JP2015002661A - 過電流保護回路、およびこの回路の制御方法 - Google Patents

過電流保護回路、およびこの回路の制御方法 Download PDF

Info

Publication number
JP2015002661A
JP2015002661A JP2013127732A JP2013127732A JP2015002661A JP 2015002661 A JP2015002661 A JP 2015002661A JP 2013127732 A JP2013127732 A JP 2013127732A JP 2013127732 A JP2013127732 A JP 2013127732A JP 2015002661 A JP2015002661 A JP 2015002661A
Authority
JP
Japan
Prior art keywords
current
fuse
current value
load circuit
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013127732A
Other languages
English (en)
Inventor
智永 井田
Tomonaga Ida
智永 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013127732A priority Critical patent/JP2015002661A/ja
Publication of JP2015002661A publication Critical patent/JP2015002661A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 ヒューズの周囲温度等の影響による溶断の再現性が悪く、低抵抗短絡による短絡であっても、ヒューズ溶断のための電源容量を増やすことなく確実に動作可能な過電流保護回路を得る。【解決手段】 溶断閾値が負荷回路の正常動作における最大電流値よりも低い第一および第二のヒューズを用い、第一のヒューズを含む第一の電流線路と第二のヒューズに直列接続される開閉器を含む第二の電流線路とを並列接続し、負荷回路に流れる電流値を検出する電流値検出部を備え、この電流検出部によって検出される負荷回路の電流値に基づいて第二の電流線路に含まれる開閉器を開閉するように構成した。【選択図】 図1

