JP2005123934A - Optical communication method, optical transmitter, optical receiver and optical communication system - Google Patents

Optical communication method, optical transmitter, optical receiver and optical communication system Download PDF

Info

Publication number
JP2005123934A
JP2005123934A JP2003357399A JP2003357399A JP2005123934A JP 2005123934 A JP2005123934 A JP 2005123934A JP 2003357399 A JP2003357399 A JP 2003357399A JP 2003357399 A JP2003357399 A JP 2003357399A JP 2005123934 A JP2005123934 A JP 2005123934A
Authority
JP
Japan
Prior art keywords
light
optical
polarization
output
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003357399A
Other languages
Japanese (ja)
Other versions
JP4247784B2 (en
Inventor
Shigeru Kuwano
茂 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003357399A priority Critical patent/JP4247784B2/en
Publication of JP2005123934A publication Critical patent/JP2005123934A/en
Application granted granted Critical
Publication of JP4247784B2 publication Critical patent/JP4247784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily realize optical fiber transmission of a polarized wave modulation signal which is conventionally difficult to be realized by a simple constitution without being influenced by polarization turbulence in a transmission path. <P>SOLUTION: In an optical transmitter 100, a polarization modulator 130 modulates the polarized wave state of the light outputted by a light source 110 by using a signal formed by differentially coding an inputted binary data signal by a precoder 120, and transmits the resultant light to the transmission path 200. In an optical receiver 300, an optical filter 310 receives light inputted from the transmission path 100 and light formed by delaying the inputted light by one bit. An optical receiving circuit 320 converts the obtained light photoelectrically, and differentially combines it to demodulate the data signal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、偏波状態に情報を重畳する光通信方法、光送信機、光受信機、および光通信システムに関するものである。   The present invention relates to an optical communication method for superimposing information on a polarization state, an optical transmitter, an optical receiver, and an optical communication system.

光の偏波状態に情報を重畳する光通信方法(偏波変調方法)は光通信技術の黎明期から提案されており、信号エネルギーを有効に活用できる方法として主に空間伝送系で注目されてきた(例えば、非特許文献1,2)。また、光ファイバ通信方法においても、長距離伝送時等において非線形光学効果の影響を受けにくい方法として注目されてきた。図13に偏波変調方法を用いた従来の光通信システムの基本構成を示す。   An optical communication method (polarization modulation method) that superimposes information on the polarization state of light has been proposed since the dawn of optical communication technology, and has attracted attention mainly in spatial transmission systems as a method that can effectively use signal energy. (For example, Non-Patent Documents 1 and 2). Also, optical fiber communication methods have attracted attention as methods that are less susceptible to nonlinear optical effects during long distance transmission and the like. FIG. 13 shows a basic configuration of a conventional optical communication system using the polarization modulation method.

図13において、光送信機100の光源110からの出力光は、偏波変調器130において2つの直交する偏波状態に2値データがマッピングされ、偏波変調信号となる。ここで、2つの直交する偏波状態とは、ポアンカレ球上の対蹠点を示し、直交する直線偏波、逆回りの円偏波などが挙げられる。この偏波変調信号は光伝送路200を伝搬され、光受信機300に入力される。光受信機300では、偏波分離器341で受信光を直交する2つの偏波に分離された後、それぞれ独立に受光器342,343に入力され、差動回路344でそれらの差をとることでもとのデータが復調される。   In FIG. 13, the output light from the light source 110 of the optical transmitter 100 is mapped to binary data in two orthogonal polarization states by the polarization modulator 130 to become a polarization modulation signal. Here, the two orthogonal polarization states indicate opposite points on the Poincare sphere, and examples include orthogonal linear polarization and reverse circular polarization. This polarization modulation signal propagates through the optical transmission line 200 and is input to the optical receiver 300. In the optical receiver 300, the received light is separated into two orthogonal polarizations by the polarization separator 341, and then separately input to the light receivers 342 and 343, and the difference between them is obtained by the differential circuit 344. But the original data is demodulated.

ところで、偏波変調方法を光ファイバ通信に適用する場合、ファイバ伝送中に生じる偏波面の変動(偏波面の回転ならびに直交する偏波間での位相差の発生)により、光受信機300の偏波分離器341による分離が不十分となり、通信品質が時間的に変動してしまう。この偏波面の変動は機械的な振動や温度変化によって生じるものであり、その変化の速度は一般に光通信方法で用いられる情報伝送速度に対して十分に低い。   By the way, when the polarization modulation method is applied to optical fiber communication, the polarization of the optical receiver 300 is caused by fluctuations in the polarization plane (rotation of the polarization plane and generation of a phase difference between orthogonal polarizations) that occur during fiber transmission. Separation by the separator 341 becomes insufficient, and communication quality varies with time. The fluctuation of the polarization plane is caused by mechanical vibration or temperature change, and the speed of the change is generally sufficiently lower than the information transmission speed used in the optical communication method.

この問題を解決するために従来2つの方法が考えられている。第1の方法は図14に示すように、受信機300の前段部分に偏波コントローラ345を配置し、受信偏波状態を制御して良好な受信状態を保つものである(例えば、非特許文献2)。この場合、制御回路346において復調データ信号から偏波状態変動を推定し、その結果に基づいて偏波コントローラ345を制御するものである。   In order to solve this problem, two conventional methods have been considered. As shown in FIG. 14, the first method is to arrange a polarization controller 345 at the front stage of the receiver 300 and control the reception polarization state to maintain a good reception state (for example, non-patent document). 2). In this case, the control circuit 346 estimates the polarization state fluctuation from the demodulated data signal, and controls the polarization controller 345 based on the result.

第2の方法は受信された信号から偏波状態を電気的な信号処理により推定するものである(図15、例えば、非特許文献3)。この場合、受信された光信号を3分波器347で3分波して偏波分離器341a、341bに入力し、また1/4波長板348を介して偏波分離器341cに入力し、それぞれの偏波分離器341a,341b,341cの出力を受光器342aと343a、342bと343b、342cと343cに入力し、それぞれの出力信号を差動回路344a〜344cにより差をることによって、偏波状態を特徴付けるストークスパラメータs1,s2,s3を抽出し、その値に基づいてストークスパラメータ演算回路349で電気的な信号処理により元のデータを復調するものである。
塚本、桑野、森永著「二つの偏光面を用いた差動位相変調/へテロダイン検波方式」、電子情報通信学会論文誌 B-I,vol.J77-B-I,No.10,pp.629-639,1994年10月 A.Fukuchi et a1., "Polarization Shift Keying-Direct Detection (PolSK-DD) Scheme for Fiber Nonlinear Effect Insensitive Communication System",Proc. ECOC92, pp.169-172, 1994. S. Benedetto et al., "Direct Detection of Optical Digital Transmission Based on Polarization Shift Keying Modulation", IEEE JSAC, vol.13, No.3, pp.531-542,Apr. 1995. T. Miyano et al., "Suppression of degradation induced by SPM/XPM + GVD in WDM transmission using a bit-synchronous intensity modulated DPSK Signal",in Technical Digest of the 5th Optoelectronics and Communications Conference (OECC), Paper 14D3-3, 2000.
The second method estimates the polarization state from the received signal by electrical signal processing (FIG. 15, for example, Non-Patent Document 3). In this case, the received optical signal is demultiplexed by the third demultiplexer 347 and input to the polarization separators 341a and 341b, and is input to the polarization separator 341c via the quarter wavelength plate 348. The outputs of the respective polarization beam splitters 341a, 341b, 341c are input to the light receivers 342a and 343a, 342b and 343b, 342c and 343c, and the respective output signals are differentiated by the differential circuits 344a to 344c. The Stokes parameters s1, s2, and s3 that characterize the wave state are extracted, and the original data is demodulated by electrical signal processing in the Stokes parameter calculation circuit 349 based on the extracted values.
Tsukamoto, Kuwano, Morinaga, “Differential phase modulation / heterodyne detection using two polarization planes”, IEICE Transactions BI, vol.J77-BI, No.10, pp.629-639,1994 October A. Fukuchi et a1., "Polarization Shift Keying-Direct Detection (PolSK-DD) Scheme for Fiber Nonlinear Effect Insensitive Communication System", Proc. ECOC92, pp.169-172, 1994. S. Benedetto et al., "Direct Detection of Optical Digital Transmission Based on Polarization Shift Keying Modulation", IEEE JSAC, vol.13, No.3, pp.531-542, Apr. 1995. T. Miyano et al., "Suppression of degradation induced by SPM / XPM + GVD in WDM transmission using a bit-synchronous intensity modulated DPSK Signal", in Technical Digest of the 5th Optoelectronics and Communications Conference (OECC), Paper 14D3-3 , 2000.

