JP2014526161A - 較正された量のカウンタ電荷を注入する回路を含む放射検出器 - Google Patents

較正された量のカウンタ電荷を注入する回路を含む放射検出器 Download PDF

Info

Publication number
JP2014526161A
JP2014526161A JP2014517622A JP2014517622A JP2014526161A JP 2014526161 A JP2014526161 A JP 2014526161A JP 2014517622 A JP2014517622 A JP 2014517622A JP 2014517622 A JP2014517622 A JP 2014517622A JP 2014526161 A JP2014526161 A JP 2014526161A
Authority
JP
Japan
Prior art keywords
potential
transistor
capacitor
charge
comparator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2014517622A
Other languages
English (en)
Inventor
アルク、マーク
Original Assignee
コミシリア ア レネルジ アトミック エ オ エナジーズ オルタネティヴズ
トリクセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コミシリア ア レネルジ アトミック エ オ エナジーズ オルタネティヴズ, トリクセル filed Critical コミシリア ア レネルジ アトミック エ オ エナジーズ オルタネティヴズ
Publication of JP2014526161A publication Critical patent/JP2014526161A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/005Details of radiation-measuring instruments calibration techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/18Measuring radiation intensity with counting-tube arrangements, e.g. with Geiger counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • H04N25/773Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters comprising photon counting circuits, e.g. single photon detection [SPD] or single photon avalanche diodes [SPAD]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本発明は放射検出器用の電子読み取り回路に関する。
当該電子回路は特に、
・閾値電位(Vcomp)および積分ノード(N)からの電位を受ける比較器(12)であって、前記ノードが、感光素子(11)によって生成される電荷を保存可能な比較器(12)と、
・前記比較器(12)の出力端に接続されたカウンタ(13)と、
・カウンタ電荷注入回路(41)と、
を有し、前記カウンタ電荷注入回路(41)が、
−カウンタ電荷を保存するコンデンサ(143)と、
−前記比較器(12)がトグル動作を行う都度、前記コンデンサ(143)の端子(A)から前記積分ノード(N)にカウンタ電荷を転送すべくオン状態にすることができ、前記カウンタ電荷の転送が前記コンデンサ(143)の前記端子(A)における電位(Va)を変動させる転送トランジスタ(M2)と、
−前記転送トランジスタ(M2)を制御する調整回路(42)であって、前記コンデンサ(143)の前記端子(A)の電位が前記転送トランジスタ(M2)から独立した2個の所定電位(Vp2、Vcomp2)の間にある場合に、前記転送トランジスタ(M2)をオン状態にする手段(425)を含む調整回路(42)とを有している。