Description

本発明は、過電流保護回路およびこの回路の制御方法に関するものである。
電子機器(以下、負荷回路と称する場合もある。)は、短絡性の故障が発生したときに電流が過大に流れ、電子機器そのものの機能が失われてしまう可能性があるため、それを防ぐための過電流保護回路が設けられている場合が多い。このような過電流保護回路を構成する場合の電子部品として、過電流が流れることで自己発熱および溶融して物理的に電流路を遮断する、例えば特許文献1に示されるようなヒューズを用いる例がよく知られている。
ヒューズは、一旦溶断すると、溶断したヒューズを交換しない限り電流が電子回路に流れないという非回復性を有する。従って、ヒューズは、故障要因が不明のまま電子機器に再度通電されることを防ぐことに利用できる。しかしながら、ヒューズは、自己発熱による溶断という性質を有するので、溶断にいたる電流値(以下、溶断閾値と称する)については、製造ばらつきや周囲温度等の影響を受けやすい。そのため、一般的に、使用するヒューズを選定する際は、その溶断閾値が、電子機器の最大定格電流よりも低く、電子機器が正常動作している間に誤ってヒューズが溶断されないように電子機器の最大消費電流よりも大きいヒューズを選定する。
また、ヒューズの溶断を確実に行わせる目的で、例えば特許文献2に示されるように、電子機器の電源入力側に電流検知回路を設けて、電子機器の電流値が予め定めた電流値を超えた場合に、強制的に短絡路を形成することでヒューズを強制的に溶断する場合もある。
また、過電流保護回路には、ヒューズ以外のものを用いる場合もある。例えば特許文献3に示されるような例として、過電流が流れることにより自己発熱し、温度上昇によって抵抗値が大きくなる特性を持つPTC(Positive Temperature Coefficient)サーミスタ(以下、PTCサーミスタと称す)を用いる例がある。
このPTCサーミスタを用いた場合は、温度が上昇して所定の抵抗値に到ると電子機器に通電される電流が遮断される。そして、電流遮断後に温度が下がれば、PTCサーミスタの抵抗値が下がるので、回復性(いったん電源を切れば復帰し、再度電子機器が動作できる性質)を有する過電流保護回路が構成される。
特開2008−91292号公報(第1図、第2図) 特表2009−535004号公報(第1図、第3図) 特開2002−238148号公報(第1図)
特許文献1によるヒューズを電子機器に用いる場合、ヒューズそのものの溶断閾値が製造ばらつきや周囲温度等の影響を受けやすいことから、過電流保護回路における電流値による再現性の高い電流遮断動作が得難いといった課題があった。
特許文献2による過電流保護回路によれば、電子機器が必要とする正味の電源容量にヒューズが溶断する付加的な電源容量を加えた電源容量を有する電源部分が必要である。そのため、電子機器における電源部分の構成が大型化してしまい、低消費電力の電子機器を得にくいといった課題があった。
特許文献3による過電流保護回路によれば、一旦は電流路が遮断されるものの、PTCサーミスタの温度が下がれば電流路が復帰してしまうので、過電流の原因が解消されないまま、何度も電子機器に過電流が流れてしまう可能性があるため、場合によっては、電子機器そのものの機能が劣化したり失われてしまう、といった課題があった。
また、電子機器内の一部が数Ω程度の抵抗値で短絡した場合(すなわち、0Ωもしくは0Ωに近い抵抗値で短絡していない場合。以下、低抵抗短絡と称す)、ヒューズが併設されていたとしても、ヒューズが溶断する前に、PTCサーミスタの動作によって電流路が遮断されるため、同様の課題を生じやすい。
本発明は、上記の課題を解決するためになされたもので、1本の溶断閾値が電子機器の定格電流値よりも小さいヒューズを複数本並列に接続し、電子機器に流れる電流値を検知した結果に基づいて、並列接続された一部のヒューズを強制的に溶断することで、電源部分の電源容量の増大をきたすことなく、電子機器に至る電流路を遮断することが可能な過電流保護回路とこの過電流保護回路を確実に動作可能とする制御方法を得ることを目的とする。
本発明における過電流保護回路は、第一のヒューズを含む第一の電流線路と、第二のヒューズおよび該第二のヒューズに直列に接続される開閉器を含んで上記第一の電流線路と並列回路を構成する第二の電流線路と、負荷回路に流れる電流値を検出する電流値検出器とを備える過電流保護回路であって、上記第一および第二のヒューズの各電流閾値はいずれも上記負荷回路の正常動作における最大電流値よりも低く、かつ上記並列回路に含まれる上記第一および第二のヒューズによる合成溶断閾値が上記負荷回路の正常動作における最大電流値よりも大きいものであり、上記並列回路と上記負荷回路とが直列に接続されると共に、上記電流検出器によって検出される上記負荷回路の電流値に基づいて上記開閉器を開閉するように構成したことを特徴とする。
また、本発明における過電流保護回路の制御方法は、上記の構成を備える過電流保護回路の制御方法であって、第二の電流線路に含まれる開閉器を開とすることで第一の電流線路に含まれる第一のヒューズを溶断した後に、第二の電流線路に含まれる第二のヒューズを溶断するように制御することを特徴とする。
本発明によれば、電子機器に流れる電流値を検知した結果に基づいてヒューズを溶断するので、ヒューズを溶断させるための付加的な電源容量を増やすことなく、電子機器の保護が可能である。
実施の形態1の構成例を示す回路ブロック図である。 実施の形態1の構成例における電流監視回路の一例を示す回路ブロック図である。 実施の形態1の構成例におけるスイッチ素子の動作とヒューズに流れる電流との関係を示す模式図である。 実施の形態1の構成例における負荷回路に流れる電流と開閉制御信号との関係を示す模式図である。 実施の形態1の構成例における第一の電流線路の電流検出を行う構成例の回路ブロック図である。 実施の形態1の構成例における電源装置に必要な電流容量を示す模式図である。 実施の形態2の構成例を示す回路ブロック図である。 実施の形態2の構成例における電流監視回路の一例を示す回路ブロック図である。 実施の形態2の構成例における切替信号発生部の一例を示す回路ブロック図である。 実施の形態2の構成例における動作モードに対応する負荷回路の電流値を示す模式図である。 実施の形態3の構成例を示す回路ブロック図である。 実施の形態3の構成例における電流監視回路の一例を示す回路ブロック図である。
実施の形態1.
以下、この発明の実施の形態を図面に基づいて説明する。
図1は、この発明の過電流保護回路を適用した電子機器における実施の形態1の構成例を示す回路ブロック図である。図において、商用電源などに接続する電源入力端子1は電源装置2に接続される。この電源装置2は負荷回路6が動作するのに必要な電力を供給する。
電源装置2は、ヒューズ3aを含む第一の電流線路、およびヒューズ3bと開閉器としてのスイッチ素子4とを含む第二の電流線路の2つの電流線路が並列接続されて並列回路を構成している。負荷回路6の前段には、この負荷回路6に流れる電流値を検出するための電流監視回路5が設けられている。図1中、GNDは接地電位を示す(以下の説明に用いる各図中においても同様である)。
なお、ここでは、並列接続される第一および第二の電流線路に含まれるヒューズは、ヒューズ3aおよび3bの2本を用いた場合について説明するが、必ずしも2本に限定されるものではなく、本実施の形態に説明する動作は、3本以上のヒューズを、並列接続される第一および第二の電流線路に含む場合にあっても実現できる。
スイッチ素子4は、第二の電流線路に含まれるヒューズ3bを経由する電流線路を開閉するもので、電流監視回路5に接続された制御線7から出力される開閉制御信号CTLにより、その開閉状態が制御される。