第1の方法の場合、偏波コントローラ345ならびに制御回路346が必要となり、回路規模が大きくなるとともに、コスト増大の要因となる。また、第2の方法の場合、回路構成が光学的ならびに電気的に複雑となり、高速伝送への適用が困難である。したがって、これら従来の方法は、いずれも実用的ではなく、現状で偏波変調方法は実用には供されていない。   In the case of the first method, the polarization controller 345 and the control circuit 346 are required, which increases the circuit scale and increases the cost. In the case of the second method, the circuit configuration is optically and electrically complicated, and it is difficult to apply to high-speed transmission. Therefore, none of these conventional methods are practical, and the polarization modulation method is not practically used at present.

本発明は、以上の問題を解決するため、簡易な方法で偏波変動の影響を受けることなく偏波変調信号を受信することが可能な光通信方法、光送信機、光受信機、および光通信システムを提供することを目的とする。   In order to solve the above problems, the present invention provides an optical communication method, an optical transmitter, an optical receiver, and an optical communication device capable of receiving a polarization-modulated signal without being affected by polarization fluctuations by a simple method. An object is to provide a communication system.

請求項1にかかる発明の光通信方法は、入力される2値のデータ信号を差動符号化した信号により光源の出力光の偏波状態を変調して伝送路に送出し、該伝送路からの入力光と該入力光を1ビット遅延させた光を合波させて前記データ信号を復調することを特徴とする。
請求項2にかかる発明は、請求項1に記載の光通信方法において、前記変調は、前記差動符号化した2値のデータを直交する2つの偏波状態に割り当てることにより行うことを特徴とする。
請求項3にかかる発明は、請求項1に記載の光通信方法において、前記変調は、前記入力される2値のデータ信号を2回差動符号化してから直並列変換して2つの信号とし、且つ前記光源の光を偏波状態が直交する2つの光に分波し、該2つの光の一方を前記2つの信号の一方により位相変調し、前記2つの光の他方を前記2つの信号の他方を1/2シンボル遅延した信号により位相変調し、該両位相変調された2つの光を合波して前記伝送路に送出することを特徴とする。
請求項4にかかる発明は、前記変調は、前記入力される2値のデータ信号を2回差動符号化してから相補関係にある2つのデュオバイナリ信号に変換し、且つ前記光源の光を偏波状態が直交する2つの光に分波し、該2つの光の一方を前記2つのデュオバイナリ信号の一方により位相変調し、前記2つの光の他方を前記2つのデュオバイナリ信号の他方により位相変調し、該両位相変調された2つの光を合波して前記伝送路に送出することを特徴とする。
請求項5にかかる発明は、請求項1乃至4のいずれか1つに記載の光通信方法において、前記光源として、前記2値のデータのシンボル周期に同期したパルス光を出力するパルス光源を使用することを特徴とする。
請求項6にかかる発明は、請求項1に記載の光通信方法において、前記復調は、前記伝送路から入力する入力光をマッハツェンダ干渉計で1シンボル分の光路長差をもつ2つの相補な光とし、該相補関係にある光信号を電気信号に変換してその差分をとることを特徴とする。
請求項7にかかる発明は、請求項1に記載の光通信方法において、前記復調を、前記伝送路からの入力光をヘテロダイン検波してから2つの偏波成分に分離して光電変換することにより2つの中間周波数信号を生成し、該各中間周波数信号を1ビット遅延検波した後に加算して前記データ信号を復調する復調方法に代えたことを特徴とする。
請求項8にかかる発明の光送信機は、光源と、入力される2値のデータ信号を差動符号化するプリコーダと、該プリコーダの出力信号により前記光源の出力光の偏波状態を変調する偏波変調器とを具備することを特徴とする。
請求項9にかかる発明は、請求項8に記載の光送信機において、前記偏波変調器は、前記プリコーダにより差動符号化した2値のデータを前記光源の出力光の直交する2つの偏波状態に割り当てることを特徴とする。
請求項10にかかる発明は、請求項8に記載の光送信機において、前記プリコーダは、入力される2値のデータを差動符号化する第1の差動符号化器と、該第1の差動符号化器の出力データを再度差動符号化する第2の差動符号化器と、該第2の差動符号化器の出力信号を直並列変換して2つの信号に分離する直並列変換器と、該直並列変換器の一方の出力信号を1/2シンボル遅延させる遅延器とを具備し、前記偏波変調器は、前記光源の出力光が直交する2つの偏波成分に分離された各光を入力する第1および第2の位相変調器と、該第1および第2の位相変調器の出力光を合波する偏波合波器とを具備し、前記第1の位相変調器は前記直並列変換器の他方の出力信号により前記光源の出力光の一方の偏波成分を位相変調し、前記第2の位相変調器は前記遅延器の出力信号により前記光源の出力光の他方の偏波成分を位相変調することを特徴とする。
請求項11にかかる発明は、請求項8に記載の光送信機において、前記プリコーダは、入力される2値のデータを差動符号化する第1の差動符号化器と、該第1の差動符号化器の出力データを再度差動符号化して相補関係にある2つの信号を出力する第2の差動符号化器と、該第2の差動符号化器から出力する一方の信号をデュオバイナリ信号に変換する第1のデュオバイナリフィルタと、前記第2の差動符号化器から出力する他方の信号をデュオバイナリ信号に変換する第2のデュオバイナリフィルタとを具備し、前記偏波変調器は、前記光源の出力光が直交する2つの偏波成分に分離された各光を入力する第1および第2の位相変調器と、該第1および第2の位相変調器の出力光を合波する偏波合波器とを具備し、前記第1の位相変調器は前記第1のデュオバイナリフィルタの出力信号により前記光源の出力光の一方の偏波成分を位相変調し、前記第2の位相変調器は前記第2のデュオバイナリフィルタの出力信号により前記光源の出力光の他方の偏波成分を位相変調することを特徴とする。
請求項12にかかる発明の光受信機は、光伝送路からの入力光と該入力光を1シンボル遅延させた光とが合波されるインパルス応答を持った光フィルタと、該光フィルタの出力光を光電変換する光受信回路とを具備することを特徴とする。
請求項13にかかる発明は、請求項12に記載の光受信機において、前記光フィルタはマッハツェンダ干渉計からなり、前記光受信回路は該マッハツェンダ干渉計の2つの出力光を個別に光電変換する2つの受光器と、該両受光器の出力信号の差分を出力する差動回路とを具備することを特徴とする。
請求項14にかかる発明は、光伝送路からの入力光を該入力光と異なる周波数の光で合波してヘテロダイン検波する光合波器と、該光合波器の出力光の直交する偏波成分を分離する偏波分離器と、該偏波分離器からの一方の出力光を光電変換する第1の受光器と、前記偏波分離器からの他方の出力光を光電変換する第2の受光器と、前記第1の受光器の出力信号を検波する第1の1ビット遅延検波器と、前記第2の受光器の出力信号を検波する第2の1ビット遅延検波器と、該第1および第2の1ビット遅延検波器の出力信号を加算する加算器とを具備することを特徴とする。
請求項15にかかる発明の光通信システムは、請求項8乃至11のいずれか1つに記載の光送信機と、請求項12乃至14のいずれか1つに記載の光受信機とを具備することを特徴とする。
The optical communication method of the invention according to claim 1 modulates the polarization state of the output light of the light source with a signal obtained by differentially encoding the input binary data signal and sends it to the transmission line. The data signal is demodulated by combining the input light and light obtained by delaying the input light by 1 bit.
According to a second aspect of the present invention, in the optical communication method according to the first aspect, the modulation is performed by assigning the differentially encoded binary data to two orthogonal polarization states. To do.
According to a third aspect of the present invention, in the optical communication method according to the first aspect, the modulation is performed by differentially encoding the input binary data signal twice and then performing serial-parallel conversion to obtain two signals. The light from the light source is demultiplexed into two lights whose polarization states are orthogonal, one of the two lights is phase-modulated with one of the two signals, and the other of the two lights is converted into the two signals. The other of the two is phase-modulated by a signal delayed by 1/2 symbol, and the two lights modulated in both phases are combined and transmitted to the transmission line.
In the invention according to claim 4, in the modulation, the input binary data signal is differentially encoded twice, converted into two duobinary signals having a complementary relationship, and the light from the light source is polarized. Demultiplexing into two lights whose wave states are orthogonal, one of the two lights is phase-modulated by one of the two duobinary signals, and the other of the two lights is phase-shifted by the other of the two duobinary signals Modulating, combining the two phase-modulated lights and sending them to the transmission line.
According to a fifth aspect of the present invention, in the optical communication method according to any one of the first to fourth aspects, a pulsed light source that outputs a pulsed light synchronized with a symbol period of the binary data is used as the light source. It is characterized by doing.
According to a sixth aspect of the present invention, in the optical communication method according to the first aspect, in the demodulation, the input light input from the transmission path is two complementary lights having an optical path length difference of one symbol by a Mach-Zehnder interferometer. The optical signal having the complementary relationship is converted into an electrical signal and the difference is obtained.
According to a seventh aspect of the present invention, in the optical communication method according to the first aspect, the demodulation is performed by performing heterodyne detection on the input light from the transmission path, and then separating the two polarization components into photoelectric conversion. Instead of the demodulation method, two intermediate frequency signals are generated and added after the intermediate frequency signals are subjected to 1-bit delay detection, and the data signals are demodulated.
An optical transmitter according to an eighth aspect of the present invention modulates the polarization state of the output light of the light source by a light source, a precoder that differentially encodes an input binary data signal, and an output signal of the precoder. And a polarization modulator.
According to a ninth aspect of the present invention, in the optical transmitter according to the eighth aspect of the present invention, the polarization modulator is configured to convert the binary data differentially encoded by the precoder into two orthogonal polarizations of the output light of the light source. It is characterized by assigning to a wave state.
According to a tenth aspect of the present invention, in the optical transmitter according to the eighth aspect, the precoder includes a first differential encoder for differentially encoding input binary data, and the first differential encoder. A second differential encoder for differentially encoding the output data of the differential encoder again, and a serial converter for converting the output signal of the second differential encoder into two signals by serial-parallel conversion. A parallel converter and a delay unit that delays one output signal of the serial-parallel converter by 1/2 symbol, and the polarization modulator converts the output light of the light source into two polarization components orthogonal to each other. 1st and 2nd phase modulator which inputs each separated light, and a polarization beam combiner which combines the output light of the 1st and 2nd phase modulator, The phase modulator phase-modulates one polarization component of the output light of the light source by the other output signal of the series-parallel converter, and the second modulator Phase modulator is characterized by phase-modulating the other polarization component of the output light of the light source by the output signal of the delay device.
According to an eleventh aspect of the present invention, in the optical transmitter according to the eighth aspect, the precoder includes a first differential encoder that differentially encodes input binary data, and the first differential encoder. A second differential encoder for differentially encoding the output data of the differential encoder and outputting two complementary signals, and one signal output from the second differential encoder And a second duobinary filter for converting the other signal output from the second differential encoder into a duobinary signal. The wave modulator is configured to input first and second phase modulators that receive the light beams separated into two orthogonal polarization components, and outputs from the first and second phase modulators. A polarization multiplexer for multiplexing light, and the first phase modulator. One polarization component of the output light of the light source is phase-modulated by the output signal of the first duobinary filter, and the second phase modulator outputs the output of the light source by the output signal of the second duobinary filter. The other polarization component of the light is phase-modulated.
An optical receiver according to a twelfth aspect of the invention includes an optical filter having an impulse response in which input light from an optical transmission line and light obtained by delaying the input light by one symbol are combined, and an output of the optical filter And a light receiving circuit for photoelectrically converting light.
According to a thirteenth aspect of the present invention, in the optical receiver according to the twelfth aspect, the optical filter includes a Mach-Zehnder interferometer, and the optical receiver circuit individually photoelectrically converts two output lights of the Mach-Zehnder interferometer. And a differential circuit that outputs a difference between output signals of the two light receivers.
According to the fourteenth aspect of the present invention, there is provided an optical multiplexer for combining the input light from the optical transmission line with light having a frequency different from that of the input light and performing heterodyne detection, and orthogonal polarization components of the output light of the optical multiplexer. , A first light receiver that photoelectrically converts one output light from the polarization separator, and a second light receiving that photoelectrically converts the other output light from the polarization separator A first 1-bit delay detector for detecting the output signal of the first light receiver, a second 1-bit delay detector for detecting the output signal of the second light receiver, and the first And an adder for adding the output signals of the second 1-bit delay detector.
An optical communication system according to a fifteenth aspect of the present invention includes the optical transmitter according to any one of the eighth to eleventh aspects and the optical receiver according to any one of the twelfth to fourteenth aspects. It is characterized by that.

