

従来の偏波状態測定器としては、偏光子と波長板を用いたものが知られ、すでに製品化されている。この方法では、被測定光を4分岐した上で、偏光子と波長板等で構成された空間光学系を介して受光し、被測定光のx偏光成分の電界強度、y偏光成分の電界強度、x偏光とy偏光の位相差を求めた(例えば、非特許文献1参照。)。   Conventional polarization state measuring devices using a polarizer and a wave plate are known and have already been commercialized. In this method, the light to be measured is branched into four and then received through a spatial optical system composed of a polarizer and a wave plate, and the electric field strength of the x-polarized component and the electric field strength of the y-polarized component of the measured light. The phase difference between x-polarized light and y-polarized light was obtained (for example, see Non-Patent Document 1).

また、従来の光サンプリング光波形測定装置としては、例えば信号光とサンプリング光との線形な相関を観測することにより、低パワーで高速な繰り返し光信号の観測を行う技術が知られている(例えば、特許文献1及び2参照。)。   Further, as a conventional optical sampling optical waveform measuring device, for example, a technique for observing a repetitive optical signal at low power and at high speed by observing a linear correlation between the signal light and the sampling light is known (for example, Patent Documents 1 and 2).

特開平9−162808号公報JP-A-9-162808 特開2004−132719号公報JP 2004-132719 A アジレント・テクノロジー株式会社、「光測定器カタログ2000−2001」、p81−85Agilent Technologies, Inc., “Optical Meter Catalog 2000-2001”, p81-85

従来の偏波状態測定器では、超高速光通信システムにおいて光線路や光デバイス中で高速に変動する光信号の偏波状態を測定することは不可能で、また信号光を複数に分岐して受光するため微弱な信号の偏波状態を測定することは困難であった。   With conventional polarization state measuring instruments, it is impossible to measure the polarization state of an optical signal that fluctuates at high speed in an optical line or optical device in an ultra-high-speed optical communication system. It was difficult to measure the polarization state of a weak signal because it received light.

また、従来の光サンプリング光波形測定装置では、光90度ハイブリッドに入力される信号光の偏波面とサンプリング光の偏波面が、一方が直線偏波であり、もう一方が円偏波であり、2つの光の偏波面の方向が完全に直行しているとき、バランス型受光器からの出力強度は最大となる。したがって少しでも感度よく安定に波形観測を行いたい場合は、信号光とサンプリング光をそれぞれ偏光方向制御器により各偏波状態を調整し、その状態を安定に保つ必要がある。   Moreover, in the conventional optical sampling optical waveform measuring apparatus, one of the polarization plane of the signal light and the polarization plane of the sampling light input to the optical 90-degree hybrid is linear polarization, and the other is circular polarization. When the directions of the polarization planes of the two lights are completely perpendicular, the output intensity from the balanced light receiver is maximized. Therefore, when it is desired to observe the waveform with high sensitivity and stability, it is necessary to adjust the polarization state of the signal light and the sampling light by the polarization direction controller, respectively, and keep the state stable.

本発明は上記の事情に鑑みてなされたものであり、その目的とするところは、高速に変動する光信号の偏波状態を測定することができ、高速性及び低パワーの光信号も測定することができる高感度性を併せ持つ偏波状態測定器、及び光信号の偏波状態に依存することのない偏波無依存型の光サンプリング装置を提供することにある。   The present invention has been made in view of the above circumstances, and its object is to measure the polarization state of an optical signal that fluctuates at a high speed, and to measure an optical signal with high speed and low power. Another object of the present invention is to provide a polarization state measuring device having high sensitivity and a polarization independent optical sampling device that does not depend on the polarization state of an optical signal.

上記目的を達成するために本発明の偏波状態測定器は、繰り返し信号光を偏波面が90度異なるP偏波及びS偏波に分離する第1の偏波分離素子と、サンプリング光パルスを偏波面が90度異なるP偏波及びS偏波に分離する第2の偏波分離素子と、前記第1の偏波分離素子から出射されたP偏波及び前記第2の偏波分離素子から出射されたP偏波が第1の光90度ハイブリッドを介して入射され、第1の電流及び第2の電流を出力する第1のバランス型受光器及び第2のバランス型受光器と、前記第1の偏波分離素子から出射されたS偏波及び前記第2の偏波分離素子から出射されたS偏波が第2の光90度ハイブリッドを介して入射され、第3の電流及び第4の電流を出力する第3のバランス型受光器及び第4のバランス型受光器と、前記第1のバランス型受光器から出力された第1の電流の電流値及び前記第2のバランス型受光器から出力された第2の電流の電流値に対して演算処理を行って信号光のP偏波成分を求めると共に、前記第2の電流の電流値を前記第1の電流の電流値で除算して信号光とサンプリング光のP偏波同士の位相差を求める第1の演算処理装置と、前記第3のバランス型受光器から出力された第3の電流の電流値及び前記第4のバランス型受光器から出力された第4の電流の電流値に対して演算処理を行って信号光のS偏波成分を求めると共に、前記第4の電流の電流値を前記第3の電流の電流値で除算して信号光とサンプリング光のS偏波同士の位相差を求める第2の演算処理装置とを具備することを特徴とするものである。   To achieve the above object, the polarization state measuring device of the present invention includes a first polarization separation element that separates repeated signal light into P polarization and S polarization whose polarization planes are different by 90 degrees, and a sampling light pulse. From the second polarization separation element that separates the P-polarization and S-polarization whose polarization planes are different by 90 degrees, and from the P-polarization and the second polarization separation element emitted from the first polarization separation element The emitted P-polarized light is incident through the first 90-degree hybrid and outputs the first current and the second current, and the first balanced light receiver and the second balanced light receiver, The S-polarized light emitted from the first polarization separation element and the S-polarization emitted from the second polarization separation element are incident via the second optical 90-degree hybrid, and the third current and the second A third balanced photoreceiver that outputs a current of 4 and a fourth balanced photoreceiver; An arithmetic process is performed on the current value of the first current output from the first balanced light receiver and the current value of the second current output from the second balanced light receiver to obtain P of the signal light. A first arithmetic processing unit that obtains a polarization component and divides the current value of the second current by the current value of the first current to obtain a phase difference between the P polarizations of the signal light and the sampling light; The signal light is obtained by performing arithmetic processing on the current value of the third current output from the third balanced light receiver and the current value of the fourth current output from the fourth balanced light receiver. Second calculation processing for obtaining the S-polarized component of the signal light and dividing the current value of the fourth current by the current value of the third current to obtain the phase difference between the S-polarized light of the signal light and the sampling light And a device.

