JP2014528584A - 粉体流検出 - Google Patents

粉体流検出 Download PDF

Info

Publication number
JP2014528584A
JP2014528584A JP2014534575A JP2014534575A JP2014528584A JP 2014528584 A JP2014528584 A JP 2014528584A JP 2014534575 A JP2014534575 A JP 2014534575A JP 2014534575 A JP2014534575 A JP 2014534575A JP 2014528584 A JP2014528584 A JP 2014528584A
Authority
JP
Japan
Prior art keywords
powder
photodetector
tube
light
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014534575A
Other languages
English (en)
Other versions
JP6151259B2 (ja
Inventor
ロマニン,マリオ
ホウリイ,ジェームズ,エム.
ジー. シュローダー,ジョセフ
ジー. シュローダー,ジョセフ
エー. パーキンス,ジェフリイ
エー. パーキンス,ジェフリイ
エム. フルカーソン,テレンス
エム. フルカーソン,テレンス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nordson Corp
Original Assignee
Nordson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nordson Corp filed Critical Nordson Corp
Publication of JP2014528584A publication Critical patent/JP2014528584A/ja
Application granted granted Critical
Publication of JP6151259B2 publication Critical patent/JP6151259B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F3/00Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
    • G01F3/36Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with stationary measuring chambers having constant volume during measurement
    • G01F3/38Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with stationary measuring chambers having constant volume during measurement having only one measuring chamber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/661Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters using light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

粉体流路に沿って粉体流を検出する装置は、光源と、粉体が前記粉体流路を通って流れる際に粉体流路を横切って向けられる、光源からの光を検出する光検出器とを備える。回路は、光検出器から出力を受け取り、光検出器によって受け取られた信号の平均又はRMSを求める。回路は、粉体の流れがあるかないか、又は粉体の流量が変化しているか否かを判断することができる。装置は、濃厚相粉体ポンプと組み合わせて使用されることが好ましく、それにより、粉体は、ポンプ出口から粉体流路内にパルス状で流れる。光源及び検出器が、ポンプ出口とスプレーガン又はホッパーに粉体を供給する粉体給送ホースとの間に接続されたハウジング内に封入されることがより好ましい。【選択図】図2