Description

本発明は、カウンタ電荷注入回路が受ける放射光子を定量化可能な放射検出器用の電子回路に関する。本発明は特に、X線またはガンマ線を電荷に変換する構造に関連付けられたCMOS技術に基づくピクセルのアレイを含む、X線またはガンマ線画像処理を意図したアレイ放射検出器に関する。
アレイ放射検出器は、読み取り手段を形成するピクセルのアレイおよび電子回路を含んでいる。各ピクセルは、受けた光子の量に比例する電荷を生成する感光素子を含んでいる。光電荷とも称するこれらの電荷は、各感光素子が受けた光子の量を表す情報を提供すべく読み取り手段により処理される。CMOS技術を利用することにより、読み取り手段を各ピクセルと一体化することができる。従って、検出の結果をアレイの外部へ転送し易くにするために、これらの電荷を実際にピクセル内に存在するデジタル信号に変換することができる。読み取り手段を製造する一般的な解決策は、電荷を積分することにより動作する回路を用いることである。この積分回路は、感光素子から電荷を受ける積分容量、閾値比較器、カウンタおよびカウンタ電荷注入回路を含んでいる。露光フェーズの最中に、積分容量への電荷の到着が端末自体での電圧低下をもたらす。電荷読み取りフェーズの最中に、積分容量端子での電圧が閾値電圧を下回る限り、閾値比較器は特定の回数トグル動作を行う。比較器の各トグル動作は、カウンタを1単位増加させて、注入回路に1パケット分のカウンタ電荷を注入させ、その量−Q0が較正される。マイナス符号は、注入されたカウンタ電荷が、感光素子から受けられた電荷とは反対の極性を有することを示すために恣意的に用いている。カウンタは従って、積分容量の端子における閾値電圧よりも高い電圧に戻すために必要な電荷パケットの個数分増加される。実際には、注入される電荷の総量を推定すべく、カウンタが比較器のトグル動作回数を判定しながら、カウンタ電荷は一般に光電荷が集められるにつれて注入される。読み取りは従って、カウンタの内容の読み取りに対応している。カウンタの増分数は、感光素子が受けた光子の量を表す数値を与える。
カウンタ電荷注入回路は積分回路に必須の要素である。その理由は、測定の精度がカウンタ電荷量−Q0の較正に依存するためである。第1に、カウンタ電荷量−Q0は、電荷の定量化のペースに対応するため、比較的小さくなければならない。第2に、この量は、積分容量が受ける電荷を定量化するため、カウンタ電荷の各パケットと同一でなければならない。
しかし今日のカウンタ電荷注入回路において、比較器がトグル動作する都度注入される電荷の量は変動し得る。その理由は、これらの回路が電界効果トランジスタを有し、そのチャネルがrts「Random Telegraph Signal(不規則電信信号)」と称する不規則な雑音に影響されるためである。この雑音の不規則な性質は、注入されるカウンタ電荷量に影響を及ぼす。すなわち、一部の注入はこの雑音の影響を受けるが、他のものはそうでない。従って、特定の数の注入により注入された全電荷を推定したい場合、影響を受けた、または受けていない注入は未知である。
例えば、カウンタ電荷注入回路は多くの場合、直列接続された2個の電界効果トランジスタ(FET)およびトランジスタの接続点と例えば接地点等の一定電圧との間に接続されたコンデンサを含んでいる。第1のトランジスタにより、当該トランジスタのゲート電圧により制御される充電電圧と称する第1の電圧値までコンデンサを帯電させることができる。第2のトランジスタにより、当該トランジスタのゲート電圧により制御される放電電圧と称する第2の電圧値までコンデンサを放電させることができる。コンデンサから積分回路の積分容量に注入されるカウンタ電荷量−Q0は、コンデンサの容量の値、および充電電圧と放電電圧の差に基づいている。しかし、充電電圧と放電電圧をトランジスタのゲート電圧から直接に導くことはできない。充電電圧と放電電圧は、トランジスタの内部電位に対応しており、各トランジスタのチャネル内での電荷のトラップにより生じるrts雑音のために正確にはわからない。このrts雑音が更に重大なのは、比較的小さい量−Q0のカウンタ電荷を生成するために成分の大きさが小さいためである。実際に、このrts雑音により量−Q0の値が数パーセント変化する。この変化は、受けた光子の量、従って、得られる画像の品質の評価に直接影響を及ぼす。このようなエラーは一般に、特に医療画像分野における検出器にとって受容できるものではない。
本発明の目的は特に、感光素子が生成する電荷の量を評価すべく注入されるカウンタ電荷量を精密に決定することにより、上述の短所の全部または一部を克服することにある。この目的のため、本発明は以下の要素、すなわち
・所定の閾値電位を受ける第1の入力端、および感光素子が光子放射を受けて生成する電荷であって積分ノードにおける検出電位を変動させる電荷を保存可能な積分ノードに接続可能な第2の入力端を有する比較器と、
・検出電位により閾値電位の逸脱回数をカウントすべく比較器の出力端に接続されたカウンタと、
・電荷の平衡化を可能にするカウンタ電荷注入回路とを有し、前記回路が、
−カウンタ電荷を保存するコンデンサと、
−比較器がトグル動作を行う都度、コンデンサの端子から積分ノードにカウンタ電荷を転送すべくオン状態にすることができ、コンデンサの前記端子が注入回路のノードを形成し、カウンタ電荷の転送が注入回路の前記ノードにおける電位を変動させる転送トランジスタと、
−転送トランジスタを制御する調整回路であって、注入回路のノードの電位が転送トランジスタから独立した2個の所定電位の間にある場合に、転送トランジスタをオン状態にする手段を含む調整回路とを含む放射検出器用の電子回路に関する。
このような回路は、比較器がトグル動作を行う都度注入される電荷の量に対する制御を行う。従って検出器により集められた電荷の総量が改善され、測定値の精度が向上する。
好適な実施形態によれば、調整回路は更に、当該変動が注入回路のノードにおける電位の変動を表す位置で基準電位を生成する手段を含み、転送トランジスタを制御する手段は、基準電位が転送トランジスタから独立した2個の所定電位の間にある場合に当該転送トランジスタをオン状態にする。
本発明はまた、光子放射を受けて積分ノードに電荷を生成する感光素子を有する放射検出器に関し、上述のように、比較器の第2の入力が積分ノードに接続されている。
本発明は特に、rts雑音を除去しながら、寸法が小さい部品を使用できる利点がある。注入されるカウンタ電荷量−Q0が極めて少なくてよいため、各感光素子が生成する電荷の精密な定量化が図れる。更に、寸法が小さい部品を用いることにより、各ピクセル内のカウンタ電荷注入回路が占める表面積を制限することができる。本発明は従って、測定値の精度を低下させることなくこれらの小型部品を利用可能にする。小型の部品とは、最大長が1ミクロン以下のオーダーである部品を意味するものと理解されたい。
添付の図面を参照しながら以下の記述を精査することにより本発明に対する理解が深まると共に他の利点も想起されよう。
従来技術による放射検出器内のピクセルの回路図を示す。 図1のピクセル内のカウンタ電荷注入回路の動作原理を示す。 図1のカウンタ電荷注入回路の動作に対するrts雑音の影響を図2A〜2Eと同様の表現で示す。 本発明によるピクセルの第1例の回路図を示す。 図4のピクセル内の調整回路の変型実施形態の回路図を示す。 本発明によるピクセルの第2例の回路図を示す。 図6のピクセル内のカウンタ電荷注入回路の動作原理を図2A〜2Eと同様の表現で示す。 図6のピクセル内のカウンタ電荷注入回路の動作原理をタイミング図により示す。