本発明によれば、伝送路中での偏波擾乱の影響を受けることがなくなるので、従来実現が困難であった偏波変調信号の光ファイバ伝送を簡易な構成で容易に実現することが可能となる。   According to the present invention, since it is not affected by the polarization disturbance in the transmission path, it is possible to easily realize the optical fiber transmission of the polarization modulation signal, which has been difficult to realize conventionally, with a simple configuration. It becomes.

本発明では、光送信機においては、光源からの出力光に対して、プリコーダによって差動符号化されたデータ信号を用いて偏波変調器においてその偏波状態に情報を重畳され、光伝送路へと出される。光伝送路において信号光は、機械的振動や温度変化などによって偏波状態への擾乱を受けてしまうが、2値データに対する偏波状態の直交性はほぼ保たれている。ここで、データ伝送速度(>100Mbps)に対して、擾乱の周波数は極めて低い(〜kHz)ため、連続するシンボル間で受ける偏波の擾乱は同一であるとみなせる。このため、連続するシンボル間で相関を取ることにより、偏波変動の影響を受けることなく差動的に情報を復元することが可能となる。すなわち、光受信機において、1シンボル遅延させた信号と合波するインパルス応答を有する光フィルタに信号光を入力し、その出力を光検波器に入力することにより、情報を復調することが可能となる。   In the present invention, in the optical transmitter, information is superimposed on the polarization state in the polarization modulator using the data signal differentially encoded by the precoder for the output light from the light source, and the optical transmission line It is put out. In the optical transmission line, the signal light is disturbed to the polarization state due to mechanical vibration or temperature change, but the orthogonality of the polarization state with respect to the binary data is almost maintained. Here, since the frequency of the disturbance is extremely low (˜kHz) with respect to the data transmission rate (> 100 Mbps), it can be considered that the polarization disturbance received between consecutive symbols is the same. For this reason, by obtaining a correlation between consecutive symbols, it is possible to restore information differentially without being affected by polarization fluctuations. That is, in an optical receiver, it is possible to demodulate information by inputting signal light to an optical filter having an impulse response that is combined with a signal delayed by one symbol and inputting the output to an optical detector. Become.