Description

本開示は、包括的には、粉体コーティング材料がチューブ内を流れているか否かを検出することに関する。より詳細には、本開示は、粉体コーティング材料流に対して流れあり状態/流れなし状態を検出し、また流量の変化を検出することに関する。
粉体コーティング材料は、一般に、既知の噴霧技術を使用して物体又は工作物に塗布される。これらの技術は、既知であるように、静電プロセス及び非静電プロセスを含むことができる。また、粉体コーティング材料塗布システムによっては、本技術分野において既知であるように、粉体コーティング材料をスプレーガン又は他の塗布装置に希薄相で又は代替的に濃厚相で送出する。
本明細書に開示する1つ又は複数の発明の一態様によれば、粉体コーティング材料の流れ検出概念は、光エネルギーを使用して、管状部材の中の粉体流の存在又は不在を検出する。管状部材を通って伝送される光の強度は、粉体コーティング材料が存在するか否かに関連する。特定の実施形態では、回路は、管状部材を通過する光の強度に関連する信号を受け取り、粉体流があるか否かを判断する。より具体的な実施形態では、光検出器が、管状部材を通過する光の強度に応答して出力を生成し、回路が、出力の平均値を求める。そして、回路は、平均信号に基づいて粉体流があるか否かを判断することができる。
本明細書に開示する発明のうちの1つ又は複数の別の態様では、回路は、管状部材を通過する光強度の平均値を求め、その平均値から、回路は、管状部材を通って流れる粉体の特性を確定する。一実施形態では、特性を、流れあり/流れなしの判断とすることができる。代替実施形態では、特性を、流量が変化したか否かとすることできる。
様々な実施形態では、平均計算を、例えばRMS計算、又は必要に応じて他の計算とすることができる。
一実施形態では、光源及び検出器は、ポンプ出口と粉体給送ホースとの間でポンプ出口に接続されたハウジング内に封入され、粉体給送ホースは、粉体ホッパー又はスプレーガンに粉体を供給する。
1つ又は複数の本発明のこれらの及び他の態様及び利点は、以下の詳細な説明及び添付の図面から容易に理解され認識されよう。
本明細書に開示する発明のうちの1つ又は複数の一実施形態を使用する粉体コーティング材料塗布システムの概略ブロック図である。 図1の検知機能実施形態の拡大図である。 側面で示す、図2の想像線に示す図2の検知機能の代替実施形態の図である。 図1の応答機能の一実施形態の図である。 種々の粉体流状態のうちの1つに対する光検出器からの例示的な出力信号を示し、理解を容易にするために単一の波形が簡略化して示されている図である。 種々の粉体流状態のうちの1つに対する光検出器からの例示的な出力信号を示し、理解を容易にするために単一の波形が簡略化して示されている図である。 種々の粉体流状態のうちの1つに対する光検出器からの例示的な出力信号を示し、理解を容易にするために単一の波形が簡略化して示されている図である。 種々の粉体流状態のうちの1つに対する光検出器からの例示的な出力信号を示し、理解を容易にするために単一の波形が簡略化して示されている図である。 種々の粉体流状態のうちの1つに対する光検出器からの例示的な出力信号を示し、理解を容易にするために単一の波形が簡略化して示されている図である。 本明細書に開示する本発明のうちの1つ又は複数の一実施形態を備えた濃厚相ポンプの立面図である。 図5の線6−6において取り出された図5の縦断面図である。 90度回転した図6の縦断面図である。
例示的な実施形態が、本明細書に記載され、構成要素及び部品並びに機能の具体的な例に関連して提示されているが、当業者は、特定の用途に対する必要に応じて、多くの異なるタイプの設計及び代替構成を使用することができることを容易に理解するであろう。例えば、多くの種々の粉体ポンプ設計を、多くの種々の材料の選択肢並びに粉体ポンプの出口と流体連通しかつ粉体流を収容する管状部材に対する形状、適合性及び機能とともに使用することができる。本明細書では、「管状部材」及び「チューブ」という用語を同義で使用して、粉体の流れを収容するあらゆる導管又は通路を指す。例示的な実施形態は一般的な可撓性円柱状管材に言及するが、こうしたことは必須ではなく、チューブ又は管材は、任意の適切な形状及び特性を呈することができ、粉体が流れる任意の通路を含むことができる(例えば、粉体が進む内部通路を有するブロック又は他の構造体を使用することができる)。対象となる特徴は、チューブ又は通路は、少なくとも、通路又はチューブの検知部分を画定する壁を通して電磁エネルギーを通すことができる部分を含む、ということである。本明細書において「検知機能」という用語を使用して、粉体流の特性を検出する配置又は構造を指す。例示的な実施形態では、検知機能を、電磁エネルギーの供給源及び検出器の形態で具現化することができる。本発明は、電磁エネルギーのいかなる特定の周波数又は波長にも限定されず、対象となる唯一の特徴は、選択された電磁エネルギーが、チューブ又は通路の壁を通過し適切な光検出装置が検出することができる1つ又は複数の波長を含む、ということである。したがって、本明細書では、電磁エネルギーを、選択された1つ又は複数の波長に関らず概して光エネルギーとも呼ぶ。チューブ又は通路壁は、選択された電磁エネルギーに対して完全に透過性である必要はないが、十分に透過性であることが好ましく、これによってチューブ又は通路の壁を通過する光に対する光強度を、粉体が通路又はチューブ内を流れているか否か、及び幾つかの実施形態では流量が変化したか否かに関連付けることができる。本発明は、いかなる特定の噴霧技術にも限定されず、コロナ、摩擦帯電式及び非静電式の噴霧技術とともに使用することができる。本発明を、手動スプレーガン及び自動スプレーガンを含む、多くの種々のタイプのスプレーガン又は他の粉体コーティング材料塗布装置とともに使用することもできる。ポンプ、スプレーガン及び他のシステム構成要素に対する多くの種々の制御システムを使用することができる。特に指定のない限り、様々な開示された構成要素のサイズ、材料、レイアウト及び構造的態様は設計選択である。粉体コーティング材料塗布システムは、粉体コーティング材料を供給する給送センターと、スプレーガンと、スプレーブース、スプレーガン、ガン制御システム、ガン移動機(mover)、レシプロケーター、オシレーター等のための電子制御システムと、オーバーヘッドコンベヤーシステムと、粉体オーバースプレー回収システムとを含む、多種多様のシステム機構を利用することができる。
例示的な実施形態では、光検出器によって生成される時変アナログ信号波形の平均値、例えばRMS(二乗平均平方根)値を求める。したがって、本明細書では、「平均」という用語を、限定されないがRMS計算を含むものとみなす。必要に応じて波形の1つ又は複数の特性を表すために、代替的に他の数学的計算を行うことができる。例えば、波形を、デジタル化し周波数領域で解析することができる。対象となる特徴は、粉体が管状部材の検知部内を流れているか否かを判断するために、検出された光強度の変化を識別するか、又は別の実施形態では、流量が変化したか否かを判断するために、検出された光強度の変化を識別することができるように、光検出器出力波形が解析されるということである。光検出器出力は、例示的な実施形態では時変電圧信号であるため、例えばRMS値等の平均値の使用は、光強度のこうした変化を識別する好都合であるが必須ではない方法である。本発明はまた、アナログ電圧出力を生成する光検出器の使用に限定されないが、他の検出器が、出力信号を処理するために使用される回路に適切に変更を行って、必要に応じて使用することができ、又は好都合に利用可能であり得る。
本発明は、また、いかなる特定のタイプの粉体のコーティング材料との使用にも限定されず、したがって、本明細書では、概して、任意の乾燥した特定の材料、具体的な例示的実施形態では粉体コーティング材料を含むように意図する粉体を指す。さらに、粉体を、希薄相又は濃厚相で使用することができ、連続流又はパルス流で送出することができる。
本発明の様々な発明に関する態様、概念及び特徴を、本明細書では、例示的な実施形態と組み合わせて具体化されるように記載し例示する場合があるが、これらの様々な態様、概念及び特徴を、個々に、又は様々なコンビネーション若しくはそのサブコンビネーションで、多くの代替実施形態で使用することができる。本明細書において明示的に排除しないかぎり、こうしたコンビネーション及びサブコンビネーションの全ては、本発明の範囲内にあるように意図されている。さらに、本明細書には、本発明の様々な態様、概念及び特徴に関する様々な代替実施形態(代替的な材料、構造、構成、方法、回路、装置及び構成要素、形状、適合性及び機能に関する代替形態等)が記載されている場合があるが、こうした記載は、現時点で既知であるか又は後に開発されるかに関らず、利用可能な代替実施形態の完全な又は網羅的なリストであるようには意図されていない。当業者は、こうした実施形態が本明細書において明示的に開示されていない場合であっても、本発明に関する態様、概念又は特徴のうちの1つ又は複数を本発明の範囲内で更なる実施形態及び使用に容易に採用することができる。さらに、本発明の幾つかの特徴、概念又は態様を、好ましい構成又は方法であるものとして本明細書に記載している場合があるが、こうした記載は、明示的に述べられていない限り、こうした特徴が要求されるか又は必要であることを示唆するようには意図されていない。さらに、例示的な又は代表的な値及び範囲が、本開示の理解に役立つように含まれている場合があるが、こうした値及び範囲は、限定する意味で解釈されるべきではなく、明示的に述べられている場合にのみ、不可欠な値又は範囲であるように意図されている。さらに、様々な態様、特徴及び概念は、本明細書では、本発明の発明に関する又は本発明の一部分を形成するものであるとして明示的に識別されている場合があるが、こうした識別は排他的であるようには意図されておらず、むしろ、そのようなものとして又は具体的な発明の一部であるものとして明示的に識別されることなく本明細書に完全に記載されている発明に関する態様、概念及び特徴である可能性があり、代りに、本発明は添付の特許請求の範囲に示されている。例示的な方法又はプロセスの記載は、全てのステップがすべての場合において要求されているものとして含まれるように限定されず、ステップが提示される順序は、明示的に述べられていない限り、要求されるか又は必要であるものとして解釈されるべきではない。
