JP2014524019A - ブランクの吸収を求める装置及び方法 - Google Patents

ブランクの吸収を求める装置及び方法 Download PDF

Info

Publication number
JP2014524019A
JP2014524019A JP2014517569A JP2014517569A JP2014524019A JP 2014524019 A JP2014524019 A JP 2014524019A JP 2014517569 A JP2014517569 A JP 2014517569A JP 2014517569 A JP2014517569 A JP 2014517569A JP 2014524019 A JP2014524019 A JP 2014524019A
Authority
JP
Japan
Prior art keywords
blank
heating
less
optical element
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014517569A
Other languages
English (en)
Other versions
JP6045579B2 (ja
Inventor
エヴァ エリック
Original Assignee
カール・ツァイス・エスエムティー・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カール・ツァイス・エスエムティー・ゲーエムベーハー filed Critical カール・ツァイス・エスエムティー・ゲーエムベーハー
Publication of JP2014524019A publication Critical patent/JP2014524019A/ja
Application granted granted Critical
Publication of JP6045579B2 publication Critical patent/JP6045579B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0285Testing optical properties by measuring material or chromatic transmission properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • G02B13/143Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation for use with ultraviolet radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • G01N2021/1712Thermal lens, mirage effect

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Geometry (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

本発明は、光学素子(3)を製造するためのブランク(2)の吸収を求める方法であって、ブランク(2)を加熱する目的でブランク(2)に加熱光線(8)を放射するステップと、ブランク(2)の加熱により影響を受けた測定光線(10)の少なくとも1つの特性を測定することにより、ブランク(2)の吸収を求めるステップとを含む方法に関する。本方法では、加熱光線(8)及び測定光線(10)又は加熱光線及びさらに別の加熱光線を、第1研磨面(2a)又は該第1研磨面に対向して位置する第2研磨面(2b)を通してブランク(2)に入り、ブランク(2)の内部のみで、好ましくは光学素子(3)の製造に用いる体積(12)内で相互に交わるよう指向させる。本発明は、それに対応する測定装置(1)、光学素子(3)、及び光学機構にも関する。
【選択図】図1a