本発明において、偏波変調に関しては、差動符号化された2値データを2つの互いに直交する偏波状態(ポアンカレ球上の対鍍点)にマッピングすれば十分であり、直交する2つの直線偏波や互いに逆回りの2つの円偏波といった特定の状態にする必要は無い。   In the present invention, with respect to polarization modulation, it is sufficient to map the differentially encoded binary data to two mutually orthogonal polarization states (opposite points on the Poincare sphere). There is no need for a specific state such as polarization or two circularly polarized waves that are opposite to each other.

また、差動符号化された2値データを直並列変換して2分岐した後、一方を1ビット(2分の1シンボル)だけ遅延させ、これらの信号を偏波変調器に入力し、2つの直交する偏波状態に独立に位相変調を行うことによって偏波変調を行うこともできる。   In addition, after differentially encoded binary data is serial-parallel converted and branched into two, one of them is delayed by 1 bit (1/2 symbol), and these signals are input to the polarization modulator. Polarization modulation can also be performed by independently performing phase modulation on two orthogonal polarization states.

さらに、差動符号化されたデータをデュオバイナリフィルタによってデュオバイナリ符号化し、この信号を偏波変調器に入力し、2つの直交する偏波状態に相補的に位相変調を行い、偏波変調を行うこともできる。   Furthermore, the differentially encoded data is duobinary encoded by a duobinary filter, and this signal is input to a polarization modulator, and phase modulation is performed in a complementary manner to two orthogonal polarization states. It can also be done.

本発明において光源として、シンボルレートに応じたパルス光源を用いることも可能でありその際における変調方法は上述の各方法が利用可能である。   In the present invention, a pulse light source corresponding to a symbol rate can be used as the light source, and the above-described methods can be used as the modulation method at that time.

本発明における光フィルタとしては、1シンボル分の光路長差を有するマッハツェンダ干渉計が利用可能である。マッハツェンダ干渉計では光カプラ部に2つの相補的に出力が得られるため、それぞれを独立に光電変換し、その出力差をとることにより、より効率的な受信を行うことが可能となる。   As the optical filter in the present invention, a Mach-Zehnder interferometer having an optical path length difference for one symbol can be used. In the Mach-Zehnder interferometer, two complementary outputs can be obtained in the optical coupler unit. Therefore, each of the Mach-Zehnder interferometers can independently perform photoelectric conversion and take an output difference thereof to perform more efficient reception.

本発明はコヒーレント光通信方法にも適用可能であり、光受信機において、伝送路からの入力光と周波数の異なる局部発振光源からの局部発振光とを合波し、これを偏波分岐器で分岐した後に受光器に入力し、出力として得られる中間周波数帯信号をそれぞれ1ビット遅延検波し、それらの和をとることにより復調を行うことができる。その際における変調方法は上述の各方法が利用可能である。   The present invention can also be applied to a coherent optical communication method. In an optical receiver, input light from a transmission path and local oscillation light from a local oscillation light source having different frequencies are combined, and this is combined with a polarization splitter. After branching, the signal is input to the optical receiver, and each intermediate frequency band signal obtained as an output is subjected to 1-bit delay detection, and demodulation can be performed by taking the sum thereof. As the modulation method at that time, the above-described methods can be used.

図1に本発明の実施例1の光通信システムの構成を示す。光送信機100は、光源110と、2値のデータ信号を差動符号化するプリコーダ120と、そのプリコーダ120により差動符号化した2値のデータを直交する2つの偏波状態に割り当てることにより光源110の出力光の偏波状態を変調させて光伝送路200に送出する偏波変調器130から構成される。光受信機300は、光伝送路200からの出力光とその出力光を1ビット遅延させた光とを合波するインパルス応答を有する光フィルタ310と、その光フィルタ310からの出力光を光電変換する光受信回路320とから構成される。   FIG. 1 shows a configuration of an optical communication system according to a first embodiment of the present invention. The optical transmitter 100 assigns light sources 110, a precoder 120 that differentially encodes a binary data signal, and binary data that is differentially encoded by the precoder 120 to two orthogonal polarization states. It comprises a polarization modulator 130 that modulates the polarization state of the output light of the light source 110 and sends it to the optical transmission line 200. The optical receiver 300 includes an optical filter 310 having an impulse response that combines output light from the optical transmission line 200 and light obtained by delaying the output light by 1 bit, and photoelectric conversion of the output light from the optical filter 310. And an optical receiving circuit 320.

以下、実施例1における変復調動作を説明する。プリコーダ120で差動符号化されたnビット目のデータdTnにより変調された偏波変調光電界E0nは、Jonesベクトルを用いて次式のように表すことができる。

Figure 2005123934
ここで電界振幅Eは信号光電力で規格化している。なお、ここでは直交する2つの直線偏波に情報を重畳する場合を想定しているが、他の場合についても同様である。 Hereinafter, the modulation / demodulation operation in the first embodiment will be described. The polarization-modulated optical electric field E 0n modulated by the n-th bit data d Tn differentially encoded by the precoder 120 can be expressed by the following equation using the Jones vector.
Figure 2005123934
Here, the electric field amplitude E is normalized by the signal light power. Here, it is assumed that information is superimposed on two orthogonal linearly polarized waves, but the same applies to other cases.

この偏波変調光は光伝送路200の伝搬中に偏波の擾乱を受ける。この擾乱Mは、偏波面の回転と直交偏波成分間の位相差であり、以下のJones行列によって記述される。

Figure 2005123934
ここでθは回転角であり、φは位相差である。したがって、光受信機300が受信する受信信号光E1nは次式となる。
Figure 2005123934
This polarization-modulated light is subjected to polarization disturbance during propagation through the optical transmission line 200. This disturbance M is a phase difference between the rotation of the polarization plane and the orthogonal polarization component, and is described by the following Jones matrix.
Figure 2005123934
Here, θ is a rotation angle, and φ is a phase difference. Therefore, the received signal light E 1n received by the optical receiver 300 is expressed by the following equation.
Figure 2005123934

光フィルタ310として図2に示すような3dBカップラ311,313および1ビット遅延器312をもつマッハツェンダフィルタ(マッハツェンダ干渉計)を用いるとすると、その出力EMnは、

Figure 2005123934
となる。ここで連続する2ビット間で偏波擾乱に変化は無いと仮定している。また、±はマッハツェンダフィルタの2つの出力ポートに対応している。+側の出力に対応する光強度I1nは、
Figure 2005123934
となり、伝送路中での偏波擾乱の影響を受けることなく差動的にデータが再生できていることが分かる。 If a Mach-Zehnder filter (Mach-Zehnder interferometer) having 3 dB couplers 311 and 313 and a 1-bit delay device 312 as shown in FIG. 2 is used as the optical filter 310, its output E Mn is
Figure 2005123934
It becomes. Here, it is assumed that there is no change in the polarization disturbance between two consecutive bits. Further, ± corresponds to the two output ports of the Mach-Zehnder filter. The light intensity I 1n corresponding to the output on the + side is
Figure 2005123934
Thus, it can be seen that the data can be reproduced differentially without being affected by the polarization disturbance in the transmission line.

一方、マッハツェンダフィルタの−側の出力に対応する光強度I2n

Figure 2005123934
となり、情報データに関して相補的な強度が得られる。したがって、マッハツェンダフィルタの2つの出力I1n,I2nをそれぞれ独立の受光器321,322で受光検出し、差動回路323でそれらの出力差をとると、
Figure 2005123934
となり、より効率的な受信を行うことが可能となる。 On the other hand, the light intensity I 2n corresponding to the negative output of the Mach-Zehnder filter is
Figure 2005123934
Thus, complementary strength can be obtained with respect to the information data. Accordingly, when the two outputs I 1n and I 2n of the Mach-Zehnder filter are detected by the independent light receivers 321 and 322 and the output difference between them is obtained by the differential circuit 323,
Figure 2005123934
Thus, more efficient reception can be performed.