例示的な実施形態は、本明細書に開示する発明の2つの基本構成及び流れ検出概念を開示する。両概念は、光エネルギーを使用する検知機能により粉体流路に沿った粉体流の特性を検出する方法及び装置に基づく。「粉体流路」とは、本明細書では、粉体が1つの箇所から別の箇所まで流れるように粉体が収容構造体を通って流れる内部空間を意味する。したがって、粉体流路の一例は、粉体が流れる部材の内部空間、おそらくはホース若しくはチューブ若しくは任意の導管、管状部材、又は粉体流を収容する通路である。例示的な実施形態における対象となる粉体流路は、収容構造体又は通路の検知部分内の粉体流路の検知部分である。例えば、本明細書の例示的な実施形態では、検知部分を、光エネルギーが粉体の流れ特性を検出するように通過する粉体流路の一部とすることができる。流れ特性は、流れなし状態を含むことができる。したがって、光エネルギーを、収容構造体の壁の全て若しくは検知部分を通って、又は壁構造によって境界が定められた内部空間の検知部分を通って、粉体流路内に伝送することができる。本明細書の例示的な実施形態では、光エネルギーを、管状部材のチューブ壁を通って粉体流路内に入るように伝送することができる。本明細書で使用する管状部材の「部分」は、特に断りのない限り検知部分を指す(例えば、本明細書では、後述するようにフレアー部分も指す)。第1の構成では、本明細書では、光エネルギーを検知することにより粉体流の特性を流れあり状態又は流れなし状態を検出する形態で検出する方法及び装置を記載する。検出された状態、特に流れなし状態を使用して、コーティングされていないか又は適切にコーティングされていない工作物の無駄を低減するか又はなくすように、オペレーターに警告するか、又は他の何らかの方法でコーティングシステムの動作に影響を与えることができる。この任意の警告の大部分を行うために、本明細書では、必須ではないが、検知機能を粉体コーティング材料ポンプの出口に近接して配置することが好ましい。
第2の構成では、本明細書では、光エネルギーを使用して、例えば管状部材内の粉体流路の検知部分を通る粉体の流量の変化を検出する方法及び装置を記載する。流量状態の変化は、流れなし状態の検出を含むことができ、そのため、2つの基本概念は、必ずしも互いに相互に排他的ではない。第2の構成は、必ずしも実際の流量の確定を必要とするとは限らず、むしろ、流量の変化を探す。したがって、第2の構成は、任意に、本明細書において更に説明するように較正機能を利用することができる。第2の構成に対してもまた、必須ではないが、検知機能を粉体コーティング材料ポンプの出口に近接して配置することが好ましい。
両概念及び構成に対して、光エネルギーを使用して、管状部材又は通路の検知部分を通って流れる粉体を検出する、光学検知機能を提供する。必ずしも必須ではないが好ましい実施形態では、粉体流を検出するために光エネルギーセンサー信号の平均値又はRMS値を使用する。この平均値又はRMS値により、透過率又は反射率等の種々の光学特性を示す可能性がある種々の粉体材料に対して調整又は較正することができる。平均値又はRMS値の使用により、管状部材又は通路の検知部分に使用することができる種々の材料に対する光学特性を補償又は較正することもできる。
図1は、本発明のうちの1つ又は複数の概念の一実施形態を示す。粉体コーティング材料塗布システム10は、本技術分野において既知であるようにボックス、コンテナ、ホッパー、給送センター又は他の容器等、粉体コーティング材料(以降、「粉体」)の供給源12を含むことができる。ポンプ14を使用して、粉体供給源12から粉体を引き出し、給送ホース16を介して、最終用途18(例えばスプレーガン、又はバルク移送ポンプの場合は別の容器)に粉体を押し込む。
図1の例では、ポンプ14を、負圧を使用してポンプ室内に粉体を引き込み、正圧下でポンプ室から粉体を押し出すタイプである濃厚相ポンプの形態で具現化することができる。ポンプ室は、通常、空気に対して浸透性であるが粉末媒体に対しては浸透性ではない材料から作製される。こうしたポンプは、例えばベンチュリーポンプと比較して空気粉体混合物内で使用する空気が少なく、したがって、濃厚相ポンプと呼ばれる。濃厚相ポンプの一例は、米国特許出願公開第2005/0158187号に記載されており、その開示の全体は、引用することにより本明細書の一部をなすものとする。
本明細書では、本発明を理解し実施するために必要ではないため、ポンプ14の構造及び動作について詳細には記載しない。しかしながら、ポンプ14は、通常、例えば、通常ポンド/分で指定される、ポンプによって出力される粉体の流量である粉体流量制御22を調整するように動作する、関連するポンプ制御機能又は回路20を有する。しかしながら、代替的に、幾つかのポンプは、単純にON/OFF式に動作することができる。流量制御部22を使用して、例えば、ポンプ14からの出力粉体流量を、ポンプ14の能力の最大流量の0%から100%までのいずれかに設定することができる。
濃厚相ポンプ14の場合、ポンプ14は、入口24及び出口26を有することができる。入口24は、粉体供給源12と流体連通している供給ホース28を通して粉体を受け取る。ポンプ14の出口26は、給送ホース16と流体連通している。ポンプ制御回路20は、ポンプ14内への粉体の流れを制御する第1の弁30、及びポンプ14から出る粉体の流れを制御する第2の弁32等の一連の弁を介してポンプ14の動作を制御することができる。これらの弁30、32は、ポンプ室(図示せず)に対する吸引及び圧力の適用のタイミングとともに動作する。したがって、濃厚相ポンプ14は、出口26において粉体のパルス又はパケットの形態で粉体流を生成する。追加の又は第2の入口ホース34又は出口ホース36を、互いに位相がずれて動作する2つのポンプ室を含むことができるポンプ14設計に対して使用することができる。位相がずれて動作するとは、一方のポンプ室が粉体を引っ張っている間に、他方のポンプ室が粉体を押し出す(逆もあり)という意味である。複数のポンプ室を使用すると、ポンプから出力される粉体の流量を増大させることができる。第2の入口ホース34の第3の弁38及び第2の出口ホース36の第4の制御弁等の追加の制御弁を、ポンプ制御機能20によって、ポンプ出口26における粉体の所望の流量をもたらすようにポンプの全タイミングを制御するために使用することができる。
濃厚相ポンプ14の動作に関してここまで提示した情報は、既知であり、引用することにより本明細書の一部をなす特許においてはるかにより詳細に説明されており、こうした説明に対してそれらを参照することができる。ただし重要な留意点は、濃厚相ポンプが、濃厚相粉体のパルス又は別個のスラグとして特徴付けることができる出力粉体流を生成する、ということである。
本明細書における発明に関する概念を使用するための背景としてのポンプ14の上記説明とともに、ここで、粉体流を検出する装置の例示的な実施形態の説明のために図2及び図3を参照する。粉体が、例えば最終用途18と連通している通路等の通路内で流れているか否かを検出することにより、流れが予期せずに遮られたとき、又は代替的に流量が変化したとき、警告又は他の警報を生成することができる。そして、この通知又は警報を使用して、オペレーターに対し、コーティングプロセスが正しくない可能性があることを通知することができ、それにより、オペレーターは、無駄を最小限にするために必要な場合は正しい措置をとることができる。
例えばチューブ16等、通路内の粉体の流れを検出する装置50は、基本形態で、検知機能52及び応答機能54を含むことができる。実際には、検知機能52が単独で、粉体が流れているか否かの情報を示すか又は含む出力信号を生成することができる。この出力信号を、例えばいかなる信号処理もなしに観察機器(scope)に単に表示することができ、オペレーターは、粉体の流れあり又は流れなしを示す信号を視覚的に見ることができる。又は代替的に、出力信号は、オペレーターに対し、出力信号の状態に関して表示灯又は他の指示装置を直接駆動することができる。こうした場合、観察機器又は指示装置は、応答機能54としての役割を果たすことができる。しかしながら、多くの場合に検知機能からの生データは、比較用の基準がないため粉体流があるか否かを判断するのに適さない。しかしながら、本明細書における例示的な実施形態では、応答機能54を使用して、検知機能52の出力信号の解析を、流れあり状態であるか流れなし状態であるか又は代替的に流量が変化したか否かを示すその有用性を更に精緻化するために行うことができる。本明細書における例示的な実施形態では、応答機能54を、光検出器58からアナログ出力を受け取り、その信号の平均値又はRMS値を経時的に求めるマイクロプロセッサ等の信号処理機能を含む回路(後述する)の形態で具現化することができる。
そして、図1〜図3の例示的な実施形態では、検知機能52は、本明細書において光エネルギーと呼ぶ電磁エネルギーの光学特性を使用して、通路内の粉体流を検出する。ポンプ出口26が、スプレーガン又は他の最終用途に給送する給送ホース16に接続されているため、ホース16内のポンプ出口26に近接する粉体流を検知することが、必ずしも必須ではないが望ましいことが分かっている。
検知機能52(図2を参照)を、光源56及び光検出器58の形態で具現化することができる。光源56及び光検出器58を、視線検出を可能にするように、給送ホース16の両側で互いに反対に面するように配置することができる。これにより、粉体の大部分が流れるように予測することができる場所で、光エネルギーが給送ホース16の中心を通過することが確実になる。本発明は、多くの種々の用途で役に立つため、チューブ又は管状部材という用語の本明細書における使用が、単なる可撓性円柱状部材に限定されず、粉体が流れる通路を提供する任意の構造体、更には例えばブロックにおけるボアであり得ることに留意して、以降、ホース16を、粉体が流れる通路60、特にチューブ又は管状部材62によって提供される通路60等の粉体流路60を提供するものとする(例えば給送ホース16)。
基本概念は、通路60に粉体がないとき、チューブ62の壁を介して通路60を通って進む光源56からの光の最大強度が光検出器58に達するという概念を利用する。光検出器58は、検出される光の強度に関する検出器出力64を生成する。光検出器58に達する光の強度は、光源56によって生成される光の強度、管状部材62の透明度、検出された光強度を出力信号、例えば電圧又は電流に変換する光検出器58の効率によって決まる。チューブ壁の透明度特性を、光源56によって生成される光の波長に基づいて選択することができる。例示的な光源56は、赤色発光ダイオード、例えばKingbrightから入手可能な部品番号WP7104SRC/Dであり、適切な光検出器58は、Texas Advanced Optoelectronic Solutions, Inc.から入手可能なTSL12S等、光電圧変換器である。多くの代替的な光源及び光検出器を使用することができる。光源56及び光検出器58は、適合性があるように、かつ管状部材62の透明度とともに選択される。例としての光検出器58は、最大強度でほぼ5ボルトDC出力64を生成する。
管状部材62に粉体が存在する場合、粉体は、光エネルギーを反射し、散乱させ、若しくは吸収し、又は他の方法で、光検出器58まで通過する光の強度を低減する。したがって、光検出器58からの出力信号64は変化し、この場合、電圧は低下する。光の全てが遮られる場合、光検出器出力64はほぼゼロボルトになる。
上述したような濃厚相ポンプ14では、出口26から流れる粉体はパルス化される。これにより、光検出器58は、同様にパルス化される出力信号を生成する。通常、粉体パルスが光源56と光検出器58との間を通過するとき、検出器出力はほぼゼロにならないが、こうしたことが発生する可能性がある。
本明細書では、管状部材62を通る粉体流を検出しているが、重力が、粉体がチューブを通過するのを補助することができるように、管状部材62がほぼ垂直に向けられていることは、すべての場合において必須ではないが好ましい。