図1に、従来技術によるアレイ放射検出器内のピクセル10の回路図を示す。各ピクセル10は、アレイ検出器内で感光点を形成する。当該点は、フォトダイオード11、閾値比較器12、カウンタ13、およびカウンタ電荷注入回路14を含んでいる。閾値比較器12、カウンタ13、および注入回路14は、フォトダイオード11を読み取り可能にする電子回路を形成する。フォトダイオード11は、フォトトランジスタにより、またはより一般的には受けた光子の量に比例して電荷を生成する任意の感光素子により代替可能である。例えば、考慮する光子は、可視領域またはX線領域の波長を有している。後者の場合、感光素子がX線放射の直接的影響下で電荷を生成するか、または可視光放射に敏感であり、その場合にはX線源と感光素子の間にシンチレータが挿入される。
フォトダイオード11は、露光フェーズの間に生成された電荷を保存する積分容量として用いられる寄生容量を有している。フォトダイオードの寄生容量は一般に充分である。にもかかわらず、積分容量を増やすべくコンデンサがフォトダイオードと並列に接続されていてもよい。フォトダイオード11の陽極は一定電圧を受ける。例えば、陽極は接地点に接続されている。閾値比較器12は、正入力端で閾値電圧Vcompを受ける。負入力端はフォトダイオード11の陰極に接続されている。比較器12の出力端はカウンタ13の入力端に接続されている。
カウンタ電荷注入回路14は、2個の電界効果トランジスタ(FET)すなわち第1トランジスタM1および第2トランジスタM2と、2個の電圧源141、142と、容量Cのコンデンサ143とを含んでいる。第1トランジスタM1のドレイン、第2トランジスタM2のソース、およびコンデンサ143の端子は、カウンタ電荷注入回路のノードと称する点Aに接続されている。
第1トランジスタM1のソースは電圧源141に接続され、ドレインは第2トランジスタM2のソースに接続されている。第1トランジスタM1により、電荷注入回路のノードで電荷を設定することができる。これはプリチャージトランジスタと称する。トランジスタM1とM2の間の接続点は上で定義した点Aに対応している。
第2トランジスタM2のドレインは、内部へカウンタ電荷を注入可能にすべく、フォトダイオード11の陰極に接続されている。従って、第2トランジスタM2は転送トランジスタと称する場合がある。フォトダイオード11の陰極も同様に、検出器内での放射の相互作用により生成された電荷が蓄積された点に対応している。当該点をピクセルの積分ノードNと称する場合がある。換言すれば、ノードNはフォトダイオード11と、その電子読み取り回路との間の接続点である。ノードNは最初に、フォトダイオード11が露光された場合にフォトダイオード11から電荷を受け、次いでカウンタ電荷注入回路14からカウンタ電荷を受けることができる。
電荷の収集およびノードNへのカウンタ電荷の注入は、ノードNの電位を変動させる。例えば、フォトダイオード11は、光子を受ける間、自身の陰極に保存される負電荷(電子)を生成するものと考えることができる。これらの負電荷はノードNの電位を低下させる。電位が閾値電位Vcompよりも低くなると比較器12がトグル動作を行う。各トグル動作はカウンタ13によりカウントされる。トランジスタM1のゲートは一定電位Vg1になるまでバイアスが掛けられる。トランジスタM2のゲートは、電圧源142によりバイアスが掛けられる。コンデンサ143は、点Aと一定電圧源、例えば接地点との間に接続されている。電圧源141、142は各々、電位Phi1、Phi2を供給する。これらは、閾値比較器12からトグル動作の情報を自身の入力端で受け、且つ電圧源141を制御する第1の信号Phi1cおよび電圧142を制御する第2の信号Phi2cを自身の出力端に送る制御回路15により制御される。カウンタ電荷注入回路14はコンデンサ143を有していなくてもよく、その場合、トランジスタM1、M2の寄生容量により容量Cが供給される。
図2A〜2Eに、電荷結合回路(CCD)の分野で公知の油圧モデルによる、カウンタ電荷注入回路14の動作原理を示す。これらの図において、トランジスタM1、M2は、強い逆バイアスを受けるものと考えられる。トランジスタM1、M2は、弱い逆バイアスでも同様に容易に動作可能である。そのために定量的な値は修正されるであろうが、以下に与える質的な説明は依然として正しい。これらの図の各々において、左から右の列に、電位Phi1、トランジスタM1の内部電位Vg1s、点Aにおける電位Va、トランジスタM2の内部電位Phi2s、およびトランジスタM2のドレイン電位Vd2を示す。読者の注意が向くのはゲートに印加される電位ではなく、トランジスタM1、M2の内部電位、すなわちチャネルの電位が考慮の対象である事実である。トランジスタのゲートの内部電位に1次近似はVg−VTであり、ここにVgはトランジスタのゲートに印加される電位、VTはトランジスタの閾値電圧である。フォトダイオード11へのカウンタ電荷の注入には、プリチャージステップ、スキミングステップ、および転送ステップの連続的実行を要する。例えば、カウンタ電荷の注入は、比較器12のトグル動作により開始される。図2Aに、プリチャージステップの間におけるカウンタ電荷注入回路14を示す。当該ステップにおいて、電位Phi1は、高レベルPhi1_hにある。電位Phi2は、高レベルPhi2_hにある。内部電位Phi2sは従って、高レベルPhi2s_hにある。電位Phi1_h、Vg1、およびPhi2_hは、電位Phi1_hが電位Vg1sよりも高く、且つ電位Phi2s_hよりも低くなるように決定される。電位Vaは従って、電位Phi1_hに安定させることができる。図2Bに、スキミングステップの間における注入回路14を示す。当該ステップの最中に、電位Phi1は低レベルPhi1_bにあって、電位Vg1sよりも低い。電位Phi2sは、高レベルPhi2s_hに維持されている。トランジスタM1はオン状態であり、コンデンサ143から過剰電荷を電圧源141へ逃がして電位Vaを低下させる。図2Cに、スキミングステップの終了時点での注入回路14を示す。同図において、電位Vaが電位Vg1sで安定しているように見える。図2Dに示すように、転送ステップの最中に、電位Phi2は低レベルPhi2_bに維持されている。内部電位Phi2sは従って、低レベルPhi2s_bにある。電位Phi2_bは、電位Phi2s_bが電位Vg1sよりも低くなるように決定される。トランジスタM2はオン状態であり、コンデンサ143内の過剰電荷をフォトダイオード11へ逃がす。電荷転送により電位Vaが低下し、ノードNの電位が上昇する。図2Eに、転送ステップの終了時点における注入回路14を示す。電位Vaは、電位Phi2s_bで安定している。過剰電荷(カウンタ電荷)をフォトダイオード11へ転送するステップは従って、電位VaをVg1sからPhi2s_bまで低下させることができる。フォトダイオード11に注入されるカウンタ電荷量−Q0は従って、C×(Vg1s−Phi2s_b)である。引き続きカウンタ電荷を注入するために、プリチャージ、スキミング、および転送ステップが繰り返される。注入は、ノードNにおける電位が閾値電位Vcompに達するまで実行される。1個のカウンタ電荷の注入でノードNの電位を閾値電位Vcompにするにはフォトダイオード11の容量が充分に低いため、比較器12のトグル動作が生じ得る点に注意されたい。