また、本発明の光サンプリング装置は、繰り返し信号光を偏波面が90度異なるP偏波及びS偏波に分離する第1の偏波分離素子と、サンプリング光パルスを偏波面が90度異なるP偏波及びS偏波に分離する第2の偏波分離素子と、前記第1の偏波分離素子から出射されたP偏波及び前記第2の偏波分離素子から出射されたP偏波が第1の光90度ハイブリッドを介して入射され、第1の電流及び第2の電流を出力する第1のバランス型受光器及び第2のバランス型受光器と、前記第1の偏波分離素子から出射されたS偏波及び前記第2の偏波分離素子から出射されたS偏波が第2の光90度ハイブリッドを介して入射され、第3の電流及び第4の電流を出力する第3のバランス型受光器及び第4のバランス型受光器と、前記第1のバランス型受光器から出力された第1の電流の電流値及び前記第2のバランス型受光器から出力された第2の電流の電流値に対して演算処理を行って信号光のP偏波成分を求めると共に、前記第3のバランス型受光器から出力された第3の電流の電流値及び前記第4のバランス型受光器から出力された第4の電流の電流値に対して演算処理を行って信号光のS偏波成分を求め、前記信号光のP偏波成分及びS偏波成分より信号光の振幅成分を求める演算処理装置とを具備することを特徴とするものである。   In addition, the optical sampling device of the present invention includes a first polarization separation element that separates repetitive signal light into P-polarized light and S-polarized light having different polarization planes by 90 degrees, and P A second polarization separation element that separates into polarization and S polarization; a P polarization emitted from the first polarization separation element; and a P polarization emitted from the second polarization separation element. A first balanced light receiver and a second balanced light receiver that are incident via a first light 90-degree hybrid and output a first current and a second current; and the first polarization separation element. S-polarized light emitted from the second polarized light separating element and the S-polarized light emitted from the second polarization separation element are incident through the second optical 90-degree hybrid and output a third current and a fourth current. 3 balance type light receiver and fourth balance type light receiver, and the first balun. An arithmetic process is performed on the current value of the first current output from the type photoreceiver and the current value of the second current output from the second balanced photoreceiver to obtain the P polarization component of the signal light. And calculating the current value of the third current output from the third balanced light receiver and the current value of the fourth current output from the fourth balanced light receiver. And an arithmetic processing unit for obtaining an S polarization component of the signal light and obtaining an amplitude component of the signal light from the P polarization component and the S polarization component of the signal light.

本発明の偏波状態測定器は、高速に変動する光信号の偏波状態を測定できるものであり、偏波分離素子によって信号光、サンプリング光をそれぞれS偏波、P偏波に分離し、分離された信号光とサンプリング光パルスのS偏波成分、P偏波成分それぞれにおいて線形な相関である干渉効果を検出するため、サンプリング光のパルス幅に依存した時間分解能を得ることができ高速に変動する信号光の偏波状態を測定することができる。また信号光の測定のために要求される強度は比較的小さくてよく、高速に変動する信号光の偏波状態を測定することのできる高速性及び低パワーの信号光も測定することができる高感度性を併せ持つ偏波状態測定器を実現できる。また同時に信号光の偏波状態に依存することのない偏波無依存型の光サンプリング装置も実現できる。   The polarization state measuring instrument of the present invention is capable of measuring the polarization state of an optical signal that fluctuates at high speed, and separates signal light and sampling light into S polarization and P polarization by a polarization separation element, In order to detect an interference effect that is a linear correlation between the separated signal light and the S-polarization component and the P-polarization component of the sampling light pulse, it is possible to obtain a time resolution depending on the pulse width of the sampling light at high speed. The polarization state of the fluctuating signal light can be measured. Further, the intensity required for the measurement of the signal light may be relatively small, and the high-speed and low-power signal light that can measure the polarization state of the signal light that fluctuates at high speed can be measured. A polarization state measuring instrument with high sensitivity can be realized. At the same time, a polarization-independent optical sampling device that does not depend on the polarization state of the signal light can be realized.