粉体流通路60を提供する給送ホース16又は他の管状部材の全てが光エネルギーに対して透明であるとは限らない。したがって、場合によっては、光エネルギーに対して必要な透明度を提供するチューブの区画又は部分66を設けることが望ましくなることを本発明では意図している。この部分66を、例えば、この場合もまた好ましくはポンプ出口26に近接する位置で、給送ホース16と一列に挿入される1片のチューブとすることができる。部分66が、通路60の一部を提供するように通路内にいかに挿入されるかは設計的事項であり、本明細書では図5〜図7で1つの実施形態を示す。例えば、適切に透明な部分を継ぎ合わせて、主ホース16にすることができる。いずれの場合も、光エネルギーが伝送される管状部材62の部分66は、連続チューブであっても追加された切片であっても、管状部材又は通路60内の粉体の流れを検出する管状部材又は通路60の検知部分66としての役割を果たす。好ましくは、検知部分66の長さ対幅の比は、検知部分66が設置される何らかの境界層がある場合に、その境界層が、光エネルギーが光源56から光検出器58まで進むために通路内に粉体を保持しないように、十分に大きくなければならない。
図4Aは、光検出器58からの出力電圧対時間を簡略化して示す。図4Aは、粉体流のない状態に関し、それにより、光検出器出力64は、検出器58から入手可能なおよそ最大電圧出力68である最大電圧である。光エネルギーが管状部材62の壁材料を通過する際に光強度のうちの幾分かが幾分か減衰し、偏向し又は回折するため、検出された光エネルギーに対する実際の最大出力64は、通常、光検出器58から入手可能な最大出力よりわずかに小さくなる。最大電圧出力64はまた、光源56が光強度をいかに十分に出力しているかの関数である。光は遮られないままであるため、信号64は基本的に定常安定値である。図4A〜図4Eのすべてに対して、本明細書では、明確にしかつ理解を容易にするために光検出器58からの出力信号の簡略化表現を使用する。実際には、光検出器58のアナログ出力は、瞬間出力信号が粉体の透過率とともに変動するため、よりぎざぎざのトレースになる。そのため、本明細書では、動作原理をより明確に示すために波形を平滑化し様式化する。
図4Bは、光源56と光検出器58との間に粉体のスラグがあるか、又は単にチューブ62の検知部分66が基本的に粉体で充填される状態に対する、光検出器58からの出力電圧を示す。この状態では、粉体は、基本的に、光エネルギーの大部分がチューブの検知部分66を通過しないように阻止し、光検出器出力64はほぼゼロボルトである。
ここで、実際問題として、通常の使用中、粉体は、単に検知部分66に位置して光検出器58に対して全ての光を遮るのではない。むしろ、濃厚相ポンプの場合、粉体パルスにより、ポンプ14からの粉体の所与の流量に対して、経時的に検出された光の平均強度がもたらされる。したがって、光検出器出力信号64を使用して、出力信号64の平均値を求め、それが図4A及び図4Bの2つの極値の間のいずれかにあることを検証することにより、流れあり状態又は流れなし状態を示すことができる。図4C〜図4Eの例示的な実施形態に対して、平均計算としてRMSを使用する。
例えば、図4Cは、ポンプ14に対する最大出力流量の約40%の流量に設定される濃厚相ポンプ14に対する一例を示す。粉体の各スラグは、光検出器58に達する光の強度の低減をもたらし、それにより、光検出器信号64のパルス化出力の特質がもたらされる。粉体の各スラグは、光エネルギーの幾分かが光検出器58に達するのを阻止し、そのため、検出器出力64の電圧が70におけるように低下する。繰り返す一連のこれらの低下は、ポンプ14の出口26から押し出される粉体のパルスと一致する間隔で発生する。したがって、谷70は、粉体スラグが光源56と光検出器58との間を通過するときの光強度の最大低下を表す。各スラグが検知部分66を通り抜けると、光検出器58からの電圧出力は、72におけるようにほぼその最大値を返す。粉体のスラグは通常急峻な前縁及び後縁を有していないため、波形64は完全な正方形又は矩形ではない。
光検出器出力64によって生成される波形はアナログであるため、線74によって示すように、経時的にその信号のRMS値(V1)を容易に計算することができる。この値74は、各スラグにおける粉体の量が、濃厚相ポンプに対して通常である、概して一定のままである限り、概して定常になる。光検出器58からの出力信号64のRMS値は、光検出器58に達する光エネルギーの強度のRMS値に直接対応することに留意されたい。粉体が、圧送されチューブ62の検知部分66を通って流れているとき、RMS値計算は、この値が図4A及び図4Bの極値の間になるため、粉体が流れていることを示す。
濃厚相又は希薄相のいずれの方式のポンプの場合も、出力信号64は、極値のうちの一方になる場合、流れなし状態を示す(それにより、平均値は、図4Aにおけるように、粉体が検知部分66を通過していないことに対応して最大電圧出力に近くなる)か、あるいは、ホース16がふさがれるか又は妨げられて粉体が検知部分66に捕捉される(それにより、平均値は図4Bに示すようにほぼゼロである)状態を示す。RMS値が初期値から劇的に変化する場合、極値の一方にない場合であっても、これはまた、ポンプ又は粉体流路のあり得る問題を示す。こうしたあり得る状況を示すためにいずれの偏差率が使用されるかは設計的事項である。
上記記載は、流れあり状態/流れなし状態を確定するか又は検出する第1の構成の一例を説明している。上述したように、第2の構成により、ポンプ14の使用中に粉体流量が変化したか否かを判断することができる。一例では、最初に、対象となる各流量設定に対して光検出器58からの出力信号64に対して予測された平均値又はRMS値を求める、応答機能54に対する較正モードを含めることにより、この代替実施形態を達成する。そして、これらの予測された値又は較正値を使用して、実際の流量が、ポンプ制御部20及び流量制御部22(図1)によって設定される所望の流量又はプログラムされた流量から変化したか否かを判断することができる。図4C及び図4Dは、これをいかに行うことができるかの一例を示す。
図4Cは、ポンプが最大流量の40%に設定されたときの濃厚相ポンプ14に対するRMS値74(V1)を示すことを想起されたい。そして、平均値74を較正値として格納することができる。ここで、図4Dに表すように、流量は、コーティング動作中に40%から20%まで変化すると仮定する。図4Dは、20%流量において、光検出器58からのRMS電圧出力V2(時間基準線76によって示す)が、チューブの検知部分66を通って流れる粉体がより少ないという事実のために上昇することを示す。したがって、V2>V1である。応答機能54を、光検出器58のRMS出力電圧V2によって表される実際の流量が、所定の量又はパーセント、較正値V1から(高く又は低く)変化したときを計算することにより、RMS流量が所望の流量から例えば偏差率を上回って変化するときを検出するように、プログラムすることができる。偏差がどれくらいになると警報又は警告が発せられるかは、設計選好事項である。
図4Eは、例示的な実施形態において、流量が例えば最大流の60%まで増大したときに、平均してより多くの粉体がチューブの検知部分66を通って流れているため、光検出器58からのRMS値出力電圧V3(線78によって示す)が低減することを示す。したがって、V3<V2であり、V3<V1であり、V2>V1である。言い換えれば、20%、40%及び60%の流量それぞれに対して、V2>V1>V3である。
流量の変化は、例えば、オペレーターが、特定のコーティング方法に対してあるべきであるものからポンプの流量設定を変更したか否か、又はポンプ動作が何らの形で流量を変化させたか否かを検出するために有用である可能性がある。
較正機能がいかに行われるかは、設計選択事項及び便宜事項である。ポンプの各選択可能な流量に対して、種々の較正値を格納することができ、又は代替的に、単にポンプ14をプログラムされた流量で運転し、検出器出力64の検出された平均又はRMS値を格納することにより、予測値又は較正値を求めることができる。しかしながら、この手法により、決定が、光源56によって生成される光の強度の経時的な変化、光検出器58の感度、又はチューブの検知部分66の透明度の影響を受け易くなる可能性がある。したがって、較正モードは、システム構成要素が正確であることが分かったときに行われることが好ましい。
較正モードを、ポンプ14によって生成される実際の流量を知ることとは無関係に実行することができる。例えば、40%流量でポンプ14に対して検知機能52を較正したいと想定する。ポンプ14からの実際の粉体流量に対応するものとして、流量を40%に設定して、光検出器出力64の平均値又はRMS値を格納することができる。それが正確に40%であるか否かは、その流量が変化したときを検出することができる。したがって、実際には、実際の流量を測定するのではなく、流量が変化した否かを解析している。
較正モードはまた、種々の粉体材料が、吸収、反射率、半透明等、種々の光学特性を有する可能性があり、通常は有することになるため重要である。再度図4Cを参照すると、基準値V1は、実際に、圧送されている材料のタイプに基づいて変化する可能性がある。したがって、較正モードを実行することは、選択された流量で検知部分66を透過している光の平均強度を求めるために非常に有用である可能性がある。代替的に、システムを、種々の材料及び流量に対して予め較正することができ、平均値を、較正値としてアクセスされるようにメモリに格納することができる。較正機能を利用する他の多くの方法が明らかとなろう。したがって、流れあり構成/流れなし構成に対してさえも、検出された光強度の平均値が粉体材料に基づいて変化する可能性があるため、較正モードは、流れあり構成/流れなし構成又は流量構成の両方に対して有用である可能性がある。
当業者は、流れあり/流れなし又は第1の構成を、第2の構成の特別な場合として使用することができることを容易に理解するであろう。例えば、ポンプ14が40%に設定され、V1として光検出器58出力64の較正されたRMS値がある場合、光検出器出力64のRMS値が最大値68に近づくように示される場合、流れなし状態又は低流量状態である。例えば、平均値又はRMS値が較正値V1を超えて所定の割合増大したとき、又は平均値若しくはRMS値が最大値68の所定の割合の範囲になる場合を検出することにより、流れなし状態を種々の方法で確認することができる。設計者には、そのように低流量状態又は流れなし状態を確定する他の多くの選択肢が利用可能である。
図3は、応答機能54の一実施形態を示す。この例では、応答機能54を、例えばマイクロプロセッサ80等の例えばデジタルプロセッサ等の制御回路80で具現化することができる。適切なマイクロプロセッサは、Microchipから入手可能なモデルPIC 16F887である。制御回路80は、入力として光検出器58出力信号64を受け取る。制御回路80はまた、ポンプ14が動作状態でないときに間違った警報を生成しないように、光検出器出力信号64を監視すべきときを知っていなければならない。したがって、制御回路80はまた、ポンプ制御部20から入力としてトリガー信号82を受け取ることができる。制御回路80は、所望のサンプリングレートにわたって光検出器58の出力信号の平均値又はRMS値を容易にかつ迅速に計算することができる。制御回路80は、電源(POWER(PWR))ランプ84を点灯して、制御回路80に対するシステム電源がオンであることを示すとともに、トリガー(TRIGGER)ランプ86を点灯して、ポンプ14が作動していることと、制御回路80が光検出器出力信号64を監視していることとを示すことができる。