限られた量のカウンタ電荷を注入する目的で、低い電位によりトランジスタM1、M2を制御する必要があり、且つコンデンサ143の容量Cは最小にする必要がある。従って、トランジスタの寸法は比較的小さくなければならない。従ってFETトランジスタにおいて顕著なrts雑音が出現し、これは特に不規則であるために邪魔である。このrts雑音は、トランジスタのチャネル内の1個以上のトラップにおける1個以上の電荷のトラップに起因するものである。電荷がトラップされる時間は典型的には1秒のオーダーである。この時間全体にわたり、FETトランジスタの動作が変化する。この変化は、トランジスタの導電の変動として、またはゲートにおける同電位のトランジスタのチャネルの電位の変動として見ることができる。図3A〜3Eに、図1のカウンタ電荷注入回路14の動作に対するrts雑音の影響を示す。図3A〜3Eは各々、ホールがトランジスタM1のチャネルにトラップされた場合における図2A〜2Eに等しい。トラップされた正電荷によりチャネル内の電位Vg1sが上昇する。これを図3A〜3Eに、水路の底に置かれた小石との類似性から隆起で示す。この隆起は、図3Aに示すようにプリチャージステップを殆ど阻害しない。電位Vaは同様に、電位Phi1_hを安定させる。一方、トラップされた電荷は、図3Bに示すようにスキミングステップを遅延させ、特に、電位Vaが安定するレベルを変更する。図3Cに示すスキミングステップの終了時点において、電位Vaは電位Vg1sより僅かに高くなっている。従って図3Dに示すように転送ステップの最中に、より大量の電荷がフォトダイオード11に注入される。トラップされた電荷がチャネルの全幅にわたりその電位を変更しない場合でも、必然的にスキミングステップを遅延させる点に注意されたい。しかし、各ステップに伴う持続期間は実際には限られている。換言すれば、電荷のトラップは必然的に、電位Vaの変更をもたらす。同様に、ホールがトランジスタM2のチャネル内でトラップされて、転送ステップ終了時点における電位Vaの安定化のレベルを変更することができる。要するに、rts雑音は、注入されるカウンタ電荷量−Q0の変動を伴う。この量−Q0の変動は典型的には数パーセントのオーダーであり、ある種の画像処理分野、特に医療画像処理では受容できないことが分かる。
従って、一般的には、rtsと称する雑音は、カウンタ電荷注入回路のトランジスタのチャネル電位に不規則な影響を及ぼす。従って、カウンタ電荷の各注入動作の最中に、注入される電荷の量は、制御不可能な仕方で変動する恐れがある。
本発明は、FETトランジスタのrts雑音を除去して、一定量のカウンタ電荷の注入を可能にすることを目的とする。この目的のため、本発明によるカウンタ電荷注入回路は、転送ステップの最中に、注入回路のノードAにおける電圧の変動が、トランジスタM2から独立した、すなわちそのチャネルの電位から独立した2個の所定電位の間の変動に等しくなるように転送トランジスタM2を制御する手段を含んでいる。更に、注入回路のノードAにおける電圧の変動は、プリチャージトランジスタM1のチャネルの電位から独立している。
図4に、本発明によるピクセル40の第1例の回路図を示す。ピクセル40を読み取る電子回路は、図1におけるピクセル10を読み取る電子回路とはカウンタ電荷注入回路だけが異なる。前記回路41は同様に、直列に接続された2個のFETトランジスタM1、M2と、電圧源141と、典型的には数fF〜数十fFの容量Cのコンデンサ143とを含んでいる。この容量Cは、カウンタ電荷注入回路41のノードAにおけるカウンタ電荷の生成に関与するため、カウンタ電荷容量と称する場合がある。前記回路41は更に、調整回路42を有している。トランジスタM1は、ソースが電圧源141に接続され、ドレインが点Aに接続されている。トランジスタM2は、ソースが点Aに接続され、ドレインがノードN、すなわちフォトダイオード11の陰極に接続されている。コンデンサ143は、点Aと、一定電圧源、この場合は設置点、との間に接続されている。トランジスタM1のゲートは依然として一定電位Vg1になるまでバイアスが掛けられる。一方、トランジスタM2のゲートは、調整回路42が生成する制御電位Phi2によりバイアスが掛けられる。調整回路42は、自身の入力端において点Aから電位Vaを受けて、当該電位の変動に基づいて制御電位Phi2を制御する。調整回路42は従動子421と、容量C2のコンデンサ422と、被制御スイッチ423と、被制御スイッチ423を駆動する電圧源424と、閾値比較器425と、スイッチ426と、一定電位Vp2、一定電位Vcomp2および一定電位Phi2_hを供給する電圧源とを含んでいる。従動子421の入力端は点Aに接続されている。従動子421の出力端はコンデンサ422の第1のプレートに接続され、第2のプレートが点Bに接続されていて、その電位が基準電位Vbを形成し、その電位が点A(注入回路のノード)における電位に対する画像処理電位であると言うことができる。従動子421およびコンデンサ422は、基準電位Vbを生成する手段を形成し、その変動が電位Vaの変動を表す。点Bは更に、比較器425の負入力端およびスイッチ423に接続されている。電圧源424は、点Bに電位Vp2を印加すべく、制御パルスPhi_Vp2によりスイッチ423を制御する。比較器425の正入力端は、電位Vp2よりも低い一定電位Vcomp2を受ける。比較器425の出力端は制御電位Phi3を供給する。この電位は、点Bにおける電位Vbと電位Vcomp2との比較の結果に応じて2個の値Phi3_hおよびPhi3_bをとり得る。比較器425の下流に配置されたスイッチ426により、転送フェーズの最中に、比較器の出力端Phi3をトランジスタM2の制御Phi2に接続することができ、当該フェーズは比較器12のトグル動作後の所定時点で開始される。当然、Phi3_h、Phi3_bは各々Phi2_h、Phi2_bに対応している。従って、転送フェーズの最中に、比較器425の出力端はトランジスタM2を制御する手段を形成する。値Phi2_h、Phi2_bを調整する手段(図示せず)は、トランジスタM2のバイアスを調整可能にすべく提供される。これらの調整手段は、比較器425と一体化されていても、または比較器425とトランジスタM2のゲートとの間に挿入されていてもよい。電圧源141、424、およびスイッチ426は、閾値比較器12からトグル動作情報を自身の入力端で受ける制御回路(図示せず)により制御可能である。
転送フェーズ以外では、スイッチ426により制御Phi2を、出力端Phi3とは独立に、高レベルPhi2_hに接続することができる。
カウンタ電荷注入回路41は、以下のように動作する。例えば比較器12のトグル動作に続いて制御回路により開始されるプリチャージステップの最中に、時点tにおいて、電位Phi1は高レベルPhi1_hにあり、内部電位Phi2sは高レベルPh2_hにあって、Phi1_hはVg1sよりも高くPhi2s_hよりも低い。当該ステップの最中に電位Phi_Vp2は、スイッチ423をオン状態にすべく、高レベルに上げられる。これにより、Bの電位をAの電位とは独立に固定することができる。比較器425の出力端Phi3は低レベルPhi3_bにある。トランジスタM2を制御するゲート電位Phi2は高レベルPhi2_hにある。当該ステップは、t(またはt+ε)〜tの所定の時間だけ継続される。次いでAの電位はPhi1_hとなる。
スキミングステップは、電荷注入回路のノードAで生成された電荷の調整を行うものである。当該ステップは、比較器12のトグル動作に続いて所定の時点tで開始される。電位Phi1は、電位Vg1sよりも低い低レベルPhi1_bに下げられる。スキミングステップの終了時点において、電位Vaは従って、レベルVg1sにトランジスタM1のrts雑音に起因して生じ得る変動を加えたものである。当該ステップの最中は電位Phi_Vp2が高レベルに維持されていて、Aの電位、従ってrts雑音の電位とは独立にBの電位を固定すべくスイッチ423をオン状態にする。比較器Phi53の出力端は低レベルPhi3_bにある。トランジスタM2を制御する電位Phi2は高レベルPhi2_hにある。当該ステップは、t(またはt+ε)〜tの所定の時間だけ継続される。
スキミングは時点tで終了し、tとtの時間差は予め定められている。この時点で、電位Phi_Vp2は低レベルまでトグル動作してスイッチ423を開く。