以下図面を参照して本発明の実施の形態を詳細に説明する。
図1は本発明の一実施形態に係る偏波状態測定器を示す構成説明図である。図1において、11,12は例えば偏波ビームスプリッタ等よりなる偏波分離素子であり、第1の偏波分離素子11には超高速光通信システムにおいて高速に変動する信号光が繰り返し入射される。前記偏波分離素子11は入射した信号光のうち基準方向(0度方向)に対して90度方向の偏光成分であるP偏波をそのまま通過させ、入射した信号光のうち基準方向の偏光成分であるS偏波を反射させる。前記偏波分離素子11で分離された信号光のP偏波とS偏波は互いに偏波面が90度異なる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a configuration explanatory view showing a polarization state measuring device according to an embodiment of the present invention. In FIG. 1, reference numerals 11 and 12 denote polarization separation elements such as polarization beam splitters, and signal light that fluctuates at high speed in an ultrahigh-speed optical communication system is repeatedly incident on the first polarization separation element 11. . The polarization separation element 11 passes the P-polarized light, which is a polarization component in the 90-degree direction with respect to the reference direction (0-degree direction), in the incident signal light as it is, and the polarization component in the reference direction in the incident signal light. S-polarized light is reflected. The polarization planes of the P polarization and S polarization of the signal light separated by the polarization separation element 11 are 90 degrees different from each other.

また、第2の偏波分離素子12には前記信号光の繰り返し周期と僅かに異なる周期を有し光パルス幅が信号光の周波数変動の逆数よりも短い、基準方向に対して45度方向を向く単一偏波面を有したサンプリング光パルスが入射される。前記偏波分離素子12は入射したサンプリング光パルスのうち基準方向に対して90度方向の偏光成分であるP偏波をそのまま通過させ、入射したサンプリング光パルスのうち基準方向の偏光成分であるS偏波を反射させる。前記偏波分離素子12で分離されたサンプリング光パルスのP偏波とS偏波は互いに偏波面が90度異なる。   Further, the second polarization separating element 12 has a period slightly different from the repetition period of the signal light, and the optical pulse width is shorter than the reciprocal of the frequency fluctuation of the signal light, and has a 45 degree direction with respect to the reference direction. A sampling light pulse having a single polarization plane facing is incident. The polarization separation element 12 passes the P-polarized light component, which is a polarization component in the 90-degree direction with respect to the reference direction, in the incident sampling light pulse, and S, which is a polarization component in the reference direction, in the incident sampling light pulse. Reflect polarization. The polarization planes of the sampling light pulses separated by the polarization separation element 12 are 90 degrees different from each other.

前記偏波分離素子11から分離出射された信号光のP偏波は第1の光90度ハイブリッド31に入射されると共に、前記偏波分離素子12から分離出射されたサンプリング光パルスのP偏波は第1の光90度ハイブリッド31に入射される。第1の光90度ハイブリッド31は光カプラ21〜24より構成される。   The P polarization of the signal light separated and emitted from the polarization separation element 11 is incident on the first optical 90-degree hybrid 31 and the P polarization of the sampling light pulse separated and emitted from the polarization separation element 12. Is incident on the first light 90-degree hybrid 31. The first optical 90-degree hybrid 31 includes optical couplers 21 to 24.

また、前記偏波分離素子11から分離出射された信号光のS偏波は第2の光90度ハイブリッド32に入射されると共に、前記偏波分離素子12から分離出射されたサンプリング光パルスのS偏波は第2の光90度ハイブリッド32に入射される。第2の光90度ハイブリッド32は光カプラ25〜28より構成される。   The S polarization of the signal light separated and emitted from the polarization separation element 11 is incident on the second optical 90-degree hybrid 32 and the S light of the sampling light pulse separated and emitted from the polarization separation element 12. The polarized light is incident on the second light 90-degree hybrid 32. The second optical 90-degree hybrid 32 includes optical couplers 25 to 28.

前記第1の光90度ハイブリッド31からの出射光はフォトダイオードD1,D2よりなる第1のバランス型受光器41及びフォトダイオードD3,D4よりなる第2のバランス型受光器42にそれぞれ入射され、第1のバランス型受光器41から第1の電流が出力されると共に第2のバランス型受光器42から第2の電流が出力される。   The light emitted from the first 90-degree hybrid 31 is incident on a first balanced light receiver 41 composed of photodiodes D1 and D2 and a second balanced light receiver 42 composed of photodiodes D3 and D4, respectively. A first current is output from the first balanced light receiver 41 and a second current is output from the second balanced light receiver 42.

また、前記第2の光90度ハイブリッド32からの出射光はフォトダイオードD5,D6よりなる第3のバランス型受光器43及びフォトダイオードD7,D8よりなる第4のバランス型受光器44にそれぞれ入射され、第3のバランス型受光器43から第3の電流が出力されると共に第4のバランス型受光器44から第4の電流が出力される。   The light emitted from the second 90-degree hybrid 32 is incident on a third balanced light receiver 43 composed of photodiodes D5 and D6 and a fourth balanced light receiver 44 composed of photodiodes D7 and D8, respectively. Then, a third current is output from the third balanced light receiver 43 and a fourth current is output from the fourth balanced light receiver 44.