図3に本実施例1における変復調動作例を示す。同図における各観測点(a)〜(e)の場所は図1に示しており、偏波状態の“H”および“V”は直線偏波での変調を想定して水平偏波と垂直偏波を示している。このように、差動符号化を行うことにより、データを再生できることが分かる。   FIG. 3 shows an example of modulation / demodulation operation in the first embodiment. The locations of the observation points (a) to (e) in the figure are shown in FIG. 1, and “H” and “V” in the polarization state are perpendicular to the horizontal polarization assuming modulation with linear polarization. The polarization is shown. Thus, it can be seen that data can be reproduced by performing differential encoding.

図4に数値シミュレーションによる受信波形を示す。同図より偏波擾乱を受けている場合においても上式で説明した通り、良好に信号が受信できていることが分かる。   FIG. 4 shows a received waveform by numerical simulation. From the figure, it can be seen that the signal can be received satisfactorily as described in the above equation even when the polarization disturbance is received.

図5に本発明の実施例2の光通信システムの構成を示す。本実施例2が実施例1と相違する点は、光送信機100が、第1および第2の差動符号化器121,122、直並列変換回路123、および1/2シンボルの遅延器124を具備するプリコーダ120と、直交する偏波成分に独立した位相変調を行う第1および第2の位相変調器131,132および偏波合成器133を具備する偏波変調器130とから構成される点にある。本実施例2における光伝送路200および光受信機300は実施例1と同一である。   FIG. 5 shows the configuration of an optical communication system according to the second embodiment of the present invention. The second embodiment is different from the first embodiment in that the optical transmitter 100 includes first and second differential encoders 121 and 122, a serial-parallel converter circuit 123, and a 1/2 symbol delay unit 124. And a polarization modulator 130 including first and second phase modulators 131 and 132 that perform phase modulation independent of orthogonal polarization components, and a polarization beam combiner 133. In the point. The optical transmission line 200 and the optical receiver 300 in the second embodiment are the same as those in the first embodiment.

以下、図5と図6を用いて本実施例における変調動作を説明する。図6における各観測点(a)〜(e)の場所は図5に示す。第2の差動符号化器122の出力のデータ列は直並列変換回路123に入力され、2つのデータ列dx,dyに分離される。偏波変調器130では、光源110からの入力光を直交する2つの偏波成分に等しく分割し、それぞれの偏波成分に対して位相変調器131,132でデータ列dx,dyを用いて独立に位相変調(0,π)を行う。この際、データ列dyによる変調タイミングを、遅延器124においてデータ列dxによる変調タイミングに対して1/2シンボル(原データの1ビット)分だけ遅延させる。このように位相変調された2つの偏波光を偏波合成器133で合波することにより、1ビットごとに直交偏波成分間の位相差が変化する偏波変調信号を得ることができる。   Hereinafter, the modulation operation in this embodiment will be described with reference to FIGS. The locations of the observation points (a) to (e) in FIG. 6 are shown in FIG. The data string output from the second differential encoder 122 is input to the serial-parallel conversion circuit 123 and separated into two data strings dx and dy. In the polarization modulator 130, the input light from the light source 110 is equally divided into two orthogonal polarization components, and the phase modulators 131 and 132 independently use the data strings dx and dy for each polarization component. Phase modulation (0, π) is performed. At this time, the modulation timing by the data sequence dy is delayed by 1/2 symbol (one bit of the original data) by the delay unit 124 with respect to the modulation timing by the data sequence dx. By combining the two polarization lights thus phase-modulated by the polarization beam combiner 133, it is possible to obtain a polarization modulation signal in which the phase difference between the orthogonal polarization components changes for each bit.

ここで、変調時の信号帯域は各偏波成分の変調速度が1シンボルごとであることから、実施例1における変調に対して1/2と狭帯域にすることができる。図7に本実施例2における光スペクトルと受信波形(光受信回路320の差動出力のアイダイアグラム)を示す。同図より、本実施例2においても良好に信号が受信できていることが分かる。なお、本実施例2では変調時ならびに復調時に差動動作が必要になるため、プリコーダ120での差動符号化は2段にわたって行う必要がある。   Here, since the modulation speed of each polarization component is one symbol, the signal band at the time of modulation can be narrowed to 1/2 as compared with the modulation in the first embodiment. FIG. 7 shows an optical spectrum and a received waveform (eye diagram of the differential output of the optical receiving circuit 320) in the second embodiment. From the figure, it can be seen that the signal can be received well in the second embodiment. In the second embodiment, a differential operation is required at the time of modulation and demodulation, and therefore the differential encoding at the precoder 120 needs to be performed in two stages.

図8に本発明の実施例3の光通信システムの構成を示す。本実施例3が前記した実施例1,2と相違する点は、光送信機100が、相補的な2出力を行う2重の差動符号化器121,122A、およびデュオバイナリフィルタ125,126を具備するプリコーダ120と、直交する偏波成分に独立な位相変調を行う第1および第2の位相変調器131,132および偏波合成器133からなる偏波変調器130とから構成される点にある。   FIG. 8 shows a configuration of an optical communication system according to the third embodiment of the present invention. The third embodiment is different from the first and second embodiments in that the optical transmitter 100 has dual differential encoders 121 and 122A that perform two complementary outputs, and duobinary filters 125 and 126. And a polarization modulator 130 composed of first and second phase modulators 131 and 132 that perform independent phase modulation on orthogonal polarization components and a polarization beam combiner 133. It is in.

以下、図8と図9を用いて本実施例における変調動作を説明する。図9における各観測点(a)〜(e)の場所は図8に示す。差動符号化器122Aの相補的な2出力はそれぞれデュオバイナリフィルタ125,126に入力され3値のデュオバイナリ信号となる。偏波変調器130では、光源110からの入力光を直交する2つの偏波成分に等しく分割し、それぞれの偏波成分に対して相補的なデュオバイナリ信号を用いて2つの位相変調器131,132で位相変調(-1/2π、0、1/2π)を行う。このように位相変調された偏波成分を偏波合成器133で合波することにより、1ビットごとに直交偏波成分間の位相差が変化する偏波変調信号を得ることができる。   Hereinafter, the modulation operation in this embodiment will be described with reference to FIGS. The locations of the observation points (a) to (e) in FIG. 9 are shown in FIG. The two complementary outputs of the differential encoder 122A are input to the duobinary filters 125 and 126, respectively, and become ternary duobinary signals. In the polarization modulator 130, the input light from the light source 110 is equally divided into two orthogonal polarization components, and two phase modulators 131, 131 using a duobinary signal complementary to each polarization component. At 132, phase modulation (-1 / 2π, 0, 1 / 2π) is performed. By combining the polarization components thus phase-modulated by the polarization beam combiner 133, a polarization-modulated signal in which the phase difference between the orthogonal polarization components changes for each bit can be obtained.

ここで、変調時の信号帯域はデュオバイナリ信号を用いていることから、実施例1における変調に対して1/2と狭帯域にすることができる。図10に本実施例における光スペクトルと受信波形(光受信回路320の差動出力のアイダイアグラム)を示す。同図より、本実施例3においても良好に信号が受信できていることが分かる。なお、本実施例3ではデュオバイナリ符号化時ならびに復調時に差動動作が必要になるため、プリコーダ120での差動符号化は2段にわたって行う必要がある。   Here, since a duobinary signal is used as a signal band at the time of modulation, the band can be narrowed to 1/2 as compared with the modulation in the first embodiment. FIG. 10 shows an optical spectrum and a received waveform (eye diagram of the differential output of the optical receiving circuit 320) in the present embodiment. From the figure, it can be seen that signals can be received well in the third embodiment. In the third embodiment, a differential operation is required at the time of duobinary encoding and at the time of demodulation. Therefore, the differential encoding by the precoder 120 needs to be performed in two stages.

