JP2014241369A - 光電変換素子とその製造方法 - Google Patents

光電変換素子とその製造方法 Download PDF

Info

Publication number
JP2014241369A
JP2014241369A JP2013123809A JP2013123809A JP2014241369A JP 2014241369 A JP2014241369 A JP 2014241369A JP 2013123809 A JP2013123809 A JP 2013123809A JP 2013123809 A JP2013123809 A JP 2013123809A JP 2014241369 A JP2014241369 A JP 2014241369A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
layer
negative electrode
acid salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013123809A
Other languages
English (en)
Inventor
城戸 淳二
Junji Kido
淳二 城戸
慎二 中井
Shinji Nakai
慎二 中井
明士 藤田
Akeshi Fujita
明士 藤田
有紀 太田
Arinori Ota
有紀 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Kuraray Co Ltd
Original Assignee
Yamagata University NUC
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC, Kuraray Co Ltd filed Critical Yamagata University NUC
Priority to JP2013123809A priority Critical patent/JP2014241369A/ja
Publication of JP2014241369A publication Critical patent/JP2014241369A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】光電変換層で生成した電子を負電極へ集電する効率を高めるバッファ層の機能を有し、光電変換効率が高く、そのバッファ層の形成が簡便であり、簡便な工程で製造できる光電変換素子を提供する。【解決手段】光電変換素子10は、少なくとも一方が光透過性である正電極5と負電極2との間に、光電変換層4を有し、光電変換層4と負電極2との間に、有機酸塩を含むバッファ層3を有する。バッファ層3は有機酸塩溶液を塗布して形成される。【選択図】 図1

Description

本発明は、光電変換層と負電極との間に有機酸塩からなるバッファ層が形成された光電変換素子とその製造方法に関するものである。
太陽光発電は、再生可能エネルギーの中でも特に潜在的な利用可能量が多いことから、石油代替エネルギーの筆頭として注目されている。太陽光発電を担う素子として単結晶シリコン、アモルファスシリコンなどのシリコン系太陽電池、GaAs、CIGS(銅・インジウム・ガリウム・セレン含有化合物)、CdTeなどの無機化合物系薄膜太陽電池などがある。これらの太陽電池は比較的高い光電変換効率を有するが、他の発電コストと比較して高価格であることが問題である。コスト高の要因は、高真空且つ高温下で半導体薄膜を製造しなくてはならないプロセスにある。そこで近年特に製造プロセスの簡便化が期待される有機半導体を用いた有機薄膜太陽電池が検討されている。
有機半導体薄膜は塗布法や印刷法により製膜できるため、製造プロセスを簡便化し、発電コストを低減できることが期待される。また、軽量且つフレキシブルな素子及びモジュールを作製できることから可搬性に優れ、電気的インフラの整備されていない地域においても利用できる可能性を秘めている。さらに、有機半導体は分子設計により光吸収帯域を制御できることから、様々な色調で意匠性に優れる太陽電池を提供することができる。しかし、これらの利点が期待できるものの、有機薄膜太陽電池の実用化に向けては、さらなる光電変換効率の向上が求められている。
有機薄膜太陽電池の光電変換効率を向上させる一つの方法として、バッファ層の挿入がある。バッファ層は、光電変換層で生成した電荷が逆の電極に流入することを遮断し、電荷再結合を抑制する働きや、光電変換層と電極との界面の電子エネルギー障壁を低減し、光電変換層で生成した電荷を集電する効率を向上させる働きがある。
例えば正電極側のバッファ層には、ポリ(3,4−エチレンジオキシチオフェン)ポリ(スチレンスルホン酸)(PEDOT:PSS)が多用されている。また、重合可能な置換基を1つ以上有するポリマー又はオリゴマーからなる正電極側バッファ層が開示されている(特許文献1)。これらのバッファ層は、溶媒に溶解させて塗布法により製膜することができ、真空中で基板に薄膜を形成する蒸着法と比較し、塗布法は製造設備が簡素で済むうえに、材料の利用効率が高く大面積化に向いており、有機薄膜太陽電池を低コストで製造するのに有利である。
一方、負電極側のバッファ層には、フッ化リチウムやフッ化セシウムなどの無機塩、カルシウム(非特許文献1)などの仕事関数が小さい金属が用いられているが、バッファ層を形成するのに蒸着法などの真空プロセスを必要とするため、低コストで製造するのに不利である。また、カルシウムなどの仕事関数が小さい金属は酸素や水と反応しやすいため、不活性雰囲気下で有機薄膜太陽電池を製造する必要がある。真空プロセスを必要としない材料としては、炭酸セシウム(非特許文献2)、酸化チタン(非特許文献3)、酸化亜鉛などの酸化物半導体が提案されている。炭酸セシウムは潮解性があるため不活性雰囲気下で有機太陽電池を製造しなければならず、酸化物半導体はバッファ層に求められる高い電子輸送性を得るために結晶構造を制御しなければならない。そのため、バッファ層を製造するプロセスが煩雑となる。
特開2010−287767号公報
アプライド フィジックス レターズ 95,153304(2009) アプライド フィジックス レターズ 92,173303(2008) アプライド フィジックス レターズ 89,233517(2006)
本発明は前記の課題を解決するためになされたもので、光電変換層で生成した電子を負電極へ集電する効率を高めるバッファ層の機能を有し、光電変換効率が高く、簡便な工程で製造できる光電変換素子、またその製造方法を提供することを目的とする。
本発明者らは、上記課題を解決するために鋭意研究をした結果、光電変換層と負電極との間のバッファ層に、有機酸塩を用いることで高い光電変換効率が得られることを見出した。さらに、有機酸塩からなるバッファ層を負電極の上に塗布により形成することができることを見出し、本発明を完成させるに至った。
前記の目的を達成するためになされた、特許請求の範囲の請求項1に記載の光電変換素子は、少なくとも一方が光透過性である正電極と負電極との間に、光電変換層を有する光電変換素子であって、前記光電変換層と前記負電極との間に、有機酸塩を含むバッファ層を有することを特徴とする。
同じく請求項2に記載の光電変換素子は、請求項1に記載されたものであって、前記光電変換層と前記正電極との間に、正孔輸送材料を含む正孔輸送層を有することを特徴とする。
請求項3に記載の光電変換素子は、請求項1又は2に記載されたものであって、前記負電極がインジウム・スズ・オキサイドであることを特徴とする。
請求項4に記載の光電変換素子は、請求項1〜3のいずれかに記載されたものであって、前記有機酸塩が有機酸アルカリ金属塩であることを特徴とする。
請求項5に記載の光電変換素子は、請求項4に記載されたものであって、前記有機酸アルカリ金属塩が、多価カルボン酸アルカリ金属塩又はポリカルボン酸アルカリ金属塩であることを特徴とする。
請求項6に記載の光電変換素子は、請求項1〜5のいずれかに記載されたものであって、前記光電変換層が、電子供与性有機半導体と電子受容性有機半導体との混合物であることを特徴とする。
請求項7に記載の光電変換素子は、請求項6に記載されたものであって、前記電子供与性有機半導体が、チオフェン、フルオレン、カルバゾール、ジべンゾシロール、ジベンゾゲルモール、ベンゾジチオフェン及びジケトピロロピロールから選ばれる複素環骨格基を少なくとも一部に有する単量体単位を含むπ電子共役重合体であることを特徴とする。
請求項8に記載の光電変換素子は、請求項6又は7に記載されたものであって、前記電子受容性有機半導体が、フラーレン誘導体であることを特徴とする。
また前記の目的を達成するためになされた、特許請求の範囲の請求項9に記載の光電変換素子の製造方法は、少なくとも一方が光透過性である正電極と負電極との間に光電変換層、及び前記光電変換層と前記負電極との間に有機酸塩を含むバッファ層を有し、前記光電変換層と前記正電極との間に正孔輸送層を有してもよい光電変換素子の製造方法であって、前記負電極上に有機酸塩溶液を塗布乾燥して前記バッファ層を形成することを特徴とする。
同じく請求項10に記載の光電変換素子の製造方法は、請求項9に記載されたものであって、前記有機酸塩溶液が、ギ酸塩、酢酸塩、トリクロロ酢酸塩、ジクロロ酢酸塩、モノクロロ酢酸塩、プロピオン酸塩、酪酸塩、ペンタン酸塩、シュウ酸塩、マロン酸塩、コハク酸塩、グルタル酸塩、アジビン酸塩、L−乳酸塩、D−乳酸塩、リンゴ酸塩、酒石酸塩、クエン酸塩、グルコン酸、フマル酸塩、マレイン酸塩、安息香酸塩、サリチル酸塩、ピコリン酸塩、ピクリン酸塩、チオグリコロール酸塩、アスコルビン酸塩、ポリアクリル酸塩、ポリメタクリル酸塩、カルボキシメチルセルロース塩、アルギン酸塩、炭素数1〜20の脂肪族スルホン酸塩、トリフルオロメタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩、ドデシルベンゼンスルホン酸、ポリビニルスルホン酸塩、ポリスチレンスルホン酸塩、多価カルボン酸塩及びポリカルボン酸塩から選ばれるアルカリ金属塩の溶液であることを特徴とする。
本発明の光電変換素子は、光電変換層と負電極との間に有機酸塩からなるバッファ層を有しており、優れた光電変換効率を示すことができる。
本発明の光電変換素子の製造方法によれば、負電極の上に有機酸塩の溶液を塗布することによりバッファ層を形成することができでるため、簡便な工程、簡易な製造設備により高い光電変換効率を有する光電変換素子を提供することができる。
本発明を適用する光電変換素子の代表的な一実施例を示す模式断面図である。 本発明を適用する光電変換素子の別な実施例を示す模式断面図である。
本発明の実施形態を説明するが、本発明の範囲はこれらの形態に限定されるものではない。
図1に示すとおり、本発明の一例の光電変換素子10は、基板1の上に形成されるもので、一対の正電極5及び負電極2の間に光電変換層4を有する。正電極5及び負電極2の少なくとも一方が光透過性である。光電変換層4と負電極2との間に、有機酸塩からなるバッファ層3を有している。基板1は負電極2側であっても、正電極5側であってもよい。
光電変換素子10の動作機構は、光透過性を有する正電極5から入射した光エネルギーが光電変換層4で吸収され、正孔と電子の結合した励起子を生成する。光電変換層4は、通常、電子供与性化合物と電子受容性化合物との混合物からなり、それらの界面に励起子が達すると、界面でのそれぞれのLUMOエネルギー及びHOMOエネルギーの違いにより正孔と電子とが分離し、独立に動くことができる電荷(正孔と電子)が発生する。発生した正孔は、正電極5へ移動し、電子は負電極2へ移動することにより外部へ電気エネルギー(電流)として取り出すことができる。正電極5から効率良く正孔を取り出すには、電子供与性化合物のHOMOエネルギーに近い仕事関数を有する導電性材料を正電極5に使用することが好ましく、負電極2から効率良く電子を取り出すには、電子受容性化合物のLUMOエネルギーに近い仕事関数を有する導電性材料を負電極2に使用することが好ましい。