第3のステップは電荷転送に対応している。当該ステップは時点tに開始され、tとtの時間差は予め定められている。当該ステップの最中は電位Phi_Vp2が低レベルに維持されていて、従動子421および付随する容量C2を介して注入回路41のノードAの電位の変動にBの電位が追随すべく、スイッチ423を開く。更に、転送トランジスタM2のゲート電圧Phi2は、出力電圧Phi3に等しくされている。比較器425の出力端Phi3は従って低レベルPhi3_bにある。トランジスタM2を制御するゲート電位Phi2は低レベルPhi2_bにある。
トランジスタM2のゲートへのPhi2_bの印加により、点AからノードNへのカウンタ電荷の転送が開始される。カウンタ電荷がノードNに注入されるにつれて、電位Vaが低下する。この低下は、従動子421およびコンデンサ422を介して点Bへ伝送される。従って、電荷転送中のようにスイッチ423が開いている場合、点Aの電位の変動に続いて電位Vbが低下するため、点Bおよびその電位Vbは各々、点Aに対する、点Aの像点および電位Vaの像電位として記述することができる。電位Vbは、電位Vcomp2に達するまで低下する。次いで比較器425がトグル動作を行い、出力端Phi3がトグル動作して高レベルPhi3_hになる。従って、Phi2はトグル動作を行って高レベルPhi2_hに上昇してトランジスタM2によるカウンタ電荷の転送を停止させる。この転送の最中に電位VaはVp2からVcomp2に変化する。
転送ステップは従って、C×(Vp2−Vcomp2)に等しいカウンタ電荷量−Q0の転送を含んでいる。従って、カウンタ電荷の注入の最中は電荷点Aにおける電位の変動は、一定の制御された電位により制限される。図1のカウンタ電荷注入回路14に関して、注入回路41により、量−Q0はトランジスタM1、M2のチャネルの電位には依存せず、トランジスタM1、M2の外部電位に依存している。より正確には、量−Q0は、内部電位Vg1sとPhi2s_bの間の電位Vaの変動には依存せず、例えば電圧源を介してこれらの電位を印加することにより正確に決定することができる電位Vp2とVcomp2の間の電位Vbの変動(これはVaの変動と同一)に依存する。無論、注入されるカウンタ電荷量が内部電位Vg1sにも内部電位Phi2s_bにも依存しないようにするには、(Vp2−Vcomp2)<(Vg1s−Phi2s_b)となるように電位Vp2、Vcomp2、Phi2_b、およびVg1を選択する必要がある。必要な電位の数を制限する目的で、比較器425は僅かに不均衡である場合、すなわちトグル動作の閾値がVcomp2より僅かに高い場合、Vp2=Phi2s_bおよびVcomp2=Vg1sを選択することができる。
従来技術(図3)では、カウンタ電荷はM1、M2の内部電位の差に依存する。従って、可能な限り熱的または技術的バラツキを除去するためにこれらの2個のトランジスタが可能な限り互いに一致している(近接している、同一寸法である、スキミング動作の同一システムによる)ことが重要である。
しかし本発明では、スイッチ423がオフ状態である場合、Aのプリチャージの終端からの電圧は保存され、従って唯一の懸念は当該電圧の変動である。従ってAのプリチャージにはより多くの自由度がある。特に、プリチャージトランジスタM1は、比較的駿府が大きいMOSトランジスタにより製造することができ、その容量はプリチャージステップに影響しない。
量−Q0が比較的小さいカウンタ電荷パケットの生成を可能にすべく、従動子421は好適には自身の入力端で僅かに、すなわち数フェムトファラッドの容量性を有している。従って、従動子421は、前記従動子のオフセットの変動(従動子の入力短と出力端の間の電位差)をもたらすrts雑音にさらされる。しかし、当該オフセットはコンデンサ422により除去され、電位Vaの変動は常に電位Vbの変動と同一のままである。一方、オフセットの変動によりVaとVbの変動に差が生じる。しかし、この差は、オフセットの変動が生じるカウンタ電荷パケットの生成を行う間だけ残留する。換言すれば、N回の注入のうち1回の間に従動子421のオフセットが1回変化したならば、1個のカウンタ電荷パケットだけに量−Q0の低下が生じる。同様に、比較器425は、コンデンサを介して従動子により、すなわちAC出力インピーダンスが比較的低いアセンブリにより駆動されるため、入力端ほど僅かに容量性を有している必要がない点に注意されたい。比較器425は従って、一切rts雑音が生じないようにすべく充分大きい寸法を有するFETトランジスタにより製造することができる。電位Vaの変動を最小限の損失で電位Vbに伝送すべく、コンデンサ422は好適には、点Bに存在する寄生容量に関して高い容量C2を有している。典型的には、コンデンサ422は数十fF〜数百fFの容量C2を有している。最後に、従動子421が線形増幅器で代替可能であることを指摘することができ、その場合、電位Vp2、Vcomp2を増幅利得に基づいて適合させる必要がある。
図5に、図4に示す調整回路42の変型実施形態の回路図を示す。この変型により、注入されるカウンタ電荷量−Q0を1ピクセル毎に調整することが可能になる。このような調整は、カウンタ電荷量が極めて少ない、例えば数百ホールである場合に必要であることがわかるであろう。各注入回路のコンデンサ143は従って、1フェムトファラッドのオーダーの極めて小さい容量Cを有していることが必要である。例えば、この容量Cは、トランジスタM1、M2の寄生容量により得られる。いずれにせよ、容量Cは1ピクセル毎に大きく変動し得るため、カウンタ電荷量−Q0を1ピクセル毎に調整する手段を有し得ることが望ましい。図5の変型実施形態によれば、この調整は、電位Vaの変動と電位Vbの変動の間で伝達利得を変更する手段により間接的になされる。換言すれば、その目的は、カウンタ電荷注入の前に電荷点Aにおける電位の値、すなわち上で定義した端子の1個の値を各ピクセル毎に調整することである。同様に、値Vcompを1ピクセル毎に調整することも可能である。図5の調整回路51は、図4の調整回路42以外に、各々の容量がCg1、Cg2、Cg3およびCg4であるコンデンサ521、522、523および524、各コンデンサの被制御スイッチ531、532、533および534、およびこれらスイッチの制御手段54を有している。図5において、4個のコンデンサの組について考慮する。しかし、所望の程度に精度に応じて多数のコンデンサを考慮することもできる。各コンデンサ52i(この場合iは1〜4の整数値をとる)が一定電圧源、例えば接地点と、関連付けられたスイッチ53iとの間に接続されている。更に、各スイッチ53iは点Bに接続されている。制御手段54は、例えば、各スイッチに対するメモリ重みを保存するメモリを含んでいる。各メモリ重みは、スイッチ53iをオン状態またはオフ状態にする必要があるか否かを示す。スイッチ53iがオン状態である場合、コンデンサ52iは系列に接続され、自身の容量Cgiが追加される。点Bに接続された容量Cgiの合計をCaddと表記する。Caddも同様に寄生容量を有し得る点に注意されたい。電位Vaの変動と電位Vbの変動の間の伝達利得は従って、容量比C2/(C2+Cadd)に等しい。容量Cgiの値は互いに異なっていてよい。例えば、容量Cgiの値は、制御手段54に保存されたバイナリ符号を用いて最小容量Cgiの全ての倍数を選択可能にすべく、2のベキ乗列(1、2、4、8等)から選択することができる。
従って、各注入動作の最中に、電荷点Aにおける電位は2個の被制御端子間で変動し、これらの端子の1個の値を1ピクセル毎に調整することが可能である。従って、各注入動作で注入されるカウンタ電荷量は、容量Cに基づいて1ピクセル毎に調整することができる。
