JP2014239634A - Distribution line voltage control device and voltage control method - Google Patents

Distribution line voltage control device and voltage control method Download PDF

Info

Publication number
JP2014239634A
JP2014239634A JP2013176538A JP2013176538A JP2014239634A JP 2014239634 A JP2014239634 A JP 2014239634A JP 2013176538 A JP2013176538 A JP 2013176538A JP 2013176538 A JP2013176538 A JP 2013176538A JP 2014239634 A JP2014239634 A JP 2014239634A
Authority
JP
Japan
Prior art keywords
voltage
current
relay
phase difference
distribution line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013176538A
Other languages
Japanese (ja)
Other versions
JP6188489B2 (en
Inventor
植田 喜延
Yoshinobu Ueda
喜延 植田
寺田 努
Tsutomu Terada
努 寺田
健二 近藤
Kenji Kondo
健二 近藤
直貴 保坂
Naoki Hosaka
直貴 保坂
直也 塚越
Naoya Tsukagoshi
直也 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Meidensha Corp
Tokyo Electric Power Co Inc
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Tokyo Electric Power Co Inc, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2013176538A priority Critical patent/JP6188489B2/en
Publication of JP2014239634A publication Critical patent/JP2014239634A/en
Application granted granted Critical
Publication of JP6188489B2 publication Critical patent/JP6188489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow proper voltage control by suppressing rising of a distribution line voltage when reverse power flow occurs.SOLUTION: A device controls voltage of a distribution line by switching taps of a transformer in which a primary side is connected to a high-order system and a secondary side is connected to a distribution line system respectively. Relating to a voltage adjusting relay for switching taps of the transformer, a setting value of a target output voltage for an input current is settled to be a voltage characteristic rising from a negative side maximum set value of the input current toward a positive side maximum set value. A phase difference of voltage and current of the distribution line is calculated at a phase difference calculation part 12, and based on the phase difference, direction of power flow is determined by a reverse power flow relay 13. A 1(positive sign) is outputted at forward power flow while -1(negative sign) is outputted at reverse power flow. The positive or negative sign is multiplied with the positive current effective value at a multiplier 14, to provide an effective value that is expanded in negative direction, in other words, a signed current effective value, which is introduced into the voltage adjusting relay.

Description

本発明は、電力会社の配電用変電所における、変圧器制御盤に設置される電圧調整用継電器(90リレー)あるいは同機能を有する制御装置の整定方法に係り、配電線の電圧制御装置、方法に関する。   The present invention relates to a voltage adjustment relay (90 relay) installed on a transformer control panel or a control device having the same function in a distribution substation of a power company, and a voltage control device and method for a distribution line. About.

従来、配電用変電所においては電圧管理や保護協調の観点から変圧器単位の逆潮流が認められていなかった。そのため、1次側が上位系統に、2次側が配電系統に各々接続された変圧器のタップ切替制御を行う90リレー(電圧調整用継電器)は、変圧器の潮流方向を上位系統から配電系統に向かう順潮流のみ対応すれば良く、例えば図17に示すような特性を持たせていた(例えば特許文献1参照)。   Conventionally, in power distribution substations, reverse power flow for each transformer has not been recognized from the viewpoint of voltage management and protection coordination. Therefore, 90 relays (voltage adjustment relays) that perform tap switching control of transformers each connected to the upper system on the primary side and the distribution system on the secondary side are directed from the upper system to the distribution system. Only forward tides have to be dealt with. For example, the characteristic shown in FIG. 17 was provided (see, for example, Patent Document 1).

図17において、従来の90リレーは、正の電流実効値を用いてリレー演算を行い、例えば負荷が増加して配電線電流が増加すると配電線への送出電圧が高くなるように変圧器のタップ切替制御を行う。   In FIG. 17, the conventional 90 relay performs a relay operation using a positive current effective value. For example, when the load increases and the distribution line current increases, the voltage applied to the distribution line increases. Perform switching control.

一方、近年のCO2排出抑制および震災後の原子力発電所停止に伴い、再生可能エネルギー電源の導入の制約となる配電用変電所の逆潮流規制が緩和される方向で検討が行われている。 On the other hand, with the recent suppression of CO 2 emissions and the stoppage of nuclear power plants after the earthquake, studies are underway to ease the reverse power flow regulations at distribution substations that restrict the introduction of renewable energy power sources. .

順潮流・逆潮流時の電圧・電流位相関係を図18に示す。図18は、電圧位相を基準とした横軸を実軸、縦軸を虚軸とする複素平面に電圧・電流ベクトルを表現した図であり、電圧・電流ベクトルの長さ(絶対値)はp.u.(per unit;単位法)で示している。   FIG. 18 shows the voltage / current phase relationship during forward flow and reverse flow. FIG. 18 is a diagram in which a voltage / current vector is expressed on a complex plane with the horizontal axis based on the voltage phase as a real axis and the vertical axis as an imaginary axis. The length (absolute value) of the voltage / current vector is p. . u. (Per unit; unit method).

また、順潮流・逆潮流時の配電線電圧分布を図19に示す。図19(b)の横軸は距離、縦軸は電圧の大きさを示している。   Moreover, the distribution line voltage distribution at the time of forward power flow / reverse power flow is shown in FIG. In FIG. 19B, the horizontal axis represents distance, and the vertical axis represents voltage magnitude.

配電線の潮流と線路インピーダンスの影響により、図19(b)に示すように順潮流時は電圧が降下し、逆潮流時は電圧が上昇する。   Due to the influence of the power flow of the distribution line and the line impedance, as shown in FIG. 19B, the voltage drops during the forward flow and increases during the reverse flow.

尚、従来の配電線電圧制御方法としては、例えば特許文献2、3に記載の方法が提案されていた。   In addition, as a conventional distribution line voltage control method, the method of patent document 2, 3 was proposed, for example.

特許第4758375号公報Japanese Patent No. 4758375 特開2006−262555号公報JP 2006-262555 A 特開2007−143313号公報JP 2007-143313 A

配電用変電所において逆潮流が著しくなると、配電線の電圧が上昇するが、前記図17に示す90リレー特性のままでは正の電流実効値を用いてリレー演算を行っているため、電流が「大きい」と判断し、電圧上昇を増幅するようにタップ切替を行なってしまうので、配電系統の電圧を適正に維持できなくなる。   When the reverse power flow becomes significant in the distribution substation, the voltage of the distribution line rises. However, since the relay calculation is performed using the positive current effective value with the 90 relay characteristics shown in FIG. Since it is determined that it is “large” and tap switching is performed to amplify the voltage rise, the voltage of the distribution system cannot be maintained properly.

本発明は上記課題を解決するものであり、その目的は、逆潮流発生時に配電線電圧上昇を抑えて適切な電圧制御を行うことができる配電線の電圧制御装置、電圧制御方法を提供することにある。   The present invention solves the above problems, and an object thereof is to provide a voltage control device and a voltage control method for a distribution line that can perform appropriate voltage control while suppressing an increase in the distribution line voltage when a reverse power flow occurs. It is in.

上記課題を解決するための請求項1に記載の配電線の電圧制御装置は、1次側が上位系統に、2次側が配電系統に各々接続された変圧器のタップを切り替えて配電線の電圧を制御する装置であって、前記配電線の電流と電圧の位相差を演算する位相差演算部と、前記配電線の電流の実効値を演算する電流実効値演算部と、前記位相差演算部で演算された位相差に基づいて潮流の向きを判定し、順潮流であると判定されたときは正符号を出力し、逆潮流であると判定されたときは負符号を出力する逆潮流継電器と、前記電流実効値演算部で演算された電流実効値に、前記逆潮流継電器から出力される正又は負の符号を掛け合わせた符号付電流実効値を入力とし、該入力された符号付電流実効値に対する目標出力電圧の整定値が、前記符号付電流実効値の負側最大設定値から正側最大設定値にかけて上昇する電圧特性に整定され、目標出力電圧に応じて前記変圧器のタップを切り替える電圧調整用継電器と、を備えたことを特徴としている。   The distribution line voltage control apparatus according to claim 1 for solving the above-mentioned problem is to switch the voltage of the distribution line by switching the taps of the transformer respectively connected to the upper system on the primary side and to the distribution system on the secondary side. A phase difference calculating unit that calculates a phase difference between current and voltage of the distribution line, a current effective value calculation unit that calculates an effective value of the current of the distribution line, and the phase difference calculating unit. A reverse flow relay that determines the direction of the tidal current based on the calculated phase difference, outputs a positive sign when it is determined to be a forward power flow, and outputs a negative sign when it is determined to be a reverse power flow. The signed effective current value obtained by multiplying the effective current value calculated by the effective current value calculation unit by the positive or negative sign output from the reverse flow relay is input. The set value of the target output voltage relative to the value is the signed current A voltage adjusting relay that is set to a voltage characteristic that increases from a negative maximum set value of the effective value to a positive maximum set value and that switches the tap of the transformer according to a target output voltage. .