Description

本発明は、光学素子を製造するためのブランクの吸収を求める方法であって、ブランクを加熱する目的でブランクに加熱光線を放射するステップと、ブランクの加熱により影響を受けた測定光線の少なくとも1つの特性を測定することにより、ブランクの吸収を求めるステップとを含む方法に関する。本発明は、光学素子を製造するためのブランクの吸収を求める装置であって、ブランク用の保持デバイスと、ブランクを加熱するための少なくとも1つの加熱光線を発生させる少なくとも1つの加熱光源と、測定光線を発生させる測定光源と、ブランクの加熱により影響を受けた測定光線の少なくとも1つの特性を測定する検出器ユニットとを備えた装置にも関する。本発明はさらに、関連の光学素子と少なくとも1つの当該関連の光学素子を備えた光学機構とに関する。
[関連出願の相互参照]
本願は、米国特許法第119条(a)項に基づき2011年7月8日付けで出願された独国特許出願第10 2011 078 885.9号の優先権を主張し、当該出願の全内容を参照により本明細書に援用する。本願は、米国特許法第119条(e)項(1)に基づき2011年7月8日付けで出願された米国仮出願第61/505,718号の利益も主張し、当該出願の全内容を参照により本明細書に援用する。
通常はUV領域(250nm未満)の作動波長にあるマイクロリソグラフィ用の光学系、特に投影露光装置又は投影レンズで用いる放射線は、これら光学系に配置した光学素子の表面及び体積で吸収される。光学素子の材料は、吸収された放射線により加熱されて膨張し、各材料の屈折率が場所依存的に変わることで、熱レンズ効果(「レンズ加熱」)が温度変化を伴い、上記熱レンズ効果が光学系の結像収差につながり得る。
熱レンズ効果は、能動的に(マニピュレータを用いて)補償することができるが、光学素子の温度上昇を低減することにより熱レンズ効果に対抗するために、吸収の低い光学素子を設けることがより好都合である。
従来技術では、UV領域の波長に対して透明なレンズ材料からなるブランクの吸収は、通常は透過に特徴がある(characterized in transmission)。この場合、
int=−log(T)/d
で与えられる内部吸光係数kを求め、式中、Tは内部透過(すなわち、反射損失により補正される透過)を示し、dは試料の厚さを示す。マイクロリソグラフィで現在用いられている光学材料では、吸光係数kは概して、約7×10−4/cm〜10×10−4/cmの範囲の迷光成分と、1×10−4/cm〜2×10−4/cmの範囲の吸収成分とからなる。試料の長さが通常は1cm〜5cmであれば、透過測定の誤差は、吸光度で約3×10−4/cmのさらなる不確定性をもたらす。例として、試料の厚さを3cmとし、測定吸光係数k=1×10−3/cmとした場合、透過の通常誤差ΔTは0.2%と想定され(表面吸収の変動及び測定誤差による)、吸光係数kの誤差ΔkはΔk=2.85×10−4/cmである。さらに、ブランクの2つの面における散乱損失及び吸収損失に関しても不確定性がある。結果として、透過測定により2×10−4/cm未満の体積吸収を確実に測定することが事実上不可能である。
したがって、理想的には全てのブランクの100%の監視も可能にする、吸収を直接求める方法が必要である。
吸収を直接求める方法は、特に非特許文献1により開示されている。当該文献に記載の光熱測定デバイスは、直径約25mmで長さ約40mm〜50mmの円筒形ブランクを用いる。エキシマレーザ(波長約193nm)からの細い加熱光線(直径約5mm)を上記ブランクに長手方向に放射し、当該ブランクをプロセスにおいて加熱する。加熱光線に対して小さな角度(通常は5°〜10°)で進むダイオードレーザ(波長約639nm)からの拡大測定光線が、エキシマレーザにより加熱された体積及び当該体積を囲む光学材料を通して放射される。シャックハルトマンセンサが、ブランクを通過した測定光線の波面を解析する。加熱光線の作用下にある波面と加熱光線の作用下にない波面とを比較することにより、熱レンズ効果を1nmよりも有意に高い精度で求めることが可能である。適当な較正(計算、電気加熱、グレーサンプル)により、吸収エネルギーを波面変形に割り当てることができ、吸光度をこうして入射エネルギーの知識を用いて求めることができる。
事実上同一直線上にある加熱光線及び測定光線を用いる上記方法に関して問題となるのは、ブランクの表面における吸収に起因した波面歪みも測定されることである。これには、できる限り再現性のよい低表面吸収を保証することを意図した表面の非常に入念な研磨が必要である。
さらに、これまでは、別個の試料をブランクから切断する必要がさらにあった。製造プロセス中に汚染物が外部からブランクに入り込むので、ブランクの軸方向及び径方向の縁部領域は、概して内側領域よりも吸収が高く、したがって出荷前に切り落とされる。試料を縁部材料から製造した場合、系統的に悪すぎる測定値が得られることになり、許容可能な品質の領域からのサンプリングが非破壊的にならないか又は製造費の大幅な増加を招く。これは、実際に製造すべき幾何形態外でも高品質の、したがって代表的な材料を得るために、付加的な直径又は付加的な体積を計画に含めなければならないからである。
原理上、ブランクの厚さ毎にレーザの作動直後に較正及び測定を実行した場合、すなわち入熱が加熱光線の付近に集中したままである場合、上述の同一直線上の光熱法は、研磨したブランク(の全体)でも可能である。しかしながら、表面吸収に対するこの方法の感度の高さに起因して、ブランク全体の非常に複雑な研磨が必要となり、これは非常に高コストである。さらに、材料特性の飛躍的な向上、すなわちブランクの体積における吸収の低減により、表面吸収が測定中の信号全体を占めるような状態に急速に達する。
代替的に、ブランクの吸収を直接求めることは、例えば特許文献1に記載のようなLID(「レーザ誘起偏向」)法を用いて実行することもできる。少なくとも4つの研磨面を有する立方体又は平行六面体が、この方法の実行に必要である。この場合、測定光線は、加熱光線に対して横方向に、すなわち約90°の角度で進み、加熱光線をブランクの体積内におけるその光束断面外で通過する。ブランクの材料の温度上昇により生じた屈折率の勾配は、測定光線の偏向をもたらし、これを例えば4分割ダイオード(quadrant diode)により検出することができる。この方法には、表面吸収の影響を受けにくいという利点があるが、測定光線と加熱光線との間の距離には強く影響を受ける。つい最近では(非特許文献2を参照)、2つ又は4つの測定光線で方法を実行することが提案されている。測定光線が加熱光線の両側にあるので、この方法は、加熱光線及び測定光線の相対的な位置合わせに関して影響を受けにくい。とはいえ、捕捉範囲は約1mmしかなく、こうした理由で固定幾何形態の試料への依存が続いている。
非特許文献3も、試料の吸収の表面割合及び体積割合の両方を定量的に求める装置及び方法を開示している。その場合、加熱光線及び測定光線は、試料体積内で90°の角度で交差し、シャックハルトマンセンサを用いて、ブランクを通過した測定光線の波面を解析する。空間分解的に吸収測定を実行するために、この方法は、ブランク全体又は付加的な試料体積の表面の非常に複雑な研磨も必要とする。
独国特許第101 399 06号明細書
K. Mann, A. Bayer, T. Miege, U. Leinhos and B. Schafer 「A Novel Photo-Thermal Setup for Evaluation of Absorptance Losses and Thermal Wavefront Deformations in DUV Optics(DUV光学系における吸光損失及び熱波面変形を評価する新規光熱設備)」, Proceedings of the 39th Boulder Damage Symposium, Boulder, Co (USA), SPIE Vol. 6720, 6720-72 (2007) C. Muhlig et al., 「Characterization of low losses in optical thin films and materials(光学薄膜及び光学材料における低損失の特性化)」, Applied Optics, Vol. 47, Issue 13, pp. C135-C142 「Absolute measurement of surface and bulk absorption in DUV optics from temperature induced wavefront deformation(温度誘起波面変形からのDUV光学系の表面及びバルク吸収の絶対測定)」, B. Schafer et al., Optics Express 2010, Vol. 18, No. 21
本発明の目的は、ブランクの体積の吸収を少ない出費で正確に測定することを可能にするように、導入部で述べたタイプの方法及び装置を開発することである。さらに、本発明の目的は、最小限の、特に既知の熱レンズ効果を有する光学素子と、少なくとも1つの当該光学素子を備えた光学機構とを提供することである。
この目的は、一態様によれば、加熱光線及び測定光線又は加熱光線及びさらに別の加熱光線を、第1研磨面又は第1研磨面に対向して位置する第2研磨面を通してブランクに入り、ブランクの内部のみで、好ましくは光学素子の製造に用いる体積内で相互に交わるよう指向させる、導入部で述べたタイプの方法により達成される。
本発明は、測定光線及び加熱光線が上述の光熱法の場合のようにブランクの体積内で交わるが、測定光線及び加熱光線が重なる領域がブランクの内部に制限されることで、表面吸収が測定されず、したがってブランクの複雑な研磨又は各幾何形態(ブランクの厚さ及び直径)の測定の較正を省くことができる測定法を用いることを提案する。測定に用いる全光線が相互に対向して位置する2つの研磨面のみで出入りすることにより、付加的な測定体積を設けることも付加的な研磨を行うこともなくブランクを良好な空間分解能で測定することができる。言うまでもなく、この場合、両方の光線が同じ研磨面を通してブランクに入ることができる。しかしながら、2つの光線のうち第1光線が第1研磨面を通してブランクに入る一方で、2つの光線のうち第2光線が第2面を通してブランクに入ることで、2つの光線がブランクを逆方向に通過することも可能である。
測定光線及び加熱光線がブランクの内部で交わる測定光線の透過特性の測定の代替として、2つの加熱光線をブランクの内部で交わるよう指向させることも可能であり、この場合、より詳細に後述するように測定光線の反射特性を測定する。
いずれの場合も、各光線が光学素子の製造に用いる体積領域内で相互に交われば有利であるが、それは、このようにすると光学素子の製造に結局用いられないブランクの吸収性の高い縁部領域が測定に寄与しないからである。大まかに言えば、光学素子の製造に用いる領域、したがって重なり領域は、ブランクの表面から少なくとも5mmの距離に配置される。
ブランクは通常、マイクロリソグラフィに適している合成石英ガラスからなる。かかる石英ガラスは、概して金属不純物の割合が10ppb未満であり、Na含有量を2ppb未満とすべきであり、OH含有量を100ppm未満とすべきであり、H2含有量が1016分子/cmを超えるべきである。
研磨面は、通常は略円筒形のブランクの端面である。導入部で述べたように、表面吸収が測定に影響しないので、本方法を実行するために、研磨面における残留粗さ(residual roughness)を最小限にすることが不可欠とは限らない。研磨は、単に各光線が十分に高い強度でブランクに出入りすることを確実にするためのものである。
少なくとも測定光線が当たる研磨面は、引掻き傷又は孔等の残留欠陥を評価するDIN ISO10110−8に従った品質尺度によれば標準クラスP1及びP2の範囲内にある、すなわちここで用いる方法に完全に十分な比較的単純な研磨品質にある研磨品質を通常は有する。言うまでもなく、代替的に、より高い研磨クラス(P3及びP4)まで研磨を実行することも可能だが、これは必要ではなく、コスト上昇につながるだけである。レーザの開始前に基準測定が概して実行されるので、長波収差(long-wave aberrations)に関する表面の品質を表す数値に関しても、比較的低い品質、例えばλ=633nmの場合のλ/5がここで用いる光熱法には十分である。
本方法の一変形形態では、加熱光線及び測定光線は、90°未満、好ましくは40°未満、特に好ましくは30°未満の角度でブランクの内部で相互に交わる。2つの光線がブランクの内部で相互に交わることが有利な角度範囲は、いくつかのパラメータ、例えばブランクの厚さ及び放射持続時間に応じて変わる。ブランクの内部における2つの光線の交角は、通常は約15°未満又は約10°未満にもすべきでない。測定精度を高めるために、加熱光線により加熱される体積を通る測定光線の進行長を最大限とすべきだが、他方では、良好な空間分解能を達成するために小さな重なり領域が好ましい。上述の限度内の角度が本方法の実行に特に有利であることが分かった。
さらに別の変形形態では、測定光線の特性として、加熱光線がもたらした測定光線の波面変形を空間分解測定する。導入部で挙げた特許文献1に記載の方法とは対照的に、加熱光線に対して横方向の波面の平面測定をこの場合は実施する。これにより、光線の入念な位置合わせを省き、その代わりに適当な測定ソフトウェアを用いて測定波面を評価することが可能となる。この場合、信号対雑音比をさまざまな方法で、例えば、加熱光線と並行して測定信号を平均化することにより、又は加熱光線を周期的に励起することにより改善することができる。吸収は、例えば測定曲線の最大値又は最大値から特定の距離における勾配若しくは曲率に基づいて測定波面変形から求めることができる。
シャックハルトマンセンサの使用は、波面変形の測定に有利であることが判明した。シャックハルトマンセンサは概して、同一の焦点距離を有するレンズ素子(「レンズレット(lenselets)」)のアレイを有する。シャックハルトマンセンサの1つの簡易変形形態は、ピンホール絞りのアレイを用いる。言うまでもなく、異なる設計の波面センサ、例えば波面曲率センサ又は適切な場合はシヤリング干渉計を、波面の測定に用いることもできる。
本方法の一変形形態では、ブランク又は光学素子における空間分解吸収挙動を求めるために、測定光線及び加熱光線又は2つの加熱光線が相互に交わる重なり領域の位置を、光学素子の製造に用いる体積において2次元で、好ましくは3次元で変える。測定信号が各光線の位置合わせ及びブランクの外側面又は端面に関する距離とはほぼ無関係であることにより、光学的使用体積においてブランクを(xy方向に、すなわち端面と平行に)走査することができる。各光線間の相互作用体積が小さければ、走査をz方向に、すなわち端面に対して垂直に行うことさえできる。すなわち、ブランクの吸収の深さプロファイルを記録することが可能であるが、その場合、上述のように、ブランクの体積の縁部領域はそれぞれ除外される。
ブランクから製造した光学素子の光学特性の温度依存変化の、特に温度依存屈折率変化のモデルを、ブランクにおける空間分解吸収挙動から作成することができる。高吸収の光学素子の部分領域が、照射中に低吸収の部分領域よりも大きな加熱を受けることで、屈折率勾配(index gradient)のより大きな変化がそこで生じ、これは、場所依存吸収と屈折シフトとの間の関係を用いたモデルを用いて計算することができる。特に、温度変化に起因した屈折率変化の時間的変化を予測するモデルを、空間分解吸収挙動に基づいて作成することができる。かかるモデルを用いて、光学素子が組み込まれる光学系、例えば投影レンズの種々の状態間の遷移時の波面の動的変化を予測することが可能である。この場合、温度変動の場合に光学系全体の挙動の予測モデルを得るために、用いられる光学材料に応じて変わらない光学系の付加的なパラメータを用いることができる。このモデルは、2つのシステム状態間の遷移時の波面の予想動的変化又は変形を補償するために光学系内にあるマニピュレータが適切に駆動(及び移動)されることにより、これらシステム状態間の遷移時の波面の予想変化のフィードフォワード補償に用いることができる。システム状態は、例えば、照明放射線を投影レンズに結合する照明系の種々の設定であり得る。
測定光線の直径を、正確にはブランク内の測定光線と加熱光線との間の接続線に対して(厳密に言えば接続平面に対して)横方向の測定光線の寸法に関して、加熱光線の直径の大きさの少なくとも3倍、好ましくは少なくとも5倍であるよう選択することで、検出器区域において測定光線の波面を加熱光線の周りの十分に大きな領域で検出することを可能であることが有利である。測定光線の断面は、楕円形又は矩形であるよう選択することができ、これは、研磨面付近の光線同士の十分な分離を重なりのための十分な「一致」領域と組み合わせたものである。楕円形又は矩形の光線断面を用いると、測定光線及び加熱光線の短光線軸が通常は共通の平面内にあり、長光線軸は交点で相互に平行になる。長光線軸対短光線軸の比は、楕円形又は矩形の光線断面の場合、正確には加熱光線及び測定光線の両方で、少なくとも2:1とすべきである。
上述の全ての方法変形形態を実行するために、測定光線及び加熱光線が第1研磨面及び第2研磨面上で相互から少なくとも5mmの距離にあれば好都合であるが、これは、ブランクにおける照射中に熱流が生じ、これにはブランク内の温度分布が正確には3秒間で約5mmドリフトするという効果があるからである。Eric Evaによる論文「Kalorimetrische Bestimmung der UV-Strahlungsabsorption an optischen Glasern und dunnen Schichten unter besonderer Berucksichtigung laserinduzierter Anderungen[「Calorimetric determination of the UV radiation absorption at optical glasses and thin layers taking particular account of laser-induced changes」](特にレーザ誘起変化を考慮した光学ガラス及び薄層におけるUV放射線吸収の熱量測定)」(Laser-Laboratorium Gottingen, LLG、1994年)の34ページ及び36〜37ページを参照されたい。
この変形形態の一発展形態では、2つの加熱光線間の領域の研磨面により偏向された、特に反射された測定光線の少なくとも1つの特性、特に波面変形を測定する。この変形形態では、加熱光線がブランクの体積内の表面付近で(但し、通常は表面から5mmよりも大きく離れて)重ねられることで、加熱が個々の加熱光線に沿った領域よりも重なり領域で大きくなる。検出は、材料膨張が引き起こしブランクの表面で形成される膨らみにより行われる。この目的で、測定光線を表面の膨らみの付近に向け、反射した測定光線において波面歪みを検出する。この場合、測定光線の直径は、測定光線が研磨面における加熱光線の2つの入射領域を包含しないよう選択すべきであるが、これは、研磨面における吸収に起因してかなりの加熱がそこで生じるからである。上述の測定の場合、ブランクの第2(反対側の)面の研磨を省くことができる。
測定光線の反射の代替として、検出は、膨らみの側部に当たってそこで偏向されるか又は表面と平行に進んで空気の加熱により偏向される個々の測定光線を用いて行うこともできる(PTD及びミラージュ法、例えば、C. Amra、M. Reichling、及びE. Welschによる刊行物「Investigation of laser-induced damage at 248 nm in oxide thin films with a pulsed photoacoustic mirage technique(パルス光音響ミラージュ法を用いた酸化薄膜における248nmでのレーザ誘起損傷の調査)」(Journal de Physique IV, Colloque C7, Supplement au Journal de Physique III, Vol. 4、1994年7月)を参照)。しかしながら、波面センサの使用には、入念な位置合わせが不要であるか又は適当なソフトウェア適合に置き換えることができるという利点がある。
さらに別の変型では、加熱光線の波長は、光学素子の使用波長から5nm未満のずれがあり、使用波長は250nm以下、特に193m以下である。加熱光線の通常の波長は、マイクロリソグラフィ用の投影露光装置で通常用いられる約248nm、192nm、176nm、157nmの波長である。材料老化効果及び非線形吸収効果を最小化するために、波長に加えて、加熱光線の照射パラメータも投影露光装置での使用条件にできる限り近くすべきである。
通常、測定光線の波長は、加熱光線の波長からずれており、250nmよりも大きいことが好ましい。例えば200nm未満の短波長での測定光線の使用は、測定中により高い感度をもたらすが、測定光線にかかる波長を用いると、通常は相当の実験的問題が起こり、例えば639nmの可視波長域の波長が概して測定光線に用いられる。
さらに別の変形形態では、ブランクの吸収を求める前に、ブランクに所定の線量を照射する。かかる事前照射は、吸収測定の開始前に完了しているべきである浄化効果及び/又は漂白効果がブランクの材料で生じる場合に好都合である。この場合、必要な事前線量は、材料老化の結果として吸収の急速な低下ではなく非常に緩やかな上昇のみが生じるまで繰り返し測定により求めることができる。続いて、ブランクの少なくとも吸収測定を実行しようとする場所又は領域に、測定の開始前にこうして求めた線量を照射する。
さらに別の変形形態では、光学素子の製造に用いる体積全体において193nm(より厳密には193.4nm)の波長で、2×10−4/cm以下、好ましくは1×10−4/cm以下、特に0.5×10−4/cm以下の吸収係数kが測定されるようなブランクのみから、光学素子が製造される。
各用途に許容可能な吸収を有するブランクの選択は、上述の測定法を用いて行うことができる。この場合、光学素子の製造に用いる体積のうち、吸収を最小限にしようとする部分領域は、熱レンズ効果が光学素子の(結像)特性に特に好ましくない影響を及ぼす場所にある。言うまでもなく、適切な場合はブランクの体積の吸収に関する測定データに基づいて、光学素子の製造中にブランクから切断される体積領域を、特に低い吸収が該当の領域で得られるように定めることもできる。特に、吸収挙動に基づいて、適切な場合は、各ブランクが製造に適している光学素子のタイプを定めることが可能であり、すなわち、ブランクと、そこから製造可能であり吸収に関する要件を満たす光学素子との間の割り当てを行うことが可能である。
本発明のさらに別の態様は、加熱光線及び測定光線又は加熱光線及びさらに別の加熱光線を、第1研磨面及び第1研磨面に対向して位置する第2研磨面を通してブランクに入り、ブランクの内部のみで、好ましくは光学素子の製造に用いる体積内で相互に交わるよう指向させる、導入部で述べたタイプの装置で実現される。加熱光線又は加熱光線及び測定光線を適当な向きにすることができるように、適切な場合は、測定光源及び加熱光源の両方に各光源の並進運動及び/又は回転運動を可能にする(モータ駆動)運動機構を設けることができる。
一実施形態では、加熱光線及び測定光線又は2つの加熱光線は、90°未満、好ましくは40°未満、特に好ましくは30°未満の角度でブランクの内部で相互に交わる。すでにさらに上述したように、各加熱光線間の重なり領域が最大限であれば測定精度に好都合だが、大きな重なり領域は空間分解能の低下につながる。上述の角度範囲が本方法の実行時に両方の要件を満たすのに特に適していることが分かった。
ブランクの空間分解測定のために、ブランク用の保持デバイスを、2方向、好ましくは3方向に直線変位可能であるよう設計することができる。言うまでもなく、ブランクを光源に対して適当な向きにするために、回転ドライブをさらに設けることもできる。
さらに別の実施形態では、検出器ユニットは、波面変形測定用の測定デバイス、特にシャックハルトマンセンサを有する。言うまでもなく、他のタイプの波面検出器を波面測定に用いることもできる。
本発明のさらに別の態様は、体積全体において193nmの波長で、2×10−4/cm以下、好ましくは1×10−4/cm以下、特に0.5×10−4/cm以下の吸収係数kを有し、吸収係数kが特に上述の方法により求められる光学素子、特にレンズ素子で実現される。
本発明のさらに別の態様は、上述の少なくとも1つの光学素子を備えたマイクロリソグラフィ用の光学機構、特に投影レンズで実現される。
一実施形態では、サブ開口率が(体積全体で)50%を超える、好ましくは70%を超える、特に80%を超える光学機構の少なくとも1つの光学素子は、193nmの波長で1×10−4/cm以下、好ましくは0.5×10−4/cm以下の吸収係数kを有する。かかるサブ開口率を有する光学素子は、瞳光学素子又は中間光学素子に近い光学素子、すなわち瞳面からの距離が比較的小さい素子であるので、熱レンズが結像又は波面変形に特に好ましくない影響を及ぼし、こうした理由でこれらの光学素子は(機構のさらに他の光学素子と比べて)できる限り小さな吸収係数を有するべきである。
サブ開口率は、0〜1の値をとり、サブ開口率は、瞳面で値1、視野面で値0をとる。所与の開口下で最大物高を有する視野面を像視野に結像する光学系、例えばマイクロリソグラフィ用の投影レンズでは、サブ開口率は以下のように定義される。
|R−H|/(|R−H|+|H|)
式中、最大物高の物点に基づいて、Rは周辺光線高、Hは主光線高であり、これらの光線高は、光学系の瞳面と平行な所与の平面で測定される。
さらに別の実施形態では、第1瞳面の上流又は第2瞳面の下流に配置した少なくとも1つの光学素子は、(体積全体で)193nmの波長で1×10−4/cm以下、好ましくは0.5×10−4/cm以下の吸収係数kを有する。特に投影レンズの場合、入口(第1瞳面の上流)及び出口(第2瞳面の下流)の近くに位置する光学素子は、動的波面変形、すなわち動作温度への光学素子の加熱中に得られる波面変形を最小化するために小さな吸収係数を有するべきである。
代替的又は付加的に、能動マニピュレータ又は補正素子から遠くに配置したビーム経路内の光学素子が、193nmの波長で最小限の、1×10−4/cm以下の、適切な場合は0.5×10−4/cm以下の吸収係数kを有すれば好都合である。マニピュレータから遠く離れた光学素子は、少なくとも2つの、適切な場合は少なくとも3つのさらに他の光学素子が上記素子と能動補正素子との間に位置するよう配置した光学素子であると理解される。
さらに別の実施形態では、投影レンズは、スループットが少なくとも200ウェーハ/時、好ましくは少なくとも250ウェーハ/時、各直径が300mm、レジスト感度が33mJ/cmであれば、80nmPV未満、好ましくは50nmPV未満、特に20nmPV未満の未補正の動的波面変形を有する。投影レンズの動的波面変形は、特に、投影レンズが組み込まれる投影露光装置の露光動作中の光学素子の加熱時の、温度に左右される屈折率変化(temperature-dictated index variation)(熱レンズ)の結果として生じる。この場合、単位時間あたりの照射強度、したがって光学素子の加熱は、投影レンズのスループット又はリソグラフィ装置のスループットと共に増大する。この場合、上記数値は、193nmの露光波長と、1.3よりも大きな像側開口数を有する液浸リソグラフィ用の投影レンズとに当てはまる。
高スループットの場合でも、(未補正)波面変形を上記限度内に保つために、上述の測定法を用いて、投影レンズの光学素子を、使用場所における照射条件下のそれらの場所依存吸収分布が全体で上述の範囲内の投影レンズの波面変形をもたらす温度に左右される屈折率変化につながるように選択する。未補正波面変形は、波面変形を動的に補正するために露光中に光学素子に作用する能動マニピュレータにより補正されない変形であると理解される。このタイプのマニピュレータが付加的に用いられる場合、波面変形又は波面変動(wavefront swing)を、適切な場合は約1オーダ又は2オーダさらに低減させることができる。
本発明のさらに他の特徴及び利点は、本発明に不可欠な詳細を示す図面を参照して本発明の以下の例示的な実施形態の説明から、また特許請求の範囲から明らかである。個々の特徴は、それぞれ個別に単独で、又は本発明の変形形態において任意の所望の組み合わせで複数として実現することができる。
例示的な実施形を概略図に示し、以下の記載で説明する。
ブランクにおける吸収を測定するための本発明による装置の第1実施形態の概略図を示す。 ブランクにおける吸収を測定するための本発明による装置の第1実施形態の概略図を示す。 図1からの検出器区域で測定した波面変形の概略図を平面図で示す。 図1からの検出器区域で測定した波面変形の概略図を断面で示す。 吸収を反射測定光線により求める装置のさらに別の実施形態の概略図を示す。 図1及び図3それぞれに示す装置により測定される光学素子を備えたマイクロリソグラフィ用の投影露光装置の概略図を示す。 図4の投影レンズの入口におけるダイポール照明分布の図を示す。 図5からのダイポール照明分布の場合の像面における波面変形の図を示す。
図1aは、光学素子3を製造するためのブランク2の吸収を測定する装置1を概略的に示す。当該装置は、ブランク2用の保持デバイス4(試料ホルダ)を有し、その上にブランク2を直立状態で取り付けて調整ねじ5を用いて固定する。円筒形ブランク2の端面2a、2bには可視研磨(visible polish)が施され、すなわち、端面2a、2bは、研磨クラスP1又はP2の範囲の研磨品質を有する残留粗さを有する。試料ホルダ4は、変位可能なテーブル6上に配置され、テーブル6は、リニアドライブを用いて相互に対して垂直な3つの軸方向X、Y、Zのブランク2の変位を可能にし、これを両矢印で示す。言うまでもなく、装置1は、適切な場合は研削及び研磨された光学素子3の測定に用いることもできる。