図6に、本発明によるピクセル60の第2の実施形態の回路図を示す。ピクセル60は同様に、フォトダイオード11、閾値コンデンサ12、カウンタ13、および図4のピクセル40に関しては互いに接続されたカウンタ電荷注入回路61を含んでいる。構造上、カウンタ電荷注入回路61は、調整回路62において注入回路41とは基本的に異なる。同様に、トランジスタM1のゲートが一定電位になるまでバイアスが掛けられるのではなく、調整回路62が生成する制御電位Phi3によりバイアスが掛けられるという点が異なる。前記回路62は依然として、点Aからの電位Vaを自身の入力端で受け、制御電位Phi2および制御電位Phi3を自身の出力端へ供給する。調整回路62は、従動子621、閾値比較器62、およびシーケンス論理装置623を含んでいてよい。従動子621は、入力端で電位Vaを受ける。この従動子621はオプションである。従動子621は、比較器622に電力を供給しながら、点Aで小さい容量に維持することができ、これは比較器622の入力容量が高い場合に有用である。電位Vbを有し、点Aの像である点Bを形成する従動子621の出力端が比較器622の負入力端に接続されている。電位Vcの基準点Cを形成する比較器622の出力端が論理装置623の入力端に接続されている。論理装置623は、制御電位Phi2および制御電位Phi3を自身の出力端へ供給して、トランジスタM2のゲートおよびトランジスタM3のゲートの各々にバイアスを掛ける。制御電位Phi2、Phi3は各々高い値Phi2_h、Phi3h、および各々低い値Phi2_b、Phi3_bをとることができる。更に、論理装置623は、比較器622の正入力端に注入される比較電位Phi4を供給する。電位Phi4は、高い値Phi4_hおよび低い値Phi4_bをとることができる。このカウンタ電荷注入回路61において、自身の入力端が閾値比較器12のトグル動作情報を受ける制御回路(図示せず)か電圧源141および論理装置623を制御することができる。
図7A〜7Eは、図2A〜2Eと同様に、カウンタ電荷注入回路61の動作原理を示す。左から右の列に、電位Phi1、トランジスタM1の内部電位Phi3s、点Bにおける電位Vb、トランジスタM2の内部電位Phi2s、およびトランジスタM2のドレインの電位を各々示す。図8に、同じ動作をタイミング図の形式で示す。第1のタイミング図81は、点Bにおける電位Vbを示す。簡素化を目的として、従動子621は完全である、すなわち点Bにおける電位Vbが点Aにおける電位Vaに厳密に等しいものとする。にもかかわらずカウンタ電荷注入回路61は、従動子がオフセット電圧(オフセット)を誘導するかまたは線形モードで動作する電圧増幅器で代替されるならば、同じ精度で動作可能である。タイミング図82、83、84、85、および86は各々、点Cにおける電位Vc、電位Phi1、電位Phi4、電位Phi2、および電位Phi3を示す。図7Aに、プリチャージステップの終了時点でのカウンタ電荷注入回路61を示す。例えば、当該ステップは、先の注入動作の終了時点で実行される。電位Phi1は高レベルPhi1_hにあり、電位Phi2は高レベルPhi2_hにあり(従って、Phi2sは高レベルPhi2s_hにある)、電位Phi3は低レベルPhi3_bにあり(従って、Phi3sは低レベルPhi3s_bにある)、電位Phi4は高レベルPhi4_hにある。電位Phi1_h、Phi2_h、およびPhi3_bは、Phi1_hがPhi3s_bよりも高く且つPhi2s_hよりも低くなるように決定される。プリチャージステップの終了時点において、電位Va(従って、電位Vb)は従って電位Phi1_hで安定する。図7Bに、スキミングステップの最中における注入回路61を示す。例えば、当該ステップは、比較器12のトグル動作に続いて制御回路により開始される。当該ステップは即時のt0は、電圧源141が電位Phi1を低レベルPhi1_bに変化させた時点で開始される。電位Phi1_bは電位Phi3s_bよりも低いため、トランジスタM1はオン状態であり、コンデンサ143から過剰電荷を電圧源141へ逃がして電位VaおよびVbを漸近値Phi3s_bまで低下させる。電位Phi4_hは、電位Vaが電位Phi3s_bに達する前に電位Vbが当該値Phi4_hに達するように選択される。このケースでは電位VaとVbが等しいため、Phi3s_bよりも高いPhi4_hを選択すれば充分である。電位Vbが時点t1で値Phi4_hに達したならば比較器622がトグル動作を行う。例えば、電位Vcは、低い状態「0」から高い状態「1」へ変化する。次いで論理装置623が電位Phi3を高レベルPhi3_hに変化させることにより、図7Cに示すように、スキミングを阻止する。時点t1の直後の時点t2において、論理装置623は電位Phi4を低レベルPhi4_bに変化させる。時点t2において電位Phi4_bが電位Vbよりも低く、電位Phi4_hにほぼ等しいため、比較器622は時点t3で再びトグル動作を行うのに伴い電位Vcが再び低い状態に変化する。時点t3の後の時点t4において、論理装置623は電位Phi2を低レベルPhi2_bに変化させる。電位Phi2_bは、電位Phi2s_bが電位Phi4_hよりも低くなるように決定される。次いでトランジスタM2がコンデンサ143から電荷をフォトダイオード11へ転送する。当該転送ステップを図7Dに示す。当該ステップの最中、電位VaおよびVbは漸近値Phi2s_bに近づく。電位Phi4_bは、電位Vaが電位Phi2s_bに達する前に電位Vbが当該値Phi4_bに達するように選択される。このケースでは電位VaとVbが等しいため、Phi2s_bよりも高いPhi4bを選択すれば充分である。時点t5で電位Vbが値Phi4_bに達したならば比較器622がトグル動作を行って電位Vcを高い状態に変化させる。次いで論理装置623が電位Phi2を高レベルPhi2_hに変化させることにより、図7Eに示すように、転送を阻止する。転送ステップの終了時点において、後続の注入動作のためにプリチャージステップを実行することができる。当該ステップでは、論理装置623が時点t6で電位Phi3を低レベルPhi3_bに変化させると共に時点t7で電位Phi4を高レベルPhi4_hに変化させ、電圧源141が時点t8で電位Phi1を高レベルPhi1_hに変化させる。その結果、電位VbはレベルPhi1_hで安定する。当該電位Phi1_hが電位Phi4_hよりも高いため、比較器622が時点t9で再びトグル動作を行うのに伴い電位Vcが再び低い状態に変化する。プリチャージステップの各種動作が任意の順序で実行できる点に注意されたい。時点t6、t7およびt8は、例えば同時である。例えば、プリチャージステップは、各注入動作の開始または終了時点で等しく実行することができる。第1のケースでは、プリチャージステップは進行中に注入動作に有用である。第2のケースでは、プリチャージステップは後続の注入動作に有用である。各転送動作には、C×(Phi4_h−Phi4b)に等しいカウンタ電荷量−Q0の注入が含まれる。量−Q0は従って、トランジスタM1、M2の内部電位から独立している。更に、量−Q0は、これらのオフセットがスキミングおよび転送ステップの最中に安定しているならば、従動子621および比較器622のオフセットから独立している。これらのステップの最中にオフセットが変動したならば、当該変動が生じる注入動作だけが阻害され、後続の注入動作は阻害されない。
図6の調整回路62において、従動子621は利得Gの増幅器で代替可能である。量−Q0は従って、1/G×C×(Phi4_h−Phi4b)となる。これにより電位Phi4_hおよびPhi4_bを容易に調整することができる。
このように、カウンタ電荷注入の最中に、電荷点Aにおける電位の変動が、一定の制御された電位により制限される。