このスイッチ素子4は、スイッチ素子4外部からの開閉制御信号CTLに基づいて電気的な開閉が可能であればどのような素子を用いてもよく、例えば、電磁リレー、アナログスイッチ、FET(電界効果トランジスタ)、トライアック等の一般的なスイッチ素子(スイッチ部品)、またはそれらの組み合わせによって第二の電流線路を開閉可能なものを用いることができる。
スイッチ素子4は、用いる素子にもよるが、スイッチ素子4の閉状態における電気抵抗値の大きさによっては、並列接続される第一および第二の各電流線路に流れる電流値のバランスに影響を与える場合がある。このような場合には、第二の電流線路に含まれるスイッチ素子4の有する電気抵抗値と同等あるいは同程度の抵抗素子を第一の電流線路に含まれるヒューズ3aに直列に接続して、並列接続される第一および第二の各電流線路に流れる電流値のバランスを保つ(ヒューズ3aおよび3bの溶断閾値に影響を与えないように第一および第二の各電流線路に同等あるいは同程度の電流が流れる)ようにしても良い。
なお、スイッチ素子4は初期状態において閉であり、制御線7から出力される開閉制御信号CTLの状態に応じて開閉を制御される。
本実施の形態において、並列接続されるヒューズ3aおよび3bの各溶断閾値は、下記の条件1〜3を満足する。
Iam<Id ・・・条件1
Ibm<Id ・・・条件2
IL<Id≦Iam+Ibm ・・・条件3
ここに、
Iam:ヒューズ3aの溶断閾値
Ibm:ヒューズ3bの溶断閾値
IL :負荷回路6の定常負荷時(正常動作)における最大電流値(以下、単に、最大電流値ILと称する場合もある)
Id :負荷回路6において電流遮断を行う制限電流値(以下、単に、制限電流値Idと称する場合もある)
(なお、図1に示す例では、ヒューズ3aとヒューズ3bとを並列接続しているので、合成された溶断閾値(以下、合成溶断閾値と称する)はIam+Ibmによって表される。3本以上のヒューズを並列接続する場合、各ヒューズの溶断閾値は制限電流値Idよりも低く、かつ、各ヒューズの溶断閾値の和から得られる合成溶断閾値は制限電流値Idよりも大きくなるように設定する。)
以下、図面に基づいて、その動作を詳細に説明する。
電源装置2は、商用電源に接続される電源入力端子1から電力を供給され、負荷回路6に必要な電圧に変換された直流電力を出力する。この電源装置2から出力された直流電力は、ヒューズ3aおよび3bを含んで構成される並列回路を経由して負荷回路6に与えられる。
ヒューズ3aを有する第一の電流線路と、ヒューズ3bおよびスイッチ素子4が直列接続されている第二の電流線路とは並列回路を構成しているので、直流電流がこの並列回路に流れる場合、第一および第二の各電流線路には、ヒューズ3aの抵抗値、ヒューズ3bの抵抗値に応じた値の電流IaおよびIbがそれぞれのヒューズに流れる。
初期状態においてスイッチ素子4は閉となっているので、第一および第二の各電流線路に電流が流れるが、スイッチ素子4が開となった場合には、第二の電流線路は断となるため、第一の電流線路にのみ電流が流れる。すなわち、電流監視回路5から接続されている接続線7の開閉制御信号CTLによりスイッチ素子4が開閉することで、第一および第二の電流線路に電流を流すか、第一の電流線路にのみ電流を流すかを選択できる。従って、第一および第二の電流線路に電流が流れるときはヒューズ3aおよび3bに電流が流れ、第一の電流線路にのみ電流が流れるときはヒューズ3aにのみ電流が流れることになる。
図2は、電流監視回路5の具体例を示す回路ブロック図である。
電流監視回路5は、電流検出部5aおよび制御信号出力部5bにより構成される。電流検出部5aは、第一および第二の電流線路によって構成される並列回路の後段に接続されて負荷回路6に流れる電流を検出する。
制御信号出力部5bは、電流検出部5aにより検出される負荷回路6への電流値(に対応する電圧値)と当該負荷回路6の過電流状態に対応して設定される制限電流値(に対応する電圧値)とを比較したコンパレータ出力に基づく開閉制御信号CTLを制御線7に与える。以下、図を参照しながら詳細に説明する。
第一および第二の電流線路により構成された並列回路に流れる電流値Iは、この並列回路と直列接続された抵抗素子Raの両端間電圧に比例するので、この抵抗素子Raの両端間の電圧を差動増幅器51により増幅して差動増幅電圧である電流値信号Vaとして出力する。
なお、以下の説明においては、抵抗素子Raの両端間の電圧に基づいて電流値信号Vaを得るようにしたものについて説明するが、電流線路周りの発生磁場を検出するホール素子や磁気抵抗素子等の磁場検出素子と増幅器とを組み合わせて電流値信号Vaを得るように構成してもよい。
この電流値信号Vaは、コンパレータ520により、定電圧源521から出力される閾値電圧値Vthと比較され、このコンパレータ520の出力は、開閉制御信号CTLとして接続線7に与えられる。この場合、定電圧源521から出力される閾値電圧値Vthは、制限電流値Idが抵抗素子Raに流れる際に生ずる電圧値に対応するように設定する(閾値電圧値Vthの設定は、設定値を予め固定値として設定しても良いし、複数の段階的な固定値を選択可能にしても良い。)。このようにすることで、制限電流値Idの設定をヒューズ3aおよび3bの各溶断閾値よりも正確に設計できると共に、周囲温度の影響を受けにくい過電流保護回路を得ることができる。
制御線7に与えられる開閉制御信号CTLは、例えば、電流値信号Vaが定電圧源から出力される閾値電圧値Vthよりも高い場合にはハイレベル信号(以下、単に、(H)と称する場合もある)となり、電流値信号Vaが定電圧源から出力される閾値電圧値Vthよりも低い場合にはローレベル信号(接地電位GNDと同じ電圧。以下、単に、(L)と称する場合もある)となる。
電流値信号Vaは抵抗素子Raに流れる電流Iに比例するので、開閉制御信号CTLが(H)の場合、電流値信号Vaが定電圧源から出力される閾値電圧値Vthよりも高いので、負荷回路6に流れる電流値が過電流状態であることを示す。また、同様に、開閉制御信号CTLが(L)の場合、電流値信号Vaが定電圧源から出力される閾値電圧値Vthよりも高いので、負荷回路6に流れる電流値が過電流状態ではないことを示す。
負荷回路6に過電流が発生した場合の動作機序について、過電流発生前後の状況と併せて、図3および図4を参照しながら詳細に説明する。
図3は、第二の電流線路に含まれるスイッチ素子4の動作と、それに応じて変化する第一および第二の電流線路におけるヒューズに流れる電流と各ヒューズの状態との関係を模式的に示した図である。
図4は、負荷回路6に流れる電流値Iの変化(図4(a))、第一の電流路に含まれるヒューズ3aに流れる電流Iaの変化(図4(b))、第二の電流路に含まれるヒューズ3bに流れる電流Ibの変化(図4(c))、接続線7に与えられる開閉制御信号CTLの変化(図4(d))、図3に模式的に示した各状態との対応(図4(e))のそれぞれを時間経過に沿って示したものである。なお、以下では、開閉制御信号CTLが(H)に変化したことを契機として、ヒューズ3aが溶断にいたる時間より長い時間の遅延後、開閉制御信号CTLが(H)から(L)に復帰するように構成した例について説明する。
上述したように、負荷回路6内で短絡または低抵抗短絡が発生することで負荷回路6に流れる電流Iが制限電流値Idを越える過電流状態になった場合、開閉制御信号CTLが(L)から(H)に変化する。この開閉制御信号CTLの変化に応じてスイッチ素子4の状態は閉から開に切り替わることで第二の電流線路が開となるので、この第二の電流線路に含まれるヒューズ3bには電流が流れなくなる。
従って、それまで第一および第二の電流線路に流れていた電流I(電流値はIa+Ib)は、第一の電流線路のみに流れる。第一の電流線路に流れる電流I(ヒューズ3bには電流が流れなくなるが、負荷回路6に流れる電流値は元のIa+Ibと同じ大きさの電流値を有する)は、ヒューズ3aの溶断閾値Iamよりも大きいので、ヒューズ3aは、溶断に至るまでの時間が経過した後に溶断する。すなわち、ヒューズ3aおよび3bに電流が流れていた状態から(図4のAの期間。図3(a)に対応。)、ヒューズ3aのみに電流が流れる状態に変化する(図4のBの期間。図3(b)に対応)。