第1の構成では、制御回路80は、流れなし状態を検出した場合、例えば警告(WARNING)ランプ88を点灯するか又は可聴警報を作動させることができる。流れなし状態が続く場合、制御回路80は、警報(ALRM)ランプ90を点灯することができる。
第2の構成では、制御回路80は、流量が所定量変化した場合に警告ランプ88を点灯し、その後、流量がさらに変化した場合、又は流れなし状態が検出された場合、警報ランプ90を点灯することができる。これらは、流れなし状態又は流量の変化等を伴う検出された異常に応答して行うべきことに関して利用可能な多くの選択肢のうちのわずかな例である。さらに、制御回路80はリレー92を作動させることができる。リレー92状態の変化を使用して、例えばコーティングライン用の制御システム等、別の制御システムに対して、粉体流に誤りがあることを示すことができ、それにより、コーティングシステムを、運転停止するか、又は少なくとも加工物が誤ってコーティングされているか否かを判断するように解析することができる。
光検出器出力信号64を解析するために平均値又はRMS値を使用するが、こうしたことは必須ではない。光検出器58からのリアルタイムアナログ出力信号又は代替的にそのデジタル化信号に対して、他の多くの解析プロセスを使用することができる。上述したように、光検出器58出力は、流れなし状態又は代替的に流量変化状態があるか否かの情報を含む。信号処理を、その情報をいかにして抽出するか、及びそれをいかなる形態で使用し若しくはオペレーターに提示するべきかに関する設計選好事項として選択することができる。
図5〜図7は、例示的な濃厚相ポンプ14とともに例示的な方法で使用される本発明のうちの1つ又は複数の一実施形態を示す。検知機能52は、ポンプ14の出口26の近くに又は近接して配置されることが好ましい。この実施形態では、ポンプ14を、Nordson Corporation、Westlake、Ohioから入手可能なHDLVポンプとすることができる。このポンプ14は、出口26を通る粉体流のパルス又はスラグを生成する。粉体コーティング材料は、粉体コーティング材料の供給源12と流体連通している供給ホース28を介してポンプ14内に引き込まれる。出口26は、通常、給送ホース16に直接接続されているが、本発明のこの実施形態では、検知機能52を給送ホース16と一列に設置する。したがって、この例示的な形態では、チューブ又は通路内の粉体流を検出する装置は、検知機能52及び応答機能54を含む。応答機能54は、図3に関して本明細書で記載した形態で具現化することができ、又は異なる実施形態を呈することができる。検知機能52は、図2に関して本明細書で記載した形態で具現化することができ、又は異なる実施形態を呈することができる。図1の制御弁30、32、38及び40は流量制御部22とともに、ポンプ14に組み込まれることに留意されたい。
ポンプ14は、ポンプ14を構成する、一連の空気ポート制御部、弁、ポンプ室及び流体通路を封入する主ハウジング100を含むことができる。ポンプ14は、上述した特許に従って動作することができ、又は異なる設計とすることができる。
検知機能52を、あらゆる方法でポンプ14に機械的に結合することができる。本明細書の実施形態では、基本的に光源56及び光検出器58(図7)を含む検知機能52は、回路基板又は基板102の上に配置される。回路基板102をU字型とし、図7におけるようにUの一方の脚102aに光源56があり、Uの反対側の脚102bに光検出器58があり、互いに面するようにすることができる。U字型によって形成される凹部は、好ましくは光源56及び光検出器58が管状部材104の両側に互いに反対側に対向して位置合せされるように、管状部材104を受け入れる。管状部材104は、少なくとも光エネルギーが光源と光検出器との間の管状部材を通過する領域において、光検出器58によって検出されるように光源56から伝送される光エネルギーの波長(複数の場合もあり)に対して透明であることが好ましい。したがって、光エネルギーが伝送される部分104は、図1及び図2の考察に示す検知部分66に対応する。回路基板102はハウジング106に搭載されている。ハウジング106は、例示の便宜上、透明であるように示されている(図5を参照)が、実際には透明である必要はない。ハウジング106の幾つかの部分を、ハウジング全体を透明にすることなく、必要に応じて透明にすることができる。
第1のコネクター108及び第2のコネクター110を使用して、ハウジング106をポンプ14の出口26の近くに搭載することができる。上部又は第1のコネクター108は、ハウジング106の上方部分を構成し、スナップリング112等により、ポンプ14からのコネクターチューブ片116aを含むことができるねじ切り出口部材116と嵌合する第1のねじ切りナット114に結合することができる(図7において出口部材116は省略されていることに留意されたい)。これにより、検知機能52アセンブリ全体を、好都合なモジュール式にポンプ14に設置しそこから取り除くことができる。したがって、検知機能52を、すでに現場にあるポンプ14に対する追加の機能とすることができる。上部コネクター108がポンプ14の出口26に接合されたとき、出口26は管状部材104と流体連通しており、粉体は、管状部材104を通って給送ホース16に流れ出る。管状部材104は、好ましくは垂直な向きで搭載され、重力が、粉体が管状部材104を通過するのを補助することができるように十分垂直であることに留意されたい。
下部又は第2のコネクター110は、ハウジング106の下方部分を構成し、給送ホース16が管状部材104と流体連通するように給送ホース16をハウジング106に接合するために使用することができる。これを、例えば、第2のコネクター110のねじ切り端部と嵌合する第2のねじ切りナット118を用いて行うことができる。
光源56に電力を提供し光検出器58から出力を受け取るように、電気コネクター126を使用して、信号ケーブル128(図5)を検知機能52に結合することができる。信号ケーブル128は、制御回路80(図1)に光検出器58出力を提供するように、その第2の端部において応答機能54に接続されている。
管状部材104をいずれの端部120a、120bにおいても外側にフレアー状に広げることが好ましいことが留意されよう。第1の継手部材122及び第2の継手部材124は、それぞれ管状部材104の各端部において、ポンプ出口26と管状部材104との間並びに管状部材104から給送ホース16までの流体連通を形成するように使用される。管状部材104のフレアー状入口端及び出口端は、光エネルギーが管状部材内に伝送され、それにより、光検出器58からの信号を分析するのを妨げる可能性がある粉体を保持する可能性がある、閉じ込め領域がないことを確実にするのに役立つ。
したがって、検知部分66を備える管状部材104は、ポンプ出口26から最終用途18までの粉体流路130(図1)の部分を形成することができ、それにより、検知機能52を使用して、流れあり状態/流れなし状態又は代替的に流量変化状態を検出することができる。したがって、管状部材104は、粉体流が検出される粉体流路130に沿って管又は通路の検知部分66を提供する。しかしながら、当業者は、給送ホース16が、光源56及び光検出器58に対して使用される波長の範囲で十分に透明である場合、検知機能52を、給送ホース16及び検知部分66に存在する給送ホース自体の周囲に直接搭載することができることを理解するであろう。検知機能52が配置される場所に関らず、光源56及び光検出器58は、通路又は管状部材の検知部分内に向けられる光エネルギーで動作し、光検出器58まで通過する光エネルギーの強度は、粉体が検知部分を通って流れているか否かに応じる。
本明細書の例示的な実施形態は、検知機能52として単一の光源及び光検出器を利用するが、当業者は、センサーの追加の対を使用することができることを容易に理解するであろう。追加の対を使用することにより、検知機能の全体的な精度を向上させることができる。例えば、給送ホース16又は粉体流路130の他の部分の中の濃厚相粉体流パターンは、旋回する可能性があるロープ状のパターンを形成するか又はそのパターンで流れる可能性がある。これにより、粉体流路の検知部分が、通常の動作状態においても粉体で充填されないことになる可能性がある。図2及び図2Aは、検知機能52に対してセンサーの2つの対を使用する実施形態を示しているが、必要に応じて更に多くの対を使用することができる。図2では、第2の対150は、任意であるように想像線で描かれている。この実施形態では、第2の対156(光源156及び検出器158を含む)は、第1の対56、58から回転方向に角度をなすことができる。この例では、回転方向のずれを90度とすることができる。追加の対が代替的に使用される場合、それらを、必要に応じて粉体流路の検知部分を中心に回転方向に間隔を空けて配置することもできる。追加の光源/検出器対、例えば、第1の対56、58から回転方向に90度に配置された追加の対150を使用することにより、粉体流を検出する機会を増大させることができる。例えば、検知部分104の周囲に放射状に均一に(又は必要に応じて不均一に)間隔を空けて配置される、さらに多くの光源/検出器の対を使用することができる。各光源/検出器対に対する検出された強度が、別個に解析されるか又は組み合わせて処理されるかは、設計的事項である。さらに、1つ又は複数の追加の検知機能52を、必要に応じて粉体流路130に沿った他の場所に配置することができる。例えば、第2の対150は、第1の対52から回転方向に角度をなしているだけでなく、第1の対から軸方向に角度をなすか又は間隔を空けて配置されるようにも示されている。しかしながら、必要な場合は、対を、粉体流路の同じ検知部分を通る流れを検知するように位置決めすることもできる。
本明細書に提示するチューブ内の粉体コーティング材料の流量を検出する様々な装置に加えて、本発明はまた、装置の使用の関連方法とともに、粉体流量を検出する方法も含む。例示的な方法では、光エネルギーが粉体流用の通路の一部の中に向けられ、通路を通過する光エネルギーの強度が検出され、粉体が通路を流れているか否かの判断が、検出された強度に基づいて行われる。一実施形態では、本方法は、通路を通過する光エネルギーの強度の平均値又はRMS値を求めることを含む。別の実施形態では、光エネルギーの検出された強度、例えば、平均値又はRMS値は、粉体流量が変化したか否かを判断するために較正値と比較される。
このように、通路又はチューブ内の空中浮遊固体粒子の存在又は輸送を検出するか又は検証する方法及び装置を提供する。この検出を、粉体流に外乱を導入することのないように、又は言い換えれば非侵入性技法により達成する。例えば、流体通路断面積を変化させることなく、追加の空気流を導入することなく、圧力変化をもたらすことなく、又は流れ方向の遮断若しくは変化をもたらすことなく、検出を達成する。したがって、ポンプ出口から最終用途までの粉体流路は、圧力、流量又は流れの方向、温度等を含む動作態様に関して変化しない。
本発明は、本発明を実行するために開示された特定の実施形態に限定されず、本発明は、添付の特許請求の範囲の範囲内にある全ての実施形態を含むことが意図されている。