また請求項11に記載の配電線の電圧制御方法は、入力電流に対する目標出力電圧の整定値が、入力電流の負側最大設定値から正側最大設定値にかけて上昇する電圧特性に整定され、1次側が上位系統に、2次側が配電系統に各々接続された変圧器のタップを切り替える電圧調整用継電器を備え、配電線の電圧を制御する装置における電圧制御方法であって、位相差演算部が前記配電線の電流と電圧の位相差を演算する位相差演算ステップと、電流実効値演算部が前記配電線の電流の実効値を演算する電流実効値演算ステップと、逆潮流継電器が、前記位相差演算ステップで演算された位相差に基づいて潮流の向きを判定し、順潮流であると判定されたときは正符号を出力し、逆潮流であると判定されたときは負符号を出力するステップと、乗算器が、前記電流実効値演算ステップで演算された電流実効値に、前記逆潮流継電器から出力された正又は負の符号を掛け合わせて符号付電流実効値を出力するステップと、前記電圧調整用継電器が、前記出力された符号付電流実効値を入力とし、該入力電流に対応して整定された目標出力電圧に応じて前記変圧器のタップを切り替えるステップと、を備えたことを特徴としている。   In the voltage control method for a distribution line according to claim 11, the set value of the target output voltage with respect to the input current is set to a voltage characteristic that increases from the negative side maximum set value to the positive side maximum set value. A voltage control method in a device for controlling a voltage of a distribution line, comprising a voltage adjustment relay for switching a tap of a transformer connected to a secondary system on a secondary side and a distribution side on a secondary side, wherein a phase difference calculation unit includes: A phase difference calculation step for calculating a phase difference between the current and voltage of the distribution line, a current effective value calculation step for a current effective value calculation unit to calculate an effective value of the current of the distribution line, and a reverse power flow relay, The direction of the tidal current is determined based on the phase difference calculated in the phase difference calculating step, and a positive sign is output when it is determined to be a forward power flow, and a negative sign is output when it is determined to be a reverse power flow. Steps, A calculator that multiplies the current effective value calculated in the current effective value calculating step by a positive or negative sign output from the reverse power relay and outputs a signed current effective value; and the voltage adjustment. And a relay for switching the transformer tap according to a target output voltage set in accordance with the input current, wherein the output signed current effective value is an input. Yes.

また請求項3に記載の配電線の電圧制御装置は、前記逆潮流継電器は、前記位相差演算部で演算された位相差と前記電流実効値演算部で演算された電流実効値とに基づいて潮流の向きを判定することを特徴としている。   The voltage control device for a distribution line according to claim 3, wherein the reverse power relay is based on a phase difference calculated by the phase difference calculation unit and a current effective value calculated by the current effective value calculation unit. It is characterized by determining the direction of the tidal current.

また請求項4に記載の配電線の電圧制御装置は、前記位相差演算部、電流実効値演算部および逆潮流継電器は前記電圧調整用継電器内に内蔵されていることを特徴としている。   The voltage control device for a distribution line according to claim 4 is characterized in that the phase difference calculation unit, the current effective value calculation unit, and the reverse flow relay are built in the voltage adjustment relay.

また請求項8に記載の配電線の電圧制御装置は、前記逆潮流継電器は、前記位相差が90度以上である場合に逆潮流であると判定することを特徴としている。   The voltage control device for a distribution line according to claim 8 is characterized in that the reverse flow relay determines that the reverse flow is a reverse flow when the phase difference is 90 degrees or more.

上記構成によれば、電圧調整用継電器(90リレー)の電圧−電流特性を負の電流領域に拡張し、逆潮流継電器によって潮流方向を判定した結果、順潮流時は正の電流、逆潮流時は負の電流として電圧調整用継電器に導入するようにしたので、逆潮流発生時に配電線電圧上昇を抑えて適切な電圧制御を行うことができる。   According to the above configuration, as a result of extending the voltage-current characteristic of the voltage adjusting relay (90 relay) to the negative current region and determining the power flow direction by the reverse power relay, the forward current is a positive current and the reverse power is Is introduced into the voltage adjusting relay as a negative current, so that it is possible to perform appropriate voltage control by suppressing an increase in distribution line voltage when a reverse power flow occurs.

また請求項2に記載の配電線の電圧制御装置は、1次側が上位系統に、2次側が配電系統に各々接続された変圧器のタップを切り替えて配電線の電圧を制御する装置であって、前記配電線の電流と電圧の位相差を演算する位相差演算部と、前記配電線の電流の実効値を演算する電流実効値演算部と、前記位相差演算部で演算された位相差に基づいて潮流の向きを判定し、順潮流か逆潮流かの判定結果に応じて電圧調整用継電器の整定特性を切り替えるための切替信号を出力する逆潮流継電器と、前記電流実効値演算部で演算された電流実効値を入力とし、該入力された電流実効値に対する目標出力電圧の整定値が、第1の最小電流設定値から第1の最大電流設定値にかけて上昇する順潮流特性と、第2の最小電流設定値から第2の最大電流設定値にかけて下降する逆潮流特性とに整定され、前記逆潮流継電器からの切替信号によって切り替えられた順潮流特性又は逆潮流特性の目標出力電圧に応じて前記変圧器のタップを切り替える電圧調整用継電器と、を備えたことを特徴としている。   Further, the distribution line voltage control device according to claim 2 is a device for controlling the voltage of the distribution line by switching taps of the transformers respectively connected to the upper system on the primary side and to the distribution system on the secondary side. The phase difference calculation unit that calculates the phase difference between the current and voltage of the distribution line, the current effective value calculation unit that calculates the effective value of the current of the distribution line, and the phase difference calculated by the phase difference calculation unit Based on the determination result of forward or reverse flow, the reverse flow relay that outputs a switching signal for switching the settling characteristics of the voltage adjustment relay according to the determination result of forward flow or reverse flow, and the current effective value calculation unit A forward current characteristic in which a set value of a target output voltage with respect to the input current effective value increases from a first minimum current set value to a first maximum current set value; From the minimum current setting value to the second maximum current setting A voltage adjusting relay that switches the tap of the transformer in accordance with a target output voltage of a forward flow characteristic or a reverse flow characteristic that is set to a reverse flow characteristic that falls to a value and is switched by a switching signal from the reverse power relay; It is characterized by having.

また請求項12に記載の配電線の電圧制御方法は、入力電流に対する目標出力電圧の整定値が、第1の最小電流設定値から第1の最大電流設定値にかけて上昇する順潮流特性と、第2の最小電流設定値から第2の最大電流設定値にかけて下降する逆潮流特性とに整定され、1次側が上位系統に、2次側が配電系統に各々接続された変圧器のタップを切り替える電圧調整用継電器を備え、配電線の電圧を制御する装置における電圧制御方法であって、位相差演算部が前記配電線の電流と電圧の位相差を演算する位相差演算ステップと、電流実効値演算部が前記配電線の電流の実効値を演算する電流実効値演算ステップと、逆潮流継電器が、前記位相差演算ステップで演算された位相差に基づいて潮流の向きを判定し、順潮流か逆潮流かの判定結果に応じて電圧調整用継電器の整定特性を切り替えるための切替信号を出力するステップと、前記電圧調整用継電器が、前記電流実効値演算ステップで演算された電流実効値を入力とし、前記逆潮流継電器から出力された切替信号によって切り替えられた順潮流特性又は逆潮流特性の目標出力電圧に応じて前記変圧器のタップを切り替えるステップと、を備えたことを特徴としている。   The voltage control method for a distribution line according to claim 12 includes a forward power flow characteristic in which a set value of a target output voltage with respect to an input current increases from a first minimum current set value to a first maximum current set value; Voltage adjustment that switches to the reverse power flow characteristic that decreases from the minimum current setting value of 2 to the second maximum current setting value, and switches the taps of the transformers that are respectively connected to the upper system on the primary side and the distribution system on the secondary side A voltage control method in a device including a relay for controlling a voltage of a distribution line, wherein a phase difference calculation unit calculates a phase difference between a current and a voltage of the distribution line, and a current effective value calculation unit A current effective value calculating step for calculating an effective value of the current of the distribution line, and a reverse power relay determines a direction of power flow based on the phase difference calculated in the phase difference calculating step, and a forward power flow or a reverse power flow Judgment result A step of outputting a switching signal for switching the setting characteristics of the voltage adjustment relay according to the voltage adjustment relay, the voltage adjustment relay having the current effective value calculated in the current effective value calculation step as an input, and the reverse power flow relay Switching the tap of the transformer in accordance with the target output voltage of the forward flow characteristic or the reverse flow characteristic switched by the switching signal output from.