図11に本発明の実施例4の光通信システムの構成を示す。本実施例4が前記した実施例1〜3と相違する点は、光源にクロック信号を入力し、シンボル周期に同期したパルス光源111とした点である。パルス光源111としては、モードロックレーザのように光源を直接変調するものならびに外部変調器によって強度変調を行うものがある。本実施例4のようにシンボル周期に同期したパルス光源111を用いる場合、信号光強度はRZ−DPSK正方法(例えば、非特許文献4)と同様にシンボル周期で変化する。このため、非線形光学効果による相互位相変調ひずみがシンボル繰り返し周波数成分に集中し、その影響を電気フィルタにより簡易に抑圧することができる。   FIG. 11 shows the configuration of an optical communication system according to the fourth embodiment of the present invention. The fourth embodiment is different from the first to third embodiments in that a clock signal is input to the light source and the pulse light source 111 is synchronized with the symbol period. Examples of the pulsed light source 111 include those that directly modulate the light source, such as a mode-locked laser, and those that perform intensity modulation with an external modulator. When the pulse light source 111 synchronized with the symbol period is used as in the fourth embodiment, the signal light intensity changes with the symbol period as in the RZ-DPSK positive method (for example, Non-Patent Document 4). For this reason, the cross-phase modulation distortion due to the nonlinear optical effect concentrates on the symbol repetition frequency component, and the influence can be easily suppressed by the electric filter.

図12に本発明の実施例5の光通信システムの構成を示す。本実施例5が前記した実施例1〜4と相違する点は、光受信機300を光コヒーレント受信機としている点である。すなわち、光受信機300は、局発光源331、ヘテロダイン検波を行う光合波器332、直交する偏波成分を分離する偏波分離器333、光電変換を行う受光器334a,334b、バンドパスフィルタ335a,335b、1ビット遅延検波回路336a,336b、ローパスフィルタ337a,337b、ならびに加算回路338から構成される。   FIG. 12 shows the configuration of an optical communication system according to the fifth embodiment of the present invention. The fifth embodiment is different from the first to fourth embodiments in that the optical receiver 300 is an optical coherent receiver. That is, the optical receiver 300 includes a local light source 331, an optical multiplexer 332 that performs heterodyne detection, a polarization separator 333 that separates orthogonal polarization components, light receivers 334a and 334b that perform photoelectric conversion, and a bandpass filter 335a. , 335b, 1-bit delay detection circuits 336a and 336b, low-pass filters 337a and 337b, and an adder circuit 338.

以下、本実施例5での受信動作を説明する。受信光信号は局発光源331からの局発光と光合波器332で混合されてヘテロダイン検波され、局発光成分を等しく分配する偏波分離器333において直交する2つの偏波成分に分離される。各成分は受光器334a,334bでそれぞれ独立に光電変換され、バンドパスフィルタ335a,335bにより中間周波数(IF)の成分が抽出される。各中間周波成分ixn、iynの複素振幅は次式となる。

Figure 2005123934
Hereinafter, the reception operation in the fifth embodiment will be described. The received optical signal is mixed with the local light from the local light source 331 and the optical multiplexer 332, subjected to heterodyne detection, and separated into two orthogonal polarization components in the polarization separator 333 that equally distributes the local light components. Each component is independently photoelectrically converted by the light receivers 334a and 334b, and an intermediate frequency (IF) component is extracted by the bandpass filters 335a and 335b. The complex amplitude of each intermediate frequency component i xn , i yn is given by
Figure 2005123934

2つの偏波に対応するIF成分は1ビット遅延検波回路336a,336bでそれぞれ独立に1ビット遅延検波され、ローパスフィルタ337a,337bで抽出される。それらの低域成分Ixn、Iynは、

Figure 2005123934
(12)
となり、加算器338において2つの偏波に対応する成分の和をとることによって
Figure 2005123934
として偏波変動の影響を受けることなく信号が復調される。なお、本実施例における変調方法としては実施例1〜4に記載の各変調方法が適用可能である。 The IF components corresponding to the two polarizations are independently detected by 1-bit delay detection by the 1-bit delay detection circuits 336a and 336b and extracted by the low-pass filters 337a and 337b. Their low frequency components I xn and I yn are
Figure 2005123934
(12)
By adding the components corresponding to the two polarizations in the adder 338,
Figure 2005123934
As a result, the signal is demodulated without being affected by the polarization fluctuation. Note that each modulation method described in the first to fourth embodiments can be applied as a modulation method in the present embodiment.

実施例1の光通信システムの構成を示すブロック図である。1 is a block diagram illustrating a configuration of an optical communication system according to a first embodiment. マッハツェンダフィルタを用いた光受信機の構成のブロック図である。It is a block diagram of the structure of the optical receiver using a Mach-Zehnder filter. 実施例1の変復調動作の説明図である。It is explanatory drawing of the modulation / demodulation operation | movement of Example 1. FIG. 実施例1の受信波形の説明図である。It is explanatory drawing of the received waveform of Example 1. FIG. 実施例2の光通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of the optical communication system of Example 2. FIG. 実施例2の変復調動作の説明図である。It is explanatory drawing of the modulation / demodulation operation | movement of Example 2. FIG. 実施例2の光スペクトルと受信波形の説明図である。It is explanatory drawing of the optical spectrum of Example 2, and a received waveform. 実施例3の光通信システムの構成を示すブロック図である。FIG. 6 is a block diagram illustrating a configuration of an optical communication system according to a third embodiment. 実施例3の変復調動作の説明図である。It is explanatory drawing of the modulation / demodulation operation | movement of Example 3. FIG. 実施例3の光スペクトルと受信波形の説明図である。It is explanatory drawing of the optical spectrum of Example 3, and a received waveform. 実施例4の光通信システムの構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of an optical communication system according to a fourth embodiment. 実施例5の光通信システムの構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of an optical communication system according to a fifth embodiment. 従来の光通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of the conventional optical communication system. 従来の偏波変動対策をもつ光受信機の構成を示すブロック図である。It is a block diagram which shows the structure of the optical receiver with the conventional polarization fluctuation countermeasure. 従来の別の偏波変動対策のもつ光受信機の構成を示すブロック図である。It is a block diagram which shows the structure of the optical receiver with another conventional countermeasure against polarization fluctuation.

符号の説明Explanation of symbols

100:光送信機
110:光源
111:パルス光源
120:プリコーダ
121,122,122A:差動復号化器
123:直並列変換器
124:遅延器
125,126:デュオバイナリフィルタ
130:偏波変調器
131,132:位相変調器
133:偏波合成器
200:光伝送路
300:光受信機
310:光フィルタ
311:3dBカップラ
312:1ビット遅延器
313:3dBカップラ
320:光受信回路
321,322:受光器
331:局発光源
332:光合波器
333:偏波分離器
334a,334b:受光器
335a,335b:バンドパスフィルタ
336a,336b:1ビット遅延検波回路
337a,337b:ローパスフィルタ
338:加算回路
341,341a,341b,341c:偏波分離器
342,342a,342b,342c:受光器
343,343a,343b,343c:受光器
344,344a,344b,344c:差動回路
345:偏波コントローラ
346:制御回路
347:3分波器
348:1/4波長板
349:ストークスパラメータ演算回路
DESCRIPTION OF SYMBOLS 100: Optical transmitter 110: Light source 111: Pulse light source 120: Precoder 121,122,122A: Differential decoder 123: Series-parallel converter 124: Delay device 125, 126: Duobinary filter 130: Polarization modulator 131 132: Phase modulator 133: Polarization synthesizer 200: Optical transmission line 300: Optical receiver 310: Optical filter 311: 3 dB coupler 312: 1-bit delay device 313: 3 dB coupler 320: Optical receiving circuit 321, 322: Light reception 331: Local light source 332: Optical multiplexer 333: Polarization separator 334a, 334b: Light receiver 335a, 335b: Band pass filter 336a, 336b: 1-bit delay detection circuit 337a, 337b: Low pass filter 338: Adder circuit 341 , 341a, 341b, 341c: polarization separator 3 2, 342a, 342b, 342c: Light receivers 343, 343a, 343b, 343c: Light receivers 344, 344a, 344b, 344c: Differential circuit 345: Polarization controller 346: Control circuit 347: Third duplexer 348: 1 / 4-wavelength plate 349: Stokes parameter calculation circuit