Claims (50)

  1. チューブ内の粉体流を検出する装置であって、
    光源と、
    前記光源がチューブの一部分に入る光を生成するとき、該光源からの光を検出する光検出器であって、
    前記チューブの前記部分を通過する光の強度に応じて出力を生成する光検出器と、
    前記光検出器からの前記出力を受け取り、該光検出器によって受け取られた光の前記強度の平均値を求める回路であって、
    前記平均値に基づいて、粉体が前記チューブの前記部分内を流れているか否かを判断する回路と、
    を具備する、チューブ内の粉体流を検出する装置。
  2. 前記光源及び前記光検出器は、前記チューブの前記部分の反対側の対向する側に配置されている、請求項1に記載の装置。
  3. 前記チューブの前記部分は光透明性である、請求項1に記載の装置。
  4. 前記チューブの前記部分は、前記光源によって生成されかつ前記光検出器によって検出することができる光の波長に対して透明である、請求項1に記載の装置。
  5. 前記チューブの前記部分は、重力が、粉体が該チューブの該部分の中を流れるのを補助するように、向けられている、請求項1に記載の装置。
  6. 前記チューブの前記部分は垂直に向けられている、請求項5に記載の装置。
  7. 前記光検出器は、前記出力を電圧信号として生成し、前記回路は該電圧信号のRMS値を求める、請求項1に記載の装置。
  8. 前記回路は、粉体が前記チューブの前記部分の中を流れていないときの流れなしRMS値を含む前記光検出器の前記出力のRMS値を求め、前記回路は、前記光検出器の前記出力のRMS値が前記流れなしRMS値と異なる場合に、粉体が前記チューブの前記部分の中を流れていると判断する、請求項1に記載の装置。
  9. 前記回路は、前記チューブの前記部分の中を粉体が流れていないときに、前記光検出器によって生成される最大信号に基づいて前記流れなしRMS値を求め、それにより、前記チューブの前記部分の中を流れる粉体が、前記光検出器によって受け取られる光の強度を低減し、前記出力のRMS値を低減して粉体が前記チューブの前記部分の中を流れていることを示す、請求項8に記載の装置。
  10. 前記回路は、前記チューブの前記部分を通る第1の粉体流量に対して前記光検出器の前記出力の第1の平均値を求め、前記光検出器からの前記出力の第2の平均値が前記第1の平均値と選択された量異なる場合に、流量が変化したと判断する、請求項1に記載の装置。
  11. 前記回路は、該回路が、粉体が前記チューブの前記部分の中を流れていないと判断したときに、警報を発生する、請求項1に記載の装置。
  12. 前記警報は、視覚的警報若しくは可聴警報又は両方を含む、請求項11に記載の装置。
  13. 前記チューブの前記部分は、該チューブの該部分の境界層に蓄積する可能性があるいかなる粉体も、本来前記光検出器によって受け取られる、前記光源によって前記チューブの前記部分の中に伝送される光に影響を与えないように、十分な長さ対直径比を有している、請求項1に記載の装置。
  14. 前記チューブの前記部分は、出口でパルス化粉体流を生成するタイプの粉体ポンプの該出口に配置されている、請求項1に記載の装置。
  15. 前記粉体ポンプは濃厚相粉体ポンプを含む、請求項14に記載の装置。
  16. 前記チューブの前記部分は、出口で非パルス化粉体流を生成するタイプの粉体ポンプの該出口に配置されている、請求項1に記載の装置。
  17. 前記粉体ポンプは希薄相粉体ポンプを含む、請求項16に記載の装置。
  18. 粉体がチューブの中を流れているか否かを判断する方法であって、
    チューブの一部分の中に光を向けるステップと、
    前記チューブの前記部分を通過する光の強度を検出するステップと、
    前記チューブの前記部分を通過する光の前記検出された強度の平均強度を求めるステップと、
    前記平均強度に基づいて、粉体が前記チューブの前記部分の中を流れているか否かを判断するステップと、
    を含む、粉体がチューブの中を流れているか否かを判断する方法。
  19. 前記チューブの前記部分を通過する光の前記検出された強度の第1の平均強度を求めるステップと、前記チューブの前記部分を通過する光の前記検出された強度の平均強度が前記第1の平均強度から変化したときに、前記チューブの前記部分を通る粉体の流量が変化したと判断するステップとを含む、請求項18に記載の方法。
  20. チューブ内のパルス化粉体流を検出する装置であって、
    ポンプ出口を有する粉体ポンプであって、ポンプ室を備え、粉体は、該ポンプ室に加えられる負圧によって該ポンプ室内に引き込まれ、該ポンプ室に正圧が加えられるときに前記ポンプ室から前記ポンプ出口に押し出され、前記粉体は、前記ポンプ出口から粉体流路内にパルス状に流れ込む、粉体ポンプと、
    光源と、
    前記光源が前記粉体流路の一部分の中に入る光を生成するとき、該光源からの光を検出する光検出器であって、
    粉体が前記ポンプ出口から前記粉体流路を通って流れる際に該粉体流路の前記部分を通過する前記光源からの光に応答して出力を生成する光検出器と、
    前記光検出器出力を受け取り、該出力に基づいて、粉体が該粉体流路の前記部分の中を流れているか否かを判断する回路と、
    を具備する、チューブ内のパルス化粉体流を検出する装置。
  21. 第1の弁が、前記ポンプ室内への粉体の流れを制御し、第2の弁が、前記ポンプ室から出る粉体の流れを制御する、請求項20に記載の装置。
  22. 前記ポンプは、前記ポンプ出口に交互に粉体を供給する2つのポンプ室を備える、請求項20に記載の装置。
  23. 前記ポンプは、前記回路を含むコントローラーを更に備える、請求項20に記載の装置。
  24. 前記光検出器出力はパルス化され、前記光検出器から前記パルス化出力を受け取る前記回路は、前記光検出器によって受け取られた光の前記強度の平均を求める、請求項20に記載の装置。
  25. 前記光源及び前記光検出器は、前記粉体流路の前記部分の反対側の対向する側に配置されている、請求項20に記載の装置。
  26. 前記粉体流路の前記部分は光透明性である、請求項20に記載の装置。
  27. 前記粉体流路の前記部分は、前記光源によって生成されかつ前記光検出器によって検出することができる光の波長に対して透明である、請求項20に記載の装置。
  28. 前記粉体流路の前記部分は、重力が、粉体が前記粉体流路の前記部分の中を流れるのを補助するように、向けられている、請求項20に記載の装置。
  29. 前記粉体流路の前記部分は垂直に向けられている、請求項28に記載の装置。
  30. 前記光検出器は、前記出力を電圧信号として生成し、前記回路は該電圧信号のRMS値を求める、請求項20に記載の装置。
  31. 前記光検出器出力はパルス化され、前記回路は、粉体が前記粉体流路の前記部分の中を流れていないときの流れなしRMS値を含む前記光検出器の前記出力のRMS値を求め、前記回路は、前記光検出器の前記出力のRMS値が前記流れなしRMS値と異なるときに、粉体が前記粉体流路の前記部分の中を流れていると判断する、請求項30に記載の装置。
  32. 前記回路は、粉体が前記粉体流路の前記部分の中を流れていないときに、前記光検出器によって生成される最大信号に基づいて前記流れなしRMS値を求め、それにより、前記粉体流路の前記部分を通って流れている粉体が、前記光検出器によって受け取られる光の強度を低減し、前記出力のRMS値を低減して粉体が前記粉体流路の前記部分を通って流れていることを示す、請求項31に記載の装置。
  33. 前記光検出器出力はパルス化され、前記回路は、前記粉体流路の前記部分を通る第1の粉体流量に対して前記光検出器の前記出力の第1のRMS値を求め、前記光検出器からの前記出力の第2のRMS値が前記第1のRMS値と選択された量異なるときに、流量が変化したと判断する、請求項20に記載の装置。
  34. 前記回路は、該回路が、粉体が前記粉体流路の前記部分の中を流れていないと判断したときに、警報を発生する、請求項20に記載の装置。
  35. 前記警報は、視覚的警報若しくは可聴警報又は両方を含む、請求項34に記載の装置。
  36. 前記粉体流路の前記部分は、該粉体流路の前記部分の境界層に蓄積する可能性があるいかなる粉体も、本来前記光検出器によって受け取られる、前記光源によって前記粉体流路の前記部分の中に伝送される光に影響を与えないように、十分な長さ対直径比を有している、請求項20に記載の装置。
  37. 粉体流路に沿った粉体流を検出する装置であって、
    光源と、
    前記光源が粉体流路の一部分に入る光を生成するとき、該光源からの光を検出する光検出器であって、
    前記粉体流路の前記部分を通過する光の強度に応じて出力を生成する光検出器と、
    前記光検出器からの前記出力を受け取り、該光検出器によって受け取られた光の前記強度の平均値を求める回路であって、
    前記平均値に基づいて、前記粉体流路の前記部分における粉体流の特性を確定する回路と、
    を具備する、粉体流路に沿った粉体流を検出する装置。
  38. 前記特性は、前記粉体流路の前記部分において粉体の流れがあるか流れがないかの判断に関連する、請求項37に記載の装置。
  39. 前記特性は、前記粉体流路の前記部分において粉体の流量の変化があるか否かの判断に関連する、請求項37に記載の装置。
  40. 2つ以上の光源若しくは光検出器又は両方を具備する、請求項37に記載の装置。
  41. 第1の光源/検出器対と第2の光源/検出器対とを具備し、前記第1の対は前記第2の対から回転方向に角度をなしている、請求項40に記載の装置。
  42. 前記第1の対は、前記第2の対から軸方向にかつ回転方向に角度をなしている、請求項41に記載の装置。
  43. 2つ以上の光源若しくは光検出器又は両方を具備する、請求項20に記載の装置。
  44. 第1の光源/検出器対と第2の光源/検出器対とを具備し、前記第1の対は前記第2の対から回転方向に角度をなしている、請求項43に記載の装置。
  45. 前記第1の対は、前記第2の対から軸方向にかつ回転方向に角度をなしている、請求項44に記載の装置。
  46. 前記光源及び前記光検出器は、前記粉体流路に沿って位置するハウジング内に収容されている、請求項20に記載の装置。
  47. 前記ハウジングは前記ポンプ出口に取り付けられている、請求項46に記載の装置。
  48. 前記ハウジングは粉体給送ホースにも取り付けられている、請求項47に記載の装置。
  49. 前記ハウジングは透明である、請求項46に記載の装置。
  50. 前記光源及び前記光検出器は、前記粉体流路に沿って前記ポンプ出口と粉体給送ホースとの間に位置している、請求項20に記載の装置。
JP2014534575A 2011-10-06 2012-09-11 粉体流検出 Active JP6151259B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/267,028 2011-10-06
US13/267,028 US8767214B2 (en) 2011-10-06 2011-10-06 Powder flow detection
PCT/US2012/054555 WO2013052239A1 (en) 2011-10-06 2012-09-11 Powder flow detection