前記第1のバランス型受光器41から出力された第1の電流は第1の低域濾波フィルタ51で波形等化された後、第1の数値化手段61で数値化されてから、第1の演算処理装置71に入力される。また、前記第2のバランス型受光器42から出力された第2の電流は第2の低域濾波フィルタ52で波形等化された後、第2の数値化手段62で数値化されてから、第1の演算処理装置71に入力される。   The first current output from the first balanced light receiver 41 is waveform-equalized by the first low-pass filter 51 and then digitized by the first digitizing means 61 before the first current is outputted. To the arithmetic processing unit 71. The second current output from the second balanced light receiver 42 is waveform-equalized by the second low-pass filter 52 and then digitized by the second digitizing means 62. Input to the first arithmetic processing unit 71.

また、前記第3のバランス型受光器43から出力された第3の電流は第3の低域濾波フィルタ53で波形等化された後、第3の数値化手段63で数値化されてから、第2の演算処理装置72に入力される。また、前記第4のバランス型受光器44から出力された第4の電流は第4の低域濾波フィルタ54で波形等化された後、第4の数値化手段64で数値化されてから、第2の演算処理装置72に入力される。   The third current output from the third balanced light receiver 43 is waveform-equalized by the third low-pass filter 53 and then digitized by the third digitizing means 63. Input to the second arithmetic processing unit 72. The fourth current output from the fourth balanced light receiver 44 is waveform-equalized by the fourth low-pass filter 54 and then digitized by the fourth digitizing means 64. Input to the second arithmetic processing unit 72.

前記第1の演算処理装置71では第1の数値化手段61で数値化された第1の電流の電流値及び第2の数値化手段62で数値化された第2の電流の電流値に対して演算処理を行って信号光の振幅のP偏波成分を求め、また、前記第2の演算処理装置72では第3の数値化手段63で数値化された第3の電流の電流値及び第4の数値化手段64で数値化された第4の電流の電流値に対して演算処理を行って信号光の振幅のS偏波成分を求める。   In the first arithmetic processing unit 71, the current value of the first current digitized by the first digitizing unit 61 and the current value of the second current digitized by the second digitizing unit 62 are used. Then, the P-polarized component of the amplitude of the signal light is obtained by performing arithmetic processing, and the second arithmetic processing unit 72 calculates the current value of the third current and the third current numerically expressed by the third numerical means 63. The S-polarized component of the amplitude of the signal light is obtained by performing arithmetic processing on the current value of the fourth current that has been digitized by the four digitizing means 64.

また、前記第1の演算処理装置71は第2の数値化手段62で数値化された第2の電流の電流値を第1の数値化手段61で数値化された第1の電流の電流値で除算して、信号光とサンプリング光のP偏波同士の相対的な位相差を求め、また、前記第2の演算処理装置72は第4の数値化手段64で数値化された第4の電流の電流値を第3の数値化手段63で数値化された第3の電流の電流値で除算して、信号光とサンプリング光のS偏波同士の相対的な位相差を求める。   Further, the first arithmetic processing unit 71 converts the current value of the second current that has been digitized by the second digitizing means 62 into the current value of the first current that has been digitized by the first digitizing means 61. To obtain the relative phase difference between the P polarizations of the signal light and the sampling light, and the second arithmetic processing unit 72 uses the fourth numerical unit 64 to express the fourth phase. By dividing the current value of the current by the current value of the third current digitized by the third digitizing means 63, the relative phase difference between the S polarizations of the signal light and the sampling light is obtained.

すなわち、信号光の任意の時刻における偏波状態は、信号光の振幅のP偏波成分及びS偏波成分、信号光とサンプリング光のP偏波同士及びS偏波同士それぞれの相対的な位相差により決定される。したがって、超高速光通信システムにおいて高速に変動する光信号の偏波状態を測定することのできる偏波状態測定器を実現できる。   That is, the polarization state of the signal light at an arbitrary time is the P polarization component and the S polarization component of the amplitude of the signal light, the relative positions of the P polarization and the S polarization of the signal light and the sampling light, respectively. Determined by phase difference. Therefore, it is possible to realize a polarization state measuring device that can measure the polarization state of an optical signal that fluctuates at high speed in an ultra-high speed optical communication system.

図1の偏波状態測定器は、信号光とサンプリング光パルスの分離されたS偏波成分、P偏波成分それぞれにおいて線形な相関である干渉効果を検出するため、サンプリング光のパルス幅に依存した時間分解能を得ることができ高速に変動する信号光の偏波状態を測定することができる。また信号光の測定のため要求される強度は比較的小さくてよく、高感度かつ時間分解能に優れた偏波状態の測定を行うことができることを特徴とする。   The polarization state measuring device in FIG. 1 depends on the pulse width of the sampling light in order to detect an interference effect that is a linear correlation between the separated S-polarization component and P-polarization component of the signal light and the sampling light pulse. The time resolution can be obtained, and the polarization state of the signal light changing at high speed can be measured. Further, the intensity required for the measurement of the signal light may be relatively small, and the polarization state can be measured with high sensitivity and excellent time resolution.