Claims (15)

入力される2値のデータ信号を差動符号化した信号により光源の出力光の偏波状態を変調して伝送路に送出し、該伝送路からの入力光と該入力光を1ビット遅延させた光を合波させて前記データ信号を復調することを特徴とする光通信方法。   The polarization state of the output light of the light source is modulated by a signal obtained by differentially encoding the input binary data signal and sent to the transmission line, and the input light from the transmission line and the input light are delayed by 1 bit. An optical communication method, wherein the data signal is demodulated by multiplexing the received light. 請求項1に記載の光通信方法において、
前記変調は、前記差動符号化した2値のデータを直交する2つの偏波状態に割り当てることにより行うことを特徴とする光通信方法。
The optical communication method according to claim 1,
The optical communication method according to claim 1, wherein the modulation is performed by assigning the binary data subjected to differential encoding to two orthogonal polarization states.
請求項1に記載の光通信方法において、
前記変調は、前記入力される2値のデータ信号を2回差動符号化してから直並列変換して2つの信号とし、且つ前記光源の光を偏波状態が直交する2つの光に分波し、該2つの光の一方を前記2つの信号の一方により位相変調し、前記2つの光の他方を前記2つの信号の他方を1/2シンボル遅延した信号により位相変調し、該両位相変調された2つの光を合波して前記伝送路に送出することを特徴とする光通信方法。
The optical communication method according to claim 1,
In the modulation, the input binary data signal is differentially encoded twice and then serial-parallel converted into two signals, and the light from the light source is split into two lights having orthogonal polarization states. Then, one of the two lights is phase-modulated by one of the two signals, the other of the two lights is phase-modulated by a signal obtained by delaying the other of the two signals by 1/2 symbol, and the both phase modulation is performed. An optical communication method comprising: combining two transmitted lights and sending them to the transmission line.
前記変調は、前記入力される2値のデータ信号を2回差動符号化してから相補関係にある2つのデュオバイナリ信号に変換し、且つ前記光源の光を偏波状態が直交する2つの光に分波し、該2つの光の一方を前記2つのデュオバイナリ信号の一方により位相変調し、前記2つの光の他方を前記2つのデュオバイナリ信号の他方により位相変調し、該両位相変調された2つの光を合波して前記伝送路に送出することを特徴とする光通信方法。   In the modulation, the input binary data signal is differentially encoded twice and then converted into two duobinary signals having a complementary relationship, and the light from the light source is converted into two lights having orthogonal polarization states. And phase-modulating one of the two lights with one of the two duobinary signals, phase-modulating the other of the two lights with the other of the two duobinary signals, An optical communication method characterized by combining two light beams and sending them to the transmission line. 請求項1乃至4のいずれか1つに記載の光通信方法において、
前記光源として、前記2値のデータのシンボル周期に同期したパルス光を出力するパルス光源を使用することを特徴とする光通信方法。
The optical communication method according to any one of claims 1 to 4,
An optical communication method using a pulsed light source that outputs pulsed light synchronized with a symbol period of the binary data as the light source.
請求項1に記載の光通信方法において、
前記復調は、前記伝送路から入力する入力光をマッハツェンダ干渉計で1シンボル分の光路長差をもつ2つの相補な光とし、該相補関係にある光信号を電気信号に変換してその差分をとることを特徴とする光通信方法。
The optical communication method according to claim 1,
In the demodulation, the input light input from the transmission path is converted into two complementary lights having an optical path length difference of one symbol by a Mach-Zehnder interferometer, the optical signal having the complementary relationship is converted into an electric signal, and the difference is obtained. An optical communication method comprising:
請求項1に記載の光通信方法において、
前記復調を、前記伝送路からの入力光をヘテロダイン検波してから2つの偏波成分に分離して光電変換することにより2つの中間周波数信号を生成し、該各中間周波数信号を1ビット遅延検波した後に加算して前記データ信号を復調する復調方法に代えたことを特徴とする光通信方法。
The optical communication method according to claim 1,
In the demodulation, input light from the transmission path is heterodyne detected, and then separated into two polarization components and photoelectrically converted to generate two intermediate frequency signals, and each intermediate frequency signal is subjected to 1-bit delay detection. An optical communication method according to claim 1, wherein the data signal is replaced by a demodulation method for demodulating the data signal.
光源と、入力される2値のデータ信号を差動符号化するプリコーダと、該プリコーダの出力信号により前記光源の出力光の偏波状態を変調する偏波変調器とを具備することを特徴とする光送信機。   Comprising: a light source; a precoder that differentially encodes an input binary data signal; and a polarization modulator that modulates a polarization state of output light of the light source by an output signal of the precoder. Optical transmitter. 請求項8に記載の光送信機において、
前記偏波変調器は、前記プリコーダにより差動符号化した2値のデータを前記光源の出力光の直交する2つの偏波状態に割り当てることを特徴とする光送信機。
The optical transmitter according to claim 8, wherein
The optical transmitter, wherein the polarization modulator assigns binary data differentially encoded by the precoder to two orthogonal polarization states of output light of the light source.
請求項8に記載の光送信機において、
前記プリコーダは、入力される2値のデータを差動符号化する第1の差動符号化器と、該第1の差動符号化器の出力データを再度差動符号化する第2の差動符号化器と、該第2の差動符号化器の出力信号を直並列変換して2つの信号に分離する直並列変換器と、該直並列変換器の一方の出力信号を1/2シンボル遅延させる遅延器とを具備し、
前記偏波変調器は、前記光源の出力光が直交する2つの偏波成分に分離された各光を入力する第1および第2の位相変調器と、該第1および第2の位相変調器の出力光を合波する偏波合波器とを具備し、
前記第1の位相変調器は前記直並列変換器の他方の出力信号により前記光源の出力光の一方の偏波成分を位相変調し、前記第2の位相変調器は前記遅延器の出力信号により前記光源の出力光の他方の偏波成分を位相変調することを特徴とする光送信機。
The optical transmitter according to claim 8, wherein
The precoder includes a first differential encoder that differentially encodes input binary data, and a second difference that differentially encodes output data of the first differential encoder again. A dynamic encoder, a serial-parallel converter that performs serial-parallel conversion on the output signal of the second differential encoder and separates it into two signals, and outputs one of the output signals of the serial-parallel converter to 1/2 A delay unit for delaying symbols,
The polarization modulator includes first and second phase modulators for inputting respective lights separated into two polarization components orthogonal to each other, and the first and second phase modulators. A polarization multiplexer that combines the output light of
The first phase modulator phase-modulates one polarization component of the output light of the light source with the other output signal of the series-parallel converter, and the second phase modulator uses the output signal of the delay device. An optical transmitter characterized in that the other polarization component of the output light of the light source is phase-modulated.
請求項8に記載の光送信機において、
前記プリコーダは、入力される2値のデータを差動符号化する第1の差動符号化器と、該第1の差動符号化器の出力データを再度差動符号化して相補関係にある2つの信号を出力する第2の差動符号化器と、該第2の差動符号化器から出力する一方の信号をデュオバイナリ信号に変換する第1のデュオバイナリフィルタと、前記第2の差動符号化器から出力する他方の信号をデュオバイナリ信号に変換する第2のデュオバイナリフィルタとを具備し、
前記偏波変調器は、前記光源の出力光が直交する2つの偏波成分に分離された各光を入力する第1および第2の位相変調器と、該第1および第2の位相変調器の出力光を合波する偏波合波器とを具備し、
前記第1の位相変調器は前記第1のデュオバイナリフィルタの出力信号により前記光源の出力光の一方の偏波成分を位相変調し、前記第2の位相変調器は前記第2のデュオバイナリフィルタの出力信号により前記光源の出力光の他方の偏波成分を位相変調することを特徴とする光送信機。
The optical transmitter according to claim 8, wherein
The precoder is complementary to a first differential encoder that differentially encodes input binary data, and differentially encodes output data of the first differential encoder again. A second differential encoder that outputs two signals; a first duobinary filter that converts one of the signals output from the second differential encoder into a duobinary signal; and A second duobinary filter that converts the other signal output from the differential encoder into a duobinary signal;
The polarization modulator includes first and second phase modulators for inputting respective lights separated into two polarization components orthogonal to each other, and the first and second phase modulators. A polarization multiplexer that combines the output light of
The first phase modulator phase-modulates one polarization component of the output light of the light source according to an output signal of the first duobinary filter, and the second phase modulator includes the second duobinary filter. An optical transmitter characterized in that the other polarization component of the output light of the light source is phase-modulated by the output signal.
光伝送路からの入力光と該入力光を1シンボル遅延させた光とが合波されるインパルス応答を持った光フィルタと、該光フィルタの出力光を光電変換する光受信回路とを具備することを特徴とする光受信機。   An optical filter having an impulse response in which input light from an optical transmission line and light obtained by delaying the input light by one symbol are combined, and an optical receiving circuit that photoelectrically converts the output light of the optical filter. An optical receiver characterized by that. 請求項12に記載の光受信機において、
前記光フィルタはマッハツェンダ干渉計からなり、
前記光受信回路は該マッハツェンダ干渉計の2つの出力光を個別に光電変換する2つの受光器と、該両受光器の出力信号の差分を出力する差動回路とを具備することを特徴とする光受信機。
The optical receiver according to claim 12, wherein
The optical filter comprises a Mach-Zehnder interferometer,
The optical receiver circuit includes two light receivers that individually photoelectrically convert two output lights of the Mach-Zehnder interferometer, and a differential circuit that outputs a difference between output signals of the two light receivers. Optical receiver.
光伝送路からの入力光を該入力光と異なる周波数の光で合波してヘテロダイン検波する光合波器と、該光合波器の出力光の直交する偏波成分を分離する偏波分離器と、該偏波分離器からの一方の出力光を光電変換する第1の受光器と、前記偏波分離器からの他方の出力光を光電変換する第2の受光器と、前記第1の受光器の出力信号を検波する第1の1ビット遅延検波器と、前記第2の受光器の出力信号を検波する第2の1ビット遅延検波器と、該第1および第2の1ビット遅延検波器の出力信号を加算する加算器とを具備することを特徴とする光受信機。   An optical multiplexer for combining the input light from the optical transmission line with light having a frequency different from that of the input light and performing heterodyne detection; and a polarization separator for separating orthogonal polarization components of the output light of the optical multiplexer; A first light receiver that photoelectrically converts one output light from the polarization separator, a second light receiver that photoelectrically converts the other output light from the polarization separator, and the first light reception. A first 1-bit delay detector for detecting the output signal of the detector, a second 1-bit delay detector for detecting the output signal of the second optical receiver, and the first and second 1-bit delay detectors An optical receiver comprising an adder for adding the output signals of the receiver. 請求項8乃至11のいずれか1つに記載の光送信機と、請求項12乃至14のいずれか1つに記載の光受信機とを具備することを特徴とする光通信システム。   An optical communication system comprising the optical transmitter according to any one of claims 8 to 11 and the optical receiver according to any one of claims 12 to 14.
JP2003357399A 2003-10-17 2003-10-17 Optical communication method, optical transmitter, and optical communication system Expired - Fee Related JP4247784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003357399A JP4247784B2 (en) 2003-10-17 2003-10-17 Optical communication method, optical transmitter, and optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003357399A JP4247784B2 (en) 2003-10-17 2003-10-17 Optical communication method, optical transmitter, and optical communication system