上記構成によれば、逆潮流継電器の判定結果に応じて電圧調整用継電器の順潮流特性と逆潮流特性を切り替えているので、電流実効値を負側に拡張することなく、逆潮流発生時の配電線電圧上昇を抑えて適切な電圧制御を行うことができる。   According to the above configuration, since the forward flow characteristic and the reverse flow characteristic of the voltage adjustment relay are switched according to the determination result of the reverse flow relay, the current effective value is not negatively expanded to the negative side. Appropriate voltage control can be performed while suppressing an increase in the distribution line voltage.

また請求項5に記載の配電線の電圧制御装置は、前記電圧調整用継電器の出力電圧整定値は、入力電流が零に近い設定範囲において、出力電圧を増減させない領域が設定されていることを特徴としている。   Further, in the voltage control device for a distribution line according to claim 5, the output voltage set value of the voltage adjusting relay is set in a region where the input voltage is not increased or decreased in a setting range where the input current is close to zero. It is a feature.

上記構成によれば、潮流方向が例えば頻繁に切り替わって、順潮流と逆潮流の間を行き来する場合は、電圧調整用継電器に設定されている前記出力電圧を増減させない領域が不感帯として作用するので、電圧変動は発生せず安定した制御結果を得ることができる。   According to the above configuration, when the power flow direction is switched frequently, for example, when the current flows back and forth between the forward power flow and the reverse power flow, the region where the output voltage set in the voltage adjusting relay is not increased or decreased acts as a dead zone. A stable control result can be obtained without voltage fluctuation.

また請求項6に記載の配電線の電圧制御装置は、前記電圧調整用継電器の出力電圧整定値は、前記符号付電流実効値の正側と負側とで勾配を変更していることを特徴としている。   The voltage control device for a distribution line according to claim 6 is characterized in that the output voltage set value of the voltage adjusting relay is changed in slope between the positive side and the negative side of the signed current effective value. It is said.

また請求項7に記載の配電線の電圧制御装置は、前記電圧調整用継電器の出力電圧整定値は、前記順潮流特性と逆潮流特性とで勾配の度合いを変更していることを特徴としている。   The voltage control device for a distribution line according to claim 7 is characterized in that the output voltage set value of the voltage adjusting relay changes the degree of gradient between the forward flow characteristic and the reverse flow characteristic. .

上記構成によれば、例えば負荷や再生可能エネルギー電源の分布によって、逆潮流側において、順潮流側よりも変電所の電流に対する配電線末端の電圧変化が大きい場合や、逆に順潮流側よりも変電所の電流に対する配電線末端の電圧変化が小さい場合に、良好な電圧制御が行える。   According to the above configuration, for example, due to the distribution of the load and the renewable energy power source, when the reverse power flow side has a larger voltage change at the end of the distribution line with respect to the current of the substation than the forward power flow side, or vice versa Good voltage control can be performed when the voltage change at the end of the distribution line with respect to the current at the substation is small.

また請求項9に記載の配電線の電圧制御装置は、前記逆潮流継電器は、前記位相差が90度以上であり、かつ前記電流実効値が設定値以上である場合に逆潮流であると判定することを特徴としている。   The voltage control device for a distribution line according to claim 9 determines that the reverse power relay is a reverse power flow when the phase difference is 90 degrees or more and the current effective value is a set value or more. It is characterized by doing.

上記構成によれば、電流実効値が設定値未満の小さい領域では、微小な電流変化により順潮流⇔逆潮流が頻繁に入れ替わったり、相対的に検出誤差が大きくなることで、位相差演算部の演算結果に誤差が出やすいが、これらの微小な電流変化や誤差による潮流方向の誤判定や順潮流⇔逆潮流判定のハンチングを防ぐことができ、逆潮流発生を警報出力する場合に不要な発報を防ぐこともできる。   According to the above configuration, in a small region where the effective current value is less than the set value, the forward current flow and the reverse power flow are frequently switched due to a minute current change, or the detection error becomes relatively large. Although errors are likely to occur in the calculation results, it is possible to prevent erroneous judgment of the tidal current direction and hunting of forward tidal current and reverse tidal current judgment due to these minute current changes and errors. You can also prevent information.

また請求項10に記載の配電線の電圧制御装置は、前記逆潮流継電器は、前記位相差演算部で演算された位相差が90°+α°(α°は設定した裕度)以上の場合に逆潮流と判定し、それ以外の場合は順潮流と判定することを特徴としている。   The voltage control device for a distribution line according to claim 10, wherein the reverse power relay is configured such that the phase difference calculated by the phase difference calculation unit is 90 ° + α ° (α ° is a set tolerance) or more. It is characterized by determining a reverse power flow, and otherwise determining a forward power flow.

上記構成によれば、位相差演算部の演算誤差を考慮した裕度を持たせているので、逆潮流の誤検出を回避することができる。   According to the above-described configuration, since a margin in consideration of the calculation error of the phase difference calculation unit is provided, it is possible to avoid erroneous detection of reverse power flow.

(1)請求項1〜12に記載の発明によれば、逆潮流発生時に配電線電圧上昇を抑えて適切な電圧制御を行うことができる。
(2)請求項2、12に記載の発明によれば、電流実効値を負側に拡張することなく、逆潮流発生時の配電線電圧上昇を抑えて適切な電圧制御を行うことができる。
(3)請求項5に記載の発明によれば、順潮流と逆潮流の間を行き来する場合でも、電圧変動は発生せず安定した制御結果を得ることができる。これによって、順潮流と逆潮流とで配電線電圧特性が異なる系統や、無効電流の多い系統において電圧制御効果が向上する。
(4)請求項6、7に記載の発明によれば、逆潮流側と順潮流側で変電所の電流に対する配電線末端の電圧変化が異なる場合に、良好な電圧制御が行える。
(5)請求項9に記載の発明によれば、潮流方向の誤判定、および順潮流⇔逆潮流判定のハンチングおよび逆潮流警報の不要な発報を防ぐことができる。
(6)請求項10に記載の発明によれば、位相差に裕度を持たせているので、逆潮流の誤検出を回避することができる。
(1) According to the first to twelfth aspects of the present invention, appropriate voltage control can be performed while suppressing an increase in the distribution line voltage when a reverse power flow occurs.
(2) According to the inventions described in claims 2 and 12, appropriate voltage control can be performed without increasing the effective current value to the negative side and suppressing an increase in distribution line voltage when a reverse power flow occurs.
(3) According to the invention described in claim 5, even when going back and forth between the forward power flow and the reverse power flow, voltage fluctuation does not occur and a stable control result can be obtained. As a result, the voltage control effect is improved in a system in which the distribution line voltage characteristics are different between the forward power flow and the reverse power flow or in a system with many reactive currents.
(4) According to the inventions described in claims 6 and 7, good voltage control can be performed when the voltage change at the end of the distribution line with respect to the current at the substation is different between the reverse power flow side and the forward power flow side.
(5) According to the invention described in claim 9, it is possible to prevent erroneous determination of the tidal direction, hunting of the forward power flow / reverse power flow determination, and unnecessary reporting of the reverse power flow warning.
(6) According to the invention described in claim 10, since the phase difference has a margin, erroneous detection of reverse power flow can be avoided.