光電変換素子10は、通常、基板1上に形成されているものである。この基板1は、電極を形成し、有機物の層を形成する際に変化しないものであればよい。基板1の材料としては、例えば、無アルカリガラス、石英ガラス、シリコンなどの無機材料、ポリエステル、ポリカーボネート、ポリオレフィン、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリパラキシレン、エポキシ樹脂やフッ素系樹脂などの有機材料から任意の方法によって作製されたフィルムや板が使用可能である。不透明な基板1の場合には、反対の電極即ち、基板1から遠い方の電極(図1の例では正電極5)が透明又は半透明であることが好ましい。透明な基板1の場合には、基板1に接する方の電極(図1の例では負電極2)が光透過性を有する電極にしてもよい。
負電極2と正電極5は、少なくとも一方が光透過性を有する。光透過性を有する透明又は半透明の電極材料としては、導電性の金属酸化物膜、半透明の金属薄膜などが挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、フッ素・スズ・オキサイド(FTO)、アンチモン・スズ・オキサイド、インジウム・亜鉛・オキサイド(IZO)、ガリウム・亜鉛・オキサイド(GZO)、アルミニウム・亜鉛・オキサイド(AZO)、アンチモン・亜鉛・オキサイドからなる導電性材料を用いて作製された膜や、金、白金、銀、銅の極薄膜が用いられ、中でもITO、FTO、IZO、GZO、AZOなどが好ましい。電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法などが挙げられる。また、透明な電極として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体などの導電性高分子材料の膜や、カーボンナノチューブ、グラフェンなどのナノカーボン材料の膜を用いてもよい。
光透過性を有する電極とは反対側の電極は、光透過性を有さなくてもよい。光透過性を有さない電極としては、公知の金属、導電性高分子などを用いることができる。例えば、白金、金、銀、アルミニウム、クロム、ニッケル、銅、チタン、マグネシウム、カルシウム、バリウム、ナトリウムなどの金属あるいはそれらの合金などが挙げられる。負電極2を、光透過性を有さない電極とする場合には、電子受容性化合物のLUMO準位との差が大きくならないように仕事関数が1.9eV以上5eV以下の金属及び合金を用いるのが好ましい。このような負電極材料としては、例えば、アルカリ金属、アルカリ土類金属、希土類など、及びこれらと他の金属との合金、例えばナトリウム、ナトリウム−カリウム合金、リチウム、マグネシウム、マグネシウム−銀混合物、マグネシウム−インジウム混合物、アルミニウム−リチウム合金などを挙げることができる。またアルミニウムも用いることができる。また、上述の負電極材料は、基板1の上に、真空蒸着法、スパッタリング法、塗布法により形成する。
光電変換素子10は、少なくとも負電極2が光透過性を有するものが好ましい。この場合、正電極5は光透過性を有さなくてもよいし、透明又は半透明であってもよい。負電極2が光透過性を有するものである場合、光エネルギーは負電極2側から入射し、前述した動作機構に従って電荷を発生させ、電気エネルギーを取り出すことができる。このように、光エネルギーを負電極2側から吸収する光電変換素子(本明細書において「逆セル」と呼ぶ)は、正電極5側から光エネルギーを吸収する一般的な光電変換素子(本明細書において「順セル」と呼ぶ)に対して、正電極5に仕事関数の大きい酸化安定性の高い金属を使用することができるため、高い長期安定性が得られる点で有利である。
バッファ層3は有機酸塩からなり、光電変換層4で発生した電子を負電極2側に効率的に取り出す機能を有する。バッファ層3を挿入することにより、光電変換層4中の電子受容性材料のLUMO準位と負電極2のフェルミ準位(仕事関数)との間のエネルギー障壁が低減されることで、負電極2に移動する電子の電気抵抗を小さくする作用がある。これにより、光電変換素子10は、優れた光電変換効率を発揮できる。
本発明でバッファ層3として用いられる有機酸塩が有する金属イオンは、特に限定されず、アルカリ金属イオンやアルカリ土類金属イオンなどを用いることができる。これらの中でも、有機酸アルカリ金属塩が好ましく、特に有機酸ナトリウム塩が好ましい。また、有機酸塩は、低分子化合物であっても高分子化合物であってもよい。例えば、カルボキシル基含有化合物、スルホ基含有化合物、リン酸基含有化合物、ホスホン酸基含有化合物などを用いることができ、中でも、カルボキシル基含有化合物が好ましい。
カルボキシル基含有化合物の具体例としては、ギ酸塩、酢酸塩、トリクロロ酢酸塩、ジクロロ酢酸塩、モノクロロ酢酸塩、プロピオン酸塩、ブタン酸(酪酸塩)、ペンタン酸、シュウ酸塩、マロン酸塩、コハク酸塩、グルタル酸塩、アジビン酸塩、L−乳酸塩、D−乳酸塩、リンゴ酸塩、酒石酸塩、クエン酸塩、グルコン酸、フマル酸塩、マレイン酸塩、安息香酸塩、サリチル酸塩、ピコリン酸塩、ピクリン酸塩、チオグリコロール酸塩、アスコルビン酸塩などの低分子化合物;ポリアクリル酸塩、ポリメタクリル酸塩、カルボキシメチルセルロース塩、アルギン酸塩などの高分子化合物を挙げることができる。スルホ基含有化合物の具体例としては、メタンスルホン酸塩やヘキサンスルホン酸塩などの炭素数1〜20の脂肪族スルホン酸塩、トリフルオロメタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩、ドデシルベンゼンスルホン酸などの低分子化合物;ポリビニルスルホン酸塩、ポリスチレンスルホン酸塩などの高分子化合物を挙げることができる。また、π電子共役化合物にカルボキシル基、スルホン酸基が導入された有機酸の金属塩を用いることができる。具体例としては、後述するフラーレン誘導体にカルボキシル基、スルホン酸基が導入された化合物の金属塩を挙げることができる。これらの有機酸塩は単独で用いてもよく、2種以上を混合して用いてもよい。
低分子化合物の中では、カルボキシル基を2以上有する多価カルボン酸アルカリ金属塩が光電変換効率の観点で好ましく、中でもクエン酸ナトリウム塩が好ましい。塩の形態は限定されず、一ナトリウム塩、ニナトリウム塩、三ナトリウム塩を用いることができる。高分子化合物の中では、ポリカルボン酸アルカリ金属塩が光電変換効率の観点で好ましく、中でもポリアクリル酸ナトリウム塩が好ましい。
有機酸塩からなるバッファ層3の膜厚としては、特に限定されるものではないが、0.1〜50nmが好適である。膜厚が薄すぎる場合には、バッファ層3として十分な機能を得ることができない場合がある。膜厚が厚すぎる場合には、抵抗が増大して光電変換効率の低下の原因となる場合がある。より好ましくは0.1nm〜10nmであり、さらに好ましくは0.2nm〜5nmである。
バッファ層3の膜厚は、有機酸塩を製膜した基板1の断面形状を電子顕微鏡で観察する方法や、触針式段差計により測定することができる。有機酸塩の膜厚が薄く前述の方法により測定が難しい場合には、基板上に製膜した有機酸塩の膜の重量(基板の単位面積あたりの重量)を測定し、有機酸塩の比重から膜厚を決定することができる。
有機酸塩からなるバッファ層3は、本発明の効果を損ねない限り、有機酸塩以外の化合物を少量含んでいてもよい。そのような化合物としては、例えば、バッファ層3を形成する有機酸塩の有機酸化合物(有機カルボン酸化合物、有機スルホン酸化合物、有機リン酸化合物、有機ホスホン酸化合物など)又は上記で例示した他の有機酸塩の有機酸化合物である。バッファ層中の有機酸塩以外の化合物の含有割合は、0〜20重量%が好ましく、0〜10重量%がより好ましい。また、バッファ層中の有機酸塩の含有割合としては、80〜100重量%が好ましく、90〜100重量%がより好ましい。
また、有機酸塩からなるバッファ層3は、製膜性を向上させる目的で、他の高分子化合物との複合膜とすることも可能である。そのような高分子化合物の具体例としては、例えば、ポリ(4−ビニルピリジン)、ポリビニルピロリドン、ポリビニルアルコール、ポリアクリル酸、ポリカルボキシメチルセルロースなどである。複合膜中の有機酸塩以外の高分子化合物の含有割合は、0〜50重量%が好ましく、0〜20重量%がより好ましい。また、複合膜中の有機酸塩の含有割合は、50〜100重量%が好ましく、80〜100重量%がより好ましい。他の高分子化合物との複合膜とした場合の膜厚としては、特に限定されるものではないが、0.1〜50nmが好適である。より好ましくは0.1nm〜10nmであり、さらに好ましくは0.2nm〜5nmである。
光電変換層4は、通常、電子供与性化合物と電子受容性化合物との混合物からなり、本発明においては、電子供与性有機半導体(p型有機半導体)と電子受容性有機半導体(n型有機半導体)との混合物から形成されたものであることが好ましい。電子供与性有機半導体と電子受容性有機半導体の接合は、平面ヘテロ接合でもよく、バルクヘテロ接合でもよい。
光電変換層4に用いるp型有機半導体としては、低分子化合物であっても高分子化合物であってもよい。低分子化合物としては、フタロシアニン、金属フタロシアニン、ポルフィリン、金属ポルフィリン、オリゴチオフェン、テトラセン、ペンタセン、ルブレンなどが挙げられる。高分子化合物としては、化学構造の一部にチオフェン、フルオレン、カルバゾール、ジベンゾシロール、ジベンゾゲルモール、ジケトピロロピロール及びこれらの誘導体から選ばれる複素環骨格を少なくとも一つ有する単量体単位を含むπ電子共役重合体などが挙げられる。これらの中でも、少なくとも1つのチオフェン環を化学構造の一部に含む複素環骨格を有する単量体単位を含むπ電子共役重合体が光電変換効率の観点から好ましい。該複素環骨格としては例えば、シクロペンタジチオフェン、チエノピロール、ジチエノピロール、ジチエノシロール、ジチエノゲルモール、ベンゾジチオフェン、ナフトジチオフェン及びこれらの誘導体などが挙げられる。これらは、溶解性や極性を制御する目的で主鎖骨格に置換基を有してもよい。また、これらの高分子化合物は、単独重合体、ランダム又はブロック共重合体のいずれでもよく、分子鎖は直鎖状、分岐状、物理的又は化学的架橋状のいずれでもよい。これらの中でもp型有機半導体としては、塗布プロセスに適用するという観点から、高分子化合物が好ましく、少なくとも1つのチオフェン環を化学構造の一部に含む複素環骨格を有する単量体単位を含むπ電子共役重合体がより好ましい。
前記π電子共役重合体の重合度は特に限定されないが、欠陥のない均質な薄膜を得るという観点からは、ゲル浸透クロマトグラフィーを用い、ポリスチレン標準物質により換算された数平均分子量が10,000以上であることが好ましい。また、高い光電変換効率の素子を得るという観点からは、数平均分子量が20,000以上であることがより好ましい。
光電変換層4に用いるn型有機半導体は、電子受容性を有する有機材料であれば特に限定されない。n型有機半導体として、例えば、1,4,5,8−ナフタレンテトラカルボキシリックジアンハイドライド、3,4,9,10−ペリレンテトラカルボキシリックジアンハイドライド、N,N’−ジオクチル−3,4,9,10−ナフチルテトラカルボキシジイミド、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、2,5−ジ(1−ナフチル)−1,3,4−オキサジアゾールなどのオキサゾール誘導体、3−(4−ビフェニリル)−4−フェニル−5−(4−t−ブチルフェニル)−1,2,4−トリアゾールなどのトリアゾール誘導体、フェナントロリン誘導体、C60又はC70フラーレン誘導体、カーボンナノチューブ、ポリ−p−フェニレンビニレン系重合体にシアノ基を導入した誘導体(CN−PPV)などが挙げられる。これらはそれぞれ単体で用いてもよく、2種以上を混合して用いてもよい。これらの中でも、安定且つキャリア移動度に優れるn型半導体という観点からフラーレン誘導体が好ましく用いられる。
前記n型有機半導体として好適に用いられるフラーレン誘導体は、C60、C70、C76、C78、C82、C84、C90、C94を始めとする無置換のものと、[6,6]−フェニルC61ブチリックアシッドメチルエステル(PC61BM)、[5,6]−フェニルC61ブチリックアシッドメチルエステル、[6,6]−フェニルC61ブチリックアシッドn−ブチルエステル、[6,6]−フェニルC61ブチリックアシッドi−ブチルエステル、[6,6]−フェニルC61ブチリックアシッドヘキシルエステル、[6,6]−フェニルC61ブチリックアシッドドデシルエステル、[6,6]−ジフェニルC62ビス(ブチリックアシッドメチルエステル)(bis−PC62BM)、[6,6]−フェニルC71ブチリックアシッドメチルエステル(PC71BM)、[6,6]−ジフェニルC72ビス(ブチリックアシッドメチルエステル)(bis−PC72BM)、インデンC60−モノ付加体、インデンC60−ビス付加体、インデンC70−モノ付加体、インデンC70−ビス付加体をはじめとする置換誘導体などが挙げられる。これらの中でも、C60又はC70フラーレン誘導体が特に好ましく使用できる。
前記フラーレン誘導体は単独又はそれらの混合物として用いることができる。有機溶媒に対する溶解性の観点から、PC61BM、bis−PC62BM、PC71BM、bis−PC72BM、インデンC60−モノ付加体、インデンC60−ビス付加体、インデンC70−モノ付加体、インデンC70−ビス付加体が好適に用いられる。さらにこれらの中で、光吸収の観点からは、PC71BM、bis−PC72BM、インデンC70−モノ付加体、インデンC70−ビス付加体が、製造コストの観点からは、PC61BM、bis−PC62BM、インデンC60−ビス付加体がより好適に用いられる。
光電変換層4中のp型有機半導体及びn型有機半導体の含有量は、特に限定されない。また、p型有機半導体とn型有機半導体との組成比は、p型有機半導体:n型有機半導体=1〜99:99〜1の範囲であることが好ましく、より好ましくは20〜80:80〜20の範囲である。また、p型有機半導体とn型有機半導体との質量の和は、後述する溶解溶媒の質量の和100質量部に対して0.1〜10.0質量部であることが好ましく、0.5〜5.0質量部であることがより好ましい。
光電変換層4の膜厚は、通常、1nm〜2000nmであり、好ましくは2nm〜1000nmであり、より好ましくは5nm〜500nmであり、さらに好ましくは20nm〜300nmである。膜厚が薄すぎると光が十分に吸収されず、逆に厚すぎると抵抗損失によって電荷が電極へ到達し難くなる。
本発明の別な例の光電変換素子10は、図2に示すように、基板1の上に形成され一対の正電極5及び負電極2の間に光電変換層4を有する。光電変換層4と負電極2との間に、有機酸塩からなるバッファ層3を有している。光電変換層4と正電極5との間に、正孔輸送材料を含む正孔輸送層6を有している。基板1は負電極2側であっても、正電極5側であってもよい。
正孔輸送層6を形成する材料としては、p型半導体特性を有するものであれば特に限定されないが、ポリチオフェン系重合体、ポリアニリン系重合体、ポリ−p−フェニレンビニレン系重合体、ポリフルオレン系重合体などの導電性高分子や、フタロシアニン誘導体(HPc、CuPc、ZnPcなど)、ポルフィリン誘導体などのp型半導体特性を示す低分子有機化合物、酸化モリブデン、酸化タングステン、酸化バナジウムなどの遷移金属酸化物が好ましく用いられる。特に、ポリチオフェン系重合体であるポリエチレンジオキシチオフェン(PEDOT)やPEDOTにポリスチレンスルホネート(PSS)が添加されたものが好ましく用いられる。正孔輸送層6は1nmから600nmの厚さが好ましく、20nmから300nmがより好ましい。
本発明の光電変換素子の製造方法について説明する。光電変換素子10は、負電極2の表面に有機酸塩からなる溶液を塗布してバッファ層3を形成する。塗布方法は特に制限されず、液状の塗布材料を用いる従来から知られている塗布方法のいずれもが採用できる。例えば、浸漬コーティング法、スプレーコ−ティング法、インクジェット法、エアロゾルジェット法、スピンコ−ティング法、ビードコーティング法、ワイヤーバーコ−ティング法、ブレードコーティング法、ローラーコ−ティング法、カーテンコーティング法、スリットダイコーター法、グラビアコーター法、スリットリバースコ−ター法、マイクログラビア法、コンマコーター法などの塗布方法を採用することができ、塗膜厚さ制御や配向制御など、得ようとする塗膜特性に応じて塗布方法を選択すればよい。
塗布方法としてスピンコーティング法を採用する場合には、そのスピンコート回転数や溶液濃度を調節することで、所望の膜厚を有する有機酸塩からなるバッファ層3を得ることができる。スピンコート条件は特に限定されるものではないが、回転数が小さいと膜厚ムラが生じる原因になるため、1000〜8000rpmの回転数が好ましく、2000〜6000rpmの回転数がより好ましい。
このとき、必要に応じて不活性ガス雰囲気下で製膜することにより、材料の変性を抑制することができる。塗布溶剤としては、有機酸塩の層を形成できる溶剤であれば特に限定されず、水、炭素数1〜10の脂肪族アルコールなどを用いることができる。これらの溶剤は単独で用いてもよく、2種以上を混合して用いてもよいが、負電極2の表面との濡れ性の観点で、水、水と1−プロパノールとの混合溶剤が好ましい。また、有機酸塩を製膜した基板1は、加熱処理を行ってもよい。加熱処理の条件は使用する基板1の耐熱性の範囲内であればよく、50℃〜250℃の範囲が好ましく、80℃〜200℃の範囲がより好ましい。