ヒューズ3aの溶断によって第一の電流線路は断線して負荷回路6へ流れる電流が遮断されるため、負荷回路6の動作は一旦停止する(図4のCのタイミング。図3(c)に対応。)。
負荷回路6の動作が一旦停止することによって、開閉制御信号CTLは(H)から初期状態の(L)に戻ると共に、スイッチ素子4の状態が初期状態の閉に復帰する。これにより、ヒューズ3bを含む第二の電流線路のみに電流Iが流れる状態になる。電源装置2は電源電流を供給できる状態のままであるので、再度、負荷回路6に電流Iが流れる。
なお、ここでは、負荷回路6の動作が一旦停止することによって、開閉制御信号CTLは(H)から初期状態の(L)に戻ると共に、スイッチ素子4の状態が初期状態の閉に復帰する構成について説明するが、スイッチ素子4に用いる素子によっては、開閉制御信号CTLが(L)となると初期状態の閉に復帰せずに開のままとなる素子もある。このような場合には、電流監視回路5を動作させるための電源を電源装置2から直接供給するようにして、初期状態の閉に復帰するように構成してもよい。
ヒューズ3aの溶断によって第一の電流線路は断線しているため、負荷回路6に流れる電流は、すべて第二の電流線路を構成するヒューズ3bを流れることとなる。負荷回路6における過電流状態が解消されているわけではないので、負荷回路6に流れる電流値I(ヒューズ3bに流れるIbと同じ電流値)は、ヒューズ3aが溶断するに至った電流値に到達するよう上昇を続ける(図4のDの期間。図3(d)に対応)。
負荷回路6に流れる電流値Iが上昇し、ヒューズ3bの溶断閾値Ibmを超える状態となった段階で、ヒューズ3bの溶融が始まり、負荷回路6に流れる電流値Iが制限電流値Idを越える前までにヒューズ3bが溶断に至るまでの時間が経過した場合、ヒューズ3bは溶断する。
あるいは、負荷回路6に流れる電流値Iが上昇し、ヒューズ3bの溶断閾値Ibmを超えたものの、ヒューズ3bの溶断に至るまでの時間が経過しないまま、電流値Iが制限電流値Idを越えたとしても、電流値Iが制限電流値Idを越えた時点からヒューズ3bが溶断するのに十分な時間の遅延をもって開閉制御信号CTLを(L)から(H)へ変化させることで、ヒューズ3bは溶断する。以上に述べた機序により、最終的には、ヒューズ3aおよび3bが共に溶断することで第一および第二の電流線路がいずれも断線状態となり、負荷回路6への電源供給が停止する(図4のEのタイミング。図3(e)に対応)。
上記の実施の形態1の設計例と動作について以下に示す(必ずしもこの設計例に限定されるものではない)。
なお、以下においてIam:ヒューズ3aの溶断閾値、Ibm:ヒューズ3bの溶断閾値、IL:負荷回路6の定常動作時における最大電流値、Id:負荷回路6において電流遮断を行う制限電流値である。なお、[A]は電流値(アンペア単位)である。
Iam=1[A]、Ibm=1[A](合成溶断閾値Iam+Ibm=2[A])、IL=1.8[A]、Id=1.9[A]
この設計例では、負荷回路6に流れる電流値IがIdの1.9[A]に至っていない状態(例えば、電流値IがILより低い1.2[A]の場合)では、合成溶断閾値が2[A]であり、ヒューズ3aおよび3bに流れる電流値IaおよびIbはそれぞれ0.6[A]であり、いずれもIamおよびIbmの1[A]を超えていないので、ヒューズ3aおよび3bは溶断しない。
短絡あるいは低抵抗短絡により負荷回路6に流れる電流値IがIdの1.9[A]を超える状態となったときは、開閉制御信号CTLが(L)から(H)に変化することに応じてスイッチ素子4が開となるのでヒューズ3aのみに1.9[A]の電流が流れる。ヒューズ3aの溶断閾値は1[A]であるのでヒューズ3aは溶断し、負荷回路6への電流が一旦停止する。
この一旦停止により、開閉制御信号CTLが(L)となりスイッチ素子4も閉に復帰することで負荷回路6に再び電流が流れ、ヒューズ3bのみに1.9[A]まで至る電流が流れる。ヒューズ3bの溶断閾値は1[A]であるのでヒューズ3bは溶断し、最終的には、負荷回路6への電源供給が停止する。
なお、上記開閉制御信号CTLは、上述のコンパレータ520からの出力と第一の電流線路における電流検出信号との排他的論理和に基づいて出力されるように構成してもよい。図5は、第一の電流線路における電流検出信号を検出するようにした構成例を示すブロック図である。
図5に示すように、第一の電流線路にヒューズ3aに直列接続する抵抗素子Rbを含むように構成し、この抵抗素子Rbの両端間の電圧を検知することで第一の電流線路に電流が流れていることを検知するようにしてもよい。第一の電流線路に電流が流れている場合、抵抗素子Rbの両端間には電圧が生じ、この生じた電圧に基づいて差動増幅器36から電流値信号Vbが増幅出力される。
なお、以下の説明においては、抵抗素子Rbの両端間の電圧に基づいて電流値信号Vbを得るようにしたものについて説明するが、電流線路周りの発生磁場を検出するホール素子や磁気抵抗素子等の磁場検出素子と増幅器とを組み合わせて電流値信号Vbを得るように構成してもよい。
この電流値信号Vbは、コンパレータ56に入力され、第一の電流線路に電流が流れていることを示すヒューズ検出信号DETを出力する。コンパレータ520からの出力を過電流であるかどうかを開閉制御信号CTLに対応させると、これらヒューズ検出信号DETと制御線7に与えられる開閉制御信号CTLおよびスイッチ素子4の開閉状態との間には下記の関係が成り立つ。
Figure 2015002661
ヒューズ検出信号DETは、ヒューズ3aに電流が流れている(すなわちヒューズ3aが溶断していない)場合に、(H)、ヒューズ3aに電流が流れていない(すなわちヒューズ3aが溶断している)場合に(L)となる。また、開閉制御信号CTLは、負荷回路6が過電流となっていない場合に(L)、負荷回路6が過電流となっている場合に(H)となる。
ヒューズ検出信号DETが(H)であって、負荷回路6が正常動作(過電流が生じていない)である場合には開閉制御信号CTLが(L)であるので、ヒューズ検出信号DETと開閉制御信号CTLとの排他的論理輪は(H)となり、その反転信号である制御線7に与えられる反転開閉制御信号CTL1は(L)となるので、スイッチ素子4は閉のままとなる(従って、第一の電流線路と第二の電流線路とによって構成される並列回路は初期状態のままである)。
ヒューズ検出信号DETが(H)であって、負荷回路6に過電流が生じた場合には開閉制御信号CTLは(L)から(H)に変化するので、ヒューズ検出信号DETと開閉制御信号CTLとの排他的論理輪は(L)となり、その反転信号である制御線7に与えられる反転開閉制御信号CTL1は(H)となるので、スイッチ素子4は開に変化する。すなわち、スイッチ素子4が開となることで、第一の電流線路のみに電流が流れるようになってヒューズ3aが溶断に至り、負荷回路6は、一旦電流が遮断される。この遮断により、スイッチ素子4は初期状態の閉に復帰する。
ヒューズ3aが溶断した後、スイッチ素子4が閉に復帰すると負荷回路6には再び電流が流れる。ここで、第一の電流線路は断線しているのでヒューズ検出信号DETは(L)となる。負荷回路6の過電流状態は継続しているので、負荷回路6に流れる電流値が制限電流値Idを越えた段階で開閉制御信号CTLは(H)となる。従って、ヒューズ検出信号DETと開閉制御信号CTLとの排他的論理輪は(H)となり、その反転信号である制御線7に与えられる反転開閉制御信号CTL1は(L)となるので、スイッチ素子4は閉のままとなる。第一の電流線路は断線しているので、第二の電流線路のみに電流が流れ、ヒューズ3bが溶断する。