Publications (2)

Publication Number Publication Date
JP2005123934A true JP2005123934A (en) 2005-05-12
JP4247784B2 JP4247784B2 (en) 2009-04-02

Family

ID=34614295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003357399A Expired - Fee Related JP4247784B2 (en) 2003-10-17 2003-10-17 Optical communication method, optical transmitter, and optical communication system

Country Status (1)

Country Link
JP (1) JP4247784B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006345416A (en) * 2005-06-10 2006-12-21 Nec Corp System and method for optical transmission
JP2009530904A (en) * 2006-03-15 2009-08-27 アルカテル−ルーセント ユーエスエー インコーポレーテッド Method and apparatus for optically filtering communication signals
JP5372180B2 (en) * 2010-02-04 2013-12-18 日本電信電話株式会社 Transmission method, transmission / reception method, transmission device, and transmission / reception device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7017408B2 (en) 2004-02-13 2006-03-28 Be Intellectual Property, Inc. Electro-optic liquid level sensing system for aircraft beverage brewing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006345416A (en) * 2005-06-10 2006-12-21 Nec Corp System and method for optical transmission
JP4687262B2 (en) * 2005-06-10 2011-05-25 日本電気株式会社 Optical transmission system and optical transmission method
JP2009530904A (en) * 2006-03-15 2009-08-27 アルカテル−ルーセント ユーエスエー インコーポレーテッド Method and apparatus for optically filtering communication signals
JP4909401B2 (en) * 2006-03-15 2012-04-04 アルカテル−ルーセント ユーエスエー インコーポレーテッド Method and apparatus for optically filtering communication signals
JP5372180B2 (en) * 2010-02-04 2013-12-18 日本電信電話株式会社 Transmission method, transmission / reception method, transmission device, and transmission / reception device
US8934782B2 (en) 2010-02-04 2015-01-13 Nippon Telegraph And Telephone Corporation Transmission method, reception method, transmitter apparatus, and receiver device

Also Published As

Publication number Publication date
JP4247784B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP5437858B2 (en) Optical transmission system
JP5034770B2 (en) Coherent optical receiver and optical communication system
CN101207444B (en) Coherent optical receiver
JP2003249897A (en) Phase modulation communication system and method
US20060193399A1 (en) Optical communication device
JPWO2011096488A1 (en) Transmission method, reception method, transmission device, and reception device
JP2005167474A (en) Method and system for optical transmission
CN105794129A (en) Polarisation-independent coherent optical receiver
JP2019513314A (en) Original key recovery apparatus and method
JP5068240B2 (en) Optical transmission system, transmitter and receiver
EP2882118B1 (en) Polarization multiplexing optical transmitter and method for controlling operation
JP4247784B2 (en) Optical communication method, optical transmitter, and optical communication system
JP7385386B2 (en) Power receiving device and optical fiber power supply system
JP4621881B2 (en) Coherent optical transmission method
JP5233115B2 (en) Optical receiver using DQPSK demodulation method and DQPSK demodulation method
US20090310966A1 (en) Direct detection receiver using cross-polarization interferometer for polmux-ask system
JP4802270B2 (en) Optical phase synchronization method and optical phase synchronization apparatus in optical phase modulation system
JP2012039290A (en) Coherent optical time division multiplex transmission system
CN112202543B (en) High-order modulation format chaotic secret communication method
WO2021206060A1 (en) Signal processing device
JPH0918422A (en) Optical transmitter and receiver
JP4498953B2 (en) Coherent optical communication device and coherent optical communication system
CN114915349A (en) Coherent detection method, device and optical transmission system
Li et al. Research of 100Gbit/s DP-QPSK Based on DSP in WDM-PON System
JP6363933B2 (en) Optical transmitter / receiver, optical receiver, and optical transmitter / receiver method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees