WO2013000849A2 - Detecteur de rayonnement comprenant un circuit d'injection de contre-charges en quantite calibree - Google Patents

Detecteur de rayonnement comprenant un circuit d'injection de contre-charges en quantite calibree Download PDF

Info

Publication number
WO2013000849A2
WO2013000849A2 PCT/EP2012/062189 EP2012062189W WO2013000849A2 WO 2013000849 A2 WO2013000849 A2 WO 2013000849A2 EP 2012062189 W EP2012062189 W EP 2012062189W WO 2013000849 A2 WO2013000849 A2 WO 2013000849A2
Authority
WO
WIPO (PCT)
Prior art keywords
potential
counter
charges
capacitor
transistor
Prior art date
Application number
PCT/EP2012/062189
Other languages
English (en)
Other versions
WO2013000849A3 (fr
Inventor
Marc Arques
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Trixell
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives, Trixell filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to JP2014517622A priority Critical patent/JP2014526161A/ja
Priority to EP12730909.4A priority patent/EP2726905A2/fr
Priority to US14/129,232 priority patent/US9234969B2/en
Priority to CN201280032512.5A priority patent/CN103874933A/zh
Publication of WO2013000849A2 publication Critical patent/WO2013000849A2/fr
Publication of WO2013000849A3 publication Critical patent/WO2013000849A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/005Details of radiation-measuring instruments calibration techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/18Measuring radiation intensity with counting-tube arrangements, e.g. with Geiger counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor

Definitions

  • the invention relates to an electronic circuit for a radiation detector capable of quantifying photon radiation received by a counter-charge injection circuit.
  • matrix radiation detectors intended for X-ray or gamma-ray radiological imaging comprising a pixel matrix of CMOS technology associated with a structure for converting X-rays or gamma into electrical charges.
  • a matrix radiation detector comprises a matrix of pixels and an electronic circuit forming reading means.
  • Each pixel comprises a photosensitive element generating electric charges in proportion to the quantity of photons received. These electric charges, also called photocharges, are processed by the reading means in order to provide information representative of the quantity of photons received by each photosensitive element.
  • the use of CMOS technology has made it possible to integrate the reading means at the level of each pixel. Thus, the electrical charges can be converted into digital signals within the pixels themselves to facilitate the transfer of the result of the detection to the outside of the array.
  • a common solution for realizing the reading means is to use a circuit operating by integration of the electric charges.
  • This integration circuit comprises an integration capacitance receiving the charges from the photosensitive element, a threshold comparator, a counter and a counter-charge injection circuit.
  • the threshold comparator switches a certain number of times, as long as the voltage at the terminals of the integration capacitance is lower than a threshold voltage.
  • Each switching of the comparator increments the counter by one unit and controls the injection circuit the injection of a counter-charge packet whose quantity - Q0 is calibrated.
  • the minus sign is used arbitrarily to indicate that the injected counter charges have a polarity opposite to that of the charges received from the photosensitive member.
  • the counter is thus incremented by number of charge packets necessary to bring a voltage higher than the threshold voltage across the integration capacitance.
  • the injection of counter-charges is generally carried out as photocharges are collected, a counter determining the number of latches of the comparator, in order to estimate the total amount of charges injected.
  • the reading then corresponds to reading the content of the counters.
  • the number of increments of the counter provides a numerical value representative of the amount of photons received by the photosensitive member.
  • the counter-charge injection circuit is a critical element of the integration circuit. Indeed, the accuracy of the measurement is based on the calibration of the quantity - Q0 of counter-charges. On the one hand, the quantity - Q0 of counter-charges must be relatively small since it corresponds to the step of the quantization of the charges; on the other hand, this quantity must be identical for each packet of counter-charges since it quantifies the charges received by the integration capacity.
  • a counter-charge injection circuit frequently comprises two series-connected field effect transistors (FETs) and a capacitor connected between the point of connection of the transistors and a fixed voltage, for example ground.
  • a first transistor makes it possible to charge the capacitor at a first voltage value, called the charging voltage, controlled by the gate voltage of this transistor.
  • the second transistor makes it possible to discharge the capacitor to a second voltage value, called the discharge voltage, controlled by the gate voltage of this transistor.
  • the quantity - Q0 of counter-charges injected from the capacitor to the integration capacity of the integration circuit is a function of the value of the capacity of the capacitor and the difference between the charging and discharging voltages.
  • the charge and discharge voltages are not directly deductible from the gate voltages of the transistors.
  • the charge and discharge voltages correspond to the internal potentials of the transistors, which are not precisely known because of the noise due to the trapping of charges in the channel of each transistor.
  • This noise rts is all the more significant as the components have reduced dimensions in order to generate relatively low quantities - Q0 of counter-charges. In practice, this noise rts modifies the value of the quantity - Q0 by a few percent. This modification has a direct impact on the evaluation of the quantity of photons received, and thus on the quality of the image obtained. However, such an error is generally unacceptable in the detectors, in particular in the field of medical imaging.
  • An object of the invention is in particular to remedy all or part of the aforementioned drawbacks by precisely determining the amount of counter-charges injected for the evaluation of the amount of charges generated by a photosensitive element.
  • the subject of the invention is an electronic circuit for a radiation detector comprising:
  • a comparator having a first input receiving a predetermined threshold potential and a second input is adapted to be connected to an integration node capable of storing electric charges generated by a photosensitive member upon receipt of a photon of radiation, charges causing variation of a detection potential on the integration node,
  • a counter connected to the output of the comparator, so as to recognize the crossing of the threshold potential by the detection potential
  • a counter-charge injection circuit for counterbalancing the charges comprising:
  • a transfer transistor that can be controlled in the on state to transfer counter-charges from one terminal of the capacitor to the integration node each time the comparator is switched, said terminal of the capacitor forming a node of the injection circuit, the transfer of the counter-charges causing a variation of a potential at said node of the injection circuit, and
  • control circuit for controlling the transfer transistor, said circuit comprising means for controlling the transfer transistor in the on state when the potential at the node of the injection circuit is between two predetermined and independent potentials of the transfer transistor .
  • the regulation circuit further comprises means for generating a reference potential at a point whose variation is representative of a variation of the potential at the node of the injection circuit, the means for controlling the transfer transistor controlling it in the on state when the reference potential is between two predetermined and independent potentials of the transfer transistor.
  • the invention also relates to a radiation detector comprising a photosensitive element generating electrical charges on the integration node upon reception of photon radiation, and an electronic circuit as described above, the second input of the comparator being connected to the integration node.
  • the invention has the particular advantage of allowing the use of components of reduced dimensions while avoiding the noise rts.
  • the quantity - Q0 of counter-charges injected can be very small, thus leading to a precise quantification of the charges generated by each photosensitive element.
  • the use of components of reduced dimensions makes it possible to limit the area occupied by the counter-charge injection circuit in each pixel.
  • the invention then allows the use of these compact components, without degrading the accuracy of the measurement. By compact components, one understands components whose greatest length is of the order of the micron, or less. The invention will be better understood and other advantages will appear on reading the description which follows, made with reference to the attached drawings in which:
  • FIG. 1 shows the electrical diagram of a pixel in a radiation detector according to the state of the art
  • FIGS. 2A to 2E illustrate the operating principle of a counter-charge injection circuit in the pixel of FIG. 1;
  • FIGS. 3A to 3E illustrate, by a representation similar to FIGS. 2A to 2E, the impact of noise rts on the operation of the counter-charge injection circuit of FIG. 1;
  • FIG. 4 represents the electrical diagram of a first pixel example according to the invention.
  • FIG. 5 represents the electrical diagram of an alternative embodiment of a regulation circuit in the pixel of FIG. 4;
  • FIG. 6 represents the electrical diagram of a second pixel example according to the invention.
  • FIGS. 7A to 7E illustrate, by a representation similar to FIGS. 2A to 2E, the operating principle of the counter-charge injection circuit in the pixel of FIG. 6;
  • FIG. 8 represents, in chronograms, the operating principle of the counter-charge injection circuit in the pixel of FIG. 6.
  • FIG. 1 represents the electric diagram of a pixel 10 in a matrix radiation detector according to the state of the art.
  • Each pixel 10 forms a photosensitive dot of the matrix detector. It comprises a photodiode 1 1, a threshold comparator 12, a counter 13 and a counter-charge injection circuit 14.
  • the threshold comparator 12, the counter 13 and the injection circuit 14 form an electronic circuit allowing a reading the photodiode 1 1.
  • the photodiode 1 1 could be replaced by a phototransistor or, more generally, by any photosensitive element generating electric charges in proportion to the amount of photons it receives.
  • the photons considered have, for example, a wavelength in the visible range or in the X-ray range. In the latter case, either the photosensitive element directly produces electric charges under the effect of X-radiation, or is sensitive to visible radiation, a scintillator then being interposed between the X-ray source and the photosensitive element.
  • the photodiode 11 has a parasitic capacitance used as an integrating capacitance for storing electric charges generated during an exposure phase.
  • the parasitic capacitance of the photodiode is generally sufficient. Nevertheless, a capacitor could be connected in parallel with the photodiode to increase the integration capacity.
  • the anode of the photodiode 1 1 receives a fixed voltage. It is for example connected to the electrical ground.
  • the threshold comparator 12 receives on a positive input a threshold potential Vcomp. The negative input is connected to the cathode of the photodiode 1 1. An output of comparator 12 is connected to an input of counter 13.
  • the counter-charge injection circuit 14 comprises two field effect transistors (FETs): a first transistor M1 and a second transistor M2, two voltage sources 141 and 142 and a capacitor 143 of capacitor C.
  • FETs field effect transistors
  • the drain of the first transistor M1, the source of the second transistor M2 and a terminal of the capacitor 143 are connected at a point A, called the node of the counter-charge injection circuit.
  • the first transistor M1 is connected by its source to the voltage source 141 and by its drain to the source of the second transistor M2.
  • the first transistor M1 makes it possible to constitute a load at the node of the charge injection circuit. It will be called a precharge transistor.
  • the connection point between the transistors M1 and M2 corresponds to the point A previously defined.
  • the drain of the second transistor M2 is connected to the cathode of the photodiode 1 1, so as to inject counter charges.
  • the second transistor M2 may be called a transfer transistor.
  • the cathode of the photodiode 11 also corresponds to the point where charges generated by the interactions of the radiation in the detector accumulate. This point can be called integration node N of the pixel.
  • the node N is a point of connection between the photodiode 1 1 and its electronic reading circuit. It can receive, on the one hand, electrical charges of the photodiode 1 1 when exposed and, on the other hand, electric counter-charges of the counter-charge injection circuit 14.
  • the collection of electric charges and the injection of counter-charges on the N node cause a variation of its potential.
  • the photodiode 11 generates negative charges (electrons) stored on its cathode. These negative charges cause a reduction of the potential at the node N.
  • the comparator 12 switches. Each switchover is counted by the counter 13.
  • the gate of the transistor M1 is biased to a fixed potential Vg1.
  • the gate of the transistor M2 is biased by the voltage source 142.
  • the capacitor 143 is connected between the point A and a fixed voltage source, for example ground.
  • the voltage sources 141 and 142 respectively deliver potentials Phi 1 and Phi 2.
  • the counter-charge injection circuit 14 may not include a capacitor 143, the capacitor C being in this case provided by the parasitic capacitances of the transistors M1 and M2.
  • FIGS. 2A to 2E illustrate the operating principle of the counter-charge injection circuit 14 according to a hydraulic model, which is conventional in the field of charge-coupled circuits (CCD).
  • CCD charge-coupled circuits
  • FIG. 2A represents the counter-charge injection circuit 14 during the precharging step.
  • the potential Phi1 is at a high level Phi1_h.
  • the Phi2 potential is at a high Phi2_h level.
  • the internal potential Phi2s is therefore at a high level Phi2s_h.
  • the potentials Phi1_h, Vg1 and Phi2_h are determined in such a way that the potential Phi1_h is greater than the potential Vg1 s and lower than the potential Phi2s_h.
  • the potential Va can thus stabilize at the potential Phi1_h.
  • FIG. 2B represents the injection circuit 14 during the skimming step. During this step, the potential Phi1 is at a low level Phi1_b, lower than the potential Vg1 s.
  • FIG. 2C shows the injection circuit 14 at the end of the skimming step. In this figure, it appears that the potential Va has stabilized at the potential Vg1 s.
  • the potential Phi2 is kept at a low level Phi2_b.
  • the internal potential Phi2s is therefore at a low level Phi2s_b.
  • the potential Phi2_b is determined in such a way that the potential Phi2s_b is lower than the potential Vg1 s.
  • the transistor M2 conducts and discharges the excess charges of the capacitor 143 to the photodiode 1 1.
  • the transfer of the charges causes a decrease in the potential Va and an increase of the potential on the node N.
  • FIG. 2E represents the injection circuit 14 at the end of this transfer step.
  • Potential Va has stabilized at Phi2s_b potential.
  • the step of transferring the excess charges (countercharges) to the photodiode 1 1 thus made it possible to reduce the potential Va from Vg1 s to Phi2s_b.
  • the quantity - Q0 of counter-charges injected on the photodiode 1 1 is therefore C x (Vg1 s - Phi2s_b).
  • the precharge, skimming and transfer steps are repeated.
  • Injections are performed until the potential on node N reaches the threshold potential Vcomp. It should be noted that the capacitance of the photodiode 11 may be sufficiently small for the injection of a single counter charge to bring the potential of the node N to the threshold potential Vcomp, which causes the comparator 12 to switch over.
  • the transistors M1 and M2 In order to inject counter-charges in a limited quantity, the transistors M1 and M2 must be controlled by low potentials and the capacitance C of the capacitor 143 must be minimal. As a result, the dimensions of the transistors must be relatively small. The FET transistors then see a significant noise appear, particularly annoying by the fact that it is random. This noise rts is due to the trapping of one or more charges in one or more traps of the transistor channel. The duration during which charges are trapped is typically of the order of one second. Throughout this period, the operation of the FET transistor is changed. This modification can be seen as a conduction variation of the transistor, or as a variation of the transistor channel potential for the same potential on the gate. FIGS.
  • FIGS. 3A to 3E illustrate the impact of noise rts on the operation of the counter-charge injection circuit 14 of FIG. 1.
  • FIGS. 3A to 3E are respectively equivalent to FIGS. 2A to 2E, in the case where a hole is trapped in the channel of transistor M1. This positive trapped charge increases the potential Vg1 s in the channel. It is represented in Figures 3A to 3E by a bump, by analogy with a pebble placed on the bottom of a stream. This hump disturbs very little the precharging step, shown in FIG. 3A. The potential Va also stabilizes at the potential Phi1_h. On the other hand, the trapped charge slows down the skimming step, shown in FIG. 3B, and above all, it modifies the level at which the potential Va stabilizes.
  • the potential Va is slightly greater than the potential Vg1 s.
  • a larger quantity of charges is therefore injected onto the photodiode 1 1.
  • the trapping of a load necessarily results in a change in the potential Va.
  • a hole could be trapped in the channel of the transistor M2, changing the stabilization level of the potential Va at the end of the transfer step.
  • the noise rts implies a variation of the quantity - Q0 of counter-charges injected. The variation of this quantity - Q0 is typically of the order of a few percent, which may be unacceptable in certain imaging fields, especially medical imaging.
  • the so-called rts noise randomly affects the potential in the channels of the transistors of the counter-charge injection circuit. Consequently, during each injection of counter-charges, the quantity of charges injected can fluctuate uncontrollably.
  • the counter-charge injection circuit comprises means for controlling the transfer transistor M2 so that, during the transfer step, the voltage variation at the node A of the circuit injection is equal to a variation between two predetermined independent potentials of the transistor M2, that is to say independent of the potential of its channel.
  • the voltage variation at the node A of the injection circuit is independent of the potential of the channel of the precharge transistor M1.
  • FIG. 4 represents the electrical diagram of a first exemplary pixel 40 according to the invention.
  • the electronic reading circuit of the pixel 40 differs only from the electronic reading circuit of the pixel 10 of FIG. 1 by the counter-charge injection circuit.
  • Said circuit 41 also comprises two series-connected FET transistors M1 and M2, a voltage source 141 and a capacitor 143 of capacitance C, typically from a few fF to a few tens of fF.
  • This capacity C can be called the counter-charge capacity, because it participates in the creation of a counter-load at the node A of the counter-charge injection circuit 41.
  • Said circuit 41 furthermore comprises a regulation circuit 42.
  • the transistor M1 is connected by its source to the voltage source 141 and by its drain at the point A.
  • the transistor M2 is connected by its source to the point A and by its drain to the node N, that is to say at the cathode of the photodiode 1 1.
  • the capacitor 143 is connected between the point A and a fixed voltage source, here the mass.
  • the gate of the transistor M1 is always biased to a fixed potential Vg1.
  • the gate of the transistor M2 is biased by a control potential Phi2 generated by the regulation circuit 42.