Publications (2)

Publication Number Publication Date
JP2014528584A true JP2014528584A (ja) 2014-10-27
JP6151259B2 JP6151259B2 (ja) 2017-06-21

Family

ID=47040789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014534575A Active JP6151259B2 (ja) 2011-10-06 2012-09-11 粉体流検出

Country Status (5)

Country Link
US (2) US8767214B2 (ja)
EP (2) EP3859286B1 (ja)
JP (1) JP6151259B2 (ja)
CN (2) CN104024805B (ja)
WO (1) WO2013052239A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097282A1 (ja) * 2020-11-06 2022-05-12 ヤマザキマザック株式会社 付加製造装置、複合加工装置、付加製造装置の制御方法、及び、付加製造装置の制御プログラム

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2909174A1 (en) * 2012-10-19 2015-08-26 F. Hoffmann-La Roche AG Inhibitors of syk
US20140356078A1 (en) * 2013-05-31 2014-12-04 Tekna Plasma Systems Inc. Powder Flow Monitor and Method for In-flight Measurement of a Flow of Powder
DE102013009642B4 (de) 2013-06-08 2019-10-10 Dräger Safety AG & Co. KGaA Messsystem, Reaktionsträger, Messverfahren und optischer Strömungssensor
EP2930543B1 (de) * 2014-04-10 2021-09-15 Müller-Elektronik GmbH Fallrohrsensor und Verfahren zur Einzelkornerkennung
US9745149B2 (en) 2015-03-19 2017-08-29 Ipeg, Inc. Material delivery system
US11007717B2 (en) 2016-05-12 2021-05-18 Hewlett-Packard Development Company, L.P. Outlet structure
IT201600075023A1 (it) * 2016-07-18 2018-01-18 Dropsa Spa Dispositivo e metodo di monitoraggio di un flusso di olio misto ad aria
CN107803365B (zh) * 2016-09-09 2022-09-23 鸿富锦精密工业(深圳)有限公司 药末清洁装置及药末清洁方法
EP3550270B1 (en) * 2016-11-29 2022-01-05 Pioneer Corporation Measurement device
US10760933B2 (en) * 2017-04-27 2020-09-01 Oerlikon Metco (Us) Inc. Method for detecting and diagnosing powder flow stability
DE102017208934B4 (de) 2017-05-29 2022-01-27 Audi Ag Verfahren zur Ermittlung einer Partikelkonzentration
WO2019199327A1 (en) * 2018-04-13 2019-10-17 Hewlett-Packard Development Company, L.P. Colorant sensors
CN110052606A (zh) * 2018-07-03 2019-07-26 南方科技大学 激光送粉增材制造装置及粉流控制方法
CN110243725B (zh) * 2019-07-05 2024-08-27 老虎表面技术新材料(苏州)有限公司 粉末流动性自动测试仪、测试方法及其应用的粉末涂料
CN112719309B (zh) * 2020-12-04 2023-03-17 上海航天设备制造总厂有限公司 粉末流量检测装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024418A (ja) * 1983-07-19 1985-02-07 Kobe Steel Ltd 固気2相流における粉粒体の流量測定方法
JPS6411662A (en) * 1987-07-02 1989-01-17 Gema Ransburg Ag Method and device for controlling quantity of powder in powder scattering coating
JPH03504701A (ja) * 1988-06-06 1991-10-17 インダストリーエレクトロニク ドクトル インジェニール バルター クラシュカ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー 粉付け装置
JPH0682288A (ja) * 1992-09-02 1994-03-22 Nkk Corp 管内を搬送媒体により搬送される高濃度粉体の流量測定 方法及びその測定装置
JPH0735591A (ja) * 1993-07-23 1995-02-07 Chichibu Onoda Cement Corp 粉体流量測定方法およびその装置
JPH0933419A (ja) * 1995-07-18 1997-02-07 Dainippon Printing Co Ltd 半濁物測定方法及び装置
JP2003248012A (ja) * 2001-12-20 2003-09-05 Teepol Ltd 液切れセンサおよびそれを用いた液体供給装置
US20100212589A1 (en) * 2007-10-13 2010-08-26 Itw Gema Gmbh Powder spraycoating control system and its combination with powder feeding device or with powder spraycoating device
JP2012078335A (ja) * 2010-10-04 2012-04-19 Yoshio Hayashi 粉体流量検出器