このようにすると、ヒューズ3aが溶断して第一の電流線路が断線している場合を検知することが可能となり、第一の電流線路が断線している場合には、スイッチ素子4を閉のまま保つことでヒューズBを確実に溶断することができる利点がある。
この実施の形態1における効果を、図6を参照しながら説明する。図6は、実施の形態1における、電源装置2に必要な電流容量を説明するための模式図である。
図6(a)は、複数本のヒューズによる並列回路を構成しない場合に必要となる、電源装置の電流容量を示し、図6(b)は、本実施の形態に説明したような、複数本のヒューズによる並列回路を構成した場合に必要となる、電源装置の電流容量を模式的に示している。
複数本のヒューズによる並列回路を構成しない場合には、図6(a)に示すように、そのヒューズの溶断閾値が負荷回路6の正常の負荷範囲からマージンを比較的大きく見込んだ状態での電流容量が必要となる。対して、複数本のヒューズによる並列回路を構成した場合には、図6(b)に示すように、並列回路を構成するヒューズ単体の溶断閾値を越える状態の電流容量で十分であるので、図6(a)に示したものに比して上記のマージンは小さくてもよいため、電源装置2の電流容量も小さいもので十分となる。
以上説明したように、この実施の形態1によれば、電流検出回路から出力される電圧に対応して制限電流を設定するので、低抵抗短絡の場合であっても、ヒューズを用いた場合に比べて精度良く電流遮断が可能となる。
また、ヒューズの溶断閾値と電流路遮断が必要な電流値との関係を満足するように設定することで、制限電流の電流値の設定がヒューズの溶断電流値によらずに任意の値とすることが可能であるため、過電流保護回路の設計自由度を確保できる。
また、複数本のヒューズによる並列回路を構成しない場合に比して、電流容量の小さな電源装置を用いることができるとともに、省電力にも効果がある。
なお、上記の実施の形態における例のように、ヒューズ3a、ヒューズ3bの溶断電流値の設定は他の方法も可能である。例えば、ヒューズ3bの方の溶断閾値を小さく設定することにより、より確実にヒューズ3bを溶断させるようにすることも可能である。
また、ヒューズの本数は2本に限られることはなく、3本以上のヒューズを並列接続してもよい。本実施の形態に述べた機序の考え方に基づいて、並列接続されたうちのいずれかのヒューズを溶断した後、残ったヒューズを順次溶断するように構成してもよい。併せて、各ヒューズの電流の状態を検出して、本実施の形態と同様な動作を行うようにしてもよい。
実施の形態2.
実施の形態1では、電流監視回路5の制限電流値Idは一つの値であったが、負荷回路6によっては、その動作モードに応じて最大電流値ILが変化する場合がある。そして、そのそれぞれの動作モードにおいても、短絡あるいは低抵抗短絡を的確に検知して、ヒューズを溶断したい場合もある。以下に説明する実施の形態2においては、負荷回路6の動作モードに応じて制限電流値Id1またはId2にそれぞれ対応する第一の設定電圧値Vth1または第二の設定電圧値Vth2のいずれかを閾値電圧値Vthとして選択し、この選択された閾値電圧値Vthと負荷回路6に流れる電流値信号Vaとを比較して開閉制御信号CTLを出力するように構成したものである。
実施の形態2の構成例を図7に示す。同図に示すように、制御信号出力部5bは、閾値設定部5cと切替信号発生部5dとを有して構成される。それ以外の構成は、基本的に実施の形態1に説明したものと同様である。図8は図7に示した電流監視回路5を更に詳細に示したものである。
図8に示すように、電流監視回路5に含まれる閾値設定部5cは、第一の設定電圧値Vth1の電圧出力を行う定電圧源521および第二の設定電圧値Vth2の電圧出力を行う定電圧源522を備え、電圧切替スイッチ101により、これら2つの定電圧源のいずれかの電圧出力を選択可能に構成されている。電圧切替スイッチ101は、定電圧源521または定電圧源522のいずれかの電圧出力を閾値電圧値Vthとして出力する。
負荷回路6に流れる電流値を示す電流値信号Vaはコンパレータ520の一方に入力され、他方に入力される電圧切替スイッチ101から出力された閾値電圧値Vthと比較される。実施の形態1に述べたのと同様に、この比較結果であるコンパレータ520の出力は開閉制御信号CTLとして接続線7に与えられ、スイッチ素子4の開閉を制御する。
上述の電圧切替スイッチ101における、第一の設定電圧値Vth1と第二の設定電圧値Vth2の選択は、切替信号発生部5dから出力される切替信号pに基づいて行われる。
切替信号発生部5dの構成について図9を参照しながら説明する。切替信号発生部5dは、負荷回路6における動作モードに対応して接続線9から与えられる動作モード信号MODを入力として、この動作モード信号MODに対応して設定されるべき制限電流値を予め記憶した制限電流値記憶部510と、この制限電流値記憶部510から出力される制限電流値に対応して設定されるべき設定電圧値を出力する選択電圧値出力部520とを有する。
上記の構成を適用するのに好適な例として、データ通信の有無に対応して負荷回路6から出力される動作モード信号MODに基づく例について、GE−PON(Gigabit Ethernet(登録商標) Passive Optical Network)において使用される加入者装置であるONU(Optical Network Unit)光モジュールを例に説明する。
GE−PONにおいて使用されるONU光モジュールの省電力機能は、IEEE P1904.1において定義されている。この省電力機能とは、ユーザのデータ通信の有無を検知し、データ通信が行われていないと判断される間(以下、スリープモードと称す)、ONUの回路のうち必要でない部分の電力を切断して省電力を図るものである(すなわち、データ通信が行われていない場合には、例えば、光送信部あるいは光受信部も含めて電流供給を停止することで、ONUの消費電力を削減する)。
なお、この省電力機能には、ONU光モジュールの送信部のみ動作停止するか、あるいは送受信部共に周期的に動作停止するかの2つのタイプがある。以下では、簡単のため、省電力機能としてONU光モジュールの送信部のみを動作停止するタイプを例として説明する。
本実施の形態の負荷回路6に相当するONU光モジュールに要する電流値は、データ通信(特に、データ送信)を行っている状態(以下、この状態に対応する間をデータ通信モードと称する)とスリープモードとの間で大きく異なっている。すなわち、負荷回路6(ここではONU光モジュール)が正常に動作していても、両モードのいずれであるかによって負荷回路6の最大電流値が大きく異なることになる。
従って、負荷回路6の動作状態(データ通信モードまたはスリープモード)に対応して、各モードに対応する制限電流値により、ヒューズの溶断を制御することで、いずれの動作モードにおいて短絡または低抵抗短絡が生じたとしても、的確に負荷回路6に流れる電流を停止することが可能となる。
ここで、データ通信モードに対応して制限電流値Id1を、スリープモードに対応して制限電流値Id2をそれぞれ設定する場合について述べる。なお、制限電流値Id1に対応して定電圧源521から出力される第一の設定電圧値Vth1を設定し、制限電流値Id2に対応して定電圧源522から出力される第二の設定電圧値Vth2を設定する(これらの対応関係を図9の下段に示す)。
図10は、負荷回路6のデータ通信モードとスリープモードの各動作モードに対応して流れる電流値の変化と動作モード信号との関係を模式的に示した図である。ケース1(図10の上段、左側)は、短絡または低抵抗短絡が生じていない場合の負荷回路6に流れる電流値の変化の例であり、ケース2(図10の上段、右側)は、短絡または低抵抗短絡が生じている場合の負荷回路6に流れる電流値の変化の例である。なお、負荷回路6がデータ通信モードである場合の動作モード信号は(H)、スリープモードである場合の動作モード信号は(L)としている。
