JP2014023303A - Reverse power flow factor determination method and device for power distribution automatic voltage regulator - Google Patents

Reverse power flow factor determination method and device for power distribution automatic voltage regulator Download PDF

Info

Publication number
JP2014023303A
JP2014023303A JP2012160405A JP2012160405A JP2014023303A JP 2014023303 A JP2014023303 A JP 2014023303A JP 2012160405 A JP2012160405 A JP 2012160405A JP 2012160405 A JP2012160405 A JP 2012160405A JP 2014023303 A JP2014023303 A JP 2014023303A
Authority
JP
Japan
Prior art keywords
voltage
primary
determined
tap
automatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012160405A
Other languages
Japanese (ja)
Inventor
Yuya Kawauchi
祐也 河内
Masaya Ueishi
雅也 上石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2012160405A priority Critical patent/JP2014023303A/en
Publication of JP2014023303A publication Critical patent/JP2014023303A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of determining whether a factor of reverse power flow in a power distribution automatic voltage regulator (an automatic voltage regulator) is in system switching or in that a distributed power supply is connected to a secondary side.SOLUTION: At the reverse power flow, primary and secondary voltages of an automatic voltage regulator are measured at a first measurement timing before a tap of the automatic voltage regulator is switched, at a second measurement timing immediately after the tap switching, and at a third measurement timing slightly delayed from the second measurement timing, respectively. A load state of a system immediately after the voltage adjustment is determined from results of comparison between the primary voltages and between the secondary voltages measured at the second and third measurement timings. The determined load state, results of comparison between the primary voltages and between the secondary voltages measured at the first and third measurement timings, and results of determining whether a voltage adjustment operation is tap-up or tap-down, are verified with preliminarily-prepared determination requirements, and thereby a factor of the reverse power flow is determined.

Description

本発明は、配電系統に設置された自動電圧調整器で電力の逆潮流が生じたときに、その逆潮流が系統の切換により起因するものであるのか、又は自動電圧調整器の二次側で系統に分散電源が連系していることに起因するものであるのかを判定する配電用自動電圧調整器の電力逆潮流原因判定方法及び装置に関するものである。   In the present invention, when a reverse power flow occurs in the automatic voltage regulator installed in the distribution system, the reverse power flow is caused by switching the system, or on the secondary side of the automatic voltage regulator. The present invention relates to a power reverse power flow cause determination method and apparatus for an automatic voltage regulator for power distribution that determines whether a distributed power source is connected to a system.

配電系統においては、電力の需給バランスを図ったり、工事の際の停電を防いだりするために、複数の系統を連系させることが行われている。また近年、太陽光発電設備や風力発電設備などの発電設備が自家発電設備として設置されるようになったことに伴い、多くの自家発電設備が分散電源として配電系統と連系するようになっている。   In a power distribution system, a plurality of systems are interconnected in order to balance power supply and demand and to prevent power outages during construction. In recent years, as power generation facilities such as solar power generation facilities and wind power generation facilities have been installed as private power generation facilities, many private power generation facilities have become connected to the distribution system as distributed power sources. Yes.

配電系統においては、系統の各部の電圧を設定された範囲に保つために、系統に適宜の間隔で配電用自動電圧調整器(以下SVRともいう。)を設置して、系統の各部の電圧を設定範囲に保つように調整している。SVRは、例えば一次側にタップを有して一次側及び二次側がそれぞれ一次側(電源側)及び二次側の配電線に接続される調整変圧器と、調整変圧器のタップを切り換えるタップ切換装置とを備えていて、系統の電圧に応じて調整変圧器のタップを切り換えることにより、系統電圧(配電線電圧)を設定範囲に保つ電圧調整動作を行う。   In a power distribution system, in order to keep the voltage of each part of the system within a set range, an automatic voltage regulator for power distribution (hereinafter also referred to as SVR) is installed in the system at an appropriate interval, and the voltage of each part of the system is set. Adjustments are made to maintain the setting range. SVR, for example, has a tap on the primary side and the primary and secondary sides are connected to the primary (power supply side) and secondary distribution lines, respectively, and tap switching to switch the adjustment transformer taps And a voltage adjustment operation for maintaining the system voltage (distribution line voltage) within a set range by switching the tap of the adjustment transformer according to the system voltage.