図2は本発明の一実施形態に係る偏波無依存型光サンプリング装置を示す構成説明図である。図2中、図1と同一部分は同一符号を付してその説明を省略する。図2において、73は演算処理装置であり、信号光の振幅のP偏波成分及びS偏波成分を求め、前記信号光の振幅のP偏波成分及びS偏波成分より、信号光の電界を求めることにより、信号光の振幅成分を求めることができる。すなわち、信号光の振幅のP偏波成分及びS偏波成分より信号光の強度変調情報を得ることができるので、信号光とサンプリング光をそれぞれ偏光方向制御器により各偏波状態を調整することを必要としない、つまり信号光の偏波状態に依存することのない偏波無依存型で光サンプリングを行うことができる。したがって、低パワーで高速な繰り返し光信号の観測を行う光サンプリング装置を実現できる。   FIG. 2 is a configuration explanatory view showing a polarization-independent optical sampling device according to an embodiment of the present invention. In FIG. 2, the same parts as those in FIG. In FIG. 2, reference numeral 73 denotes an arithmetic processing unit that obtains the P-polarization component and the S-polarization component of the amplitude of the signal light, and uses the P-polarization component and the S-polarization component of the amplitude of the signal light. By obtaining the above, the amplitude component of the signal light can be obtained. That is, since the intensity modulation information of the signal light can be obtained from the P-polarization component and the S-polarization component of the amplitude of the signal light, each polarization state of the signal light and the sampling light is adjusted by the polarization direction controller. Therefore, optical sampling can be performed in a polarization-independent type that does not depend on the polarization state of the signal light. Therefore, it is possible to realize an optical sampling apparatus that observes a low-power and high-speed repeated optical signal.

次に、上述したように構成される本実施形態の偏波状態測定器および偏波無依存型の光サンプリング装置の具体的動作について説明する。局発光パルスであるサンプリング光パルスは、次の条件を満足する必要がある。これらの条件及び光90度ハイブリッドの作用は、従来の技術(例えば、特許文献1及び2参照)と同様である。   Next, specific operations of the polarization state measuring device and the polarization-independent optical sampling device of the present embodiment configured as described above will be described. The sampling light pulse, which is a local light emission pulse, needs to satisfy the following conditions. These conditions and the action of the optical 90-degree hybrid are the same as those of the conventional technology (for example, see Patent Documents 1 and 2).

[条件1]信号光の強度は、サンプリング光パルスのパルス幅の時間内においてはほとんど変化しないこと。
[条件2]信号光の周波数は、サンプリング光パルスのパルス幅の時間内においてはほとんど変化しないこと。
[条件3]サンプリング光の中心周波数は、信号光の中心周波数と一致していること。
[Condition 1] The intensity of the signal light hardly changes within the time of the pulse width of the sampling light pulse.
[Condition 2] The frequency of the signal light hardly changes within the time of the pulse width of the sampling light pulse.
[Condition 3] The center frequency of the sampling light matches the center frequency of the signal light.

上記条件1,2より、高速に変動する信号光の偏波状態を測定するためには要求される時間分解能よりも短いサンプリング光パルスを用意する必要がある。上記条件が満足される場合には、本実施形態の偏波状態測定器および光サンプリング装置によって信号の偏波状態および振幅が正しく検出されることを以下に説明する。   From the above conditions 1 and 2, it is necessary to prepare a sampling light pulse shorter than the required time resolution in order to measure the polarization state of the signal light changing at high speed. When the above conditions are satisfied, it will be described below that the polarization state and amplitude of the signal are correctly detected by the polarization state measuring device and the optical sampling device of the present embodiment.

まず、第1の偏波分離素子11及び第2の偏波分離素子12により分離された信号光および基準方向に対して45度方向を向く単一偏波面を有したサンプリング光パルスのP偏波成分、S偏波成分の波形は、次式で表される。

Figure 2007218628
First, the signal light separated by the first polarization separation element 11 and the second polarization separation element 12 and the P polarization of a sampling light pulse having a single polarization plane facing a 45 degree direction with respect to the reference direction The waveform of the component and the S polarization component is expressed by the following equation.
Figure 2007218628

ここで、E(s) (t)、E(s) (t)は信号光の振幅のP偏波成分、S偏波成分であり、φ(s) 、φ(s) は信号光とサンプリング光のP偏波同士、S偏波同士の相対的な位相差である。ωは両者の中心周波数である。信号光の任意の時刻における偏波状態は、これら4つのパラメータ{E(s) (t)、E(s) (t)、φ(s) 、φ(s) }により一意に決定される。 Here, E (s) p (t) and E (s) s (t) are the P polarization component and the S polarization component of the amplitude of the signal light, and φ (s) p and φ (s) s are It is a relative phase difference between the P-polarized light and the S-polarized light of the signal light and the sampling light. ω is the center frequency of both. The polarization state of the signal light at an arbitrary time is uniquely determined by these four parameters {E (s) p (t), E (s) s (t), φ (s) p , φ (s) s }. It is determined.

このとき、第1のバランス型受光器41及び第2のバランス型受光器42に各々流れる電流P(t)、P(t)は次のように表される。

Figure 2007218628
At this time, the currents P 1 (t) and P 2 (t) flowing in the first balanced photoreceiver 41 and the second balanced photoreceiver 42 are expressed as follows.
Figure 2007218628

サンプリング光パルスは、時間τの近傍でのみ値を持ち、それ以外は零である。

Figure 2007218628
The sampling light pulse has a value only in the vicinity of time τ, and is zero otherwise.
Figure 2007218628

上述したように計算される電流値P(t)、P(t)は第1のバランス型受光器41及び第2のバランス型受光器42からの出力であり、それぞれ対応して第1の低域濾波フィルタ51及び第2の低域濾波フィルタ52で低域濾過され、第1の数値化手段61及び第2の数値化手段62で数値化され、第1の演算処理装置71に供給される。 The current values P 1 (t) and P 2 (t) calculated as described above are the outputs from the first balanced light receiver 41 and the second balanced light receiver 42, and correspond to the first values. The low-pass filter 51 and the second low-pass filter 52 are low-pass filtered, the first numerical unit 61 and the second numerical unit 62 are digitized, and supplied to the first arithmetic processing unit 71. Is done.

これにより、信号光のP偏波成分E(s) (t)は

Figure 2007218628
となり、また、信号光のP偏波成分の位相φ(s)
Figure 2007218628
となる。上記演算処理は第1の演算処理装置71で行われるものとする。 Thereby, the P polarization component E (s) p (t) of the signal light is
Figure 2007218628
And the phase φ (s) p of the P polarization component of the signal light is
Figure 2007218628
It becomes. It is assumed that the arithmetic processing is performed by the first arithmetic processing device 71.

同様に第3のバランス型受光器43及び第4のバランス型受光器44に各々流れる電流値P(t)、P(t)は次のように表される。

Figure 2007218628
Similarly, current values P 3 (t) and P 4 (t) flowing in the third balance type light receiver 43 and the fourth balance type light receiver 44 are expressed as follows.
Figure 2007218628

上述したように計算される電流値P(t)、P(t)は第3のバランス型受光器43及び第4のバランス型受光器44からの出力であり、それぞれ対応して第3の低域濾波フィルタ53及び第4の低域濾波フィルタ54で低域濾過され、第3の数値化手段63及び第4の数値化手段64で数値化され、第2の演算処理装置72に供給される。 The current values P 3 (t) and P 4 (t) calculated as described above are outputs from the third balanced light receiver 43 and the fourth balanced light receiver 44, and correspond to the third values. The low-pass filter 53 and the fourth low-pass filter 54 are low-pass filtered, and the third numerical unit 63 and the fourth numerical unit 64 are digitized and supplied to the second arithmetic processing unit 72. Is done.

これより信号光のs偏波成分E(s) (t)は

Figure 2007218628
となり、またS偏波の位相φ(s)
Figure 2007218628
となる。上記演算処理は第2の演算処理装置72で行われるものとする。 As a result, the s polarization component E (s) s (t) of the signal light is
Figure 2007218628
And the S-polarization phase φ (s) s is
Figure 2007218628
It becomes. It is assumed that the arithmetic processing is performed by the second arithmetic processing device 72.

また、信号光の電界E(s)(t)は

Figure 2007218628
となり、これより信号光の振幅成分を求めることができる。上記演算処理は演算処理装置73で行われるものとする。 The electric field E (s) (t) of the signal light is
Figure 2007218628
Thus, the amplitude component of the signal light can be obtained. It is assumed that the arithmetic processing is performed by the arithmetic processing device 73.

また、第1の偏波分離素子11から第1の光90度ハイブリッド31までの行路長をL、第2の偏波分離素子12から第1の光90度ハイブリッド31までの行路長をL、第1の偏波分離素子11から第2の光90度ハイブリッド32までの行路長をL、第2の偏波分離素子12から第2の光90度ハイブリッド32までの行路長をLとおくと、経路差|L−L|、|L−L|は次式のような条件を満たす必要がある。 The path length from the first polarization separation element 11 to the first optical 90-degree hybrid 31 is L 1 , and the path length from the second polarization separation element 12 to the first optical 90-degree hybrid 31 is L 2. The path length from the first polarization separation element 11 to the second optical 90-degree hybrid 32 is L 3 , and the path length from the second polarization separation element 12 to the second optical 90-degree hybrid 32 is L If it is 4 , the path differences | L 1 −L 2 | and | L 3 −L 4 | must satisfy the following conditions.

|L−L|=|L−L
上記条件が満足されない場合は、偏波状態が既知であるサンプリング光のみを実験系に入射し、行路長差に依存した初期の位相差を求め、その値を基準値として更正すればよい。
| L 1 −L 2 | = | L 3 −L 4 |
If the above condition is not satisfied, only the sampling light whose polarization state is known is incident on the experimental system, the initial phase difference depending on the path length difference is obtained, and the value is corrected as the reference value.

なお、本発明は、上記実施形態例そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態例に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態例に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態例に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiment examples may be appropriately combined.

本発明の一実施形態に係る偏波状態測定器を示す構成説明図である。It is composition explanatory drawing which shows the polarization state measuring device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る偏波無依存型光サンプリング装置を示す構成説明図である。1 is a configuration explanatory diagram illustrating a polarization-independent optical sampling device according to an embodiment of the present invention. FIG.