短絡または低抵抗短絡が生じていないケース1の場合の負荷回路6に流れる最大電流値が、それぞれの実測あるいは実測の統計処理等において、データ通信モードにおいてILA、スリープモードにおいてILSである場合、例えば、それぞれの最大電流値ILAおよびILSの10%増しの値を制限電流値としてId1、Id2に設定する。
従って、負荷回路6の動作状態がデータ通信モードである場合には、制限電流値Id1を越える電流値(図10の上段、右側に模式的に示すように、電流値信号Vaが負荷回路6に流れる電流値がId1+Δ1の電流値を示す場合)となった時点で過電流の状態と判断されるからヒューズ3aの溶断を行い、負荷回路6の動作状態がスリープモードである場合には、制限電流値Id2を越える電流値(図10の上段、右側に模式的に示すように、電流値信号Vaが負荷回路6に流れる電流値がId1+Δ2の電流値を示す場合)となった時点で過電流の状態と判断されるからヒューズ3aの溶断を行うことになる。
すなわち、負荷回路6がデータ通信モードまたはスリープモードのいずれかであるかを示す動作モード信号(H)または(L)に応じて制限電流値Id1またはId2のいずれかに対応する閾値電圧値Vthを設定し、この設定された制限電流値に対応する閾値電圧値と電流値信号Vaとを比較し、それに基づく開閉制御信号CTLに基づいてスイッチ素子4の開閉を制御すれば、それぞれの動作モードに応じた過電流時のヒューズ3aの溶断を行うことができる(第一および第二の電流線路を遮断するまでの機序は実施の形態1に説明したものと同様である)。
なお、上述の説明において、動作モードが2つの場合について説明したが、負荷回路6の動作において更に多くの動作モードを含む場合には、動作モード信号を(H)または(L)の複数ビットによって構成することで、3つ以上の動作モードを判別することができるので、それら各動作モードに対応する閾値電圧値を設定することが可能である。
この実施の形態2によれば、負荷回路6の動作モードに対応した制限電流値を選択して設定することができるので、より確実に短絡または低抵抗短絡に対応可能な過電流保護回路を実現できる。
実施の形態3.
実施の形態1、2に説明したものよりも負荷回路6の動作モードが複数である場合、負荷回路6の正常状態における各最大電流値を予め把握することが困難な場合がある。このような場合に好適な実施の形態3について説明する(簡単のため、負荷回路6の動作モードが、モード1としてデータ通信モードおよびモード2としてスリープモードの2つのモードを有する場合について説明する。)。実施の形態3においては、負荷回路6の動作モードにおける最大電流値に対応する最大電圧の平均値(以下、最大電圧平均値と称す)を求め、この最大電圧平均値に基づいて、制限電流値Id1またはId2にそれぞれ対応する第一の設定電圧値Vth1または第二の設定電圧値Vth2のいずれかを閾値電圧値Vthとして選択し、この選択された閾値電圧値Vthと負荷回路6に流れる電流値信号Vaとを比較して開閉制御信号CTLを出力するように構成したものである。
実施の形態3の構成例を図11に示す。同図に示すように、制御信号出力部5bは、閾値設定部5c、切替信号発生部5dおよび統計記憶部5eを有して構成される。それ以外の構成は、基本的に実施の形態1または2に説明したものと同様である。図12は図11に示した電流監視回路5を更に詳細に示したものである。
図12において、制御信号出力部5bに含まれる切替信号発生部5dは、基本的に実施の形態2で説明したものと同様の構成である。同じく、制御信号出力部5bに含まれる統計記憶部5eは、負荷回路6に流れる電流値に対応する電流値信号Vaを所定のタイミングでサンプリングする電流サンプリング部530と、この電流サンプリング部530からの出力値を記憶するメモリ(図示しない)を含む。
電流サンプリング部530には、電流検出部5aから出力される負荷回路6の電流値信号Vaが入力される。また、電流サンプリング部530には、負荷回路6から出力される動作モード信号MODが入力される。負荷回路6がデータ通信モードである場合、動作モード信号MODは、図10に示したのと同様に、負荷回路6がデータ通信モードである場合の動作モード信号MODは(H)、スリープモードである場合の動作モード信号MODは(L)として出力される。
動作モード信号MODが(H)である場合には、負荷回路6がデータ通信モードであるので、例えば、動作モード信号MODが(H)となってから初めての5秒間の電流値信号Vaを電流値サンプリング部530においてサンプリングし、図示しないメモリに記憶する。電流値信号Vaをサンプリングする際には、各サンプリングされた電流値信号Vaの平均値あるいは図示しない低周波濾過フィルタから出力される電圧値をサンプリングするとよい。以下では、データ通信モードに対応する電流値信号Vaの平均値を最大電圧平均値VL1として説明する。
動作モード信号MODが(L)である場合には、負荷回路6がスリープモードであるので、例えば、動作モード信号MODが(L)となってから初めての5秒間の電流値信号Vaを電流値サンプリング部530においてサンプリングし、図示しないメモリに記憶する。電流値信号Vaをサンプリングする際には、最大電圧平均値VL1をサンプリングした場合と同様に、各サンプリングされた電流値信号Vaの平均値あるいは図示しない低周波濾過フィルタから出力される電圧値をサンプリングするとよい。以下では、スリープモードに対応する電流値信号Vaの平均値を最大電圧平均値VL2として説明する。
なお、負荷回路6が故障にいたる場合の上限電圧値を超えていないかどうかを常に確認する手段(例えば、図示しないメモリに、負荷回路6が故障にいたる場合の上限電圧値を予め格納しておき、格納された上限電圧値とサンプリングされた最大電圧平均値VL1または最大電圧平均値VL2とを比較する手段)を更に有して、最大電圧平均値VL1または最大電圧平均値VL2が上限電圧値を超える場合には、ヒューズ3aを溶断する機序を実行するように構成してもよい。
最大電圧平均値VL1または最大電圧平均値VL2を図示しないメモリに格納する際には、動作モード信号MODと対応付けて格納する。従って、動作モード信号MODが負荷回路6の動作モードの(H)または(L)に応じて、動作モード信号MODが(H)の場合には最大電圧平均値VL1の例えば10%増しの電圧値(データ通信モードの制限電流値Id1に対応する電圧値)を閾値電圧値Vth1に設定し、動作モード信号MODが(L)の場合には最大電圧平均値VL2の例えば10%増しの電圧値(スリープモードの制限電流値Id2に対応する電圧値)を閾値電圧値Vth2に設定することが可能となる。
このように構成することで、動作モード信号MODに対応する閾値電圧値Vth1、Vth2を予め設定することなく、負荷回路6の個体差に応じた閾値電圧値を設定することが可能となる。なお、ヒューズ3aの溶断を実行する機序については、実施の形態2に説明したものと同様であるので、その説明を省略する。
なお、上述の説明において、動作モードが2つの場合について説明したが、負荷回路6の動作において更に多くの動作モードを含む場合には、動作モード信号を(H)または(L)の複数ビットによって構成することで、3つ以上の動作モードを判別することができるので、実施の形態2と同様に、それら各動作モードに対応する閾値電圧値を設定することが可能である。
この実施の形態3によれば、負荷回路6の動作モード毎に閾値電圧値を予め設定しなくとも、回路動作が正常動作である初期の電流値信号をサンプリングして設定するので、負荷回路6の個体差に応じた閾値電圧値の設定が可能である。従って、負荷回路6の個体差をも考慮して、負荷回路6の動作モードに対応した制限電流値を選択して設定することができるので、より確実に短絡または低抵抗短絡に対応可能な過電流保護回路を実現できる。
1 電源入力端子、2 電源装置、3a ヒューズ、3b ヒューズ、4 スイッチ素子、5 電流監視回路、6 負荷回路、CTL 開閉制御信号。