本発明の実施例1における90リレーの電圧−電流特性図。The voltage-current characteristic view of 90 relay in Example 1 of this invention. 本発明の実施例1の要部構成を表し、電流実効値演算のブロック図。The block diagram of the effective current value calculation showing the principal part structure of Example 1 of this invention. 本発明の実施例1における逆潮流リレーの特性を示す複素平面図。The complex top view which shows the characteristic of the reverse power flow relay in Example 1 of this invention. 本発明の実施例1と従来の電圧制御結果の差異を説明するための電圧−電流特性図。The voltage-current characteristic view for demonstrating the difference of Example 1 of this invention and the conventional voltage control result. 本発明の実施例2において、無効電流を多く含む場合の電流位相特性図。In Example 2 of this invention, the current phase characteristic figure in the case of containing many reactive currents. 本発明の実施例2における90リレーの電圧−電流特性図。The voltage-current characteristic view of 90 relay in Example 2 of this invention. 本発明の実施例2と実施例1の電圧制御結果の差異を説明するための電圧−電流特性図。The voltage-current characteristic view for demonstrating the difference of the voltage control result of Example 2 and Example 1 of this invention. 本発明の実施例3における、順潮流と逆潮流で配電線の電圧特性が異なる例を示す説明図。Explanatory drawing which shows the example from which the voltage characteristic of a distribution line differs in the forward power flow and the reverse power flow in Example 3 of this invention. 本発明の実施例3における90リレーの電圧−電流特性図。The voltage-current characteristic view of 90 relay in Example 3 of this invention. 本発明の実施例4の要部構成を表し、電流実効値演算のブロック図。The block diagram of the effective current value calculation showing the principal part structure of Example 4 of this invention. 本発明の実施例4における逆潮流リレーの特性を示す複素平面図。The complex top view which shows the characteristic of the reverse power flow relay in Example 4 of this invention. 本発明の実施例5の構成を示すブロック図。The block diagram which shows the structure of Example 5 of this invention. 本発明の実施例5における90リレーの電圧−電流特性図。The voltage-current characteristic view of 90 relay in Example 5 of this invention. 位相差演算誤差による逆潮流リレーでの誤判定を説明する複素平面図。The complex top view explaining the misjudgment in the reverse power flow relay by phase difference calculation error. 本発明の実施例6における逆潮流リレーの特性の一例を示す複素平面図。The complex top view which shows an example of the characteristic of the reverse power relay in Example 6 of this invention. 本発明の実施例6における逆潮流リレーの特性の他の例を示す複素平面図。The complex top view which shows the other example of the characteristic of the reverse power relay in Example 6 of this invention. 従来の90リレーの電圧−電流特性図。The voltage-current characteristic view of the conventional 90 relay. 順潮流・逆潮流時の電圧・電流位相関係を示す複素平面図。The complex top view which shows the voltage-current phase relationship at the time of a forward power flow and a reverse power flow. 順潮流・逆潮流時の配電線電圧分布を示す説明図。Explanatory drawing which shows the distribution line voltage distribution at the time of forward power flow / reverse power flow. 従来の90リレーにおける電流実効値演算の説明図。Explanatory drawing of the current effective value calculation in the conventional 90 relay.

以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。以下の実施例では、本発明を、1次側が上位系統に、2次側が配電系統に各々接続された変圧器のタップを切り替えて配電線の電圧を制御する90リレー(電圧調整用継電器)に適用した実施例を説明するが、本発明はこれに限らず90リレーと同様の機能を有した装置に適用してもよい。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. In the following embodiments, the present invention is applied to a 90 relay (voltage adjusting relay) that controls the voltage of the distribution line by switching the taps of the transformer connected to the upper system on the primary side and the distribution system on the secondary side. Although an applied embodiment will be described, the present invention is not limited to this and may be applied to a device having the same function as a 90 relay.

本実施例1では、90リレー(電圧調整用継電器)の電圧−電流特性を、従来の図17の特性に代えて、図1に示すように負の電流領域に拡張し、順潮流時は正の電流、逆潮流時は負の電流として演算することで、逆潮流時に適切な電圧制御を行うことができるように構成した。   In the first embodiment, the voltage-current characteristic of the 90 relay (voltage adjusting relay) is expanded to a negative current region as shown in FIG. 1 instead of the conventional characteristic of FIG. By calculating as a negative current during reverse current flow, it was configured to enable appropriate voltage control during reverse flow.

90リレーに導入される電流の実効値演算は、従来は図20のように配電線電流を変流器などにより検出した瞬時値を電流実効値演算部11によって実効値演算し、正の電流実効値(符号なし実効値)としていた。   The effective value calculation of the current introduced into the 90 relay is conventionally performed by calculating the effective value of the instantaneous value obtained by detecting the distribution line current with a current transformer as shown in FIG. Value (effective value without sign).

これに対し本発明では、実効値演算結果に負の値を持たせるために、図2に示すように、配電線の電圧(検出電圧の瞬時値)と電流(検出電流の瞬時値)の位相差を位相差演算部12で演算し、その位相差に基づいて、逆潮流リレー(逆潮流継電器)13によって潮流の向きを判定し、順潮流時は1(正符号)、逆潮流時は−1(負符号)を各々出力し、それら正又は負の符号を、乗算器14において前記電流実効値演算部11で演算された正の電流実効値に掛け合わせて、負方向に拡張された実効値、すなわち符号付電流実効値とする。   On the other hand, in the present invention, in order to give a negative value to the effective value calculation result, as shown in FIG. 2, the voltage (instantaneous value of the detected voltage) and current (instantaneous value of the detected current) of the distribution line are changed. The phase difference is calculated by the phase difference calculation unit 12, and based on the phase difference, the direction of the tidal current is determined by the reverse power relay (reverse power relay) 13. The forward power is 1 (positive sign) and the reverse power is − 1 (negative sign) is output, and the positive or negative sign is multiplied by the positive current effective value calculated by the current effective value calculation unit 11 in the multiplier 14 to expand the effective value in the negative direction. Value, that is, a signed current effective value.

本実施例1における90リレーの電圧−電流特性は図1に示すように、符号付電流実効値の最小値IMIN(負値)から最大値IMAX(正値)にかけて上昇する電圧特性に整定されている。 As shown in FIG. 1, the voltage-current characteristic of the 90 relay in the first embodiment is set to a voltage characteristic that increases from the minimum value I MIN (negative value) to the maximum value I MAX (positive value) of the signed current effective value. Has been.

尚、前記電圧−電流特性の傾き度合いは任意に設定するものである。   The slope of the voltage-current characteristic is arbitrarily set.

前記逆潮流リレー13の特性は、横軸を実軸、縦軸を虚軸とする複素平面を表す図3のように、電圧と電流の位相差が90度未満の場合は順潮流であると判定し、90度以上の場合は逆潮流であると判定する。   The characteristic of the reverse power relay 13 is that when the phase difference between the voltage and the current is less than 90 degrees as shown in FIG. 3 representing a complex plane with the horizontal axis as the real axis and the vertical axis as the imaginary axis, it is a forward power flow. If it is 90 degrees or more, it is determined that the current is a reverse power flow.

上記実施例1の構成(図1、図2)により配電線の電圧を制御した場合と、従来の90リレー(図17)により配電線の電圧を制御した場合を図4の電圧−電流特性図とともに説明する。   The voltage-current characteristic diagram of FIG. 4 shows the case where the distribution line voltage is controlled by the configuration of the first embodiment (FIGS. 1 and 2) and the case where the distribution line voltage is controlled by the conventional 90 relay (FIG. 17). It explains together.

図4において、従来の90リレーでは、逆潮流が発生していると、潮流方向を考慮した実際の電流としてはAの状態であるにも関わらず、Bと判定してしまい、電圧はCに制御される。一方で、本実施例1によると、符号付電流実効値により電流をAと判定するため、Cよりも低い電圧のDに制御することができる。このため、配電系統の電圧上昇を起こしにくくすることができる。   In FIG. 4, in the conventional 90 relay, when a reverse power flow occurs, the actual current considering the power flow direction is determined to be B even though it is in the A state, and the voltage is set to C. Be controlled. On the other hand, according to the first embodiment, since the current is determined as A by the signed current effective value, it can be controlled to D having a voltage lower than C. For this reason, it is possible to make it difficult to raise the voltage of the power distribution system.

尚、90リレーの電圧−電流特性は、図1におけるIMINの整定を正にすることで、順潮流時は従来通りに変圧器のタップ切り替え制御を行い、逆潮流時は動作ロックを行うような特性を実現することも可能である。 Note that the voltage-current characteristics of the 90 relay are such that by setting the I MIN setting in FIG. 1 to be positive, the tap switching of the transformer is controlled as usual during forward power flow, and the operation is locked during reverse power flow. It is also possible to realize special characteristics.

尚、前記実効値演算部11、位相差演算部12、逆潮流リレー13および乗算器14は、90リレー(電圧調整用継電器)に内蔵されていてもよい。   The effective value calculation unit 11, the phase difference calculation unit 12, the reverse power relay 13 and the multiplier 14 may be incorporated in a 90 relay (voltage adjustment relay).

前記実施例1によって配電線電圧を制御した場合、図5の電流位相特性に示すように、配電線電流に無効電流成分が多く含まれると、潮流の向きが変わる前後において、電流が値を持った状態で符号が変化する(図2の乗算器14の出力が変化する)ジャンプが発生する可能性がある。   When the distribution line voltage is controlled according to the first embodiment, as shown in the current phase characteristic of FIG. 5, if the distribution line current includes a lot of reactive current components, the current has a value before and after the direction of the power flow is changed. There is a possibility that a jump occurs in which the sign changes (the output of the multiplier 14 in FIG. 2 changes).

そこで本実施例2では、90リレーの電圧−電流特性に、図6に示すように、順逆潮流の境目に不感帯を持たせるように構成した。図6において、90リレーの出力電圧整定値は、符号付電流実効値が零に近い正側および負側を含む設定範囲、すなわち負側最小設定値IN_MINから正側最小設定値IP_MINまでの範囲を、出力電圧を増減させない(不感帯)領域として設定している。 Thus, in the second embodiment, the voltage-current characteristics of the 90 relay are configured to have a dead zone at the boundary of forward and reverse power flow as shown in FIG. In FIG. 6, the output voltage set value of the 90 relay is a set range including a positive side and a negative side where the signed current effective value is close to zero, that is, from the negative side minimum setting value I N_MIN to the positive side minimum setting value I P_MIN . The range is set as a region where the output voltage is not increased or decreased (dead zone).

上記実施例2の構成(図6)により配電線の電圧を制御した場合と実施例1の90リレー(図1)により配電線の電圧を制御した場合を図7の電圧−電流特性図とともに説明する。   The case where the voltage of the distribution line is controlled by the configuration of the second embodiment (FIG. 6) and the case where the voltage of the distribution line is controlled by the 90 relay (FIG. 1) of the first embodiment will be described together with the voltage-current characteristic diagram of FIG. To do.

図7において、順潮流と逆潮流の間を行き来するような状態の時に、実施例2の方式ではAとA’の間を行き来することになる。実施例1ではそれに伴い電圧はBとB’の間で制御を行ってしまうために電圧変動の原因となるが、実施例2では電流A⇔A’間で電圧の目標値が変わらないため、安定した制御結果を得ることができる。   In FIG. 7, in the state of going back and forth between the forward flow and the reverse flow, the method of the second embodiment goes back and forth between A and A '. In the first embodiment, the voltage is controlled between B and B ′ in accordance with that, which causes voltage fluctuation. In the second embodiment, however, the target value of the voltage does not change between the currents A⇔A ′. Stable control results can be obtained.

以上のように実施例2によれば、90リレーの電圧−電流特性に電流ゼロ付近の不感帯領域を設けているため、順潮流と逆潮流で配電線電圧特性の異なる系統や無効電力の多い系統において、電圧制御効果が高められる。   As described above, according to the second embodiment, since the dead zone region near the current zero is provided in the voltage-current characteristics of the 90 relay, systems having different distribution line voltage characteristics between forward power and reverse power or systems with a large amount of reactive power In this case, the voltage control effect is enhanced.

実際の配電線では、図19のように直線的に電圧が変化するのではなく、負荷や再生可能エネルギー電源の分布によって図8に示すようにカーブを持って変化することが多く、順潮流側と逆潮流側で90リレーの特性を変更した方が望ましい場合がある。   In actual distribution lines, the voltage does not change linearly as shown in FIG. 19, but often changes with a curve as shown in FIG. 8 depending on the distribution of loads and renewable energy power sources. It may be desirable to change the characteristics of the 90 relay on the reverse power flow side.

図8は順潮流と逆潮流で配電線の電圧特性が異なる例を表し、図8(b)の横軸は距離、縦軸は電圧の大きさを示している。図8は、変電所の電流に対する配電線末端の電圧変化が、順潮流側よりも逆潮流側の方が大きい例を示している。   FIG. 8 shows an example in which the voltage characteristics of the distribution line are different between the forward flow and the reverse flow. In FIG. 8B, the horizontal axis indicates the distance, and the vertical axis indicates the voltage magnitude. FIG. 8 shows an example in which the voltage change at the end of the distribution line with respect to the current at the substation is larger on the reverse power flow side than on the forward power flow side.

このような場合、90リレーの電圧−電流特性の勾配を、逆潮流側できつくした方が良好な電圧制御が行える。   In such a case, better voltage control can be achieved if the gradient of the voltage-current characteristic of the 90 relay is made tight on the reverse power flow side.

そこで本実施例3では、90リレーの電圧−電流特性を図9に示すように、符号付電流実効値の負側最大値IN_MAXから負側最小値IN_MINまでの範囲で電圧−電流特性の勾配を急に設定した。その他の電流範囲内(負側最小値IN_MINから正側最大値IP_MAXまでの範囲内)は図6と同様に設定されている。 Therefore, in the third embodiment, the voltage-current characteristics of the 90 relay are as shown in FIG. 9 with the voltage-current characteristics in the range from the negative maximum value I N_MAX to the negative minimum value I N_MIN of the signed current effective value. The slope was set suddenly. The other current ranges (within the range from the negative side minimum value I N_MIN to the positive side maximum value I P_MAX ) are set in the same manner as in FIG.

図9の特性によって電圧制御を行うことにより、変電所の電流に対する配電線末端の電圧変化が、順潮流側よりも逆潮流側の方が大きい場合に、良好な電圧制御が行える。   By performing voltage control according to the characteristics shown in FIG. 9, good voltage control can be performed when the voltage change at the end of the distribution line with respect to the current at the substation is larger on the reverse flow side than on the forward flow side.

尚、90リレーの電圧−電流特性において、実施例2(図6)における不感帯領域の設定幅や、実施例3(図9)における急勾配の傾き度合いおよび急勾配領域の範囲は、図6、図9に限らず任意に設定するものである。   In the voltage-current characteristics of 90 relay, the setting range of the dead zone in Example 2 (FIG. 6), the steep slope degree in Example 3 (FIG. 9), and the range of the steep slope region are shown in FIG. It is not limited to FIG. 9 and is set arbitrarily.

配電線の電流が小さい領域では、相対的に検出誤差が大きくなり図2の位相差演算部12の演算結果に誤差がでやすい。また、微小な電流変化により順潮流⇔逆潮流間のハンチングを起こす場合もある。そこで本実施例4では、図10に示すように、逆潮流リレー23の入力に電流実効値演算部11で演算された正の電流実効値を追加し、逆潮流リレー23の特性を、横軸を実軸、縦軸を虚軸とする複素平面を表した図11のように、電圧と電流の位相差が90度以上で且つ電流実効値が設定値より小さい場合に不感帯を持つ特性とした。そしてこの不感帯領域では順潮流と判定し「1」を出力するものである。   In the region where the current of the distribution line is small, the detection error is relatively large, and the calculation result of the phase difference calculation unit 12 in FIG. In addition, hunting between forward and reverse flow may occur due to a small current change. Therefore, in the fourth embodiment, as shown in FIG. 10, the positive current effective value calculated by the current effective value calculation unit 11 is added to the input of the reverse flow relay 23, and the characteristics of the reverse flow relay 23 are plotted on the horizontal axis. As shown in FIG. 11, which represents a complex plane with the real axis as the real axis and the vertical axis as the imaginary axis, a characteristic having a dead zone is obtained when the phase difference between the voltage and current is 90 degrees or more and the current effective value is smaller than the set value. . In this dead zone region, it is determined that the current is a forward tide and “1” is output.

このように逆潮流リレー23の特性を、不感帯を有した図11の特性とすることにより、前記誤差によって逆潮流リレー23が潮流方向を誤って判定することは防止される。また、微小な電流変化によっても引き起こされる順潮流⇔逆潮流判定のハンチングを防ぐことができ、逆潮流発生を警報出力する場合に不要な発報を防ぐこともできる。   Thus, by making the characteristic of the reverse flow relay 23 the characteristic of FIG. 11 having a dead zone, the reverse flow relay 23 is prevented from erroneously determining the flow direction due to the error. Moreover, it is possible to prevent hunting of forward / reverse flow determination caused by a minute current change, and it is possible to prevent unnecessary notification when a reverse flow occurrence is output as an alarm.

尚、図11のように逆潮流リレー23の特性に不感帯を設けても、その不感帯は電流が小さい範囲であるため、90リレーの電圧−電流特性上あまり目標電圧は変わらないことから、不感帯とすることによる問題は生じない。   Even if a dead zone is provided in the characteristics of the reverse flow relay 23 as shown in FIG. 11, since the dead zone is a range where the current is small, the target voltage does not change so much in the voltage-current characteristics of the 90 relay. There is no problem with doing this.

本実施例5では、逆潮流リレーの潮流方向判定結果を、実施例1〜実施例4のように正、負符号の出力とすることに代えて、図12に示すように、90リレーにおける目標電圧演算部の90リレー特性切替信号として用いることで、電流実効値を負側に拡張しなくても本発明の効果が得られるように構成した。図12において、図2、図10と同一部分は同一符号をもって示している。   In the fifth embodiment, instead of setting the power flow direction determination result of the reverse power flow relay to output positive and negative signs as in the first to fourth embodiments, as shown in FIG. By using it as the 90 relay characteristic switching signal of the voltage calculation unit, the effect of the present invention can be obtained without extending the effective current value to the negative side. 12, the same parts as those in FIGS. 2 and 10 are denoted by the same reference numerals.