  • the regulation circuit 42 receives the potential Va from the input point A and controls the control potential Phi2 as a function of the variation of this potential.
  • It comprises a follower 421, a capacitor 422 of capacitance C2, a controlled switch 423, a voltage source 424 driving the controlled switch 423, a threshold comparator 425, a switch 426, and voltage sources delivering a fixed potential Vp2 , a fixed potential Vcomp2 and a fixed potential Phi2_h.
  • An input of the follower 421 is connected to the point A.
  • An output of the follower 421 is connected to a first armature of the capacitor 422, a second armature being connected to a point B, whose potential forms a reference potential Vb, potential that the the image potential of the potential at the point A (node of the injection circuit) can be qualified.
  • the follower 421 and the capacitor 422 form means for generating a reference potential Vb whose variation is representative of the variation of the potential Va.
  • the point B is also connected to a negative input of the comparator 425 and to the switch 423.
  • the voltage source 424 controls the switch 423 by control pulses Phi_Vp2, so as to apply a potential Vp2 to the point B.
  • positive input of the comparator 425 receives a fixed potential Vcomp2, lower than the potential Vp2.
  • An output of the comparator 425 delivers the control potential Phi3. This potential can take two values Phi3_h and Phi3_b, according to the result of the comparison between the potential Vb at the point B and the potential Vcomp2.
  • a switch 426 placed downstream of the comparator 425 makes it possible to connect the output Phi3 of the comparator to the control Phi2 of the transistor M2 during the transfer phase, this phase being triggered at a predetermined time after the comparator 12 has switched.
  • Phi3_h and Phi3_b correspond respectively to Phi2_h and Phi2_b.
  • the output of the comparator 425 forms a means for controlling the transistor M2.
  • Means for adjusting the values Phi2_h and Phi2_b, not shown, are provided in order to adjust the bias of the transistor M2.
  • These adjustment means can be integrated in the comparator 425, or interposed between the comparator 425 and the gate of the transistor M2.
  • the voltage sources 141 and 424, and the switch 426 may be controlled by a control circuit, not shown, receiving as input a switching information of the threshold comparator 12.
  • the switch 426 makes it possible to connect the command Phi2 to its high level Phi2_h, independently of the output Phi3.
  • the counter-charge injection circuit 41 operates in the following manner.
  • the precharging step for example triggered by the control circuit following the switching of the comparator 12, at the time t 0 , the potential Phi1 is at the high level P hi 1 _h and the internal potential Phi2s is at the high level Phi2s_h, with Phi1_h greater than Vg1 s and lower than Phi2s_h.
  • the potential Phi_Vp2 is raised to its high level, so as to make the switch 423 passing. This makes it possible to set the potential of B independently of the potential of A.
  • the output Phi3 of the comparator 425 is at its low level Phi3_b.
  • the gate potential Phi2, controlling the transistor M2, is at its high level Phi2_h. This step lasts a predetermined duration, between t 0 (or t 0 + ⁇ ) and t i. The potential of A is then Phi1_h.
  • the skimming step consists of an adjustment of the charge generated at node A of the charge injection circuit. This step is triggered at a time t- ⁇ , predetermined, after the switching of the comparator 12.
  • the potential Phi1 is brought to the low level Phi1_b, lower than the potential Vg1 s.
  • the potential Va is therefore at the level Vg1 s plus a possible variation due to the noise rts in the transistor M1.
  • the potential Phi_Vp2 is maintained at its high level, which makes the switch 423 passing, so as to set the potential of B independently of the potential of A, and therefore the noise rts.
  • the output of the comparator Phi3 is at its low level Phi3_b.
  • the potential Phi2, controlling the transistor M2, is at its high level Phi2_h. This step lasts a predetermined time, between ti (or ti + ⁇ ) and t 2 .
  • the end of skimming takes place at a time t 2 , the time difference between t 2 and t 0 being predetermined.
  • the potential Phi_Vp2 switches to its low level, which opens the switch 423.
  • the third step is the load transfer. This step takes place from a time t 3 , the time difference between t 0 and t 3 being predetermined.
  • the potential Phi_Vp2 is kept at its low level, which opens the switch 423 so that the potential of B follows the evolution of the potential of the node A of the injection circuit 41 via the follower 421 and the associated capacitor C2.
  • the gate voltage Phi2 of the transfer transistor M2 is made equal to the output voltage Phi3.
  • the output Phi3 of the comparator 425 is then at its low level Phi3_b.
  • the gate potential Phi2, controlling the transistor M2, is at its low level Phi2_b.
  • Phi2_b The application of Phi2_b on the gate of the transistor M2 triggers the transfer of counter-charges from point A to the node N.
  • the potential Va decreases. This reduction is transmitted, via the follower 421 and the capacitor 422, to the point B.
  • the point B and its potential Vb can thus be qualified, vis-à-vis the point A, image point of the point A and potential potential voltage potential Va, respectively, because when the switch 423 is open, which is the case during the charge transfer, the potential Vb decreases following the evolution of the potential of the point A.
  • the potential Vb decreases until reach the potential Vcomp2.
  • the comparator 425 then switches, and its output Phi3 switches to its high level Phi3_h.
  • Phi2 switches to its high level Phi2_h which stops the transfer of counter-charges by the transistor M2.
  • the potential Va goes from Vp2 to Vcomp2.
  • the transfer step therefore involves the transfer of a quantity - Q0 of counter-charges equal to C x (Vp2 - Vcomp2)
  • C x Vp2 - Vcomp2
  • the quantity - Q0 no longer depends on the variation of the potential Va between the internal potentials Vg1 s and Phi2s_b, but on the variation of the potential Vb (identical to the variation of Va ) between potentials Vp2 and Vcomp2, which can be precisely determined, for example in applying these potentials by voltage sources.
  • the quantity of counter-charges injected to depend neither on the internal potential Vg1 s nor on the internal potential Phi2s_b, it is necessary to choose the potentials Vp2, Vcomp2, Phi2_b and Vg1 such that (Vp2 - Vcomp2) ⁇ (Vg1 s - Phi2s_b).
  • the counter-charge depends on the difference of the internal potentials of M1 and M2. It is therefore important that these two transistors are as matched as possible (proximity, same dimensions, same operating regime skimming) to eliminate as much as possible thermal or technological variations.
  • the voltage of the precharge end of A is stored during the blocking of the switch 423, and then only the variation of this voltage is dealt with. There is therefore more freedom to preload A.
  • the precharge transistor M1 can be realized by a relatively large MOS transistor, its capacity not influencing the precharging step.
  • the follower 421 is preferably weakly capacitive on its input, that is to say a few femtofarads. It is therefore subject to noise rts, which results in a variation of its offset (potential difference between the input and the output of the follower).
  • the offset is eliminated by the capacitor 422, the variation of the potential Va remaining always identical to the variation of the potential Vb.
  • the variation of the offset causes a difference between the variations of Va and Vb. However, this difference only remains during the generation of the counter-charge packet during which the variation of the offset takes place.
  • the comparator 425 is controlled by a follower via a capacitor, that is to say by a Together with relatively low AC output impedance, it does not need to be very weakly capacitive on its input. It can thus be realized by FET transistors whose dimensions are large enough so that it does not present rts noise.
  • the capacitor 422 preferably has a large capacitance C2 relative to the parasitic capacitances existing at the point B.
  • the capacitor 422 has a capacitance C2 of a few tens from fF to a few hundred fF.
  • the follower 421 could be replaced by a linear amplifier, the potentials Vp2 and Vcomp2 then having to be adapted as a function of the gain of amplification.
  • FIG. 5 represents the electrical diagram of an alternative embodiment of the regulation circuit 42 shown in FIG. 4.
  • This variant allows a pixel-by-pixel adjustment of the quantity - Q 0 of injected countercharts. Such an adjustment may be necessary when the amount of counter-charges is very small, for example a few hundred holes.
  • the capacitor 143 of each injection circuit must then have a very low capacitance C, of the order of the femtofarad.
  • This capacitance C is for example obtained by the parasitic capacitances of the transistors M1 and M2. In any case, the capacitance C can undergo large variations from one pixel to another, and it is therefore desirable to have a means for adjusting the quantity -Q0 of counter-charges from one pixel to the next. 'other.
  • this adjustment is performed indirectly by means for modifying the transmission gain between the variation of the potential Va and the variation of the potential Vb.
  • it is sought to modulate, for each pixel, the value of the potential of the charging point A before the injection of counter-charges, that is to say the value of one of the previously defined limits.
  • the control circuit 51 of FIG. 5 comprises, in addition to the control circuit 42 of FIG. 4, a set of capacitors 521, 522, 523 and 524, of respective capacitance Cg1, Cg2, Cg3 and Cg4, a controlled switch 531. , 532, 533 or 534 for each capacitor, and control means 54 of the switches.
  • each capacitor 52i where i here takes integer values between 1 and 4 is connected between a fixed voltage source, for example ground, and the associated switch 53i.
  • Each switch 53i is also connected to point B.
  • the control means 54 comprise for example a memory in which is stored a memory weight for each switch. Each memory weight indicates whether the switch 53i must be controlled on or off.
  • the switches 53i are controlled in the on state, the capacitors 52i are connected in parallel and their capacitors Cgi add up.
  • the sum of the capacities Cgi connected to the point B is noted Cadd. It is noted that Cadd may also have parasitic capacitances.
  • the transmission gain between the variation of the potential Va and that of the potential Vb is then equal to the capacitive ratio C2 / (C2 + Cadd).
  • the values of the Cgi abilities may differ from each other. For example, it is possible to choose them in a progression in power of two (1, 2, 4, 8, etc.), so as to be able to choose all the multiples of the weakest capacity Cgi by the intermediate of a binary code stored in the control means 54.
  • FIG. 6 represents the electrical diagram of a second exemplary pixel 60 according to the invention.
  • the pixel 60 also comprises a photodiode 11, a threshold comparator 12, a counter 13 and a counter-charge injection circuit 61 connected to each other as for the pixel 40 of FIG. 4.
  • the injection circuit counter-charge 61 differs from the injection circuit 41 essentially by its control circuit 62.
  • the gate of the transistor M1 is no longer biased to a fixed potential, but by a control potential Phi3 generated by the control circuit 62.
  • Said circuit 62 always receives the potential Va from point A at the input and outputs the control potential Phi2 and the control potential Phi3.
  • It can include a follower 621, a threshold comparator 622 and a sequential logic block 623.
  • the follower 621 receives the potential Va on an input. This follower 621 is optional. It makes it possible to maintain a small capacity at point A while supplying comparator 622, which is useful when the input capacitance of the latter is high.
  • An output of the follower 621, forming the point B, image of the point A, of potential Vb, is connected to a negative input of the comparator 622.
  • An output of the comparator 622, forming a reference point C of potential Vc, is connected to a input of the logic block 623.
  • the logic block 623 outputs the control potential Phi2 and the control potential Phi3, respectively biasing the gate of the transistor M2 and the gate of the transistor M3.
  • the control potentials Phi2 and Phi3 can take a high value, respectively Phi2_h and Phi3h, and a low value, respectively Phi2_b and Phi3_b.
  • the logic block 623 also delivers a comparison potential Phi4 injected on a positive input of the comparator 622.
  • the potential Phi4 can take a high value Phi4_h and a low value Phi4_b.
  • the control circuit not shown, receiving as input the switching information of the threshold comparator 12, can control the voltage source 141 and the logic block 623.
  • FIGS. 7A to 7E illustrate, in a similar manner to FIGS. 2A to 2E, the operating principle of the counter-charge injection circuit 61.
  • the columns respectively represent, from left to right, the potential Phi1, the internal potential Phi3s of the transistor M1, the potential Vb at the point B, the internal potential Phi2s of the transistor M2, and the potential at the drain of the transistor M2.
  • FIG. 8 represents this same operation in the form of chronograms.
  • a first timing diagram 81 represents the potential Vb at point B.
  • the follower 621 is perfect, that is to say that the potential Vb at the point B is exactly equal to the potential Va at point A.
  • the counter-charge injection circuit 61 can nevertheless operate with the same precision if the follower introduces an offset voltage, or if it is replaced by a voltage amplifier operating in linear mode.
  • Timing diagrams 82, 83, 84, 85 and 86 respectively represent the potential Vc at the point C, the potential Phi1, the potential Phi4, the potential Phi2 and the potential Phi3.
  • Figure 7A represents the counter-charge injection circuit 61 at the end of the precharging step. This step is for example performed at the end of the previous injection.
  • the potential Phi1 is at the high level P hi 1 _h
  • the potential Phi2 is at the high level Phi2_h (and thus Phi2s is at the high level Phi2s_h)
  • the potential Phi3 is at the low level Phi3_b (and therefore Phi3s is at the low level Phi3s_b)
  • the potential Phi4 is at the high level Phi4_h.
  • the potentials P hi 1 _h, Phi2_h and Phi3_b are determined in such a way that Phi1_h is greater than Phi3s_b and less than Phi2s_h.
  • the potential Va (and therefore the potential Vb) is thus stabilized at the potential Phi1_h.
  • FIG. 7B shows the injection circuit 61 during the skimming step.
  • This step is for example triggered by the control circuit following the switchover of the comparator 12. It starts at a time t0, where the voltage source 141 makes the potential Phi1 go low Phi1_b. Since the potential P hi 1 _b is lower than the potential Phi3s_b, the transistor M1 drives and discharges the excess charges from the capacitor 143 to the voltage source 141, resulting in a decrease of the potentials Va and Vb towards the asymptotic value Phi3s_b.
  • the potential Phi4_h is chosen so that the potential Vb reaches this value Phi4_h before the potential Va reaches the potential Phi3s_b.
  • the comparator 622 switches again at a time t3, the potential Vc returning to the low state.
  • the logic block 623 switches the potential Phi2 to the low level Phi2_b.
  • the potential Phi2_b is determined in such a way that the potential Phi2s_b is lower than the potential Phi4_h.
  • the transistor M2 then conducts the charges of the capacitor 143 to the photodiode 1 1. This transfer step is represented by FIG. 7D. During this step, the potentials Va and Vb tend towards the asymptotic value Phi2s_b.
  • the potential Phi4_b is chosen so that the potential Vb reaches this value Phi4_b before the potential Va reaches the potential Phi2s_b. In the present case, where the potentials Va and Vb are equal, it suffices to choose Phi4b greater than Phi2s_b.
  • the comparator 622 switches and shifts the potential Vc to the high state.
  • the logic block 623 then passes the potential Phi2 high phi2_h, which blocks the transfer, as shown in Figure 7E. At the end of the transfer step, a precharging step can be performed for the next injection.
  • the logic block 623 shifts the potential Phi3 to the low level Phi3_b at a time t6; it shifts the potential Phi4 to the high level Phi4_h at a time t7; and the voltage source 141 shifts the potential Phi1 to the high level P hi 1 _h at a time t8.
  • the potential Vb stabilizes at the level Phi1_h.
  • This potential P hi 1 _h being greater than the potential Phi4_h, the comparator 622 switches again at a time t9, the potential Vc returning to the low state. It is noted that the various operations of the precharging step can be performed in any order.
  • the instants t6, t7 and t8 are for example concomitant.
  • the precharging step can be performed either at the beginning or at the end of each injection. In the first case, the precharging step is useful for the current injection. In the second case, it is useful for the next injection.
  • Each transfer involves the injection of a quantity - Q0 of counter-charges equal to C x (Phi4_h - Phi4b).
  • the quantity - Q0 is therefore independent of the internal potentials of the transistors M1 and M2. It is also independent of the offsets of follower 621 and comparator 622, provided that these offsets are stable during skimming and transfer steps. In case of offset variation during these steps, only the injection during which this variation occurs is altered, and not the following injections.
  • the follower 621 could be replaced by a gain amplifier G.
  • the quantity - Q0 then becomes 1 / G x C x (Phi4_h - Phi4b).
  • the Phi4_h and Phi4_b potentials can be easily adjusted accordingly.
  • the potential variation of the charging point A is limited by fixed and controlled potentials.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Le circuit électronique comporte notamment : - un comparateur (12) recevant un potentiel de seuil (Vcomp) et le potentiel d'un nœud d'intégration (N), ledit nœud pouvant stocker des charges électriques générées par un élément photosensible (1 1 ), - un compteur (13) connecté en sortie du comparateur (12), et - un circuit d'injection (41 ) de contre-charges comprenant : - un condensateur (143) stockant des contre-charges, - un transistor de transfert (M2) pouvant être commandé à l'état passant pour transférer des contre-charges d'une borne (A) du condensateur (143) au nœud d'intégration (N) à chaque basculement du comparateur (12), le transfert des contre-charges entraînant une variation d'un potentiel (Va) à ladite borne (A) du condensateur (143), et - un circuit de régulation (42) pour commander le transistor de transfert (M2), ledit circuit comprenant des moyens (425) pour commander le transistor de transfert (M2) à l'état passant lorsque le potentiel à la borne (A) du condensateur (143) se situe entre deux potentiels prédéterminés (Vp2, Vcomp2) et indépendants du transistor de transfert (M2).

Description

DÉTECTEUR DE RAYONNEMENT COMPRENANT UN CIRCUIT D'INJECTION DE CONTRE-CHARGES EN QUANTITÉ CALIBRÉE
L'invention concerne un circuit électronique pour un détecteur de rayonnement apte à quantifier un rayonnement de photons reçus par un circuit d'injection de contre-charges. Elle concerne en particulier les détecteurs de rayonnement matriciels destinés à l'imagerie radiologique par rayons X ou gamma, comprenant une matrice de pixels de technologie CMOS associée à une structure de conversion des rayons X ou gamma en charges électriques.
Un détecteur de rayonnement matriciel comprend une matrice de pixels et un circuit électronique formant des moyens de lecture. Chaque pixel comprend un élément photosensible générant des charges électriques proportionnellement à la quantité reçue de photons. Ces charges électriques, également appelées photocharges, sont traitées par les moyens de lecture afin de fournir une information représentative de la quantité reçue de photons par chaque élément photosensible. L'utilisation de la technologie CMOS a permis d'intégrer les moyens de lecture au niveau de chaque pixel. Ainsi, les charges électriques peuvent être converties en signaux numériques à l'intérieur même des pixels pour faciliter le transfert du résultat de la détection vers l'extérieur de la matrice. Une solution courante pour réaliser les moyens de lecture est d'utiliser un circuit fonctionnant par intégration des charges électriques. Ce circuit d'intégration comprend une capacité d'intégration recevant les charges issues de l'élément photosensible, un comparateur à seuil, un compteur et un circuit d'injection de contre-charges. Pendant une phase d'exposition, l'arrivée de charges électriques sur la capacité d'intégration entraîne une diminution de la tension à ses bornes. Pendant une phase de lecture des charges électriques, le comparateur à seuil bascule un certain nombre de fois, tant que la tension aux bornes de la capacité d'intégration est inférieure à une tension seuil. Chaque basculement du comparateur incrémente le compteur d'une unité et commande au circuit d'injection l'injection d'un paquet de contre-charges dont la quantité - Q0 est calibrée. Le signe moins est utilisé arbitrairement afin d'indiquer que les contre-charges injectées ont une polarité opposée à celle des charges reçues de l'élément photosensible. Le compteur est ainsi incrémenté du nombre de paquets de charges nécessaire pour ramener une tension supérieure à la tension seuil aux bornes de la capacité d'intégration. En pratique, l'injection de contre-charges est généralement réalisée au fur et à mesure que des photocharges sont collectées, un compteur déterminant le nombre de bascules du comparateur, afin d'estimer la quantité totale de charges injectée. La lecture correspond alors à la lecture du contenu des compteurs. Le nombre d'incrémentations du compteur fournit une valeur numérique représentative de la quantité de photons reçue par l'élément photosensible.
Le circuit d'injection de contre-charges est un élément critique du circuit d'intégration. En effet, la précision de la mesure repose sur le calibrage de la quantité - Q0 de contre-charges. D'une part, la quantité - Q0 de contre-charges doit être relativement faible puisqu'elle correspond au pas de la quantification des charges ; d'autre part, cette quantité doit être identique pour chaque paquet de contre-charges puisqu'elle quantifie les charges reçues par la capacité d'intégration.
Or, dans les circuits actuels d'injection de contre-charges, la quantité de charges injectée lors de chaque basculement du comparateur peut fluctuer. En effet, ces circuits comportent des transistors à effet de champ, dont les canaux sont affectés par un bruit aléatoire dit rts "Random Telegraph Signal". Le caractère aléatoire de ce bruit influe sur la quantité de contre-charges injectée : certaines injections sont affectées par ce bruit, mais pas d'autres. Aussi, lorsqu'on souhaite estimer la charge totale injectée par un certain nombre d'injections, on ne connaît pas les injections qui ont ou n'ont pas été affectées.
Par exemple, un circuit d'injection de contre-charges comprend fréquemment deux transistors à effet de champ (FET) connectés en série et un condensateur connecté entre le point de liaison des transistors et une tension fixe, par exemple la masse. Un premier transistor permet de charger le condensateur à une première valeur de tension, dite tension de charge, commandée par la tension de grille de ce transistor. Le deuxième transistor permet de décharger le condensateur à une deuxième valeur de tension, dite tension de décharge, commandée par la tension de grille de ce transistor. La quantité - Q0 de contre-charges injectées depuis le condensateur vers la capacité d'intégration du circuit d'intégration est fonction de la valeur de la capacité du condensateur et de la différence entre les tensions de charge et de décharge. Cependant, les tensions de charge et de décharge ne sont pas directement déductibles des tensions de grille des transistors. Les tensions de charge et de décharge correspondent aux potentiels internes des transistors, qui ne sont pas connus précisément en raison du bruit rts dû au piégeage de charges dans le canal de chaque transistor. Ce bruit rts est d'autant plus significatif que les composants ont des dimensions réduites afin de générer des quantités - Q0 de contre-charges relativement faibles. En pratique, ce bruit rts modifie la valeur de la quantité - Q0 de quelques pourcents. Cette modification se répercute directement sur l'évaluation de la quantité de photons reçue, et donc sur la qualité de l'image obtenue. Or, une telle erreur est généralement inacceptable dans les détecteurs, en particulier dans le domaine de l'imagerie médicale.
Un but de l'invention est notamment de remédier à tout ou partie des inconvénients précités en déterminant précisément la quantité de contre- charges injectées pour l'évaluation de la quantité de charges générées par un élément photosensible. A cet effet, l'invention a pour objet un circuit électronique pour détecteur de rayonnement comportant :
un comparateur dont une première entrée reçoit un potentiel de seuil prédéterminé et dont une deuxième entrée est apte à être connectée à un nœud d'intégration pouvant stocker des charges électriques générées par un élément photosensible à la réception d'un rayonnement de photons, les charges entraînant une variation d'un potentiel de détection sur le nœud d'intégration,
un compteur connecté en sortie du comparateur, de manière à comptabiliser des franchissements du potentiel de seuil par le potentiel de détection, et
■ un circuit d'injection de contre-charges permettant de contrebalancer les charges, ledit circuit comprenant :
- un condensateur stockant des contre-charges électriques,
- un transistor de transfert pouvant être commandé à l'état passant pour transférer des contre-charges d'une borne du condensateur au nœud d'intégration à chaque basculement du comparateur, ladite borne du condensateur formant un nœud du circuit d'injection, le transfert des contre- charges entraînant une variation d'un potentiel audit nœud du circuit d'injection, et
- un circuit de régulation pour commander le transistor de transfert, ledit circuit comprenant des moyens pour commander le transistor de transfert à l'état passant lorsque le potentiel au nœud du circuit d'injection se situe entre deux potentiels prédéterminés et indépendants du transistor de transfert. Avec un tel circuit, la quantité de charges injectée à chaque basculement du comparateur est maîtrisée. La quantité totale de la charge collectée par un détecteur est alors améliorée, ce qui accroît la précision de la mesure. Selon une forme préférentielle de réalisation, le circuit de régulation comprend, en outre, des moyens pour générer un potentiel de référence en un point dont la variation est représentative d'une variation du potentiel au nœud du circuit d'injection, les moyens pour commander le transistor de transfert le commandant à l'état passant lorsque le potentiel de référence se situe entre deux potentiels prédéterminés et indépendants du transistor de transfert.
L'invention concerne également un détecteur de rayonnement comportant un élément photosensible générant des charges électriques sur le nœud d'intégration à la réception d'un rayonnement de photons, et un circuit électronique tel que décrit précédemment, la deuxième entrée du comparateur étant connectée au nœud d'intégration.
L'invention a notamment pour avantage de permettre l'utilisation de composants de dimensions réduites en s'affranchissant du bruit rts. La quantité - Q0 de contre-charges injectées peut être très faible, conduisant ainsi à une quantification précise des charges générées par chaque élément photosensible. De plus, l'utilisation de composants de dimensions réduites permet de limiter la surface occupée par le circuit d'injection de contre- charges dans chaque pixel. L'invention permet alors le recours à ces composants compacts, sans dégrader la précision de la mesure. Par composants compacts, on comprend des composants dont la plus grande longueur est de l'ordre du micron, ou moins. L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre, faite en regard de dessins annexés sur lesquels :
- la figure 1 représente le schéma électrique d'un pixel dans un détecteur de rayonnement selon l'état de la technique ;
- les figures 2A à 2E illustrent le principe de fonctionnement d'un circuit d'injection de contre-charges dans le pixel de la figure 1 ;
- les figures 3A à 3E illustrent, par une représentation analogue aux figures 2A à 2E, l'impact du bruit rts sur le fonctionnement du circuit d'injection de contre-charges de la figure 1 ;
- la figure 4 représente le schéma électrique d'un premier exemple de pixel selon l'invention ;
- la figure 5 représente le schéma électrique d'une variante de réalisation d'un circuit de régulation dans le pixel de la figure 4 ;
- la figure 6 représente le schéma électrique d'un deuxième exemple de pixel selon l'invention ;
- les figures 7A à 7E illustrent, par une représentation analogue aux figures 2A à 2E, le principe de fonctionnement du circuit d'injection de contre-charges dans le pixel de la figure 6 ;
- la figure 8 représente, par des chronogrammes, le principe de fonctionnement du circuit d'injection de contre-charges dans le pixel de la figure 6.
La figure 1 représente le schéma électrique d'un pixel 10 dans un détecteur de rayonnement matriciel selon l'état de la technique. Chaque pixel 10 forme un point photosensible du détecteur matriciel. Il comprend une photodiode 1 1 , un comparateur à seuil 12, un compteur 13 et un circuit d'injection de contre-charges 14. Le comparateur à seuil 12, le compteur 13 et le circuit d'injection 14 forment un circuit électronique permettant une lecture de la photodiode 1 1 . La photodiode 1 1 pourrait être remplacée par un phototransistor ou, plus généralement, par tout élément photosensible générant des charges électriques proportionnellement à la quantité de photons qu'il reçoit. Les photons considérés ont par exemple une longueur d'onde dans le domaine visible ou dans le domaine des rayons X. Dans ce dernier cas, soit l'élément photosensible produit directement des charges électriques sous l'effet d'un rayonnement X, soit il est sensible au rayonnement visible, un scintillateur étant alors interposé entre la source de rayonnement X et l'élément photosensible.
La photodiode 1 1 possède une capacité parasite utilisée comme capacité d'intégration pour stocker les charges électriques générées pendant une phase d'exposition. La capacité parasite de la photodiode est généralement suffisante. Néanmoins, un condensateur pourrait être connecté en parallèle à la photodiode pour augmenter la capacité d'intégration. L'anode de la photodiode 1 1 reçoit une tension fixe. Elle est par exemple connectée à la masse électrique. Le comparateur à seuil 12 reçoit sur une entrée positive un potentiel de seuil Vcomp. L'entrée négative est connectée à la cathode de la photodiode 1 1 . Une sortie du comparateur 12 est connectée à une entrée du compteur 13.
Le circuit d'injection de contre-charges 14 comprend deux transistors à effet de champ (FET) : un premier transistor M1 et un second transistor M2, deux sources de tension 141 et 142 et un condensateur 143 de capacité C. Le drain du premier transistor M1 , la source du second transistor M2 et une borne du condensateur 143 sont reliés en un point A, appelé nœud du circuit d'injection de contre-charges.
Le premier transistor M1 est connecté par sa source à la source de tension 141 et par son drain à la source du deuxième transistor M2. Le premier transistor M1 permet de constituer une charge au niveau du nœud du circuit d'injection de charge. On l'appellera transistor de précharge. Le point de connexion entre les transistors M1 et M2 correspond au point A précédemment défini.
Le drain du second transistor M2 est connecté à la cathode de la photodiode 1 1 , de manière à pouvoir y injecter des contre-charges. Aussi, le second transistor M2 peut être appelé transistor de transfert. Précisons que la cathode de la photodiode 1 1 correspond également au point ou s'accumulent des charges générées par les interactions du rayonnement dans le détecteur. Ce point peut être appelé nœud d'intégration N du pixel. Autrement dit, le nœud N est un point de connexion entre la photodiode 1 1 et son circuit électronique de lecture. Il peut recevoir, d'une part, des charges électriques de la photodiode 1 1 lorsqu'elle est exposée et, d'autre part, des contre-charges électriques du circuit d'injection de contre-charges 14.
La collection de charges électriques et l'injection de contre- charges sur le nœud N entraînent une variation de son potentiel. A titre d'exemple, on considère que, lors de la réception de photons, la photodiode 1 1 génère des charges négatives (des électrons) stockées sur sa cathode. Ces charges négatives entraînent une diminution du potentiel au nœud N. Lorsque le potentiel devient inférieur au potentiel de seuil Vcomp, le comparateur 12 bascule. Chaque basculement est comptabilisé par le compteur 13. La grille du transistor M1 est polarisée à un potentiel fixe Vg1 . La grille du transistor M2 est polarisée par la source de tension 142. Le condensateur 143 est connecté entre le point A et une source de tension fixe, par exemple la masse. Les sources de tension 141 et 142 délivrent respectivement des potentiels Phi 1 et Phi2. Elles sont commandées par un circuit de commande 15 recevant en entrée une information de basculement du comparateur à seuil 12, et délivrant en sortie un premier signal Phil c commandant la source de tension 141 , et un deuxième signal Phi2c commandant la source de tension 142. Le circuit d'injection de contre- charges 14 peut ne pas comporter de condensateur 143, la capacité C étant dans ce cas fournie par les capacités parasites des transistors M1 et M2.
Les figures 2A à 2E illustrent le principe de fonctionnement du circuit d'injection de contre-charges 14 suivant un modèle hydraulique, classique dans le domaine des circuits à couplage de charge (CCD). Sur ces figures, il est considéré que les transistors M1 et M2 sont en forte inversion. Les transistors M1 et M2 pourraient tout aussi bien fonctionner en faible inversion. Les valeurs quantitatives s'en trouveraient modifiées, mais les explications qualitatives données ci-après restent valables. Sur chacune de ces figures, les colonnes représentent, de gauche à droite, le potentiel Phi1 , le potentiel interne Vg1 s du transistor M1 , le potentiel Va au point A, le potentiel interne Phi2s du transistor M2, et le potentiel de drain Vd2 du transistor M2. L'attention du lecteur est attirée sur le fait que ce sont les potentiels internes des transistors M1 et M2 qui sont considérés, c'est-à-dire les potentiels des canaux, et non les potentiels appliqués sur les grilles. L'approximation au premier ordre du potentiel interne de la grille d'un transistor est Vg - VT, avec Vg le potentiel appliqué sur la grille du transistor, et VT la tension de seuil du transistor. L'injection de contre-charges vers la photodiode 1 1 nécessite la succession d'une étape de précharge, d'une étape d'écrémage, et d'une étape de transfert. L'injection de contre-charges est par exemple déclenchée par le basculement du comparateur 12. La figure 2A représente le circuit d'injection de contre-charges 14 lors de l'étape de précharge. Dans cette étape, le potentiel Phi1 est à un niveau haut Phi1_h. Le potentiel Phi2 est à un niveau haut Phi2_h. Le potentiel interne Phi2s est donc à un niveau haut Phi2s_h. Les potentiels Phi1_h, Vg1 et Phi2_h sont déterminés de manière à ce que le potentiel Phi1_h soit supérieur au potentiel Vg1 s et inférieur au potentiel Phi2s_h. Le potentiel Va peut ainsi se stabiliser au potentiel Phi1_h. La figure 2B représente le circuit d'injection 14 lors de l'étape d'écrémage. Pendant cette étape, le potentiel Phi1 est à un niveau bas Phi1_b, inférieur au potentiel Vg1 s. Le potentiel Phi2s est maintenu à son niveau haut Phi2s_h. Le transistor M1 conduit et évacue les charges excédentaires du condensateur 143 vers la source de tension 141 , entraînant une diminution du potentiel Va. La figure 2C représente le circuit d'injection 14 à la fin de l'étape d'écrémage. Sur cette figure, il apparaît que le potentiel Va s'est stabilisé au potentiel Vg1 s. Lors de l'étape de transfert, représentée par la figure 2D, le potentiel Phi2 est maintenu à un niveau bas Phi2_b. Le potentiel interne Phi2s est donc à un niveau bas Phi2s_b. Le potentiel Phi2_b est déterminé de manière à ce que le potentiel Phi2s_b soit inférieur au potentiel Vg1 s. Le transistor M2 conduit et évacue les charges excédentaires du condensateur 143 vers la photodiode 1 1 . Le transfert des charges entraîne une diminution du potentiel Va et une augmentation du potentiel sur le nœud N. La figure 2E représente le circuit d'injection 14 à la fin de cette étape de transfert. Le potentiel Va s'est stabilisé au potentiel Phi2s_b. L'étape de transfert des charges excédentaires (contre-charges) vers la photodiode 1 1 a ainsi permis de diminuer le potentiel Va de Vg1 s à Phi2s_b. La quantité - Q0 de contre- charges injectées sur la photodiode 1 1 vaut donc C x (Vg1 s - Phi2s_b). Pour l'injection suivante de contre-charges, les étapes de précharge, d'écrémage et de transfert sont répétées. Des injections sont réalisées jusqu'à ce que le potentiel sur le nœud N atteigne le potentiel de seuil Vcomp. Il est à noter que la capacité de la photodiode 1 1 peut être suffisamment faible pour que l'injection d'une seule contre-charge amène le potentiel du nœud N au potentiel de seuil Vcomp, ce qui entraîne le basculement du comparateur 12.
Dans le but d'injecter des contre-charges en quantité limitée, les transistors M1 et M2 doivent être commandés par des potentiels faibles et la capacité C du condensateur 143 doit être minime. En conséquence, les dimensions des transistors doivent être relativement faibles. Les transistors FET voient alors apparaître un bruit rts significatif, particulièrement gênant par le fait qu'il est aléatoire. Ce bruit rts est dû au piégeage d'une ou plusieurs charges dans un ou plusieurs pièges du canal du transistor. La durée pendant laquelle des charges sont piégées est typiquement de l'ordre de la seconde. Pendant toute cette durée, le fonctionnement du transistor FET est modifié. Cette modification peut être vue comme une variation de conduction du transistor, ou comme une variation du potentiel du canal du transistor pour un même potentiel sur la grille. Les figures 3A à 3E illustrent l'impact du bruit rts sur le fonctionnement du circuit d'injection de contre- charges 14 de la figure 1 . Les figures 3A à 3E sont respectivement équivalentes aux figures 2A à 2E, dans le cas où un trou est piégé dans le canal du transistor M1 . Cette charge piégée positive augmente le potentiel Vg1 s dans le canal. Elle est représentée sur les figures 3A à 3E par une bosse, par analogie avec un caillou posé sur le fond d'un cours d'eau. Cette bosse perturbe très peu l'étape de précharge, représentée sur la figure 3A. Le potentiel Va se stabilise également au potentiel Phi1_h. En revanche, la charge piégée ralentit l'étape d'écrémage, représentée sur la figure 3B, et surtout, elle modifie le niveau auquel se stabilise le potentiel Va. A la fin de l'étape d'écrémage, représentée sur la figure 3C, le potentiel Va est légèrement supérieur au potentiel Vg1 s. Lors de l'étape de transfert, représentée sur la figure 3D, une plus grande quantité de charges est donc injectée sur la photodiode 1 1 . Il est noté que, même si la charge piégée ne modifie pas le potentiel du canal sur toute sa largeur, elle ralentit forcément l'étage d'écrémage. Or les durées attribuées à chaque étape sont en pratique toujours limitées. Autrement dit, le piégeage d'une charge se traduit forcément par une modification du potentiel Va. De manière analogue, un trou pourrait être piégé dans le canal du transistor M2, modifiant le niveau de stabilisation du potentiel Va à la fin de l'étape de transfert. En résumé, le bruit rts implique une variation de la quantité - Q0 de contre-charges injectées. La variation de cette quantité - Q0 est typiquement de l'ordre de quelques pourcents, ce qui peut s'avérer inacceptable dans certains domaines d'imagerie, notamment l'imagerie médicale.
Ainsi, d'une façon générale, le bruit dit rts affecte, de façon aléatoire, le potentiel dans les canaux des transistors du circuit d'injection de contre-charges. Par conséquent, lors de chaque injection de contre-charges, la quantité de charges injectée peut fluctuer de façon non maîtrisée.
L'invention vise à s'affranchir du bruit rts dans les transistors FET et à permettre l'injection d'une quantité constante de contre-charges. A cet effet, le circuit d'injection de contre-charges selon l'invention comprend des moyens pour commander le transistor de transfert M2 de manière à ce que, lors de l'étape de transfert, la variation de tension au nœud A du circuit d'injection soit égale à une variation entre deux potentiels prédéterminés indépendants du transistor M2, c'est-à-dire indépendants du potentiel de son canal. En outre, la variation de tension au nœud A du circuit d'injection est indépendante du potentiel du canal du transistor de précharge M1 .
La figure 4 représente le schéma électrique d'un premier exemple de pixel 40 selon l'invention. Le circuit électronique de lecture du pixel 40 diffère uniquement du circuit électronique de lecture du pixel 10 de la figure 1 par le circuit d'injection de contre-charges. Ledit circuit 41 comprend également deux transistors FET M1 et M2 connectés en série, une source de tension 141 et un condensateur 143 de capacité C, typiquement de quelques fF à quelques dizaines de fF. Cette capacité C peut être appelée capacité de contre-charge, car elle participe à la création d'une contre-charge au nœud A du circuit d'injection de contre-charges 41 . Ledit circuit 41 comporte en outre un circuit de régulation 42. Le transistor M1 est connecté par sa source à la source de tension 141 et par son drain au point A. Le transistor M2 est connecté par sa source au point A et par son drain au nœud N, c'est-à-dire à la cathode de la photodiode 1 1 . Le condensateur 143 est connecté entre le point A et une source de tension fixe, ici la masse. La grille du transistor M1 est toujours polarisée à un potentiel fixe Vg1 . En revanche, la grille du transistor M2 est polarisée par un potentiel de contrôle Phi2 généré par le circuit de régulation 42. Le circuit de régulation 42 reçoit le potentiel Va du point A en entrée et commande le potentiel de contrôle Phi2 en fonction de la variation de ce potentiel. Il comprend un suiveur 421 , un condensateur 422 de capacité C2, un interrupteur commandé 423, une source de tension 424 pilotant l'interrupteur commandé 423, un comparateur à seuil 425, un commutateur 426, et des sources de tension délivrant un potentiel fixe Vp2, un potentiel fixe Vcomp2 et un potentiel fixe Phi2_h. Une entrée du suiveur 421 est connectée au point A. Une sortie du suiveur 421 est connectée à une première armature du condensateur 422, une deuxième armature étant connectée à un point B, dont le potentiel forme un potentiel de référence Vb, potentiel que l'on peut qualifier de potentiel image du potentiel au point A (nœud du circuit d'injection). Le suiveur 421 et le condensateur 422 forment des moyens pour générer un potentiel de référence Vb dont la variation est représentative de la variation du potentiel Va. Le point B est par ailleurs connecté à une entrée négative du comparateur 425 et à l'interrupteur 423. La source de tension 424 commande l'interrupteur 423 par des impulsions de commande Phi_Vp2, de manière à appliquer un potentiel Vp2 au point B. Une entrée positive du comparateur 425 reçoit un potentiel fixe Vcomp2, inférieur au potentiel Vp2. Une sortie du comparateur 425 délivre le potentiel de contrôle Phi3. Ce potentiel peut prendre deux valeurs Phi3_h et Phi3_b, selon le résultat de la comparaison entre le potentiel Vb au point B et le potentiel Vcomp2. Un commutateur 426, placé en aval du comparateur 425, permet de relier la sortie Phi3 du comparateur à la commande Phi2 du transistor M2 lors de la phase de transfert, cette phase étant déclenchée à un instant prédéterminé après le basculement du comparateur 12. Naturellement, Phi3_h et Phi3_b correspondent respectivement à Phi2_h et Phi2_b. Ainsi, lors de la phase de transfert, la sortie du comparateur 425 forme un moyen pour commander le transistor M2. Des moyens de réglage des valeurs Phi2_h et Phi2_b, non représentés, sont prévus afin de pouvoir ajuster la polarisation du transistor M2. Ces moyens de réglage peuvent être intégrés au comparateur 425, ou intercalés entre le comparateur 425 et la grille du transistor M2. Les sources de tension 141 et 424, et le commutateur 426 peuvent être commandés par un circuit de commande, non représenté, recevant en entrée une information de basculement du comparateur à seuil 12.
En dehors de la phase de transfert, le commutateur 426 permet de relier la commande Phi2 à son niveau haut Phi2_h, indépendamment de la sortie Phi3.
Le circuit d'injection de contre-charges 41 fonctionne de la manière suivante. Lors de l'étape de précharge, par exemple déclenchée par le circuit de commande suite au basculement du comparateur 12, au temps t0, le potentiel Phi1 est au niveau haut P h i 1 _h et le potentiel interne Phi2s est au niveau haut Phi2s_h, avec Phi1_h supérieur à Vg1 s et inférieur à Phi2s_h. Au cours de cette étape, le potentiel Phi_Vp2 est porté à son niveau haut, de façon à rendre l'interrupteur 423 passant. Cela permet de fixer le potentiel de B de façon indépendante du potentiel de A. La sortie Phi3 du comparateur 425 est à son niveau bas Phi3_b. Le potentiel de grille Phi2, commandant le transistor M2, est à son niveau haut Phi2_h. Cette étape dure une durée prédéterminée, entre t0 (ou t0 + ε) et t-i . Le potentiel de A vaut alors Phi1_h.
L'étape d'écrémage consiste en un ajustement de la charge générée au nœud A du circuit d'injection de charge. Cette étape est déclenchée à un instant t-ι , prédéterminé, après le basculement du comparateur 12. Le potentiel Phi1 est amené au niveau bas Phi1_b, inférieur au potentiel Vg1 s. A la fin de l'étape d'écrémage, le potentiel Va est donc au niveau Vg1 s plus une éventuelle variation due au bruit rts dans le transistor M1 . Au cours de cette étape, le potentiel Phi_Vp2 est maintenu à son niveau haut, ce qui rend l'interrupteur 423 passant, de façon à fixer le potentiel de B de façon indépendante du potentiel de A, et donc du bruit rts. La sortie du comparateur Phi3 est à son niveau bas Phi3_b. Le potentiel Phi2, commandant le transistor M2, est à son niveau haut Phi2_h. Cette étape dure une durée prédéterminée, entre ti (ou ti + ε) et t2.
La fin de l'écrémage a lieu à un instant t2, l'écart temporel entre t2 et t0 étant prédéterminé. A cet instant, le potentiel Phi_Vp2 bascule à son niveau bas, ce qui ouvre l'interrupteur 423. La troisième étape correspond au transfert de charge. Cette étape a lieu à partir d'un instant t3, l'écart temporel entre t0 et t3 étant prédéterminé. Au cours de cette étape, le potentiel Phi_Vp2 est maintenu à son niveau bas, ce qui ouvre l'interrupteur 423 de telle sorte que le potentiel de B suit l'évolution du potentiel du nœud A du circuit d'injection 41 par l'intermédiaire du suiveur 421 et de la capacité associée C2. En outre, la tension de grille Phi2 du transistor de transfert M2 est rendue égale à la tension de sortie Phi3. La sortie Phi3 du comparateur 425 est alors à son niveau bas Phi3_b. Le potentiel de grille Phi2, commandant le transistor M2, est à son niveau bas Phi2_b.
L'application de Phi2_b sur la grille du transistor M2 déclenche le transfert de contre-charges du point A vers le nœud N. Au fur et à mesure que les contre-charges sont injectées sur le nœud N, le potentiel Va diminue. Cette diminution est transmise, par l'intermédiaire du suiveur 421 et du condensateur 422, au point B. Le point B et son potentiel Vb peuvent ainsi être qualifiés, vis-à-vis du point A, de point image du point A et de potentiel image du potentiel Va, respectivement, car lorsque l'interrupteur 423 est ouvert, ce qui est le cas lors du transfert de charges, le potentiel Vb diminue en suivant l'évolution du potentiel du point A. Le potentiel Vb diminue jusqu'à atteindre le potentiel Vcomp2. Le comparateur 425 bascule alors, et sa sortie Phi3 bascule vers son niveau haut Phi3_h. Ainsi, Phi2 bascule vers son niveau haut Phi2_h ce qui stoppe le transfert de contre-charges par le transistor M2. Au cours de ce transfert, le potentiel Va passe de Vp2 à Vcomp2.
L'étape de transfert implique par conséquent le transfert d'une quantité - Q0 de contre-charges égale à C x (Vp2 - Vcomp2. Ainsi, au cours de l'injection de contre-charges, la variation de potentiel du point de charge A est bornée par des potentiels fixes et maîtrisés. Par rapport au circuit d'injection de contre-charges 14 de la figure 1 , le circuit d'injection 41 ne fait plus dépendre la quantité - Q0 des potentiels des canaux des transistors M1 et M2, mais de potentiels externes aux transistors M1 et M2. Plus précisément, la quantité - Q0 ne dépend plus de la variation du potentiel Va entre les potentiels internes Vg1 s et Phi2s_b, mais de la variation du potentiel Vb (identique à la variation de Va) entre les potentiels Vp2 et Vcomp2, qui peuvent être précisément déterminés, par exemple en appliquant ces potentiels par des sources de tension. Bien entendu, pour que la quantité de contre-charges injectées ne dépende ni du potentiel interne Vg1 s, ni du potentiel interne Phi2s_b, il faut choisir les potentiels Vp2, Vcomp2, Phi2_b et Vg1 tels que (Vp2 - Vcomp2) < (Vg1 s - Phi2s_b). Dans le but de limiter le nombre de potentiels nécessaires, il est possible de choisir Vp2 = Phi2s_b et Vcomp2 = Vg1 s si le comparateur 425 est légèrement dissymétrique, c'est-à-dire si le seuil de basculement est légèrement supérieur à Vcomp2. Dans l'état de l'art (figure 3), la contre-charge dépend de la différence des potentiels internes de M1 et M2. Il est donc important que ces deux transistors soient aussi appariés que possible (proximité, mêmes dimensions, même régime de fonctionnement en écrémage) afin d'éliminer autant que possible les variations thermiques ou technologiques.
Mais dans l'invention, la tension de la fin de précharge de A est mémorisée lors du blocage de l'interrupteur 423, et on ne s'occupe ensuite que de la variation de cette tension. On a donc davantage de liberté pour faire la précharge de A. En particulier, le transistor de précharge M1 peut être réalisé par un transistor MOS de relativement grandes dimensions, sa capacité n'influençant pas l'étape de précharge.
Pour permettre la fabrication de paquets de contre-charges dont la quantité - Q0 est relativement faible, le suiveur 421 est de préférence faiblement capacitif sur son entrée, c'est-à-dire de quelques femtofarads. Il est donc soumis au bruit rts, qui se traduit par une variation de son offset (différence de potentiel entre l'entrée et la sortie du suiveur). Cependant, l'offset est éliminé par le condensateur 422, la variation du potentiel Va restant toujours identique à la variation du potentiel Vb. En revanche, la variation de l'offset entraîne une différence entre les variations de Va et de Vb. Cependant, cette différence ne subsiste que pendant la génération du paquet de contre-charges au cours de laquelle a lieu la variation de l'offset. Autrement dit, si l'offset du suiveur 421 varie une fois au cours de l'une parmi N injections de contre-charges, seul un paquet de contre-charges voit sa quantité - Q0 altérée. Il peut également être remarqué que, le comparateur 425 étant piloté par un suiveur via un condensateur, c'est-à-dire par un ensemble à relativement faible impédance de sortie en alternatif, il n'a pas besoin d'être très faiblement capacitif sur son entrée. Il peut ainsi être réalisé par des transistors FET dont les dimensions sont suffisamment grandes pour qu'il ne présente pas de bruit rts. De façon à transmettre la variation du potentiel Va au potentiel Vb avec le minimum de pertes, le condensateur 422 a de préférence une capacité C2 importante par rapport aux capacités parasites existant au point B. Typiquement, le condensateur 422 a une capacité C2 de quelques dizaines de fF à quelques centaines de fF. Il peut enfin être remarqué que le suiveur 421 pourrait être remplacé par un amplificateur linéaire, les potentiels Vp2 et Vcomp2 devant alors être adaptés en fonction du gain d'amplification.
La figure 5 représente le schéma électrique d'une variante de réalisation du circuit de régulation 42 représenté sur la figure 4. Cette variante permet un ajustement pixel par pixel de la quantité - Q0 de contre- charges injectées. Un tel ajustement peut s'avérer nécessaire lorsque la quantité de contre-charges est très faible, par exemple de quelques centaines de trous. Le condensateur 143 de chaque circuit d'injection doit alors avoir une capacité C très faible, de l'ordre du femtofarad. Cette capacité C est par exemple obtenue par les capacités parasites des transistors M1 et M2. En tout état de cause, la capacité C peut subir de fortes variations d'un pixel à un autre, et il est donc souhaitable de pouvoir disposer d'un moyen pour ajuster la quantité -Q0 de contre-charges d'un pixel à l'autre. Selon la variante de réalisation de la figure 5, cet ajustement est réalisé indirectement par des moyens pour modifier le gain de transmission entre la variation du potentiel Va et la variation du potentiel Vb. En d'autres termes, on cherche à moduler, pour chaque pixel, la valeur du potentiel du point de charge A avant l'injection de contre-charges, c'est-à-dire la valeur d'une des bornes précédemment définies. On pourrait également ajuster la valeur Vcomp pixel par pixel. Le circuit de régulation 51 de la figure 5 comporte, en plus du circuit de régulation 42 de la figure 4, un ensemble de condensateurs 521 , 522, 523 et 524, de capacité respective Cg1 , Cg2, Cg3 et Cg4, un interrupteur commandé 531 , 532, 533 ou 534 pour chaque condensateur, et des moyens de commande 54 des interrupteurs. Sur la figure 5, on considère un ensemble de quatre condensateurs. Néanmoins, il peut être considéré un nombre quelconque de condensateurs, selon le degré de précision souhaité. Chaque condensateur 52i, où i prend ici des valeurs entières entre 1 et 4, est connecté entre une source de tension fixe, par exemple la masse, et l'interrupteur 53i associé. Chaque interrupteur 53i est par ailleurs connecté au point B. Les moyens de commande 54 comprennent par exemple une mémoire dans laquelle est stocké un poids mémoire pour chaque interrupteur. Chaque poids mémoire indique si l'interrupteur 53i doit être commandé à l'état passant ou bloqué. Lorsque les interrupteurs 53i sont commandés à l'état passant, les condensateurs 52i sont connectés en parallèle et leurs capacités Cgi s'additionnent. La somme des capacités Cgi connectées au point B est notée Cadd. Il est noté que Cadd peut également comporter des capacités parasites. Le gain de transmission entre la variation du potentiel Va et celle du potentiel Vb est alors égal au rapport capacitif C2 / (C2 + Cadd). Les valeurs des capacités Cgi peuvent différer les unes des autres. A titre d'exemple, il est possible de les choisir dans une progression en puissance de deux (1 , 2, 4, 8, etc.), de manière à pouvoir choisir tous les multiples de la capacité Cgi la plus faible par l'intermédiaire d'un code binaire stocké dans les moyens de commande 54.
Ainsi, lors de chaque injection, le potentiel du point de charge A varie entre deux bornes maîtrisées, la valeur d'une de ces bornes pouvant être ajustée pixel par pixel. Ainsi, la quantité de contre-charges injectée à chaque injection peut être modulée d'un pixel à un autre, en fonction de la capacité C. La figure 6 représente le schéma électrique d'un deuxième exemple de pixel 60 selon l'invention. Le pixel 60 comprend également une photodiode 1 1 , un comparateur à seuil 12, un compteur 13 et un circuit d'injection de contre-charges 61 connectés entre eux comme pour le pixel 40 de la figure 4. Structurellement, le circuit d'injection de contre-charges 61 diffère du circuit d'injection 41 essentiellement par son circuit de régulation 62. Il diffère également en ce que la grille du transistor M1 n'est plus polarisée à un potentiel fixe, mais par un potentiel de contrôle Phi3 généré par le circuit de régulation 62. Ledit circuit 62 reçoit toujours le potentiel Va du point A en entrée et délivre en sortie le potentiel de contrôle Phi2 et le potentiel de contrôle Phi3. Il peut comprendre un suiveur 621 , un comparateur à seuil 622 et un bloc logique séquentiel 623. Le suiveur 621 reçoit le potentiel Va sur une entrée. Ce suiveur 621 est optionnel. Il permet de maintenir une petite capacité au point A, tout en alimentant le comparateur 622, ce qui est utile lorsque la capacité d'entrée de ce dernier est élevée. Une sortie du suiveur 621 , formant le point B, image du point A, de potentiel Vb, est connectée à une entrée négative du comparateur 622. Une sortie du comparateur 622, formant un point de référence C de potentiel Vc, est connectée à une entrée du bloc logique 623. Le bloc logique 623 délivre en sortie le potentiel de contrôle Phi2 et le potentiel de contrôle Phi3, polarisant respectivement la grille du transistor M2 et la grille du transistor M3. Les potentiels de contrôle Phi2 et Phi3 peuvent prendre une valeur haute, respectivement Phi2_h et Phi3h, et une valeur basse, respectivement Phi2_b et Phi3_b. Le bloc logique 623 délivre en outre un potentiel de comparaison Phi4 injecté sur une entrée positive du comparateur 622. Le potentiel Phi4 peut prendre une valeur haute Phi4_h et une valeur basse Phi4_b. Dans ce circuit d'injection de contre-charges 61 , le circuit de commande, non représenté, recevant en entrée l'information de basculement du comparateur à seuil 12, peut commander la source de tension 141 et le bloc logique 623.
Les figures 7A à 7E illustrent, de manière analogue aux figures 2A à 2E, le principe de fonctionnement du circuit d'injection de contre-charges 61 . Les colonnes représentent respectivement, de gauche à droite, le potentiel Phi1 , le potentiel interne Phi3s du transistor M1 , le potentiel Vb au point B, le potentiel interne Phi2s du transistor M2, et le potentiel sur le drain du transistor M2. La figure 8 représente ce même fonctionnement sous forme de chronogrammes. Un premier chronogramme 81 représente le potentiel Vb au point B. Par souci de simplification, il est supposé que le suiveur 621 est parfait, c'est-à-dire que le potentiel Vb au point B est exactement égal au potentiel Va au point A. Le circuit d'injection de contre-charges 61 peut néanmoins fonctionner avec la même précision si le suiveur introduit une tension de décalage (offset), ou s'il est remplacé par un amplificateur de tension fonctionnant en mode linéaire. Des chronogrammes 82, 83, 84, 85 et 86 représentent respectivement le potentiel Vc au point C, le potentiel Phi1 , le potentiel Phi4, le potentiel Phi2 et le potentiel Phi3. La figure 7A représente le circuit d'injection de contre-charges 61 à l'issue de l'étape de précharge. Cette étape est par exemple réalisée à la fin de l'injection précédente. Le potentiel Phi1 est au niveau haut P h i 1 _h , le potentiel Phi2 est au niveau haut Phi2_h (et donc Phi2s est au niveau haut Phi2s_h), le potentiel Phi3 est au niveau bas Phi3_b (et donc Phi3s est au niveau bas Phi3s_b), et le potentiel Phi4 est au niveau haut Phi4_h. Les potentiels P h i 1 _h , Phi2_h et Phi3_b sont déterminés de manière à ce que Phi1_h soit supérieur à Phi3s_b et inférieur à Phi2s_h. A la fin de l'étape de précharge, le potentiel Va (et donc le potentiel Vb) est ainsi stabilisé au potentiel Phi1_h. La figure 7B représente le circuit d'injection 61 lors de l'étape d'écrémage. Cette étape est par exemple déclenchée par le circuit de commande suite au basculement du comparateur 12. Elle commence à un instant tO, où la source de tension 141 fait passer le potentiel Phi1 au niveau bas Phi1_b. Le potentiel P h i 1 _b étant inférieur au potentiel Phi3s_b, le transistor M1 conduit et évacue les charges excédentaires du condensateur 143 vers la source de tension 141 , entraînant une diminution des potentiels Va et Vb vers la valeur asymptotique Phi3s_b. Le potentiel Phi4_h est choisi de manière à ce que le potentiel Vb atteigne cette valeur Phi4_h avant que le potentiel Va n'atteigne le potentiel Phi3s_b. Dans le cas présent, où les potentiels Va et Vb sont égaux, il suffit de choisir Phi4_h supérieur à Phi3s_b. Lorsque le potentiel Vb atteint la valeur Phi4_h, à un instant t1 , le comparateur 622 bascule. Le potentiel Vc passe par exemple d'un état bas "0" à un état haut "1 ". Le bloc logique 623 fait alors passer le potentiel Phi3 au niveau haut Phi3_h, ce qui bloque l'écrémage, comme représenté sur la figure 7C. Immédiatement après l'instant t1 , à un instant t2, le bloc logique 623 fait passer le potentiel Phi4 au niveau bas Phi4_b. Le potentiel Phi4_b étant inférieur au potentiel Vb, sensiblement égal au potentiel Phi4_h à l'instant t2, le comparateur 622 bascule à nouveau à un instant t3, le potentiel Vc repassant à l'état bas. A un instant t4, après l'instant t3, le bloc logique 623 fait passer le potentiel Phi2 au niveau bas Phi2_b. Le potentiel Phi2_b est déterminé de manière à ce que le potentiel Phi2s_b soit inférieur au potentiel Phi4_h. Le transistor M2 conduit alors les charges du condensateur 143 vers la photodiode 1 1 . Cette étape de transfert est représentée par la figure 7D. Durant cette étape, les potentiels Va et Vb tendent vers la valeur asymptotique Phi2s_b. Le potentiel Phi4_b est choisi de manière à ce que le potentiel Vb atteigne cette valeur Phi4_b avant que le potentiel Va n'atteigne le potentiel Phi2s_b. Dans le cas présent, où les potentiels Va et Vb sont égaux, il suffit de choisir Phi4b supérieur à Phi2s_b. Lorsque le potentiel Vb atteint la valeur Phi4_b, à un instant t5, le comparateur 622 bascule et fait passer le potentiel Vc à l'état haut. Le bloc logique 623 fait alors passer le potentiel Phi2 au niveau haut Phi2_h, ce qui bloque le transfert, comme représenté sur la figure 7E. A l'issue de l'étape de transfert, une étape de précharge peut être réalisée pour l'injection suivante. Dans cette étape, le bloc logique 623 fait passer le potentiel Phi3 au niveau bas Phi3_b à un instant t6 ; il fait passer le potentiel Phi4 au niveau haut Phi4_h à un instant t7 ; et la source de tension 141 fait passer le potentiel Phi1 au niveau haut P h i 1 _h à un instant t8. En conséquence, le potentiel Vb se stabilise au niveau Phi1_h. Ce potentiel P h i 1 _h étant supérieur au potentiel Phi4_h, le comparateur 622 bascule à nouveau à un instant t9, le potentiel Vc repassant à l'état bas. Il est noté que les différentes opérations de l'étape de précharge peuvent être réalisées dans un ordre quelconque. Les instants t6, t7 et t8 sont par exemple concomitants. Par ailleurs, l'étape de précharge peut indifféremment être réalisée au début ou à la fin de chaque injection. Dans le premier cas, l'étape de précharge est utile pour l'injection en cours. Dans le deuxième cas, elle est utile pour l'injection suivante. Chaque transfert implique l'injection d'une quantité - Q0 de contre-charges égale à C x (Phi4_h - Phi4b). La quantité - Q0 est donc indépendante des potentiels internes des transistors M1 et M2. Elle est par ailleurs indépendante des offsets du suiveur 621 et du comparateur 622, sous réserve que ces offsets soient stables pendant les étapes d'écrémage et de transfert. En cas de variation d'offset pendant ces étapes, seule l'injection pendant laquelle se produit cette variation est altérée, et non les injections suivantes.
Dans le circuit de régulation 62 de la figure 6, le suiveur 621 pourrait être remplacé par un amplificateur de gain G. La quantité - Q0 devient alors 1 /G x C x (Phi4_h - Phi4b). Les potentiels Phi4_h et Phi4_b peuvent être facilement ajustés en conséquence. Ainsi, au cours de l'injection de contre-charges, la variation de potentiel du point de charge A est bornée par des potentiels fixes et maîtrisés.

Claims

REVENDICATIONS
1 . Circuit électronique pour détecteur de rayonnement comportant :
un comparateur (12) dont une première entrée reçoit un potentiel de seuil prédéterminé (Vcomp) et dont une deuxième entrée est apte à être connectée à un nœud d'intégration (N) pouvant stocker des charges électriques générées par un élément photosensible (1 1 ) à la réception d'un rayonnement de photons, les charges entraînant une variation d'un potentiel de détection sur le nœud d'intégration (N),
un compteur (13) connecté en sortie du comparateur (12), de manière à comptabiliser des franchissements du potentiel de seuil (Vcomp) par le potentiel de détection, et
un circuit d'injection (41 , 61 ) de contre-charges permettant de contrebalancer les charges, ledit circuit comprenant :
- un condensateur (143) stockant des contre-charges électriques, - un transistor de transfert (M2) pouvant être commandé à l'état passant pour transférer des contre-charges d'une borne du condensateur (143) au nœud d'intégration (N) à chaque basculement du comparateur (12), ladite borne du condensateur (143) formant un nœud (A) du circuit d'injection (41 , 61 ), le transfert des contre-charges entraînant une variation d'un potentiel (Va) audit nœud (A) du circuit d'injection (41 , 61 ), et
- un circuit de régulation (42, 62) pour commander le transistor de transfert (M2), ledit circuit comprenant des moyens (425, 622, 623) pour commander le transistor de transfert (M2) à l'état passant lorsque le potentiel au nœud (A) du circuit d'injection (41 , 61 ) se situe entre deux potentiels prédéterminés (Vp2, Vcomp2, Phi4_h, Phi4_b) et indépendants du transistor de transfert (M2).
2. Circuit électronique selon la revendication 1 , dans lequel le circuit de régulation (42, 62) comprend, en outre, des moyens (421 , 422, 621 ) pour générer un potentiel de référence (Vb) en un point (B) dont la variation est représentative d'une variation du potentiel (Va) au nœud (A) du circuit d'injection (41 , 61 ), les moyens (425, 622, 623) pour commander le transistor de transfert (M2) le commandant à l'état passant lorsque le potentiel de référence (Vb) se situe entre deux potentiels prédéterminés (Vp2, Vcomp2, Phi4_h, Phi4_b) et indépendants du transistor de transfert (M2).
3. Circuit électronique selon la revendication 2, dans lequel le circuit de régulation (42) comprend, en outre, des moyens (423, 424) pour forcer le potentiel de référence (Vb) au premier potentiel prédéterminé (Vp2), les moyens pour commander le transistor (M2) comportant un comparateur (425) dont une première entrée reçoit le potentiel de référence (Vb), dont une deuxième entrée reçoit le deuxième potentiel prédéterminé (Vcomp2), et dont une sortie délivre un signal de contrôle (Phi3) en fonction du résultat de la comparaison entre le potentiel de référence (Vb) et le deuxième potentiel prédéterminé (Vcomp2), le signal de contrôle (Phi3) permettant de commander le transistor (M2) à l'état passant.
4. Circuit électronique selon la revendication 3, dans lequel les moyens pour forcer le potentiel de référence (Vb) au premier potentiel prédéterminé (Vp2) comprennent un interrupteur commandé (423) connecté entre le point (B) dont le potentiel sert de potentiel de référence (Vb) et une source de tension fournissant le premier potentiel prédéterminé (Vp2).
5. Circuit électronique selon l'une des revendications 2 à 4, dans lequel les moyens pour générer un potentiel de référence (Vb) comprennent un amplificateur linéaire (421 ) dont une entrée est connectée au condensateur (143), et un deuxième condensateur (422) connecté entre une sortie de l'amplificateur linéaire (421 ) et le point (B) dont le potentiel sert de potentiel de référence (Vb).
6. Circuit électronique selon la revendication 5, dans lequel le circuit de régulation (51 ) comprend, en outre, un ensemble de condensateurs (521 -524), un interrupteur commandé (531 -534) pour chaque condensateur, et des moyens de commande (54) des interrupteurs, chaque condensateur (521 -524) étant connecté entre une source de tension fixe et l'interrupteur associé, chaque interrupteur (531 -534) étant par ailleurs connecté au point (B) dont le potentiel sert de potentiel de référence (Vb).
7. Circuit électronique selon l'une des revendications précédentes, dans lequel le circuit d'injection de contre-charges comprend, en outre, un transistor de précharge (M1 ) de type transistor à effet de champ dont une grille est polarisée à un potentiel fixe (Vg1 ), ledit transistor permettant de transférer des contre-charges vers le condensateur (143) et en dehors du condensateur (143), le transfert des contre-charges entraînant une variation de tension (Va) aux bornes du condensateur (143).
8. Circuit électronique selon la revendication 2, dans lequel le circuit d'injection de contre-charges (61 ) comprend, en outre, un transistor de précharge (M1 ) pouvant être commandé à l'état passant pour transférer des contre-charges vers le condensateur (143) et en dehors du condensateur (143), le transfert des contre-charges entraînant une variation de tension (Va) aux bornes du condensateur (143), le circuit de régulation (62) comprenant, en outre :
des moyens (622, 623) pour commander le transistor de précharge (M1 ) à l'état passant de manière à amener le potentiel de référence (Vb) au premier potentiel prédéterminé (Phi4_h).
9. Circuit électronique selon la revendication 8, dans lequel les moyens pour commander les transistors (M1 , M2) comprennent un comparateur (622) et un bloc logique (623), le comparateur (622) recevant le potentiel de référence (Vb) sur une première entrée et un potentiel de comparaison (Phi4) sur une deuxième entrée, le potentiel de comparaison pouvant prendre soit la valeur du premier potentiel prédéterminé (Phi4_h), soit la valeur du deuxième potentiel prédéterminé (Phi4_b), le bloc logique (623) recevant sur une entrée une sortie du comparateur (622) et délivrant le potentiel de comparaison (Phi4), un premier signal de contrôle (Phi2) commandant le transistor de transfert (M2) et un deuxième signal de contrôle (Phi3) commandant le transistor de précharge (M1 ).
10. Circuit électronique selon la revendication 9, dans lequel les moyens pour générer un potentiel de référence (Vb) comprennent un amplificateur linéaire (621 ) dont une entrée est connectée au condensateur (143) et dont une sortie délivre le potentiel de référence (Vb).
1 1 . Détecteur de rayonnement comportant un élément photosensible (1 1 ) générant des charges électriques sur le nœud d'intégration (N) à la réception d'un rayonnement de photons, et un circuit électronique selon l'une des revendications précédentes, la deuxième entrée du comparateur (12) étant connectée audit nœud d'intégration (N).
PCT/EP2012/062189 2011-06-30 2012-06-25 Detecteur de rayonnement comprenant un circuit d'injection de contre-charges en quantite calibree WO2013000849A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014517622A JP2014526161A (ja) 2011-06-30 2012-06-25 較正された量のカウンタ電荷を注入する回路を含む放射検出器
EP12730909.4A EP2726905A2 (fr) 2011-06-30 2012-06-25 Detecteur de rayonnement comprenant un circuit d'injection de contre-charges en quantite calibree
US14/129,232 US9234969B2 (en) 2011-06-30 2012-06-25 Radiation detector comprising a circuit for injecting a calibrated quantity of counter-charges
CN201280032512.5A CN103874933A (zh) 2011-06-30 2012-06-25 包括用于注入校准量的反电荷的电路的辐射检测器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1102062A FR2977413B1 (fr) 2011-06-30 2011-06-30 Detecteur de rayonnement comprenant un circuit d'injection de contre-charges en quantite calibree
FR1102062 2011-06-30

Publications (2)

Publication Number Publication Date
WO2013000849A2 true WO2013000849A2 (fr) 2013-01-03
WO2013000849A3 WO2013000849A3 (fr) 2013-01-31

Family

ID=46420148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/062189 WO2013000849A2 (fr) 2011-06-30 2012-06-25 Detecteur de rayonnement comprenant un circuit d'injection de contre-charges en quantite calibree

Country Status (6)

Country Link
US (1) US9234969B2 (fr)
EP (1) EP2726905A2 (fr)
JP (1) JP2014526161A (fr)
CN (1) CN103874933A (fr)
FR (1) FR2977413B1 (fr)
WO (1) WO2013000849A2 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3012705B1 (fr) 2013-10-29 2017-06-09 Commissariat Energie Atomique Circuit electronique d'injection de charges pour detecteur de rayonnement
CN104407373B (zh) * 2014-10-29 2017-01-18 中国科学院微电子研究所 辐射探测电路
US10277223B2 (en) * 2016-12-06 2019-04-30 Analog Devices Global Charge injection compensation circuit
US10192911B2 (en) 2017-05-09 2019-01-29 Apple Inc. Hybrid image sensors with improved charge injection efficiency
EP3428588B1 (fr) * 2017-07-10 2019-11-06 ams AG Agencement de capteur optique et procédé de détection de lumière
CN108882447B (zh) * 2018-06-25 2020-09-22 珠海市恒裕英发科技有限公司 一种光控电路
RU2692113C1 (ru) * 2018-08-31 2019-06-21 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ калибровки сцинтилляционного детектора излучения
RU2701189C1 (ru) * 2019-01-21 2019-09-25 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ определения величины выхода термоядерных нейтронов импульсного источника

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6919549B2 (en) * 2003-04-11 2005-07-19 Canesta, Inc. Method and system to differentially enhance sensor dynamic range
US20080217546A1 (en) * 2005-01-06 2008-09-11 Koninklijke Philips Electronics N.V. Pixel Implemented Current to Frequency Converter
FR2912588B1 (fr) * 2007-02-13 2009-04-10 Commissariat Energie Atomique Detecteur de rayonnement x ou gamma
WO2008108734A1 (fr) * 2007-03-06 2008-09-12 Richard Brenner Détecteur utilisé en radiothérapie
JP4560101B2 (ja) * 2008-03-31 2010-10-13 株式会社日立製作所 放射線計測装置および核医学診断装置
JP5230402B2 (ja) * 2008-12-19 2013-07-10 キヤノン株式会社 撮像装置及び撮像システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
US9234969B2 (en) 2016-01-12
EP2726905A2 (fr) 2014-05-07
FR2977413A1 (fr) 2013-01-04
FR2977413B1 (fr) 2013-08-09
US20150034832A1 (en) 2015-02-05
WO2013000849A3 (fr) 2013-01-31
CN103874933A (zh) 2014-06-18
JP2014526161A (ja) 2014-10-02

Similar Documents

Publication Publication Date Title
WO2013000849A2 (fr) Detecteur de rayonnement comprenant un circuit d&#39;injection de contre-charges en quantite calibree
EP0237365B1 (fr) Dispositif photosensible
EP2687020B1 (fr) Capteur d&#39;images
EP1704422A1 (fr) Systeme de detection de rayonnements a comptage d&#39;impulsions a double remise a zero
WO2008012462A2 (fr) Circuit de lecture d&#39;un element de retention de charges pour mesure temporelle
EP1900194B1 (fr) Dispositif microelectronique capteur d&#39;image a convertisseur analogique/numerique asynchrone
EP2015038A1 (fr) Capteur électronique à régulation thermique intégrée
WO2008012463A2 (fr) Programmation d&#39;un circuit de retention de charges pour mesure temporelle
EP2458849B1 (fr) Circuit de détection à double échantillonnage corrélé avec circuit d&#39;anti-éblouissement amélioré
EP3319311B1 (fr) Capteur d&#39;images synchrone à codage temporel
EP1647091B1 (fr) Amplificateur de tension a faible consommation
EP3063558B1 (fr) Circuit electronique d&#39;injection de charges pour detecteur de rayonnement
FR2962851A1 (fr) Capteur d&#39;image
EP2327160B1 (fr) Compteur analogique et imageur incorporant un tel compteur
EP0958545B1 (fr) Circuit integrateur de charges photogenerees a linearite amelioree
EP0745996A2 (fr) Générateur de rampe numérique
FR2787960A1 (fr) Detecteur d&#39;image a amplificateurs d&#39;acquisition de donnees integres
EP4216564A1 (fr) Calibration d&#39;un pixel numérique iwr d&#39;imageur
EP3026890A1 (fr) Contrôle de la durée d&#39;intégration dans un dispositif photosensible
WO1999035820A1 (fr) Dispositif de prise de vue a transfert de charges sur un element de connexion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12730909

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2012730909

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012730909

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014517622

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14129232

Country of ref document: US