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1165313A (en) 1968-02-01 1969-09-24 Lewis Howe Company Apparatus for Measuring the Relative Flowability of Particulate Materials
US3845480A (en) * 1973-02-20 1974-10-29 Air Technologies Inc Particulate detector system
US4003255A (en) 1974-05-07 1977-01-18 Robert I. Pearlman Measurement and control of fluid flow
US4519257A (en) 1983-07-26 1985-05-28 Simpkins Otto K Electronic flow meter for measuring flow of bulk solids pneumatically conveyed through a hose
US4863316A (en) * 1987-07-01 1989-09-05 The Perkin-Elmer Corporation Closed loop powder flow regulator
DE3813259A1 (de) * 1988-04-20 1989-11-02 Nordson Corp Pulver-rueckgewinnungseinrichtung fuer pulverbeschichtungsanlagen oder dergleichen
US4999513A (en) * 1988-09-09 1991-03-12 Canon Kabushiki Kaisha Particle measuring apparatus
US5595732A (en) 1991-03-25 1997-01-21 Hoffmann-La Roche Inc. Polyethylene-protein conjugates
US5654042A (en) * 1992-12-17 1997-08-05 Nordson Corporation Powder coating system for difficult to handle powders
US5656325A (en) 1994-08-03 1997-08-12 Nd Industries, Inc. Powder coating apparatus and method
US5650609A (en) * 1995-05-15 1997-07-22 Phoenix International Corporation Seed monitoring system for counting seeds as they are dispensed through a seed planting tube
US6093926A (en) * 1995-05-15 2000-07-25 Deere & Company Method of counting seeds dispensed through seed tubes of an air seeding system
US5798699A (en) * 1997-01-06 1998-08-25 Chemtrac Systems, Inc. Method for monitoring and selectively sampling a fluid flow stream
WO2000021676A1 (en) 1998-10-14 2000-04-20 Delsys Pharmaceutical Corporation Device for dispersal of fluidized powder
WO2001003849A1 (fr) * 1999-07-08 2001-01-18 Kyowa Hakko Kogyo Co., Ltd. Dispositif de pulvérisation d'une substance en poudre
US20030066358A1 (en) 2001-10-04 2003-04-10 King Kevin James Apparatus and method for reducing unwanted microwave reflections in a particulate mass flow rate measuring device
US7118010B2 (en) * 2002-05-10 2006-10-10 Oriel Therapeutics, Inc. Apparatus, systems and related methods for dispensing and /or evaluating dry powders
US7142298B2 (en) 2003-09-29 2006-11-28 Shaw Intellectual Property Holdings, Inc. Particulate monitor
US20050158187A1 (en) * 2003-11-24 2005-07-21 Nordson Corporation Dense phase pump for dry particulate material
US7241080B2 (en) * 2004-03-22 2007-07-10 Durr Industries, Inc. Pump for transferring particulate material
US7369230B1 (en) 2004-04-30 2008-05-06 Donald Scott Rogers Apparatus and method for measuring particulate flow rate
KR101124447B1 (ko) * 2004-08-31 2012-03-21 아사히 유키자이 고교 가부시키가이샤 유체제어장치
JP4621066B2 (ja) 2005-04-22 2011-01-26 アネスト岩田株式会社 粉体定量供給装置
US7955031B2 (en) 2005-07-06 2011-06-07 First Solar, Inc. Material supply system and method
US7731456B2 (en) * 2005-10-07 2010-06-08 Nordson Corporation Dense phase pump with open loop control
US8132740B2 (en) 2006-01-10 2012-03-13 Tessonics Corporation Gas dynamic spray gun
JP2008014829A (ja) * 2006-07-06 2008-01-24 Toshiba Corp 超音波流量計
FR2904574B1 (fr) * 2006-08-04 2008-10-10 Eisenmann France Sarl Sarl Pompe a poudre avec remplissage par depression
EP1953087A1 (en) * 2007-02-02 2008-08-06 Mettler-Toledo Flexilab SAS Powder-metering device, and filling system incorporating the powder-metering device
DE102007045330A1 (de) * 2007-09-22 2009-04-02 Itw Gema Gmbh Beschichtungspulver-Förderverfahren, Beschichtungspulver-Fördervorrichtung und elektrostatische Pulversprühbeschichtungsvorrichtung
US7782459B2 (en) * 2007-09-24 2010-08-24 Process Metrix Laser-based apparatus and method for measuring agglomerate concentration and mean agglomerate size
CN101303294B (zh) * 2008-06-20 2010-08-18 河南中医学院 近红外在线检测技术在中药一清颗粒生产中的应用方法
US8351035B2 (en) 2009-05-12 2013-01-08 Thermo Fisher Scientific Inc. Particulate detection and calibration of sensors
CN101619990A (zh) * 2009-06-25 2010-01-06 浙江工业大学 气力输送粉末的流量检测传感器
CN101592928B (zh) * 2009-06-25 2011-07-27 浙江工业大学 气力输送粉末的输送精度检测与控制系统
CN101629929B (zh) * 2009-07-27 2013-03-13 浙江省电力试验研究院 一种激光再制造用电容式粉末流量测量系统
US8531516B2 (en) * 2010-02-03 2013-09-10 The United States Of America As Represented By The Secretary Of Commerce Imaging polar nephelometer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024418A (ja) * 1983-07-19 1985-02-07 Kobe Steel Ltd 固気2相流における粉粒体の流量測定方法
JPS6411662A (en) * 1987-07-02 1989-01-17 Gema Ransburg Ag Method and device for controlling quantity of powder in powder scattering coating
JPH03504701A (ja) * 1988-06-06 1991-10-17 インダストリーエレクトロニク ドクトル インジェニール バルター クラシュカ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー 粉付け装置
JPH0682288A (ja) * 1992-09-02 1994-03-22 Nkk Corp 管内を搬送媒体により搬送される高濃度粉体の流量測定 方法及びその測定装置
JPH0735591A (ja) * 1993-07-23 1995-02-07 Chichibu Onoda Cement Corp 粉体流量測定方法およびその装置
JPH0933419A (ja) * 1995-07-18 1997-02-07 Dainippon Printing Co Ltd 半濁物測定方法及び装置
JP2003248012A (ja) * 2001-12-20 2003-09-05 Teepol Ltd 液切れセンサおよびそれを用いた液体供給装置
US20100212589A1 (en) * 2007-10-13 2010-08-26 Itw Gema Gmbh Powder spraycoating control system and its combination with powder feeding device or with powder spraycoating device
JP2012078335A (ja) * 2010-10-04 2012-04-19 Yoshio Hayashi 粉体流量検出器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097282A1 (ja) * 2020-11-06 2022-05-12 ヤマザキマザック株式会社 付加製造装置、複合加工装置、付加製造装置の制御方法、及び、付加製造装置の制御プログラム
CN116390829A (zh) * 2020-11-06 2023-07-04 山崎马扎克公司 增材制造装置及其控制方法、控制程序和复合加工装置
CN116390829B (zh) * 2020-11-06 2024-03-19 山崎马扎克公司 增材制造装置及其控制方法、存储介质和复合加工装置

Also Published As

Publication number Publication date
US20130088716A1 (en) 2013-04-11
CN107063366A (zh) 2017-08-18
US8767214B2 (en) 2014-07-01
EP3859286A1 (en) 2021-08-04
WO2013052239A1 (en) 2013-04-11
CN104024805A (zh) 2014-09-03
US9372108B2 (en) 2016-06-21
EP2764331A1 (en) 2014-08-13
JP6151259B2 (ja) 2017-06-21
EP2764331B1 (en) 2020-12-23
US20140245839A1 (en) 2014-09-04
EP3859286B1 (en) 2023-07-19
CN107063366B (zh) 2019-11-08
CN104024805B (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
JP6151259B2 (ja) 粉体流検出
US10717096B2 (en) Powder conveyor for conveying coating powder to a powder applicator, powder coating system, and method for operating the powder conveyor
US7502665B2 (en) Networked diagnostic and control system for dispensing apparatus
US9254500B2 (en) Aerosol generation for stable, low-concentration delivery
JP2019521326A (ja) 流れ及び気泡検出システムを有する自動出力制御液体粒子計数器
JP6854332B2 (ja) 煙検知装置及び煙発生場所の特定方法
CN109195714A (zh) 用于监测液体粘合剂流的系统和方法
US20230236082A1 (en) Monitoring of an aspirating detection system
EP3273135B1 (en) Monitoring device and method of an oil flow mixed with air
WO2019049292A1 (ja) 流量制御装置
KR20190019916A (ko) 주입 세트를 모니터링하기 위한 디바이스
KR102144639B1 (ko) 제어 장치를 이용한 파이프 유지 관리
KR102325841B1 (ko) 자체발광 알람기능이 있는 유체 레벨 측정장치 및 유체 레벨 측정방법
JP2017107311A (ja) 煙検知装置
EP3746766B1 (en) Sensor system for detecting contaminant in fluid
JP7142743B2 (ja) 検知装置
WO2019079533A1 (en) CATALYTIC FLOW SENSOR
CN209707367U (zh) 一种有机物传感器及应用该有机物传感器的净水器
CN109211926A (zh) 一种激光双路中空纤维膜组件完整性的检测装置及其方法
JP7369172B2 (ja) 煙検知装置
WO2020141434A1 (en) Ultrasonic flowmeter
JPH0348099A (ja) 蒸気管の異常検出装置
JP2006123925A (ja) 流体供給装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170314

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170524

R150 Certificate of patent or registration of utility model

Ref document number: 6151259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250