光電変換層4は、前記p型有機半導体及びn型有機半導体を溶媒に溶解させ、有機半導体組成物溶液とし、前記のバッファ層3の上に塗布して製膜することで製造することができる。塗布方法は特に制限されず、前記の有機酸塩からなるバッファ層3の製膜方法として例示した方法のいずれも採用することができる。溶解溶媒としては、テトラヒドロフラン、1,2−ジクロロエタン、シクロヘキサン、クロロホルム、ブロモホルム、ベンゼン、トルエン、o−キシレン、クロロベンゼン、ブロモベンゼン、ヨードベンゼン、o−ジクロロベンゼン、アニソール、メトキシベンゼン、トリクロロベンゼン、ピリジンなどが挙げられる。これらの溶媒は単独で用いてもよく、2種類以上混合して用いてもよいが、特にp型有機半導体及びn型有機半導体のそれぞれについて溶解度が高いo−ジクロロベンゼン、クロロベンゼン、ブロモベンゼン、ヨードベンゼン、クロロホルム及びこれらの混合物が好ましい。より好ましくは、p型有機半導体及びn型有機半導体のそれぞれについて溶解度が最も高いo−ジクロロベンゼン、クロロベンゼン及びこれらの混合物が用いられる。
前記の工程において、有機半導体組成物溶液中にp型有機半導体及びn型有機半導体以外に高沸点化合物を添加物として含んでもよい。高沸点化合物を含有させることによって光電変換層4を製膜する過程において、p型有機半導体及びn型有機半導体の微細且つ連続した相分離構造が形成されるため、光電変換効率に優れる光電変換層4を得ることが可能となる。
高沸点化合物としては、オクタンジチオール(沸点:270℃)、ジブロモオクタン(沸点:272℃)、ジヨードオクタン(沸点:327℃)、ジヨードヘキサン(沸点:142℃[10mmHg])、ジヨードブタン(沸点:125℃[12mmHg])、ジエチレングリコールジエチルエーテル(沸点:162℃)、N−メチル−2−ピロリドン(沸点:229℃)、1−又は2−クロロナフタレン(沸点:256℃)などが例示される。これらの中で、光電変換効率に優れる光電変換素子を得るという観点から、オクタンジチオール、ジブロモオクタン、ジヨードオクタン、1−又は2−クロロナフタレンが好ましく用いられる。
高沸点化合物の添加量は、p型有機半導体及びn型有機半導体が析出せず、均一な溶液を与えるものであれば特に限定されないが、溶媒に対して体積分率で0.1%〜20%であると好ましく、0.5%〜10%の範囲であるとより好ましい。添加量が0.1%〜20%の範囲内であることにより、微細且つ連続した相分離構造を有する光電変換層4を形成することができる。添加量が20%よりも多い場合は、溶媒及び添加物の乾燥速度が遅くなる傾向がある。
さらに、前記有機半導体組成物は、本発明の効果を阻害しない範囲において、界面活性剤、バインダー樹脂、フィラーなどの他の添加物成分を含んでいてもよい。
光電変換層4を形成する際には、必要に応じて熱又は溶媒アニールを行ってもよい。アニール処理を施すことで、光電変換層4の材料の結晶性と、p型有機半導体とn型有機半導体との相分離構造を変化させ、光電変換特性に優れる素子を得ることができる。
熱アニールは、光電変換層4を製膜した基板1を所望の温度で保持して行う。熱アニールは減圧下又は不活性ガス雰囲気下で行ってもよく、好ましい温度は40℃〜200℃、より好ましくは70℃〜150℃である。温度が低いと十分な効果が得られず、温度が高すぎると光電変換層4が酸化及び/又は分解し、十分な光電変換特性を得ることができない。
溶媒アニールは、光電変換層4を製膜した基板1を溶媒雰囲気下で所望の時間保持することで行う。このときのアニールに使う溶媒は特に限定されないが、光電変換層4に対する良溶媒であることが好ましい。溶媒アニールは、光電変換層4を構成する有機半導体組成物を、基板1上に形成されているバッファ層3上に塗布して、当該組成物中に溶媒が残存した状態で行ってもよい。
ここで、必要な場合には前記の正孔輸送層6を光電変換層4上に積層させてもよい。正孔輸送層6の形成方法は特に限定されず、真空蒸着法、スパッタリング法、塗布法などを用いることができる。光電変換素子を低コストで製造するためには、連続プロセスに適した方法がより好ましく、中でも塗布法が好ましい。さらに、光電変換層4又は正孔輸送層6上に正電極5を形成することで、積層構造を有する本発明の光電変換素子10を製造することができる。
本発明の光電変換素子は、タンデム型光電変換素子として用いてもよい。タンデム型光電変換素子は、文献公知の方法、例えば、サイエンス,2007年,第317巻,p.222に記載の方法を用いて作製することができる。具体的には、電荷再結合層を、長波長側(〜1100nm)まで光吸収し光電変換可能な光電変換層(I)と紫外〜可視光領域(190〜700nm)の光電変換が可能な光電変換層(II)とで挟み込んだ構造が挙げられる。この光電変換層(I)と光電変換層(II)との接続順は逆であってもよい。
電荷再結合層とは、正電極側の光電変換層で生じた電子と、負電極側の光電変換層で生じた正孔とを再結合させる働きをする。各光電変換層で電荷分離して生じた正孔及び電子は、光電変換層中の内部電場によってそれぞれ正電極と負電極方向へと移動する。このとき、正電極側の光電変換層で生じた正孔及び負電極側の光電変換層で生じた電子はそれぞれ正電極及び負電極へ取り出され、正電極側の光電変換層で生じた電子及び負電極側の光電変換層で生じた正孔が再結合することによって、各光電変換層が電気的に直列に接続された電池として機能し開放電圧が増大する。
電荷再結合層は、複数の光電変換層が光吸収できるようにするため、光透過性を有することが好ましい。また、電荷再結合層は、十分に正孔と電子とが再結合するように設計されていればよいので、必ずしも膜である必要はなく、例えば、光電変換層上に一様に形成された金属クラスターであってもかまわない。従って、該電荷再結合層には、金、白金、クロム、ニッケル、リチウム、マグネシウム、カルシウム、錫、銀、アルミニウムなどからなる数nm以下程度の光透過性を有する非常に薄い金属膜や金属クラスター(合金を含む)、ITO、IZO、AZO、GZO、FTO、酸化チタンや酸化モリブデンなどの光透過性の高い金属酸化物膜及びクラスター、PSSが添加されたPEDOTなどの導電性有機材料膜、又はこれらの複合体などが用いられる。例えば、銀を、真空蒸着法を用いて水晶振動子膜厚モニター上で数nm以下となるように蒸着すれば、一様な銀クラスターが形成できる。その他にも、酸化チタン膜を形成するならば、例えば、アドバンスト マテリアルズ,2006年,第18巻,p.572に記載のゾルゲル法を用いればよい。ITO、IZOなどの複合金属酸化物であるならば、スパッタリング法を用いて製膜すればよい。これらの電荷再結合層の形成法や種類は、電荷再結合層形成時の光電変換層への非破壊性や、次に積層される光電変換層の形成法などを考慮して適当に選択すればよい。
本発明の光電変換素子は光電変換効率に優れ、太陽電池をはじめとして各種光センサなどへ応用が可能である。
以下、本発明の実施例を詳細に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。なお、実施例中の評価は以下のようにして行った。
[光電変換層の膜厚測定]
実施例及び比較例の光電変換層の膜厚は、接触式段差計(DEKTAK8:Veeco社製)を用いて、触針圧:3mg、測定レンジ:50kÅの条件で測定した。
[バッファ層の膜厚測定]
実施例のバッファ層を構成する有機酸塩の膜厚は、基板上に形成した有機酸塩の膜の重量を測定することで決定した。具体的には、有機酸塩の層を基板上に形成した後に水に浸漬し、得られた水溶液中のナトリウムを分析した。誘導結合プラズマ質量分析装置により基板上の全ナトリウム量を決定し、基板面積から単位面積あたりのナトリウム量(g/cm)を算出した。次に、得られたナトリウム量(g/cm)と有機酸塩のナトリウム含有量(重量%)から膜の重量(g/cm)を算出し、さらに有機酸塩の比重から、膜厚を決定した。
[光電変換効率の測定]
実施例及び比較例で作製した光電変換素子の光電変換効率は、ソーラーシミュレーター(OTENTO−SUNII:分光計器社製)及びソースメーター(KEITHLEY2400:KEITHLEY社製)を用い、照射スペクトルはAM1.5、照射強度は100mW/cmで測定した。測定時の照射強度は、フォトダイオード(BS−520、分光計器社製)を用い、太陽電池評価基準となるように調節した。測定時には、光電変換素子の受光面積と同じ面積の照射光マスクを着用し、余剰な光の入射を排除した。
(実施例1)
市販のポリアクリル酸ナトリウム塩(アルドリッチ社製)に水を加えて0.2重量%の濃度に調製し、室温で攪拌した後、0.45μmのポリフッ化ビニリデン製のフィルターでろ過して均一な水溶液を得た。
155nmのインジウム・スズ・オキサイドが0.7mmのガラス上に製膜された基板(ジオマテック社製)を、セミコクリーン(フルウチ化学社製)、超純水、アセトン及びイソプロパノールで10分間超音波洗浄し、乾燥した後、UV−Oクリーナー(フィルジェン社製)を用いて20分間オゾンクリーニングした。