装置1は、ブランク2を加熱する(コリメートした)加熱光線8を発生させる加熱光源7をさらに有する。この場合、加熱光線8の波長λは、約5nmの差で光学素子3の使用波長λ、すなわち光学素子3を動作させるための光学機構の作動波長に対応する。エキシマレーザが加熱光源7として通常用いられ、このレーザは、例えば248nm、193nm、176nm、又は157nmの波長λを有し得る。193nm以下の波長λを有する加熱光源を用いる場合、測定は、不活性ガス環境、例えば窒素環境で実行すべきであり、不活性ガス環境中の残留酸素含有量は、概して約50ppm未満とすべきである。この場合、残留酸素含有量の正確な値は、不活性ガス環境中の光線経路に応じて変わる。
装置1は、639nmの波長λで測定光線10を発生させる測定光源9をさらに有し、測定光線10も同様に、ブランク2を通過してブランク2の体積内の重なり領域11において角度βで加熱光線8と交わる。この場合、重なり領域11は、光学素子3の製造に用いられる、ブランク2の端面2a、2b及び側面13から少なくとも5mmの距離にある体積領域12内に延びる。ブランク2のうち表面に近く且つ体積領域12外にある部分は、ブランク2の製造中に不純物により汚染されたものであり、したがって高吸収であるので、光学素子3の製造に用いられない。
加熱光線8は、通常は約2mm〜10mmの直径dを有するが、測定光線10は、拡大されて加熱光線の直径dの少なくとも3倍、概して5倍であり得る直径dを有する。すなわち、d≧3d又は≧5dが成り立ち、この比は厳密に言えば、ブランク2内の測定光線10と加熱光線8との間の接続線に対して(厳密に言えば接続平面に対して)横方向の測定光線10の寸法に関するものである。かかる比は、加熱光線8がもたらす測定光線10の波面変形をシャックハルトマンセンサ14の形態の波面検出器で空間分解的に測定できるようにするために有利である。厳密に言えば、接続平面に対して横方向の測定光線10の寸法が比にとって重要なので、測定光線10は、円形断面から逸脱して、例えば楕円形又は矩形の断面を有することもできる。
重なり領域11がブランク2内の所望の位置に位置するためには、測定光線10及び加熱光線8を適切に指向させる必要がある。本例では約50mmの厚さDを有するブランク2の実質的に中心にある重なる領域11を得るために、最初に、用いるセンサ14に応じた最適な照射持続時間を知るべきである。ここで用いるセンサ14又はカメラが比較的低速である場合、長い照射時間が選択され、これには、ブランク2における照射又は温度プロファイルが測定中に径方向及び軸方向に変わるという効果があり、ブランク内の熱分布は3秒で約5mmドリフトする。従来の8〜10ビットデジタルカメラを用いるセンサ14では、これには問題がある可能性があるか、又は非常に多くの測定サイクルが必要である。したがって、14〜16ビット分解能を有する高速カメラの使用が推奨される。
したがって、以下の例では、第1研磨面2aでの加熱光線8からの測定光線10の約5mmの最小距離aを基礎とし、加熱光線8の直径dを3mm、測定光線10の直径dを10mmとした。本例でブランク2を構成する合成石英ガラスの屈折率は、加熱光線8の波長λ=193nmでn=1.560であり、測定光線10の波長d=639nmでn=1.456である。
図1aに示す例では、測定光線10の入射角αは約20°、加熱光線8の入射角αは約19°であり、2つの光線8、10は、約28°の角度βでブランク2の内部で交差するが、光線8、10は、不活性ガス環境中で相互と約38°の角度α+αを形成する。言うまでもなく、測定光線10及び加熱光線8の角度α、αを相互に独立して変えることができる。測定光線10及び/又は加熱光線8の伝播方向も同様に逆にすることができる。
測定中のxy方向又はz方向の分解能を上げるために、測定光線8の直径dを減らすこと及び/又はより大きな入射角α、αを選択することができる。2つの光線8、10がブランク2の内部で相互に交わる最大限に好都合な交角βは、通常は約40°未満、適切な場合は30°未満であり、概して約15°未満又は約10°未満となるよう選択すべきではない。
図1bは、加熱光線8が第1研磨面2aに垂直に当たる動作状態の装置1を示す。表面2a、2bから約5mmの最小距離に従うと共に厚さ方向でブランク2の中心で概ね対称である重なり領域11を得るために、約42°の測定光線10の入射角αがこの例では必要であり、これにより、ブランク2の内部の2つの光線8、10の交角βが約27°となる。言うまでもなく、図1a、図1bに示す角度はここで示す値と同一ではなく、本方法を説明する役割を果たすにすぎない。図1bに示す例において、光線8、10間の角度βを増加させた場合、重なり領域11の体積が減り、光線8、10間の距離aが増加し得るか又はz方向の走査可能性が限られる。
この場合、測定光線10の波面変形は、最初に加熱光線8を停止させて測定光線10の波面を測定することにより求めることができる。続いて加熱光線8を作動させて波面を改めて測定し、加熱光線8ありの測定及びなしの測定それぞれが数秒間にわたってまとまり、1分未満で順に行われる。
図2aは、結果として得られる波面の円形の差分画像(difference image)15を平面図で示し、この場合、用いるセンサ又は評価ソフトウェアに応じて矩形又は異なる形状の差分画像15も生じ得る。最大波面歪みは線Aに沿って生じ、これは検出器区域における加熱光線8の像と一致する。図2aに異なる間隔の線で示すように、線Aからの距離が増加するにつれて、波面歪みが減少する。図2bは、線Bに沿った、すなわち加熱光線8に対して垂直な波面画像15の断面を示す。加熱光線8の場所における波面変形ΔWの最大値Mと、最大値Mの両側の減少とを識別することができる。
ここで説明する測定法では、加熱光線8に対して横方向の波面の平面測定がこうして行われる。これにより、各光線の指向中の入念な位置合わせを省き、その代わりにシャックハルトマンセンサ14に接続した評価デバイス16で適当なソフトウェアベースの評価を行うことが可能となる。
この目的で、最初に検出器区域における加熱光線8の光線位置を適当なマッチング(フィット)により求めるべきである。信号対雑音比は、測定光線8と平行な軸Aに沿った平均化によりさらに改善することができる。結果は、原理上は図2aの図に対応する平均断面画像である。吸収の測度として、最大値Mの高さ(図2を参照)又は最大値Mから特定の距離での勾配若しくは曲率を求めることが可能である。代替的に、数学的又は実験的に求めた分布関数を、図2bに示す波面変形ΔWの断面図に一致させることもできる。
理想的には、加熱光源7が作動されてから約5秒〜30秒後には波面画像15の勾配及び曲率が依然として明確に規定されるので、このときに波面が評価される。照射持続時間が増加するにつれて、波面画像15のぼけが増加する。さらに、重なり領域11がブランク2の縁部から数センチメートルもの近さに接近した場合、非対称性が伴う。
信号対雑音比を増加させるために、周期的励起を用いることも可能であり、すなわち、加熱光源7を例えば10秒間作動させてから約1分間〜2分間停止させる。波面は、いずれの場合も照射直前又は照射終了時に記録され、差分画像が続いて複数の測定で平均化される。
材料老化及び非線形吸収効果を最小化するために、加熱光線8の波長λだけでなく照射パラメータもできる限り使用条件(例えば、λ=193nmに関してパルス繰り返し率2kHz〜8kHz、エネルギー密度<<mJ/cm、パルス持続時間100ns〜200ns(TIS))に近くすべきである。低い放射負荷しか受けない光学素子3としての対物レンズの場合、適切な場合は、エネルギー密度を投影レンズにおいて続いて生じるほど低く選択できない。これは、この場合に熱測定信号が小さくなりすぎるからである。この場合、異なるエネルギー密度で測定を行い、これを続いて光学素子3の動作中に生じるエネルギー密度に外挿することが可能である。
概して、光学素子の老化がエネルギー密度Λパルス数/パルス持続時間に比例するとここでは言える。光学素子の全ての場所で、測定中の総負荷は、光学素子3の寿命にわたって予想される値の約1/10未満とすべきである。この割合は高いように思われるが、測定に好都合なエネルギー密度が通常は約200μJ/cm〜1000μJ/cmの範囲にある一方で、動作中に多くの光学素子は1μJ/cmのエネルギー密度しか受けない。
測定前に洗浄効果及び/又は漂白効果がブランク2の材料で終了するまで待つことが目的である場合、最初に、(材料老化の結果として吸収が急速に低下するのではなく非常に低速で上昇するにすぎないうちに)個々の測定点での繰り返し測定により必要な事前照射線量を求めることが可能である。第2ステップにおいて、全ての所望の測定場所をこうして求めた線量で照射した後に、測定を開始することができる。
検出された測定信号が、測定光線10及び/又は加熱光線8の位置合わせと、また側面13及び/又は端面2a、2bからの距離とほぼ無関係であることにより、ブランク2は、光学的使用体積12においてX方向及びY方向に走査することができ、その目的で変位テーブル6を対応して制御ユニット(図示せず)により駆動する。さらに、対応の両矢印で示すように、測定光線10を指向させるために測定光源9を、又は加熱光線8を指向させるために加熱光源7を適当な運動機構により回転させることができる。言うまでもなく、適切な場合には、測定光源9及び加熱光源7の直線変位を行うこともできる。測定光線10と加熱光線8との間の重なり領域11(相互作用体積)が小さければ、空間分解測定をZ方向に、すなわちブランク2の円柱軸と平行に行うこともできることで、光学素子3の製造に用いるブランク2の体積内の吸収の深さプロファイルを記録することが可能である。
このように、ブランク2のうち破線で示す、熱レンズ、すなわち温度に伴う屈折率の変化が光学素子3の(結像)特性に特に望ましくない影響を及ぼす部分領域17において、吸収を非破壊測定することもできる。これらの臨界部分領域17では、光学素子3の体積吸収の吸収係数kを0.5×10−4/cm以下、好ましくは0.2×10−4/cm以下、特に0.1×10−4/cm以下とすべきである。上記部分領域17外では、吸収係数kをより大きくすることができるが、光学素子3のどの場所でも2×10−4/cm、好ましくは1×10−4/cm、特に0.5×10−4/cmの値を超えるべきではない。
したがって、上述の空間分解測定法により、ブランク2が吸収に関して光学機構での使用要件を満たす光学素子3の製造に適しているか否かを確認することが可能である。特に、ブランク2と、そこから製造できると共に光学機構における幾何形態又は位置決めに起因して吸収に関して上記仕様を満たすことができる光学素子3との間の評価を行うことも可能である。言うまでもなく、適切な場合には、ブランクは光学素子の製造に決して適さない場所依存性吸収も有し得る。
図3は、図1に示す装置1とは対照的に2つの加熱光線8a、8bを発生させる2つの加熱光源7a、7bを有する装置1’を示す。図3に示す装置1’の場合、ブランク2’の一方の端面2aのみに可視研磨を施せば十分である。2つの加熱光線8a、8bを、表面の近くにあり光学素子3’の製造に用いる体積内で重ねる。この場合、重なり領域11における加熱は、個々の加熱光線8a、8bに沿った加熱よりも大きい。加熱の結果として、以下で膨らみ18と称し図3に大幅に誇張して示す突起がブランク2’の端面2aに形成される。
測定光源9が発生させた測定光線10は、膨らみ18の付近でブランク2’の端面2aに当たり、その結果として、端面2aから反射した測定光線10においてシャックハルトマンセンサ14により検出される波面歪みが生じる。図3に示すように、測定光線10は、ブランク2’の端面2aにおける加熱光線8a、8bの2つの入射領域を包含しないほど十分に小さな直径dを有することが理想的であるが、これは表面吸収に起因してかなりの加熱がそこで生じるからである。
反射した測定光線10の検出の代替として、測定光線10は、膨らみ18の側部に当たってそこから偏向されるだけであるようにも指向され得る。測定光線10は、端面2aと平行に進んで空気の加熱により偏向されることもでき、その場合の測定は、いわゆるPTD又はミラージュ法を用いて行われる。しかしながら、波面センサの使用には、これらの検出法よりも、光線の入念な位置合わせが不要であるか又は適当なソフトウェア適合に置き換えることができるという利点がある。言うまでもなく、図1及び図3に示す装置1、1’の場合、局所的な屈折率勾配を増加させることで信号対雑音比を改善するために3つ以上の加熱光線を用いることも可能である。
上述のように、図4に関連してより詳細に後述する、吸収に関してマイクロリソグラフィ用の投影露光装置101で用での使用要件を満たす光学素子3、3’の製造に適したブランク2、2’を特定することが可能である。この場合、測定法を用いて、ブランク2、2’の製造プロセスを最適化し、且つ各ブランク2、2’における吸収の空間分布を求めることができる。製造プロセスの最適化後、統計的プロセス制御を用いるか、又は適切な場合には各ブランク上の1つ〜約3つの特徴的な場所のみで測定を実行すれば十分である。
マイクロリソグラフィ投影露光装置101は、液浸リソグラフィを用いた高密度集積半導体コンポーネントを製造する役割を果たす。これは、光源として、193nmの作動波長を有するエキシマレーザ103を備える。代替的に、他の作動波長、例えば248nm又は157nmを有する光源を用いることもできる。下流の照明系105が、その出射平面又は物体面107において、下流の投影レンズ111のテレセントリシティ要件に適合させた大きく鮮明に区切られた非常に均一な照明の照明視野を生成する。照明系105は、瞳照明を制御するデバイス及び照明光の所定の偏光状態を設定するデバイスを有する。照明系105の下流のビーム経路に、マスク113を保持し移動させるデバイス(レチクルステージ)を配置して、マスク113が投影レンズ111の物体面107にあり、当該面において駆動方向115の走査動作のために可動であるようにする。
投影レンズ111は、マスク平面とも称する物体面107の下流に続き、上記投影レンズは、マスクの像を基板119、例えばシリコンウェーハに縮小して結像し、上記基板は、レジスト121とも称するフォトレジストで覆われる。基板119は、レジスト121を有する平面状の基板表面が投影レンズ111の像面123と実質的に一致するよう配置される。基板は、マスク113と同期して基板119を移動させるドライブを備えたデバイス117により保持される。デバイス117は、基板119を投影レンズ111の光軸125と平行なz方向と上記軸に対して垂直なx方向及びy方向との両方に移動させるマニピュレータも備える。
基板119を保持するように設けたデバイス117(ウェーハステージ)は、液浸リソグラフィで用いるよう設計される。これは、スキャナドライブにより可動であり基板119(ウェーハ)を収容する平坦切欠部をベースに有するレセプタクルデバイス127を備える。周縁部129により、浸液131用の平坦な上開き液密レセプタクルが形成される。縁部の高さは、導入された浸液131がレジスト121を有する基板表面を完全に覆うことができ、且つ投影レンズ111の出射側端領域がレンズ出口と基板表面121との間の正確に設定された作動距離で浸液131に浸かることができるような寸法である。
投影レンズ111は、像面123に最も近く第2瞳面138bの下流に配置した最終光学素子として事実上半球状の平凸レンズ素子133を有し、当該平凸レンズ素子の出射面135は、投影レンズ111の最終光学面である。最終光学素子の出射側は、投影露光装置101の動作中に浸液131に完全に浸かって当該浸液で濡れている。平凸レンズ素子133は、投影レンズ111の第1瞳面138aの付近に配置したさらに別のレンズ素子137と同じように、図1又は図3に示すような光学素子3’又は3により形成することができる。
上述のように空間分解的に求めた吸収挙動に基づいて、投影レンズ111の動作中の各光学素子133又は137における温度依存性又は場所依存性の屈折率変化Δnのモデルを作成することが可能である。この目的で、各光学素子133、137の場所における放射強度を知る必要があり、これは適当な計算法により又は実験的に求めることができる。適切な場合は、このようにして求めた熱レンズに基づいて、投影レンズ111の光学素子133、137の位置又は投影レンズ111若しくは投影露光装置101の設計全体を変更することが可能であり、各光学素子133、137の所定の場所依存性吸収により、異なる照明モードの場合でも各光学素子133、137の全ての場所において動作中に照明放射線がもたらす屈折率変化Δnは、スループットが少なくとも200ウェーハ/時、特に250ウェーハ/時であれば、投影レンズ111が山から谷まで約80nm未満、適切な場合は約50nm未満、特に約20nm未満の像面123における能動マニピュレータにより補正されない波面変形を有するよう選択され、これは図5及び図6に関連してより詳細に後述する。
図5は、マスク113の直下流の角度分布を示し、この図は、xy平面内の伝播角度の正弦を示し、軸(図示せず)は−1〜+1まで延びる。本例では、図は、0.85〜0.95の開口率σを用いた1.35のフル開口数NAに関してダイポールが約35°の角度にわたって延び且つ水平(x)方向に延びるダイポール分布を示す。図5に示す角度分布は、例えばNANDフラッシュ又はDRAMチップの形態のパターン化半導体コンポーネントの製造に用いるような従来のダイポール分布である。図5において、円として示す開口数B(絞り)により制限される最大伝播角度付近で2つの極を明確に識別することが可能である。さらに外側にある極は、投影レンズ111により結像されなくなるより高い回折次数である。
図6は、各ウェーハ直径が300mmでレジストの感度が33mJ/cmの、約250〜300ウェーハ/時のスループットに関する像面123における関連の(シミュレートした)波面収差を示し、投影レンズ111の光学素子に関して、正確にはいずれの場合も193mの波長で、2×10−4以下の吸収係数kを想定し、特に重要な光学素子では1×10−4以下の吸収係数kを想定した。図6に示す未補正の動的波面変形のPV値(peak to valley value)は、シミュレーションでは80nm未満であった。
要約すると、吸収は、光学機構で用いることを意図した全ての光学素子に関して上述したように空間分解的に求めることができる。すなわち、上述の手順又は上述の最適化は、投影レンズ111の場合だけでなく他の光学機構の場合にも、例えば図4に示す照明系105の場合にも可能である。
この場合、光学機構の製造中の光学素子の既知の吸収分布及びその結果得られる光学特性から始まり、光学素子の個々の特性に関して光学設計を最適化することが可能である。すなわち、光学素子の相対位置又は特定のレンズ素子位置へのブランクの割り当てを、系全体の光学特性、特に結像特性が最適化されるよう組み立て中に設定することができる。
例として、投影レンズ111の瞳面138a、138bの中間又はこれらの近くに位置するレンズ素子位置における、すなわちサブ開口率が50%を超える、適切な場合には70%を超える、特に80%を超えるレンズ素子位置におけるこうした最適化の場合、光学的に関連する体積の全体で1×10−4/cm未満、適切な場合にはさらに0.5×10−4/cmの吸収係数kを有するレンズ素子材料を用いることが可能である。
この値範囲にある吸収係数は、第1瞳面138aの上流及び第2瞳面138bの下流でビーム経路に配置した光学素子の場合に、すなわち、例えば終端素子として働くレンズ素子133に関して、有利であることも分かった。能動マニピュレータから遠く離れたレンズ素子位置における、すなわち能動マニピュレータとの間に2つ又は3つのさらに他の光学素子が位置する光学素子が、同様に上述の値範囲内にある小さな最大吸収係数を有する材料を選択することも有利である。

Claims (22)

  1. 光学素子(3、3’)を製造するためのブランク(2、2’)の吸収を求める方法であって、
    前記ブランク(2、2’)を加熱する目的で該ブランク(2、2’)に加熱光線(8、8’)を放射するステップと、
    前記ブランク(2、2’)の加熱により影響を受けた測定光線(10)の少なくとも1つの特性を測定することにより、前記ブランク(2、2’)の吸収を求めるステップと
    を含む方法において、前記加熱光線(8)及び前記測定光線(10)又は前記加熱光線(8a)及びさらに別の加熱光線(8b)を、第1研磨面(2a)又は該第1研磨面に対向して位置する第2研磨面(2b)を通して前記ブランク(2、2’)に入り、該ブランク(2、2’)の内部のみで、好ましくは前記光学素子(3、3’)の製造に用いる体積(12)内で相互に交わるよう指向させることを特徴とする方法。
  2. 請求項1に記載の方法において、前記加熱光線(8)及び前記測定光線(10)又は前記2つの加熱光線(8a、8b)は、90°未満、好ましくは40°未満、特に30°未満の角度(β)で前記ブランクの内部で相互に交わる方法。
  3. 請求項1又は2に記載の方法において、前記測定光線(19)の特性として、前記加熱光線(8、8a、8b)がもたらす前記測定光線(10)の波面変形(ΔW)を空間分解測定する方法。
  4. 請求項3に記載の方法において、前記波面変形(15)をシャックハルトマンセンサ(14)により測定する方法。
  5. 請求項1〜4のいずれか1項に記載の方法において、前記ブランク(2、2’)における空間分解吸収挙動を求めるために、前記測定光線(10)及び前記加熱光線(8)又は前記2つの加熱光線(8a、8b)が相互に交わる重なり領域(11)の位置を、前記光学素子(3、3’)の製造に用いる前記体積(12)において2次元(X、Y)で、好ましくは3次元(X、Y、Z)で変える方法。
  6. 請求項5に記載の方法において、前記ブランク(2、2’)から製造した前記光学素子(3、3’)の温度依存屈折率変化(Δn)のモデル、好ましくは温度変化に起因した前記屈折率変化(Δn)の時間的変化を予測するモデルを、前記ブランク(2、2’)における前記空間分解吸収挙動から作成する方法。
  7. 請求項1〜6のいずれか1項に記載の方法において、前記測定光線(10)は、矩形又は楕円形の断面を有する方法。
  8. 請求項1〜7のいずれか1項に記載の方法において、前記測定光線(10)及び前記加熱光線(8)は、前記第1研磨面(2a)及び前記第2研磨面(2b)上で相互から少なくとも5mmの距離(a)にある方法。
  9. 請求項1〜8のいずれか1項に記載の方法において、前記2つの加熱光線(8a、8b)間の領域で前記研磨面(2a)により偏向された、特に反射された前記測定光線(10)の少なくとも1つの特性を測定する方法。
  10. 請求項1〜9のいずれか1項に記載の方法において、前記加熱光線(8、8a、8b)の波長(λ)は、前記光学素子(3、3’)の使用波長(λ)から5nm未満のずれがあり、前記使用波長(λ)は250nm以下、特に193m以下である方法。
  11. 請求項1〜10のいずれか1項に記載の方法において、前記測定光線(10)の波長(λ)は、前記加熱光線(8、8a、8b)の前記波長(λ)からずれており、好ましくは250nmよりも大きい方法。
  12. 請求項1〜11のいずれか1項に記載の方法において、前記ブランク(2、2’)の吸収を求める前に所定の線量で前記ブランク(2、2’)を照射するステップ
    をさらに含む方法。
  13. 請求項1〜12のいずれか1項に記載の方法において、前記光学素子(3、3’)の製造に用いる前記体積(12)全体において193nmの波長で、2×10−4/cm以下、好ましくは1×10−4/cm以下、特に0.5×10−4/cm以下の吸収係数kが測定されるようなブランク(2、2’)のみから、前記光学素子(3、3’)を製造する方法。
  14. 光学素子(3、3’)を製造するためのブランク(2、2’)の吸収を求める装置であって、
    前記ブランク(2、2’)用の保持デバイス(4)と、
    前記ブランク(2、2’)を加熱するための少なくとも1つの加熱光線(8、8a、8b)を発生させる少なくとも1つの加熱光源(7、7a、7b)と、
    測定光線(10)を発生させる測定光源(9)と、
    前記ブランク(2、2’)の加熱により影響を受けた前記測定光線(10)の少なくとも1つの特性を測定する検出器ユニット(14、16)と
    を備えた装置において、前記加熱光線(8)及び前記測定光線(10)又は前記加熱光線(8a)及びさらに別の加熱光線(8b)を、第1研磨面(2a)又は該第1研磨面に対向して位置する第2研磨面(2b)を通して前記ブランク(2、2’)に入り、該ブランク(2、2’)の内部のみで、好ましくは前記光学素子(3、3’)の製造に用いる前記ブランク(2、2’)の体積(12)内で相互に交わるよう指向させることを特徴とする装置。
  15. 請求項14に記載の方法において、前記加熱光線(8)及び前記測定光線(10)又は前記2つの加熱光線(8a、8b)は、90°未満、好ましくは40°未満、特に30°未満の角度(β)で前記ブランク(2、2’)の内部で相互に交わる装置。
  16. 請求項14又は15に記載の装置において、前記ブランク(2、2’)用の前記保持デバイス(4)は、2方向(X、Y)に、好ましくは3方向(X、Y、Z)に直線変位可能である装置。
  17. 請求項14〜16のいずれか1項に記載の装置において、前記検出器ユニットは、波面変形測定用の測定デバイス、特にシャックハルトマンセンサ(14)を有する装置。
  18. 体積全体において193nmの波長で、2×10−4/cm以下、好ましくは1×10−4/cm以下、特に0.5×10−4/cm以下の吸収係数kを有する光学素子(3、3’)、特にレンズ素子であって、前記吸収係数kは、特に請求項1〜13のいずれか1項に記載の方法により求められる光学素子。
  19. 請求項18に記載の少なくとも1つの光学素子(3、3’)を備えたマイクロリソグラフィ用の光学機構(101、111)、特に投影レンズ(111)。
  20. 請求項19に記載の光学機構において、サブ開口率が50%を超える、好ましくは70%を超える、特に80%を超える少なくとも1つの光学素子(133、137)が、193nmの波長で1×10−4/cm以下、好ましくは0.5×10−4/cm以下の吸収係数kを有する光学機構。
  21. 請求項19又は20に記載の光学機構において、第1瞳面(138a)の上流又は第2瞳面(138b)の下流に配置した少なくとも1つの光学素子(137)が、193nmの波長で1×10−4/cm以下、好ましくは0.5×10−4/cm以下の吸収係数kを有する光学機構。
  22. 請求項19〜21のいずれか1項に記載のマイクロリソグラフィ用の投影レンズにおいて、スループットが少なくとも200ウェーハ/時、特に少なくとも250ウェーハ/時、ウェーハ直径が300mm、レジスト感度が33mJ/cmであれば、80nmPV未満、好ましくは50nmPV未満、特に20nmPV未満の未補正の動的波面変形を有する投影レンズ。
JP2014517569A 2011-07-08 2012-06-12 ブランクの吸収を求める装置及び方法 Active JP6045579B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161505718P 2011-07-08 2011-07-08
US61/505,718 2011-07-08
DE102011078885.9 2011-07-08
DE102011078885A DE102011078885A1 (de) 2011-07-08 2011-07-08 Verfahren und Vorrichtung zum Bestimmen der Absorption in einem Rohling
PCT/EP2012/061105 WO2013007460A1 (en) 2011-07-08 2012-06-12 Method and apparatus for determining the absorption in a blank

Publications (2)

Publication Number Publication Date
JP2014524019A true JP2014524019A (ja) 2014-09-18
JP6045579B2 JP6045579B2 (ja) 2016-12-14

Family

ID=47426496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014517569A Active JP6045579B2 (ja) 2011-07-08 2012-06-12 ブランクの吸収を求める装置及び方法

Country Status (5)

Country Link
US (1) US9036152B2 (ja)
EP (1) EP2729788B1 (ja)
JP (1) JP6045579B2 (ja)
DE (1) DE102011078885A1 (ja)
WO (1) WO2013007460A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015223923A1 (de) 2015-12-01 2017-06-01 Carl Zeiss Smt Gmbh Bestimmung mindestens einer vom temperaturabhängigen thermischen Ausdehnungskoeffizienten eines Materials abhängigen thermischen Eigenschaft
CN108692919B (zh) * 2017-04-05 2020-06-02 大族激光科技产业集团股份有限公司 镜头热透镜效应检测方法
DE102022208009A1 (de) 2022-08-03 2023-08-17 Carl Zeiss Smt Gmbh Verfahren zum Bestimmen einer Veränderung einer optischen Eigenschaft und/oder einer Absorptionseigenschaft einer optischen Probe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188424A (ja) * 2004-12-29 2006-07-20 Corning Inc 高透過率合成シリカガラスおよびその製造方法
JP2008139200A (ja) * 2006-12-04 2008-06-19 Kobe Steel Ltd 不純物分析方法及び装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4521118A (en) * 1982-07-26 1985-06-04 Therma-Wave, Inc. Method for detection of thermal waves with a laser probe
US6065842A (en) * 1998-05-22 2000-05-23 Raytheon Company Heat maps for controlling deformations in optical components
WO2002083078A2 (en) * 2001-04-16 2002-10-24 Tracey Technologies, Llc Determining clinical refraction of eye
DE10139906B4 (de) 2000-11-30 2009-04-23 Schott Ag Anordnung zur optischen Bestimmung der Absorption
DE10159962A1 (de) * 2001-12-06 2003-07-03 Heraeus Quarzglas Quarzglasrohling für ein optisches Bauteil sowie Verfahren zur Herstellung und Verwendung desselben
JP4324957B2 (ja) * 2002-05-27 2009-09-02 株式会社ニコン 照明光学装置、露光装置および露光方法
US7280215B2 (en) * 2003-09-24 2007-10-09 Therma-Wave, Inc. Photothermal system with spectroscopic pump and probe
JP4116979B2 (ja) * 2004-03-10 2008-07-09 株式会社神戸製鋼所 光熱変換測定装置及びその方法
JP4119411B2 (ja) * 2004-09-17 2008-07-16 株式会社神戸製鋼所 光熱変換測定装置及びその方法
US7436520B1 (en) * 2005-01-18 2008-10-14 Carl Zeiss Smt Ag Method of calibrating an interferometer optics and of processing an optical element having an optical surface
EP1691189A3 (en) * 2005-02-14 2010-12-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Photothermal conversion measurement apparatus, photothermal conversion measurement method, and sample cell
DE102006014510A1 (de) * 2005-04-15 2006-10-19 Carl Zeiss Smt Ag Optische Detektionsvorrichtung, Messvorrichtung und Verwendung
EP2006664A4 (en) * 2006-03-22 2010-07-07 Kobe Steel Ltd ANALYSIS DEVICE
EP2034363A2 (de) 2007-06-22 2009-03-11 Carl Zeiss SMT AG Optische Baugruppe, Projektionsbelichtungsanlage für die Halbleiterlithogaphie und Projektionsobjektiv
CA2719004C (en) * 2008-03-21 2013-06-18 Abbott Point Of Care, Inc. Method and apparatus for determining a focal position of an imaging device adapted to image a biologic sample
DE102008048266B4 (de) * 2008-09-22 2010-12-09 Institut Für Photonische Technologien E.V. Verfahren zur schnellen Bestimmung der separaten Anteile von Volumen- und Oberflächenabsorption von optischen Materialien, eine Vorrichtung hierzu sowie deren Verwendung
US8582116B2 (en) * 2009-04-14 2013-11-12 Canon Kabushiki Kaisha Recording sheet surface detection apparatus and image forming apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188424A (ja) * 2004-12-29 2006-07-20 Corning Inc 高透過率合成シリカガラスおよびその製造方法
JP2008139200A (ja) * 2006-12-04 2008-06-19 Kobe Steel Ltd 不純物分析方法及び装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6015004744; Schafer B , et.al.: 'Absolute measurement of surface and bulk absorption in DUV optics from temperature induced wavefront' OPTICS EXPRESS Vol.18, No.21, 20101011, p.21534-21539 *
JPN6015004746; Muhlig C , et.al.: 'Characterization of low losses in optical thin films and materials' APPLIED OPTICS Vol.47, No.13, 20080501, p.C135-C142 *
JPN7015000347; Mann K , et.al.: 'A Novel Photo-Thermal Setup for Evaluation of Absorptance Losses and Thermal Wavefront Deformations' Proc. of SPIE Vol.6720, 67201B, 2007, p.67201B-1 - 67201B-10 *

Also Published As

Publication number Publication date
EP2729788A1 (en) 2014-05-14
US20140192344A1 (en) 2014-07-10
US9036152B2 (en) 2015-05-19
WO2013007460A1 (en) 2013-01-17
EP2729788B1 (en) 2020-12-09
JP6045579B2 (ja) 2016-12-14
DE102011078885A1 (de) 2013-01-10

Similar Documents

Publication Publication Date Title
US10274370B2 (en) Inspection apparatus and method
US8686331B2 (en) Dynamic wavefront control of a frequency converted laser system
CN104155313B (zh) 计量系统以及方法
CN101089733B (zh) 表征光学系统的透射损失的方法
US7868997B2 (en) Projection optical system inspecting method and inspection apparatus, and a projection optical system manufacturing method
US10168273B1 (en) Methods and apparatus for polarizing reticle inspection
KR20170036184A (ko) 광학 검사 장치, 기판 검사 방법, 그리고 기판 제조 방법
JP6045579B2 (ja) ブランクの吸収を求める装置及び方法
JP4909480B2 (ja) 層および表面特性の光学測定方法およびその装置
TWI448822B (zh) 微影裝置,輻射感測器,及製造一輻射感測器之方法
US11137693B2 (en) Pellicle holder, pellicle inspection apparatus, and pellicle inspection method
JP2008122202A (ja) ビーム観察装置
US20120218536A1 (en) Catadioptric projection objective including a reflective optical component and a measuring device
KR100674700B1 (ko) 리소그래피 장치, 디바이스 제조방법
US11914282B2 (en) System of measuring image of pattern in scanning type EUV mask
KR101109511B1 (ko) 기준레이저를 이용한 자동정렬 비열화 장치를 가진 대구경 반사광학장치
US20240045338A1 (en) High-performance euv microscope device with free-form illumination system structure having elliptical mirror
US20240011922A1 (en) High-performance euv microscope with free form illumination system
JP2009092573A (ja) 厚さ測定法
Allemand et al. Heuristic approach to particle detection on virgin and patterned silicon wafers
Blaschke et al. Optics characterization with compact EUV spectrophotometer
Whitsitt Focal Volume Characterization of a Laser Scanning System
JP2021531502A (ja) フォトリソグラフィマスクの基板に導入される1つまたは複数のピクセルの効果を決定するための方法および装置
Geiger et al. On-line diagnostic system for the quality of high-power CO2 laser optics

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160831

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161115

R150 Certificate of patent or registration of utility model

Ref document number: 6045579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250