Claims (11)

  1. ・所定の閾値電位(Vcomp)を受ける第1の入力端、および感光素子(11)が光子放射を受けて生成する電荷であって積分ノード(N)における検出電位を変動させる電荷を保存可能な前記積分ノード(N)に接続可能な第2の入力端を有する比較器(12)と、
    ・前記検出電位により前記閾値電位(Vcomp)の逸脱をカウントすべく前記比較器(12)の出力端に接続されたカウンタ(13)と、
    ・前記電荷の平衡化を可能にするカウンタ電荷注入回路(41、61)とを有し、前記カウンタ電荷注入回路(41、61)が、
    −カウンタ電荷を保存するコンデンサ(143)と、
    −前記比較器(12)がトグル動作を行う都度、前記コンデンサ(143)の端子から前記積分ノード(N)にカウンタ電荷を転送すべくオン状態にすることができ、前記コンデンサ(143)の前記端子が前記注入回路(41、61)のノード(A)を形成し、前記カウンタ電荷の転送が前記注入回路(41、61)の前記ノード(A)における電位(Va)を変動させる転送トランジスタ(M2)と、
    −前記転送トランジスタ(M2)を制御する調整回路(42、62)であって、前記注入回路(41、61)の前記ノード(A)の電位が前記転送トランジスタ(M2)から独立した2個の所定電位(Vp2、Vcomp2、Phi4_h、Phi4_b)の間にある場合に、前記転送トランジスタ(M2)をオン状態にする手段(425、622、623)を含む調整回路(42、62)とを有する放射検出器用の電子回路。
  2. 調整回路(42、62)が更に、前記変動が前記注入回路(41、61)の前記ノード(A)における前記電位(Va)の変動を表す点(B)で基準電位(Vb)を生成する手段(421、422、621)を含み、前記転送トランジスタ(M2)を制御する前記手段(425、622、623)が、前記基準電位(Vb)が前記転送トランジスタ(M2)から独立した2個の所定電位(Vp2、Vcomp2、Phi4_h、Phi4_b)の間にある場合に前記転送トランジスタ(M2)をオン状態にする、請求項1に記載の電子回路。
  3. 前記調整回路(42)が更に、前記基準電位(Vb)を強制的に前記第1の所定電位(Vp2)にする手段(423、424)を含み、前記トランジスタ(M2)を制御する手段が、前記基準電位(Vb)を受ける第1の入力端および前記第2の所定電位(Vcomp2)を受ける第2の入力端並びに前記基準電位(Vb)と前記第2の所定電位(Vcomp2)の比較の結果に基づいて制御信号(Phi3)を供給する出力端を有する比較器(425)を有し、前記制御信号(Phi3)により前記トランジスタ(M2)をオン状態にすることが可能になる、請求項2に記載の電子回路。
  4. 前記基準電位(Vb)を強制的に前記第1の所定電位(Vp2)にする前記手段が、基準電位(Vb)として用いられる電位を有する前記点(B)と、前記第1の所定電位(Vp2)を供給する電圧源との間に接続された被制御スイッチ(423)を含んでいる、請求項3に記載の電子回路。
  5. 基準電位(Vb)を生成する前記手段が、前記コンデンサ(143)に接続された入力端を有する線形増幅器(421)、および前記線形増幅器(421)の出力端と基準電位(Vb)として用いられる電位を有する前記点(B)との間に接続された第2のコンデンサ(422)を含んでいる、請求項2〜4のいずれか1項に記載の電子回路。
  6. 前記調整回路(51)が更に、コンデンサの組(521〜524)、各コンデンサ用の被制御スイッチ(531〜534)、および前記スイッチ用の制御手段(54)を含み、各コンデンサ(521〜524)が一定電圧源と付随するスイッチとの間に接続され、各スイッチ(531〜534)が更に、基準電位(Vb)として用いられる電位を有する前記点(B)に接続されている、請求項5に記載の電子回路。
  7. 前記カウンタ電荷注入回路が更に、一定電位(Vg1)にバイアスが掛けられたゲートを有する電界効果トランジスタ型のプリチャージトランジスタ(M1)を含み、前記トランジスタにより、カウンタ電荷を前記コンデンサ(143)へ、且つ前記コンデンサ(143)の外部へ転送することが可能であって、前記カウンタ電荷の転送が、前記コンデンサ(143)の端子における電圧(Va)を変動させる、請求項1〜6のいずれか1項に記載の電子回路。
  8. 前記カウンタ電荷注入回路(61)が更に、カウンタ電荷を前記コンデンサ(143)へ、且つ前記コンデンサ(143)の外部へ転送すべくオン状態にすることが可能なプリチャージトランジスタ(M1)を含み、前記カウンタ電荷の転送が前記コンデンサ(143)の前記端子における電圧(Va)を変動させ、前記調整回路(62)が更に、
    ・前記基準電位(Vb)を前記第1の所定電位(Phi4_h)にすべく前記プリチャージトランジスタ(M1)をオン状態にする手段(622、623)を含んでいる、請求項2に記載の電子回路。
  9. 前記トランジスタ(M1、M2)を制御する前記手段が比較器(622)および論理装置(623)を含み、前記比較器(622)が、第1の入力端で基準電位(Vb)および第2の入力端で比較電位(Phi4)を受け、前記比較電位が前記第1の所定電位(Phi4_h)の値または前記第2の所定電位(Phi4_b)の値のいずれかをとることが可能であり、前記論理装置(623)が、入力端で前記比較器(622)の出力を受けて前記比較電位(Phi4)、前記転送トランジスタ(M2)を制御する第1の制御信号(Phi2)および前記プリチャージトランジスタ(M1)を制御する第2の制御信号(Phi3)を供給する、請求項8に記載の電子回路。
  10. 基準電位(Vb)を生成する前記手段が、前記コンデンサ(143)に接続された入力端および前記基準電位(Vb)を供給する出力端を有する線形増幅器(621)を含んでいる、請求項9に記載の電子回路。
  11. 光子放射を受けて前記積分ノード(N)で電荷を生成する感光素子(11)、および請求項1〜10のいずれか1項に記載の電気回路を有し、前記比較器(12)の前記第2の入力端が前記積分ノード(N)に接続されている放射検出器。
JP2014517622A 2011-06-30 2012-06-25 較正された量のカウンタ電荷を注入する回路を含む放射検出器 Ceased JP2014526161A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1102062A FR2977413B1 (fr) 2011-06-30 2011-06-30 Detecteur de rayonnement comprenant un circuit d'injection de contre-charges en quantite calibree
FR1102062 2011-06-30
PCT/EP2012/062189 WO2013000849A2 (fr) 2011-06-30 2012-06-25 Detecteur de rayonnement comprenant un circuit d'injection de contre-charges en quantite calibree