洗浄したITO基板の上に、調製したポリアクリル酸ナトリウム塩水溶液を6000rpmで60秒間スピンコートした後、150℃で10分間熱処理を行い有機酸塩からなるバッファ層を形成した。基板上に製膜した有機酸塩の膜の重量(基板の単位面積あたりの重量)を測定し、有機酸塩の比重からバッファ層の膜厚を測定した。膜厚は2.2nmであった。バッファ層を形成したITO基板を窒素で満たされたグローブボックス中に導入し、窒素雰囲気下にて、ホットプレートを用いて150℃で10分間熱処理を行い、ポリアクリル酸ナトリウム塩からなるバッファ層を形成した。
続いて、電子供与性半導体として市販のポリ(3−ヘキシルチオフェン−2,5−ジイル):P3HT(アルドリッチ社製)と電子受容性半導体として[6,6]−フェニル C61 ブチリックアシッドメチルエステル(フロンティアカーボン社製)とを重量比60:40で混合し、窒素雰囲気下にてクロロベンゼン溶液を加えて、固形分濃度を2.7重量%に調製し、40℃で3時間攪拌した後、0.45μmのポリテトラフルオロエチレン製のフィルターでろ過して均一な溶液を得た。調製した溶液を窒素雰囲気下にて、ITO基板上のバッファ層の上に2500rpmで30秒間スピンコートした。3時間真空乾燥後、150℃で30分間熱アニールを行った。得られた光電変換層の膜厚は90nmであった。
続いて、該基板を抵抗加熱式真空蒸着装置に導入し、5.0×10−5Paの減圧条件下にて5nmの三酸化モリブデン(純度99.99%)を真空蒸着し、正孔輸送層を形成した。さらに80nmの銀(Ag)(純度99.999%)を真空蒸着し、光電変換素子を作製した。作製した光電変換素子の発電面積は0.25cmであった。続いて、ガラス製の封止キャップにUV硬化樹脂を塗布し、作製した光電変換素子と貼り合わせた後、UVランプを照射することで光電変換素子を封止した。作製した光電変換素子の光電変換効率を測定した結果、光電変換効率は3.69%であった。
(実施例2)
ポリアクリル酸ナトリウム水溶液のスピンコート条件を4000rpmに変更した以外は、実施例1と同様の方法で光電変換素子を作製した。得られたポリアクリル酸ナトリウム塩の膜厚は2.7nmであった。作製した光電変換素子の光電変換効率を測定した結果、光電変換効率は3.72%であった。
(実施例3)
ポリアクリル酸ナトリウム水溶液のスピンコート条件を2000rpmに変更した以外は、実施例1と同様の方法で光電変換素子を作製した。得られたポリアクリル酸ナトリウム塩の膜厚は3.1nmであった。作製した光電変換素子の光電変換効率を測定した結果、光電変換効率は3.55%であった。
(実施例4)
正孔輸送層の材料を三酸化モリブデンから三酸化タングステン(99.9%)に変更した以外は、実施例1と同様の方法で光電変換素子を作製した。作製した光電変換素子の光電変換効率を測定した結果、光電変換効率は3.67%であった。
(実施例5)
正孔輸送層の材料を三酸化モリブデンから五酸化バナジウム(99.9%)に変更した以外は、実施例1と同様の方法で光電変換素子を作製した。作製した光電変換素子の光電変換効率を測定した結果、光電変換効率は3.62%であった。
(実施例6)
電子供与性半導体として、1−(4,6−ジブロモチエノ[3,4−b]チオフェン−2−イル)−2−エチルヘキサン−1−オンと2,6−ビス(トリメチルチン)−4,8−ビス(2−エチルヘキシロキシ)ベンゾ[1,2−b:4,5−b’]ジチオフェンを重合して得られるPBDTTT−Cと、電子受容性半導体として[6,6]−フェニル C71 ブチリックアシッドメチルエステル(フロンティアカ−ボン社製)とを重量比40:60で混合し、窒素雰囲気下にてクロロベンゼン溶液を加えて、固形分濃度が2.7重量%の濃度となるように調製し、80℃で3時間攪拌した後、0.45μmのポリテトラフルオロエチレン製のフィルターでろ過して均一な溶液を得た。調製した溶液を窒素雰囲気下にて、実施例1と同様の方法で製造したポリアクリル酸ナトリウム塩を塗布したITO基板の上に2400rpmで30秒間スピンコートした。得られた光電変換層の膜厚は90nmであった。光電変換層の材料を変更した以外は、実施例1と同様の方法で光電変換素子を作製した。作製した光電変換素子の光電変換効率を測定した結果、光電変換効率は5.68%であった。
(実施例7)
市販のクエン酸三ナトリウムニ水和物(アルドリッチ社製)に水を加えて0.2重量%の濃度に調製し、室温で攪拌した後、0.45μmのポリフッ化ビニリデン製のフィルターでろ過して均一な水溶液を得た。前記と同様の方法で洗浄したITO基板の上に、調製したクエン酸三ナトリウム塩水溶液を4000rpmで60秒間スピンコートした。クエン酸三ナトリウム塩を塗布したITO基板を窒素で満たされたグローブボックス中に導入し、窒素雰囲気下にて、ホットプレートを用いて150℃で10分間熱処理を行った。得られたクエン酸三ナトリウム塩の膜厚は1.8nmであった。有機酸塩をクエン酸三ナトリウム塩に変更した以外は、実施例6と同様の方法で光電変換素子を作製した。作製した光電変換素子の光電変換効率を測定した結果、光電変換効率は4.80%であった。
(比較例1)
前記と同様の方法で洗浄したITO基板の上に、窒素雰囲気下にて、実施例1で調製した光電変換層用の溶液を2500rpmで30秒間スピンコートし、ホットプレートを用いて150℃で30分間熱アニールを行った。ITO基板の上に有機酸塩からなるバッファ層を形成しないこと以外は、実施例1と同様の方法で光電変換素子を作製した。作製した光電変換素子の光電変換効率を測定した結果、光電変換効率は1.73%であった。
(比較例2)
前記と同様の方法で洗浄したITO基板の上に、窒素雰囲気下にて、実施例6で調製した光電変換層用の溶液を2400rpmで30秒間スピンコートした。ITO基板の上に有機酸塩からなるバッファ層を形成しないこと以外は、実施例6と同様の方法で光電変換素子を作製した。作製した光電変換素子の光電変換効率を測定した結果、光電変換効率は0.87%であった。
(比較例3)
窒素雰囲気下にて、市販の炭酸セシウムに2−エトキシエタノールを加えて0.2重量%の濃度に調製し、室温で攪拌した後、0.45μmのポリフッ化ビニリデン製のフィルターでろ過して均一な水溶液を得た。窒素雰囲気下にて、前記と同様の方法で洗浄したITO基板の上に、調製した炭酸セシウム溶液を4000rpmで60秒間スピンコートし、ホットプレートを用いて170℃で10分間熱処理を行った。バッファ層を炭酸セシウムに変更した以外は、実施例1と同様の方法で光電変換素子を作製した。作製した光電変換素子の光電変換効率を測定した結果、光電変換効率は3.17%であった。
(比較例4)
炭酸セシウム溶液のスピンコート条件を2000rpmに変更した以外は、比較例3と同様の方法で光電変換素子を作製した。作製した光電変換素子の光電変換効率を測定した結果、光電変換効率は2.78%であった。
(比較例5)
窒素雰囲気下にて、市販のチタンイソプロポキシドに脱水エタノールを加えて300倍希釈の溶液を調製し、室温で攪拌した後、0.45μmのポリフッ化ビニリデン製のフィルターでろ過して均一な水溶液を得た。大気下にて、洗浄したITO基板の上に、調製したチタンイソプロポキシド溶液を2000rpmで60秒間スピンコートした。室温で12時間静置することで加水分解反応を進行させ、ITO基板の上に酸化チタンの層を形成した。バッファ層を酸化チタンに変更した以外は、実施例1と同様の方法で光電変換素子を作製した。作製した光電変換素子の光電変換効率を測定した結果、光電変換効率は2.85%であった。
(比較例6)
チタンイソプロポキシドの希釈倍率を100倍に変更した以外は、比較例5と同様の方法で光電変換素子を作製した。作製した光電変換素子の光電変換効率を測定した結果、光電変換効率は2.36%であった。
(比較例7)
前記と同様の方法で洗浄したITO基板を抵抗加熱式真空蒸着装置に導入し、5.0×10−5Paの減圧条件下にて2nmのカルシウム(99.5%)を真空蒸着した。続いて、窒素雰囲気下にて、実施例1で調製した光電変換層用の溶液を2500rpmで30秒間スピンコートし、ホットプレートを用いて150℃で30分間熱アニールを行った。バッファ層をカルシウムに変更した以外は、実施例1と同様の方法で光電変換素子を作製した。作製した光電変換素子の光電変換効率を測定した結果、光電変換効率は3.20%であった。
実施例1〜7及び比較例1〜7で得られた光電変換素子の変換効率を表1及び表2に示す。
Figure 2014241369
Figure 2014241369
表1及び表2より、有機酸塩をバッファ層として用いた実施例1〜7の光電変換素子は、本発明の適用外である比較例1〜7の光電変換素子に比べ高い変換効率を示すことが明らかとなった。
本発明の負電極と光電変換層の間に有機酸塩をバッファ層として用いた光電変換素子は、光電変換効率に優れ、太陽電池をはじめとし各種光センサなどへ応用可能である。
1は基板、2は負電極、3はバッファ層、4は光電変換層、5は正電極、6は正孔輸送層、10は光電変換素子。