Claims (10)

  1. 第一のヒューズを含む第一の電流線路と、
    第二のヒューズおよび該第二のヒューズに直列に接続される開閉器を含んで上記第一の電流線路と並列回路を構成する第二の電流線路と、
    負荷回路に流れる電流値を検出する電流検出部とを備える過電流保護回路であって、
    上記第一および第二のヒューズの各溶断閾値はいずれも上記負荷回路の正常動作における最大電流値よりも低く、かつ上記並列回路に含まれる上記第一および第二のヒューズによる合成溶断閾値が上記負荷回路の正常動作における最大電流値よりも大きいものであり、
    上記並列回路と上記負荷回路とが直列に接続されると共に、上記電流検出部によって検出される上記負荷回路の電流値に基づいて上記開閉器を開閉するように構成したことを特徴とする過電流保護回路。
  2. 開閉器は、電流検出部によって検出される負荷回路の電流値とあらかじめ定められた制限電流値とに基づいて開閉状態を変更するように構成したことを特徴とする請求項1に記載の過電流保護回路。
  3. 電流検出部は、負荷回路の電流値を所定のタイミングでサンプリングする統計記憶部を備えることを特徴とする請求項1に記載の過電流保護回路。
  4. サンプリングした電流値に基づき統計記憶部から出力される平均値に基づいて制限電流値を設定し、該設定された制限電流値に基づいて開閉器の開閉状態を変更するように構成したことを特徴とする請求項3に記載の過電流保護回路。
  5. 制限電流値が複数設定されることを特徴とする請求項2または4のいずれかに記載の過電流保護回路。
  6. 複数設定された制限電流値のうちの少なくとも一つの制限電流値が、負荷回路の動作モードに応じて設定されることを特徴とする請求項5に記載の過電流保護回路。
  7. 負荷回路の動作モードが省電力状態に対応して設定されることを特徴とする請求項6に記載の過電流保護回路。
  8. 負荷回路の省電力状態が、IEEE P1904.1に定められた省電力状態に対応することを特徴とする請求項7に記載の過電流保護回路。
  9. 溶断閾値が制限電流値を越えるヒューズには開閉器を直列に接続しないことを特徴とする請求項1に記載の過電流保護回路。
  10. 請求項1に記載の過電流保護回路を制御する方法であって、
    第二の電流線路に含まれる開閉器を開とすることで第一の電流線路に含まれる第一のヒューズを溶断した後に、第二の電流線路に含まれる第二のヒューズを溶断するように制御することを特徴とする過電流保護回路の制御方法。
JP2013127732A 2013-06-18 2013-06-18 過電流保護回路、およびこの回路の制御方法 Pending JP2015002661A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013127732A JP2015002661A (ja) 2013-06-18 2013-06-18 過電流保護回路、およびこの回路の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013127732A JP2015002661A (ja) 2013-06-18 2013-06-18 過電流保護回路、およびこの回路の制御方法