30は90リレーにおける目標電圧演算部であり、電流実効値演算部11で演算された電流(符号なし実効値)を入力とし、90リレーの電圧−電流特性に沿った目標電圧を出力する。   Reference numeral 30 denotes a target voltage calculation unit in the 90 relay, which receives the current (unsigned effective value) calculated by the current effective value calculation unit 11 and outputs a target voltage in accordance with the voltage-current characteristics of the 90 relay.

この目標電圧演算部30で用いる90リレーの電圧−電流特性は、図13に示すように順潮流と逆潮流の2種類の特性を有しており、順潮流特性は、図6の正電流領域に示す正側最小設定値IP_MINに相当する第1の最小設定値から正側最大設定値IP_MAXに相当する第1の最大設定値にかけて上昇する特性に整定され、逆潮流特性は、図6の負電流領域に示す負側最小設定値IN_MINの絶対値に相当する第2の最小設定値から負側最大設定値IN_MAXの絶対値に相当する第2の最大設定値にかけて下降する特性に整定されている。 As shown in FIG. 13, the voltage-current characteristics of the 90 relay used in the target voltage calculation unit 30 have two types of characteristics, a forward power flow and a reverse power flow. 6 is set to a characteristic that increases from the first minimum setting value corresponding to the positive-side minimum setting value I P_MIN to the first maximum setting value corresponding to the positive-side maximum setting value I P_MAX . The characteristic decreases from the second minimum setting value corresponding to the absolute value of the negative side minimum setting value I N_MIN shown in the negative current region to the second maximum setting value corresponding to the absolute value of the negative side maximum setting value I N_MAX. Settling.

また、順潮流特性におけるIP_MINに相当する第1の最小設定値から電流零までの範囲と、逆潮流特性におけるIN_MINの絶対値に相当する第2の最小設定値から電流零までの範囲とを、出力電圧を増減させない(不感帯)領域として設定している。 In addition, the range from the first minimum set value corresponding to I P_MIN in the forward flow characteristics to zero current, and the range from the second minimum set value corresponding to the absolute value of I N_MIN in the reverse flow characteristics to zero current Is set as a region where the output voltage is not increased or decreased (dead zone).

したがって、図13の順潮流特性は図6の正電流領域の電圧特性と等価であり、逆潮流特性は図6の負電流領域の電圧特性と等価である。   Therefore, the forward flow characteristic in FIG. 13 is equivalent to the voltage characteristic in the positive current region in FIG. 6, and the reverse flow characteristic is equivalent to the voltage characteristic in the negative current region in FIG.

33は、位相差演算部12で演算された位相差に基づくか、又は前記位相差および電流実効値演算部11で演算された正の電流実効値に基づいて、潮流の向きを判定し、その判定結果に応じて特性切替指令(切替信号)を出力し、判定結果が順潮流であるときは目標電圧演算部30の90リレー特性を順潮流特性に切り替え、判定結果が逆潮流であるときは目標電圧演算部30の90リレー特性を逆潮流特性に切り替える逆潮流リレーである。   33 determines the direction of the power flow based on the phase difference calculated by the phase difference calculation unit 12 or based on the positive current effective value calculated by the phase difference and the current effective value calculation unit 11, A characteristic switching command (switching signal) is output according to the determination result. When the determination result is a forward power flow, the 90 relay characteristic of the target voltage calculation unit 30 is switched to the forward power flow characteristic, and when the determination result is a reverse power flow This is a reverse flow relay that switches the 90 relay characteristic of the target voltage calculation unit 30 to the reverse flow characteristic.

前記逆潮流リレー33の入力を、位相差演算部12の出力のみとした場合は、前記図3に示すリレー特性となる。また、前記逆潮流リレー33の入力を、電流実効値演算部11と位相差演算部12の両方の出力とした場合は、前記図11に示す不感帯を有したリレー特性となり、この不感帯領域では順潮流と判定するものである。   When the input to the reverse flow relay 33 is only the output of the phase difference calculation unit 12, the relay characteristics shown in FIG. 3 are obtained. Further, when the input of the reverse power relay 33 is the output of both the effective current value calculation unit 11 and the phase difference calculation unit 12, the relay characteristic having the dead band shown in FIG. It is determined to be a tidal current.

上記のように構成することにより、電流実効値に符号のない従来の演算方式のままで本発明の効果を得ることができる。   By configuring as described above, the effect of the present invention can be obtained with the conventional calculation method without a sign in the effective current value.

尚、目標電圧演算部30に設定される90リレーの電圧−電流特性(順潮流特性、逆潮流特性)の傾き度合いは任意に設定されるものである。例えば図13の逆潮流特性を、図9の負電流領域の電圧特性のように特性勾配を急に設定してもよい。   Note that the slope degree of the voltage-current characteristics (forward power flow characteristics, reverse power flow characteristics) of the 90 relay set in the target voltage calculation unit 30 is arbitrarily set. For example, the reverse flow characteristic shown in FIG. 13 may be set abruptly like the voltage characteristic in the negative current region shown in FIG.

前記実施例では、逆潮流リレー13、23の逆潮流判定を図3、図11の複素平面の左側の部分、すなわち電圧と電流の位相差が90度以上の場合(図11では不感帯を除いた部分)に逆潮流であると判定していた。   In the above embodiment, the reverse power flow determination of the reverse power relays 13 and 23 is performed on the left side of the complex plane of FIGS. 3 and 11, that is, when the phase difference between the voltage and the current is 90 degrees or more (in FIG. 11, the dead zone is excluded) (Part) was determined to be a reverse current.

実際には、リレー演算(位相差演算部12の演算)においては、位相角計算結果に誤差が含まれるため、誤った潮流判定を行う可能性がある。   Actually, in the relay calculation (the calculation of the phase difference calculation unit 12), an error is included in the phase angle calculation result, and thus there is a possibility that an erroneous power flow determination is performed.

例えば、複素平面上で電圧と電流の位相差を示す図14において、電流Iの真の位相角がA点であるにも関わらず、位相差演算部12の演算誤差によりB点と算出した場合、順潮流であるにも関わらず逆潮流と判定してしまう。   For example, in FIG. 14 showing the phase difference between voltage and current on the complex plane, when the true phase angle of the current I is point A, the point B is calculated by the calculation error of the phase difference calculation unit 12. Even though it is a forward tide, it is determined to be a reverse tide.

そこで本実施例6では、複素平面上で逆潮流リレーの特性を示す図15のように、逆潮流側の判定位相角に余裕を持たせ、電圧と電流の位相差が90°+α°(α°は設定した裕度)以上の場合に逆潮流であると判定し、それ以外の場合は順潮流と判定するように構成した。   Therefore, in the sixth embodiment, as shown in FIG. 15 showing the characteristics of the reverse flow relay on the complex plane, a margin is provided for the determination phase angle on the reverse flow side, and the phase difference between the voltage and the current is 90 ° + α ° (α It was determined that the reverse flow was determined when the angle was greater than the set tolerance (°), and the forward flow was determined otherwise.

また、図11のように不感帯を持たせたリレー特性においても、複素平面上で逆潮流リレーの特性を示す図16のように、逆潮流側の判定位相角に余裕を持たせ、電圧と電流の位相差が90°+α°(α°は設定した裕度)以上の場合に逆潮流であると判定し、それ以外の場合は順潮流と判定するように構成した。   In addition, in the relay characteristics with a dead band as shown in FIG. 11, as shown in FIG. 16 showing the characteristics of the reverse power relay on the complex plane, the judgment phase angle on the reverse power side is given a margin, and the voltage and current When the phase difference is 90 ° + α ° (α ° is a set tolerance) or more, it is determined that the current is a reverse power flow, and in other cases, it is determined that the current is a forward power flow.

図15、図16のように、逆潮流側の位相角に裕度α°を持たせる(逆潮流リレーの特性を、逆潮流検出側にα°オフセットした特性とする)ことによって、前記図14のように電流Iの真の位相角がA点であるにも関わらず、位相演算部12でB点と算出してしまった場合でも、逆潮流リレーにおいて誤って逆潮流であると判定することはない。   As shown in FIGS. 15 and 16, the phase angle on the reverse power flow side has a tolerance α ° (the characteristic of the reverse power relay is a characteristic offset by α ° on the reverse power flow detection side). Even when the true phase angle of the current I is the point A as described above, even if the phase calculation unit 12 calculates the point B, the reverse flow relay erroneously determines that the current is a reverse flow. There is no.