Claims (10)

  1. 少なくとも一方が光透過性である正電極と負電極との間に、光電変換層を有する光電変換素子であって、前記光電変換層と前記負電極との間に、有機酸塩を含むバッファ層を有することを特徴とする光電変換素子。
  2. 前記光電変換層と前記正電極との間に、正孔輸送材料を含む正孔輸送層を有することを特徴とする請求項1に記載の光電変換素子。
  3. 前記負電極がインジウム・スズ・オキサイドであることを特徴とする請求項1又は2に記載の光電変換素子。
  4. 前記有機酸塩が有機酸アルカリ金属塩であることを特徴とする請求項1〜3のいずれかに記載の光電変換素子。
  5. 前記有機酸アルカリ金属塩が、多価カルボン酸アルカリ金属塩又はポリカルボン酸アルカリ金属塩であることを特徴とする請求項4に記載の光電変換素子。
  6. 前記光電変換層が、電子供与性有機半導体と電子受容性有機半導体との混合物であることを特徴とする請求項1〜5のいずれかに記載の光電変換素子。
  7. 前記電子供与性有機半導体が、チオフェン、フルオレン、カルバゾール、ジべンゾシロール、ジベンゾゲルモール、ベンゾジチオフェン及びジケトピロロピロールから選ばれる複素環骨格基を少なくとも一部に有する単量体単位を含むπ電子共役重合体であることを特徴とする請求項6に記載の光電変換素子。
  8. 前記電子受容性有機半導体が、フラーレン誘導体であることを特徴とする請求項6又は7に記載の光電変換素子。
  9. 少なくとも一方が光透過性である正電極と負電極との間に光電変換層、及び前記光電変換層と前記負電極との間に有機酸塩を含むバッファ層を有し、前記光電変換層と前記正電極との間に正孔輸送層を有してもよい光電変換素子の製造方法であって、前記負電極上に有機酸塩溶液を塗布乾燥して前記バッファ層を形成することを特徴とする光電変換素子の製造方法。
  10. 前記有機酸塩溶液が、ギ酸塩、酢酸塩、トリクロロ酢酸塩、ジクロロ酢酸塩、モノクロロ酢酸塩、プロピオン酸塩、酪酸塩、ペンタン酸塩、シュウ酸塩、マロン酸塩、コハク酸塩、グルタル酸塩、アジビン酸塩、L−乳酸塩、D−乳酸塩、リンゴ酸塩、酒石酸塩、クエン酸塩、グルコン酸、フマル酸塩、マレイン酸塩、安息香酸塩、サリチル酸塩、ピコリン酸塩、ピクリン酸塩、チオグリコロール酸塩、アスコルビン酸塩、ポリアクリル酸塩、ポリメタクリル酸塩、カルボキシメチルセルロース塩、アルギン酸塩、炭素数1〜20の脂肪族スルホン酸塩、トリフルオロメタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩、ドデシルベンゼンスルホン酸、ポリビニルスルホン酸塩、ポリスチレンスルホン酸塩、多価カルボン酸塩及びポリカルボン酸塩から選ばれるアルカリ金属塩の溶液であることを特徴とする請求項9に記載の光電変換素子の製造方法。
JP2013123809A 2013-06-12 2013-06-12 光電変換素子とその製造方法 Pending JP2014241369A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013123809A JP2014241369A (ja) 2013-06-12 2013-06-12 光電変換素子とその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013123809A JP2014241369A (ja) 2013-06-12 2013-06-12 光電変換素子とその製造方法

Publications (1)

Publication Number Publication Date
JP2014241369A true JP2014241369A (ja) 2014-12-25

Family

ID=52140481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013123809A Pending JP2014241369A (ja) 2013-06-12 2013-06-12 光電変換素子とその製造方法

Country Status (1)

Country Link
JP (1) JP2014241369A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181634A (ja) * 2015-03-25 2016-10-13 株式会社東芝 光電変換素子およびその製造方法
CN116284513A (zh) * 2023-03-16 2023-06-23 复旦大学 一种钙钛矿薄膜掺杂和缺陷钝化的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074411A1 (ja) * 2009-12-14 2011-06-23 コニカミノルタホールディングス株式会社 有機光電変換素子
JP2013033906A (ja) * 2011-03-29 2013-02-14 Sumitomo Chemical Co Ltd 有機光電変換素子およびその製造方法
JP2013058714A (ja) * 2011-08-17 2013-03-28 Jx Nippon Oil & Energy Corp 光電変換素子およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074411A1 (ja) * 2009-12-14 2011-06-23 コニカミノルタホールディングス株式会社 有機光電変換素子
JP2013033906A (ja) * 2011-03-29 2013-02-14 Sumitomo Chemical Co Ltd 有機光電変換素子およびその製造方法
JP2013058714A (ja) * 2011-08-17 2013-03-28 Jx Nippon Oil & Energy Corp 光電変換素子およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181634A (ja) * 2015-03-25 2016-10-13 株式会社東芝 光電変換素子およびその製造方法
CN116284513A (zh) * 2023-03-16 2023-06-23 复旦大学 一种钙钛矿薄膜掺杂和缺陷钝化的方法

Similar Documents

Publication Publication Date Title
JP6007273B2 (ja) タンデム型光電池
Li et al. Graphene oxide modified hole transport layer for CH3NH3PbI3 planar heterojunction solar cells
Chen et al. Improving the efficiency of organic solar cell with a novel ambipolar polymer to form ternary cascade structure
JP5591860B2 (ja) 有機半導体およびそれを用いた太陽電池
JP5300903B2 (ja) ポリマーおよびそれを用いた太陽電池、太陽光発電システム
WO2013118793A1 (ja) 有機薄膜太陽電池
JP2013055125A (ja) ホールブロック層の製造方法、ホールブロック層、光電変換素子、光電変換装置、有機薄膜太陽電池パネル、および発光装置
WO2013118795A1 (ja) 有機薄膜太陽電池及び有機薄膜太陽電池の製造方法
Uddin Organic solar cells
Singh et al. Influence of molar mass ratio, annealing temperature and cathode buffer layer on power conversion efficiency of P3HT: PC71BM based organic bulk heterojunction solar cell
JP2013219190A (ja) 有機光電変換素子
Liu et al. Efficiency enhancement of polymer solar cells by applying an alcohol-soluble fullerene aminoethanol derivative as a cathode buffer layer
JP2014241369A (ja) 光電変換素子とその製造方法
JP2015099810A (ja) 有機光電変換素子の製造方法
JP2014003255A (ja) 有機薄膜およびそれを用いた光電変換素子
JP6032284B2 (ja) 有機光電変換素子の製造方法
JP6690276B2 (ja) 光電変換素子
JP5245123B2 (ja) 有機光電変換素子、太陽電池および光センサアレイ
JP2014241372A (ja) 光電変換素子及びその製造方法
TW201407798A (zh) 光伏元件及光伏元件之製造方法
KR101306070B1 (ko) 전도성 고분자 화합물 및 이를 포함하는 유기태양전지
JP2013058526A (ja) 有機薄膜太陽電池
JP2014241370A (ja) 光電変換素子及びその製造方法
Mohammad et al. Influence of nanoscale morphology on performance of inverted structure metallated conjugated polymer solar cells
Sharma et al. Efficient bulk heterojunction photovoltaic devices based on modified PCBM

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171003