符号の説明Explanation of symbols

11…第1の偏波分離素子、12…第2の偏波分離素子、21〜28…光カプラ、31…第1の光90度ハイブリッド、32…第2の光90度ハイブリッド、41…第1のバランス型受光器、42…第2のバランス型受光器、43…第3のバランス型受光器、44…第4のバランス型受光器、51…第1の低域濾波フィルタ、52…第2の低域濾波フィルタ、53…第3の低域濾波フィルタ、54…第4の低域濾波フィルタ、61…第1の数値化手段、62…第2の数値化手段、63…第3の数値化手段、64…第4の数値化手段、71…第1の演算処理装置、72…第2の演算処理装置、73…演算処理装置。   DESCRIPTION OF SYMBOLS 11 ... 1st polarization beam splitter, 12 ... 2nd polarization beam splitter, 21-28 ... Optical coupler, 31 ... 1st light 90 degree hybrid, 32 ... 2nd light 90 degree hybrid, 41 ... 1st 1. Balanced light receiver 42... 2nd balanced light receiver 43. 3rd balanced light receiver 44. 4th balanced light receiver 51. 1st low-pass filter 52. 2 low-pass filter, 53 ... third low-pass filter, 54 ... fourth low-pass filter, 61 ... first numerical means, 62 ... second numerical means, 63 ... third Numerical means 64, fourth numerical means 71, first arithmetic processing device 72, second arithmetic processing device 73, arithmetic processing device.

Claims (2)

繰り返し信号光を偏波面が90度異なるP偏波及びS偏波に分離する第1の偏波分離素子と、
サンプリング光パルスを偏波面が90度異なるP偏波及びS偏波に分離する第2の偏波分離素子と、
前記第1の偏波分離素子から出射されたP偏波及び前記第2の偏波分離素子から出射されたP偏波が第1の光90度ハイブリッドを介して入射され、第1の電流及び第2の電流を出力する第1のバランス型受光器及び第2のバランス型受光器と、
前記第1の偏波分離素子から出射されたS偏波及び前記第2の偏波分離素子から出射されたS偏波が第2の光90度ハイブリッドを介して入射され、第3の電流及び第4の電流を出力する第3のバランス型受光器及び第4のバランス型受光器と、
前記第1のバランス型受光器から出力された第1の電流の電流値及び前記第2のバランス型受光器から出力された第2の電流の電流値に対して演算処理を行って信号光のP偏波成分を求めると共に、前記第2の電流の電流値を前記第1の電流の電流値で除算して信号光とサンプリング光のP偏波同士の位相差を求める第1の演算処理装置と、
前記第3のバランス型受光器から出力された第3の電流の電流値及び前記第4のバランス型受光器から出力された第4の電流の電流値に対して演算処理を行って信号光のS偏波成分を求めると共に、前記第4の電流の電流値を前記第3の電流の電流値で除算して信号光とサンプリング光のS偏波同士の位相差を求める第2の演算処理装置と
を具備することを特徴とする偏波状態測定器。
A first polarization separation element that separates repetitive signal light into P polarization and S polarization whose polarization planes are different by 90 degrees;
A second polarization separation element that separates the sampling light pulse into P polarization and S polarization whose polarization planes are different by 90 degrees;
The P polarization emitted from the first polarization separation element and the P polarization emitted from the second polarization separation element are incident through the first optical 90-degree hybrid, and the first current and A first balanced light receiver and a second balanced light receiver that output a second current;
S-polarized light emitted from the first polarization separation element and S-polarized light emitted from the second polarization separation element are incident via the second optical 90-degree hybrid, and a third current and A third balanced light receiver and a fourth balanced light receiver for outputting a fourth current;
An arithmetic process is performed on the current value of the first current output from the first balanced photoreceiver and the current value of the second current output from the second balanced photoreceiver to obtain signal light. A first arithmetic processing unit that obtains a P-polarized component and obtains a phase difference between the P-polarized light of the signal light and the sampling light by dividing the current value of the second current by the current value of the first current When,
An arithmetic process is performed on the current value of the third current output from the third balanced photoreceiver and the current value of the fourth current output from the fourth balanced photoreceiver to obtain signal light. A second arithmetic processing unit that obtains an S-polarized component and obtains a phase difference between the S-polarized light of the signal light and the sampling light by dividing the current value of the fourth current by the current value of the third current A polarization state measuring device.
繰り返し信号光を偏波面が90度異なるP偏波及びS偏波に分離する第1の偏波分離素子と、
サンプリング光パルスを偏波面が90度異なるP偏波及びS偏波に分離する第2の偏波分離素子と、
前記第1の偏波分離素子から出射されたP偏波及び前記第2の偏波分離素子から出射されたP偏波が第1の光90度ハイブリッドを介して入射され、第1の電流及び第2の電流を出力する第1のバランス型受光器及び第2のバランス型受光器と、
前記第1の偏波分離素子から出射されたS偏波及び前記第2の偏波分離素子から出射されたS偏波が第2の光90度ハイブリッドを介して入射され、第3の電流及び第4の電流を出力する第3のバランス型受光器及び第4のバランス型受光器と、
前記第1のバランス型受光器から出力された第1の電流の電流値及び前記第2のバランス型受光器から出力された第2の電流の電流値に対して演算処理を行って信号光のP偏波成分を求めると共に、前記第3のバランス型受光器から出力された第3の電流の電流値及び前記第4のバランス型受光器から出力された第4の電流の電流値に対して演算処理を行って信号光のS偏波成分を求め、前記信号光のP偏波成分及びS偏波成分より信号光の振幅成分を求める演算処理装置と
を具備することを特徴とする光サンプリング装置。
A first polarization separation element that separates repetitive signal light into P polarization and S polarization whose polarization planes are different by 90 degrees;
A second polarization separation element that separates the sampling light pulse into P polarization and S polarization whose polarization planes are different by 90 degrees;
The P polarization emitted from the first polarization separation element and the P polarization emitted from the second polarization separation element are incident through the first optical 90-degree hybrid, and the first current and A first balanced light receiver and a second balanced light receiver that output a second current;
S-polarized light emitted from the first polarization separation element and S-polarized light emitted from the second polarization separation element are incident via the second optical 90-degree hybrid, and a third current and A third balanced light receiver and a fourth balanced light receiver for outputting a fourth current;
An arithmetic process is performed on the current value of the first current output from the first balanced photoreceiver and the current value of the second current output from the second balanced photoreceiver to obtain signal light. While obtaining the P polarization component, the current value of the third current output from the third balanced light receiver and the current value of the fourth current output from the fourth balanced light receiver are calculated. An optical sampling device comprising: an arithmetic processing unit that performs an arithmetic process to obtain an S-polarized component of signal light and obtains an amplitude component of the signal light from the P-polarized component and the S-polarized component of the signal light apparatus.
JP2006036783A 2006-02-14 2006-02-14 Polarization state measuring device and optical sampling device Pending JP2007218628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006036783A JP2007218628A (en) 2006-02-14 2006-02-14 Polarization state measuring device and optical sampling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006036783A JP2007218628A (en) 2006-02-14 2006-02-14 Polarization state measuring device and optical sampling device