前記裕度α°は、例えば基本波特性の位相管理値を基に周波数変動による更なる位相誤差を考慮して設定するものである。   The margin α ° is set in consideration of a further phase error due to frequency variation based on the phase management value of the fundamental wave characteristic, for example.

11…電流実効値演算部
12…位相差演算部
13、23、33…逆潮流リレー
14…乗算器
30…目標電圧演算部
DESCRIPTION OF SYMBOLS 11 ... Current effective value calculating part 12 ... Phase difference calculating part 13, 23, 33 ... Reverse power flow relay 14 ... Multiplier 30 ... Target voltage calculating part

Claims (12)

1次側が上位系統に、2次側が配電系統に各々接続された変圧器のタップを切り替えて配電線の電圧を制御する装置であって、
前記配電線の電流と電圧の位相差を演算する位相差演算部と、
前記配電線の電流の実効値を演算する電流実効値演算部と、
前記位相差演算部で演算された位相差に基づいて潮流の向きを判定し、順潮流であると判定されたときは正符号を出力し、逆潮流であると判定されたときは負符号を出力する逆潮流継電器と、
前記電流実効値演算部で演算された電流実効値に、前記逆潮流継電器から出力される正又は負の符号を掛け合わせた符号付電流実効値を入力とし、該入力された符号付電流実効値に対する目標出力電圧の整定値が、前記符号付電流実効値の負側最大設定値から正側最大設定値にかけて上昇する電圧特性に整定され、目標出力電圧に応じて前記変圧器のタップを切り替える電圧調整用継電器と、
を備えたことを特徴とする配電線の電圧制御装置。
A device for controlling the voltage of the distribution line by switching the taps of the transformer connected to the primary system on the primary side and to the distribution system on the secondary side,
A phase difference calculating unit for calculating a phase difference between current and voltage of the distribution line;
A current effective value calculation unit for calculating an effective value of the current of the distribution line;
The direction of the tidal current is determined based on the phase difference calculated by the phase difference calculator, and a positive sign is output when it is determined to be a forward power flow, and a negative sign is output when it is determined to be a reverse power flow. A reverse power relay to output,
Signed current effective value obtained by multiplying the current effective value calculated by the current effective value calculation unit by a positive or negative sign output from the reverse power relay, and the input signed current effective value The set value of the target output voltage with respect to is set to a voltage characteristic that rises from the negative maximum set value of the signed current effective value to the positive maximum set value, and the voltage that switches the tap of the transformer according to the target output voltage A relay for adjustment,
A voltage control device for a distribution line, comprising:
1次側が上位系統に、2次側が配電系統に各々接続された変圧器のタップを切り替えて配電線の電圧を制御する装置であって、
前記配電線の電流と電圧の位相差を演算する位相差演算部と、
前記配電線の電流の実効値を演算する電流実効値演算部と、
前記位相差演算部で演算された位相差に基づいて潮流の向きを判定し、順潮流か逆潮流かの判定結果に応じて電圧調整用継電器の整定特性を切り替えるための切替信号を出力する逆潮流継電器と、
前記電流実効値演算部で演算された電流実効値を入力とし、該入力された電流実効値に対する目標出力電圧の整定値が、第1の最小電流設定値から第1の最大電流設定値にかけて上昇する順潮流特性と、第2の最小電流設定値から第2の最大電流設定値にかけて下降する逆潮流特性とに整定され、前記逆潮流継電器からの切替信号によって切り替えられた順潮流特性又は逆潮流特性の目標出力電圧に応じて前記変圧器のタップを切り替える電圧調整用継電器と、
を備えたことを特徴とする配電線の電圧制御装置。
A device for controlling the voltage of the distribution line by switching the taps of the transformer connected to the primary system on the primary side and to the distribution system on the secondary side,
A phase difference calculating unit for calculating a phase difference between current and voltage of the distribution line;
A current effective value calculation unit for calculating an effective value of the current of the distribution line;
Inverse to determine the direction of power flow based on the phase difference calculated by the phase difference calculation unit and to output a switching signal for switching the settling characteristics of the voltage adjustment relay according to the determination result of forward power flow or reverse power flow Tidal current relay,
The current effective value calculated by the current effective value calculation unit is input, and the set value of the target output voltage with respect to the input current effective value increases from the first minimum current set value to the first maximum current set value. Forward power characteristics or reverse power characteristics that are set by the second minimum current setting value and the reverse power characteristics that decrease from the second maximum current setting value and are switched by the switching signal from the reverse power relay. A voltage adjusting relay that switches the tap of the transformer according to a target output voltage of the characteristic;
A voltage control device for a distribution line, comprising:
前記逆潮流継電器は、前記位相差演算部で演算された位相差と前記電流実効値演算部で演算された電流実効値とに基づいて潮流の向きを判定することを特徴とする請求項1又は2に記載の配電線の電圧制御装置。   The reverse power flow relay determines the direction of power flow based on the phase difference calculated by the phase difference calculation unit and the current effective value calculated by the current effective value calculation unit. The voltage control apparatus of the distribution line of 2. 前記位相差演算部、電流実効値演算部および逆潮流継電器は前記電圧調整用継電器内に内蔵されていることを特徴とする請求項1ないし3のいずれか1項に記載の配電線の電圧制御装置。   The voltage control of a distribution line according to any one of claims 1 to 3, wherein the phase difference calculation unit, the current effective value calculation unit, and the reverse power flow relay are built in the voltage adjustment relay. apparatus. 前記電圧調整用継電器の出力電圧整定値は、入力電流が零に近い設定範囲において、出力電圧を増減させない領域が設定されていることを特徴とする請求項1ないし4のいずれか1項に記載の配電線の電圧制御装置。   5. The output voltage settling value of the voltage adjusting relay is set to a region in which the output voltage is not increased or decreased in a setting range in which the input current is close to zero. Distribution line voltage control device. 前記電圧調整用継電器の出力電圧整定値は、前記符号付電流実効値の正側と負側とで勾配を変更していることを特徴とする請求項1又は3又は4又は5に記載の配電線の電圧制御装置。   6. The distribution according to claim 1, 3, 4, or 5, wherein the output voltage set value of the voltage adjusting relay has a slope changed between a positive side and a negative side of the signed current effective value. Electric wire voltage control device. 前記電圧調整用継電器の出力電圧整定値は、前記順潮流特性と逆潮流特性とで勾配の度合いを変更していることを特徴とする請求項2ないし5のいずれか1項に記載の配電線の電圧制御装置。   The distribution line according to any one of claims 2 to 5, wherein the output voltage settling value of the voltage adjusting relay changes a degree of gradient between the forward flow characteristic and the reverse flow characteristic. Voltage control device. 前記逆潮流継電器は、前記位相差が90度以上である場合に逆潮流であると判定することを特徴とする請求項1又は2又は4又は5又は6又は7に記載の配電線の電圧制御装置。   The said reverse power relay determines that it is a reverse power flow when the said phase difference is 90 degree | times or more, The voltage control of the distribution line of Claim 1 or 2 or 4 or 5 or 6 or 7 characterized by the above-mentioned. apparatus. 前記逆潮流継電器は、前記位相差が90度以上であり、かつ前記電流実効値が設定値以上である場合に逆潮流であると判定することを特徴とする請求項3ないし7のいずれか1項に記載の配電線の電圧制御装置。   8. The reverse power relay according to claim 3, wherein the reverse power relay determines that the current is a reverse power flow when the phase difference is 90 degrees or more and the effective current value is a set value or more. The voltage control apparatus of the distribution line as described in a term. 前記逆潮流継電器は、前記位相差演算部で演算された位相差が90°+α°(α°は設定した裕度)以上の場合に逆潮流と判定し、それ以外の場合は順潮流と判定することを特徴とする請求項1ないし7のいずれか1項に記載の配電線の電圧制御装置。   The reverse power relay determines a reverse power flow when the phase difference calculated by the phase difference calculation unit is 90 ° + α ° (α ° is a set tolerance) or more, and otherwise determines a forward power flow. The voltage control device for a distribution line according to any one of claims 1 to 7, wherein: 入力電流に対する目標出力電圧の整定値が、入力電流の負側最大設定値から正側最大設定値にかけて上昇する電圧特性に整定され、1次側が上位系統に、2次側が配電系統に各々接続された変圧器のタップを切り替える電圧調整用継電器を備え、配電線の電圧を制御する装置における電圧制御方法であって、
位相差演算部が前記配電線の電流と電圧の位相差を演算する位相差演算ステップと、
電流実効値演算部が前記配電線の電流の実効値を演算する電流実効値演算ステップと、
逆潮流継電器が、前記位相差演算ステップで演算された位相差に基づいて潮流の向きを判定し、順潮流であると判定されたときは正符号を出力し、逆潮流であると判定されたときは負符号を出力するステップと、
乗算器が、前記電流実効値演算ステップで演算された電流実効値に、前記逆潮流継電器から出力された正又は負の符号を掛け合わせて符号付電流実効値を出力するステップと、
前記電圧調整用継電器が、前記出力された符号付電流実効値を入力とし、該入力電流に対応して整定された目標出力電圧に応じて前記変圧器のタップを切り替えるステップと、
を備えたことを特徴とする配電線の電圧制御方法。
The set value of the target output voltage with respect to the input current is set to a voltage characteristic that rises from the maximum negative set value to the maximum positive set value of the input current, and the primary side is connected to the upper system and the secondary side is connected to the distribution system. A voltage control method in an apparatus for controlling a voltage of a distribution line, comprising a voltage adjusting relay for switching a tap of a transformer,
A phase difference calculating step in which a phase difference calculating unit calculates a phase difference between the current and voltage of the distribution line;
A current effective value calculation step in which the current effective value calculation unit calculates the effective value of the current of the distribution line; and
The reverse power relay determines the direction of the power flow based on the phase difference calculated in the phase difference calculation step, and outputs a positive sign when it is determined to be a forward power flow, and is determined to be a reverse power flow. When outputting a negative sign,
A multiplier that multiplies the current effective value calculated in the current effective value calculating step by a positive or negative sign output from the reverse flow relay and outputs a signed current effective value;
The voltage adjusting relay has the output of the output signed current effective value as an input, and switches the tap of the transformer according to a target output voltage set according to the input current;
A voltage control method for a distribution line, comprising:
入力電流に対する目標出力電圧の整定値が、第1の最小電流設定値から第1の最大電流設定値にかけて上昇する順潮流特性と、第2の最小電流設定値から第2の最大電流設定値にかけて下降する逆潮流特性とに整定され、1次側が上位系統に、2次側が配電系統に各々接続された変圧器のタップを切り替える電圧調整用継電器を備え、配電線の電圧を制御する装置における電圧制御方法であって、
位相差演算部が前記配電線の電流と電圧の位相差を演算する位相差演算ステップと、
電流実効値演算部が前記配電線の電流の実効値を演算する電流実効値演算ステップと、
逆潮流継電器が、前記位相差演算ステップで演算された位相差に基づいて潮流の向きを判定し、順潮流か逆潮流かの判定結果に応じて電圧調整用継電器の整定特性を切り替えるための切替信号を出力するステップと、
前記電圧調整用継電器が、前記電流実効値演算ステップで演算された実効値を入力とし、前記逆潮流継電器から出力された切替信号によって切り替えられた順潮流特性又は逆潮流特性の目標出力電圧に応じて前記変圧器のタップを切り替えるステップと、
を備えたことを特徴とする配電線の電圧制御方法。
The forward flow characteristic in which the set value of the target output voltage with respect to the input current increases from the first minimum current setting value to the first maximum current setting value, and from the second minimum current setting value to the second maximum current setting value. Voltage in a device for controlling the voltage of a distribution line, which is provided with a voltage adjustment relay that switches between taps of a transformer that is set to a reverse power flow characteristic that is connected to the upper system on the primary side and to the distribution system on the secondary side. A control method,
A phase difference calculating step in which a phase difference calculating unit calculates a phase difference between the current and voltage of the distribution line;
A current effective value calculation step in which the current effective value calculation unit calculates the effective value of the current of the distribution line; and
Switching for reverse power flow relay to determine the direction of power flow based on the phase difference calculated in the phase difference calculation step, and to switch the setting characteristics of the voltage adjustment relay according to the determination result of forward power flow or reverse power flow Outputting a signal;
The voltage adjusting relay has the effective value calculated in the current effective value calculating step as an input, and corresponds to a target output voltage of a forward flow characteristic or a reverse flow characteristic switched by a switching signal output from the reverse flow relay. Switching the transformer taps;
A voltage control method for a distribution line, comprising:
JP2013176538A 2013-05-10 2013-08-28 Distribution line voltage control apparatus and voltage control method Active JP6188489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013176538A JP6188489B2 (en) 2013-05-10 2013-08-28 Distribution line voltage control apparatus and voltage control method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013099936 2013-05-10
JP2013099936 2013-05-10
JP2013176538A JP6188489B2 (en) 2013-05-10 2013-08-28 Distribution line voltage control apparatus and voltage control method