Publications (1)

Publication Number Publication Date
JP2014526161A true JP2014526161A (ja) 2014-10-02

Family

ID=46420148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014517622A Ceased JP2014526161A (ja) 2011-06-30 2012-06-25 較正された量のカウンタ電荷を注入する回路を含む放射検出器

Country Status (6)

Country Link
US (1) US9234969B2 (ja)
EP (1) EP2726905A2 (ja)
JP (1) JP2014526161A (ja)
CN (1) CN103874933A (ja)
FR (1) FR2977413B1 (ja)
WO (1) WO2013000849A2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3012705B1 (fr) 2013-10-29 2017-06-09 Commissariat Energie Atomique Circuit electronique d'injection de charges pour detecteur de rayonnement
CN104407373B (zh) * 2014-10-29 2017-01-18 中国科学院微电子研究所 辐射探测电路
US10277223B2 (en) * 2016-12-06 2019-04-30 Analog Devices Global Charge injection compensation circuit
US10192911B2 (en) 2017-05-09 2019-01-29 Apple Inc. Hybrid image sensors with improved charge injection efficiency
EP3428588B1 (en) * 2017-07-10 2019-11-06 ams AG Optical sensor arrangement and method for light sensing
CN108882447B (zh) * 2018-06-25 2020-09-22 珠海市恒裕英发科技有限公司 一种光控电路
RU2692113C1 (ru) * 2018-08-31 2019-06-21 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ калибровки сцинтилляционного детектора излучения
RU2701189C1 (ru) * 2019-01-21 2019-09-25 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ определения величины выхода термоядерных нейтронов импульсного источника

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523074A (ja) * 2003-04-11 2006-10-05 カネスタ インコーポレイテッド センサのダイナミックレンジを差分拡大する方法及びシステム
JP2008527344A (ja) * 2005-01-06 2008-07-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 画素に実装された電流・周波数変換器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2912588B1 (fr) * 2007-02-13 2009-04-10 Commissariat Energie Atomique Detecteur de rayonnement x ou gamma
US7863578B2 (en) * 2007-03-06 2011-01-04 Richard Brenner Detector for radiation therapy
JP4560101B2 (ja) * 2008-03-31 2010-10-13 株式会社日立製作所 放射線計測装置および核医学診断装置
JP5230402B2 (ja) * 2008-12-19 2013-07-10 キヤノン株式会社 撮像装置及び撮像システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523074A (ja) * 2003-04-11 2006-10-05 カネスタ インコーポレイテッド センサのダイナミックレンジを差分拡大する方法及びシステム
JP2008527344A (ja) * 2005-01-06 2008-07-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 画素に実装された電流・周波数変換器

Also Published As

Publication number Publication date
WO2013000849A3 (fr) 2013-01-31
EP2726905A2 (fr) 2014-05-07
FR2977413B1 (fr) 2013-08-09
US9234969B2 (en) 2016-01-12
CN103874933A (zh) 2014-06-18
FR2977413A1 (fr) 2013-01-04
WO2013000849A2 (fr) 2013-01-03
US20150034832A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
JP2014526161A (ja) 較正された量のカウンタ電荷を注入する回路を含む放射検出器
US9197233B2 (en) Low power ADC for high dynamic range integrating pixel arrays
US8154631B2 (en) Compensation of leakage current and residual signals for integrating detector based on direct X-ray conversion
US6798864B2 (en) Methods and apparatus for providing signal dependent offset and gain adjustments for a solid state X-ray detector
JPH04357423A (ja) フォトセンサ回路
JP2013046411A (ja) 感知装置および感知方法
US6355965B1 (en) On-chip fixed pattern noise canceling logarithmic response imager sensor
CA2609623A1 (en) Photoarray for detecting time-dependent image data
US10180501B2 (en) Radiation detector
CN107425847B (zh) 一种基于脉冲上升沿触发的电荷转移型模拟计数读出电路
JPH11264761A (ja) 光センサ回路およびこれを用いたイメージセンサ
EP2504993A1 (en) High dynamic range pixel
US7652240B2 (en) Image sensor with a plurality of pixels, pixel circuit and method
US11626445B2 (en) Per-pixel detector bias control
JP2016144079A (ja) 放射線検出器および放射線撮像システム
JP6621405B2 (ja) 放射線検出器のための電子電荷注入回路
US7268607B2 (en) Integrating capacitance circuitry for an integrating amplifier and related method
US7755364B2 (en) Image sensor
JP6513378B2 (ja) 放射線検出器
US8785872B1 (en) Imaging method and system
JPH05244411A (ja) 光センサアレイの信号変換装置
JP2000101928A (ja) 光センサ回路およびこれを用いたイメージセンサ
JP2589747B2 (ja) 固体撮像素子およびその駆動方法
Sanaie-Fard et al. High Dynamic Range Pixel Amplifier Architecture in Amorphous Silicon Technology for Diagnostic X-Ray Imaging Applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20161129