Publications (1)

Publication Number Publication Date
JP2007218628A true JP2007218628A (en) 2007-08-30

Family

ID=38496120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006036783A Pending JP2007218628A (en) 2006-02-14 2006-02-14 Polarization state measuring device and optical sampling device

Country Status (1)

Country Link
JP (1) JP2007218628A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191100A (en) * 2007-02-07 2008-08-21 Nippon Telegr & Teleph Corp <Ntt> Optical sampling device and method
JP5657168B2 (en) * 2012-02-22 2015-01-21 三菱電機株式会社 Polarization estimator, polarization separator, optical receiver, polarization estimation method, and polarization separation method
CN109521244A (en) * 2018-12-11 2019-03-26 龙岩学院 The current measuring method realized based on S wave plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118344A (en) * 1992-10-07 1994-04-28 Oki Electric Ind Co Ltd Polarization beam splitter module
JPH0715386A (en) * 1990-03-05 1995-01-17 At & T Corp Optical hybrid device and detection device of polarized independent coherent light waves
JP2004132719A (en) * 2002-10-08 2004-04-30 Nippon Telegr & Teleph Corp <Ntt> Optical sampling method, system, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715386A (en) * 1990-03-05 1995-01-17 At & T Corp Optical hybrid device and detection device of polarized independent coherent light waves
JPH06118344A (en) * 1992-10-07 1994-04-28 Oki Electric Ind Co Ltd Polarization beam splitter module
JP2004132719A (en) * 2002-10-08 2004-04-30 Nippon Telegr & Teleph Corp <Ntt> Optical sampling method, system, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191100A (en) * 2007-02-07 2008-08-21 Nippon Telegr & Teleph Corp <Ntt> Optical sampling device and method
JP5657168B2 (en) * 2012-02-22 2015-01-21 三菱電機株式会社 Polarization estimator, polarization separator, optical receiver, polarization estimation method, and polarization separation method
CN109521244A (en) * 2018-12-11 2019-03-26 龙岩学院 The current measuring method realized based on S wave plate

Similar Documents

Publication Publication Date Title
CN106500970B (en) Optical fiber characteristic measuring device
CA2699017A1 (en) Optical fiber electric current measurement apparatus and electric current measurement method
AU2019352739B2 (en) Distributed sensing apparatus
JP2003519788A (en) Apparatus and method for electronic RIN reduction in fiber optic sensors
JP3808820B2 (en) Optical sampling method, apparatus and program
CN101915549B (en) Orthogonal demodulation system for measuring phase and amplitude of medium-frequency signal in real time
WO2014157110A1 (en) Lightning current measuring device and lightning current measuring method
JP4925139B2 (en) Dispersion interferometer and method for measuring physical quantity of object to be measured
JP2007218628A (en) Polarization state measuring device and optical sampling device
KR101097396B1 (en) Optical current transformer and signal processing method thereof
JP5138237B2 (en) Optical sampling apparatus and optical sampling method
JP5042701B2 (en) Optical sampling apparatus and optical sampling method
JP4071723B2 (en) Electric field sensor and electric field detection method
JP7256777B2 (en) Laser line width measurement device
JP5053327B2 (en) Polarization analyzer
US20160238376A1 (en) Optical fiber sensor system
JP2006211507A (en) Polarization mode dispersion compensation device
JP5380324B2 (en) Polarization mode dispersion measuring apparatus and polarization mode dispersion measuring method
JPH0755891A (en) Mehtod and device for testing integrated circuit
JP5663515B2 (en) Optical measuring device and optical measuring method
JP4678236B2 (en) Optical property measuring device
WO2018117149A1 (en) Light detection device, optical property analysis device, and light detection method
JP2009257840A (en) Mode coupling evaluating device and mode-coupling evaluation method
JP2005283466A (en) Vibration measuring apparatus
JP2008241580A (en) Optical heterodyne interference device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080124

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100118

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615