Publications (2)

Publication Number Publication Date
JP2014239634A true JP2014239634A (en) 2014-12-18
JP6188489B2 JP6188489B2 (en) 2017-08-30

Family

ID=52136304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013176538A Active JP6188489B2 (en) 2013-05-10 2013-08-28 Distribution line voltage control apparatus and voltage control method

Country Status (1)

Country Link
JP (1) JP6188489B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109873426A (en) * 2017-12-05 2019-06-11 中国电力科学研究院有限公司 A kind of determination method and system in distribution power flow direction
JP2019126229A (en) * 2018-01-19 2019-07-25 株式会社日立製作所 Voltage adjustment unit of power distribution system, voltage adjustment system, voltage adjustment method and power distribution installation design support system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04312320A (en) * 1991-04-09 1992-11-04 Omron Corp Voltage regulating relay
JPH09135535A (en) * 1995-11-06 1997-05-20 Matsushita Electric Ind Co Ltd Static-type reactive power compensator
JP2006042546A (en) * 2004-07-29 2006-02-09 Aichi Electric Co Ltd Automatic voltage regulator
JP2007143313A (en) * 2005-11-18 2007-06-07 Hokuriku Electric Power Co Inc:The Method for controlling power distribution line voltage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04312320A (en) * 1991-04-09 1992-11-04 Omron Corp Voltage regulating relay
JPH09135535A (en) * 1995-11-06 1997-05-20 Matsushita Electric Ind Co Ltd Static-type reactive power compensator
JP2006042546A (en) * 2004-07-29 2006-02-09 Aichi Electric Co Ltd Automatic voltage regulator
JP2007143313A (en) * 2005-11-18 2007-06-07 Hokuriku Electric Power Co Inc:The Method for controlling power distribution line voltage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109873426A (en) * 2017-12-05 2019-06-11 中国电力科学研究院有限公司 A kind of determination method and system in distribution power flow direction
CN109873426B (en) * 2017-12-05 2023-09-22 中国电力科学研究院有限公司 Method and system for judging power flow direction of power distribution network
JP2019126229A (en) * 2018-01-19 2019-07-25 株式会社日立製作所 Voltage adjustment unit of power distribution system, voltage adjustment system, voltage adjustment method and power distribution installation design support system

Also Published As

Publication number Publication date
JP6188489B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
EP3509179B1 (en) Fault current limiting control and protection coordination method for converter operating in isolated state in flexible direct current power transmission system
JP5893057B2 (en) Isolated operation detection device and isolated operation detection method
US10425027B2 (en) Variable-speed operation control apparatus and hydroelectric power generation system
CN103078311A (en) Direct current predicting and setting method for inhibiting commutation failure
US10230234B2 (en) Controlled switching devices and method of using the same
EP3261208A1 (en) Control device of power converter
JP6188489B2 (en) Distribution line voltage control apparatus and voltage control method
JP2016127727A (en) Power factor variable control device and control method for power conditioner
JP2013074691A (en) Harmonic resonance avoidance system of ac power transmission system
Chen et al. Variable impedance fault current bypass circuit for fault arc suppression in distribution network
Chen et al. Faulted terminal open circuit voltage controller for arc suppression in distribution network
Lu et al. Detecting and solving the coordination curve intersection problem of overcurrent relays in subtransmission systems with a new method
JP4779777B2 (en) Flicker suppression device
AU2014227471B2 (en) Voltage fluctuation suppressing apparatus
US11404868B2 (en) Over-voltage prevention apparatus and method of distribution line connected with distributed generator
Holt et al. Optimizing line-voltage-regulators with regard to power quality
JP5932477B2 (en) Protective relay device and power supply circuit
JP2007330032A (en) System interconnection inverter
Roy et al. A hybrid sliding mode control scheme for rapid earth fault current limiters in compensated distribution networks in bushfire prone areas
JP6818414B2 (en) Power converter control system and control method
JP2018014835A (en) Overcurrent protector and power supply unit
JP2014023303A (en) Reverse power flow factor determination method and device for power distribution automatic voltage regulator
JP2014187781A (en) Power transmission state determination device and power transmission state determination method for automatic voltage regulator
JP2011015565A (en) Method and device for detection of single operation in distributed power supply
JP2013212021A (en) Reactive power compensator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170801

R150 Certificate of patent or registration of utility model

Ref document number: 6188489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250