Publications (1)

Publication Number Publication Date
JP2015002661A true JP2015002661A (ja) 2015-01-05

Family

ID=52296878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013127732A Pending JP2015002661A (ja) 2013-06-18 2013-06-18 過電流保護回路、およびこの回路の制御方法

Country Status (1)

Country Link
JP (1) JP2015002661A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229952A (zh) * 2016-08-31 2016-12-14 许继电气股份有限公司 熔断器组合器件及控制方法、直流断路器及控制方法
WO2017126430A1 (ja) * 2016-01-19 2017-07-27 株式会社オートネットワーク技術研究所 給電制御装置
CN109774481A (zh) * 2019-01-24 2019-05-21 西安交通大学 一种直流电动汽车动力电池保护装置及其工作方法
CN111052292A (zh) * 2017-08-01 2020-04-21 内拉电子工业和电子产品开发中心有限公司 具有致动器的直流电路中断开关组件
CN113782402A (zh) * 2021-07-31 2021-12-10 国网辽宁省电力有限公司电力科学研究院 一种具备切负荷电流的跌落式熔断器及安装方法
KR20220058210A (ko) * 2020-10-30 2022-05-09 이건희 수중 히터

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187570A (ja) * 1997-12-19 1999-07-09 Toshiba Corp 電源装置
US6583977B1 (en) * 1999-10-27 2003-06-24 Motorola, Inc. Zipper fuse
JP2006287399A (ja) * 2005-03-31 2006-10-19 Nec Corp 過電流保護回路
US20090109590A1 (en) * 2007-10-26 2009-04-30 Crouzet Automatismes Self-protected solid-state electrical switching device
EP2698892A1 (en) * 2012-08-13 2014-02-19 DET International Holding Limited DC overcurrent protection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187570A (ja) * 1997-12-19 1999-07-09 Toshiba Corp 電源装置
US6583977B1 (en) * 1999-10-27 2003-06-24 Motorola, Inc. Zipper fuse
JP2006287399A (ja) * 2005-03-31 2006-10-19 Nec Corp 過電流保護回路
US20090109590A1 (en) * 2007-10-26 2009-04-30 Crouzet Automatismes Self-protected solid-state electrical switching device
EP2698892A1 (en) * 2012-08-13 2014-02-19 DET International Holding Limited DC overcurrent protection device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10566663B2 (en) 2016-01-19 2020-02-18 Autonetworks Technologies, Ltd. Power supply control device
WO2017126430A1 (ja) * 2016-01-19 2017-07-27 株式会社オートネットワーク技術研究所 給電制御装置
JP2017131021A (ja) * 2016-01-19 2017-07-27 株式会社オートネットワーク技術研究所 給電制御装置
CN108475911A (zh) * 2016-01-19 2018-08-31 株式会社自动网络技术研究所 供电控制装置
CN108475911B (zh) * 2016-01-19 2019-10-18 株式会社自动网络技术研究所 供电控制装置
CN106229952B (zh) * 2016-08-31 2018-12-07 许继电气股份有限公司 熔断器组合器件及控制方法、直流断路器及控制方法
CN106229952A (zh) * 2016-08-31 2016-12-14 许继电气股份有限公司 熔断器组合器件及控制方法、直流断路器及控制方法
CN111052292A (zh) * 2017-08-01 2020-04-21 内拉电子工业和电子产品开发中心有限公司 具有致动器的直流电路中断开关组件
CN111052291A (zh) * 2017-08-01 2020-04-21 内拉电子工业和电子产品开发中心有限公司 直流电路中断开关组件
CN111052291B (zh) * 2017-08-01 2022-03-08 Eti电子有限公司 直流电路中断开关组件
CN111052292B (zh) * 2017-08-01 2022-03-25 Eti电子有限公司 具有致动器的直流电路中断开关组件
CN109774481A (zh) * 2019-01-24 2019-05-21 西安交通大学 一种直流电动汽车动力电池保护装置及其工作方法
CN109774481B (zh) * 2019-01-24 2020-08-04 西安交通大学 一种直流电动汽车动力电池保护装置及其工作方法
KR20220058210A (ko) * 2020-10-30 2022-05-09 이건희 수중 히터
KR102476666B1 (ko) * 2020-10-30 2022-12-12 이건희 수중 히터
CN113782402A (zh) * 2021-07-31 2021-12-10 国网辽宁省电力有限公司电力科学研究院 一种具备切负荷电流的跌落式熔断器及安装方法

Similar Documents

Publication Publication Date Title
JP2015002661A (ja) 過電流保護回路、およびこの回路の制御方法
EP2391008B1 (en) Protection circuit and method for electronic devices
JP5957479B2 (ja) バッテリーシステムのバッテリーブランチの制御回路及び制御方法
US9899826B2 (en) Device for detecting overcurrent
US9077175B2 (en) Electronic fuse circuit and method of controlling the same
JP5770979B2 (ja) バッテリー状態監視回路およびバッテリー装置
JP7028355B2 (ja) 制御装置、制御方法及びコンピュータプログラム
JPH10224997A (ja) 充放電制御回路
KR100580800B1 (ko) 분리유닛을구비한데이터및/또는에너지전송디바이스
JP2016123205A (ja) 降圧チョッパ
KR102419237B1 (ko) 배터리 셀 전류의 측정 방법 및 장치
EP2510598B1 (en) Electronic protection circuit and protection device
JP2016165032A (ja) 半導体スイッチ
KR102252366B1 (ko) 배터리 상태 감시 회로 및 배터리 장치
US20200185163A1 (en) Circuit breaker
KR20150031729A (ko) 재폐로 기능을 갖는 한류기
KR102609004B1 (ko) 배터리 모듈
CN114520502A (zh) 一种保护电路系统及电子设备
US8456221B2 (en) Voltage operation system
US20220021225A1 (en) Method for operating an electronic circuit arrangement for electrical current limiting in a potentially explosive area
US20110248775A1 (en) Electronic fuse system
JP2019184479A (ja) 放電事故検出構造
CN220821406U (zh) 快速分断电路以及继电器控制系统
JP7318857B2 (ja) 負荷操作性の有する及び有しないヒューズステータス診断
JP2012253864A (ja) 遮断補助装置および給電システム回路遮断器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170117