なお本明細書では、SVRの一次側の配電線が電源変電所に接続され、SVRの二次側の配電線が他の系統の電源変電所から切り離されていて、電力の潮流状態が順潮流状態にあるとした場合に、調整変圧器の二次側の電圧を昇圧させることになる方向にタップを切り換える電圧調整動作(タップ切換動作)を「タップ上げ」と呼び、該タップ上げ時と逆方向にタップを切り換える電圧調整動作を「タップ下げ」という。   In this specification, the distribution line on the primary side of the SVR is connected to the power supply substation, the distribution line on the secondary side of the SVR is disconnected from the power supply substation of the other system, and the power flow state is the forward power flow. The voltage adjustment operation (tap switching operation) that switches the tap in the direction that boosts the voltage on the secondary side of the adjustment transformer when it is in a state is called “tap raising” and is the reverse of the tap raising operation. The voltage adjustment operation for switching the tap in the direction is called “tap lowering”.

SVRの一次側に接続された配電線が電源変電所に接続され、SVRの二次側に接続された配電線が他の系統の電源変電所から切り離されていて、SVRにおける電力の潮流が順潮流状態であるときには、系統電圧が設定された範囲より低下したときにタップ上げを行い、設定された範囲を超えたときにタップ下げを行うことにより、配電系統の各部の電圧を設定範囲に維持することができる。ところが、配電系統においては、常に各SVRにおける電力の潮流が順潮流状態であるとは限らず、系統の状態によっては、SVRにおける電力の潮流が、逆潮流状態(二次側から一次側に電力が逆送される状態)になることがある。   The distribution line connected to the primary side of the SVR is connected to the power substation, the distribution line connected to the secondary side of the SVR is disconnected from the power supply substations of other systems, and the power flow in the SVR is When power flow is present, taps are raised when the system voltage falls below the set range, and taps are lowered when the set voltage exceeds the set range, thereby maintaining the voltage of each part of the distribution system within the set range. can do. However, in the power distribution system, the power flow in each SVR is not always in the forward power flow state, and depending on the system state, the power flow in the SVR may be in the reverse power flow state (power from the secondary side to the primary side). May be reversely sent).

例えば複数の系統を連系させる配電系統においては、SVRの一次側及び二次側で系統の切換が行われて、SVRの一次側の配電線が電源変電所から切り離され、二次側の配電線が他の系統の電源変電所に接続されたときに、SVRにおける電力の潮流が逆潮流状態になる。また複数の系統が連系していることに加えて、多数の分散電源が連係することがある配電系統においては、SVRの一次側の配電線が電源変電所に接続されている状態でも、二次側に多くの分散電源が連係したときに、SVRにおける電力の潮流が逆潮流状態になることがある。SVRで電力の逆潮流が生じると、正しい電圧調整を行うことができなくなって系統の各部の電圧が異常になるため、なんらかの対策を講じる必要がある。   For example, in a distribution system that connects a plurality of systems, the system is switched on the primary side and the secondary side of the SVR, the distribution line on the primary side of the SVR is disconnected from the power substation, and the distribution on the secondary side When the electric wire is connected to a power substation of another system, the power flow in the SVR becomes a reverse power flow state. Moreover, in a distribution system in which a large number of distributed power sources may be linked in addition to a plurality of grids being connected, even if the primary distribution line of the SVR is connected to the power substation, When many distributed power sources are linked to the next side, the power flow in the SVR may be in a reverse power flow state. When a reverse power flow occurs in SVR, correct voltage adjustment cannot be performed and the voltage of each part of the system becomes abnormal, so it is necessary to take some measures.

複数の系統を連係させる配電系統に用いるSVRにおいては、その一次側の配電線が電源変電所から切り離されて、二次側の配電線が他の系統の電源変電所に接続される系統切換が行われた際に、電力の逆潮流が生じる。この場合、SVRが二次側の系統電圧を設定範囲に保つべく、タップ上げを行うと、一次側の系統電圧が設定範囲の下限値未満に低下してしまい、SVRの一次側の配電系統の電圧が異常に低下してしまう。このような異常状態が生じるのを防ぐため、複数の系統を連係させる配電系統に用いるSVRは、電力の逆潮流が生じる系統の切換が行われる際に、変電所などに設置された指令所からの指令により、調整変圧器のタップを予め定めたタップに固定する動作を行うように構成されている。このような動作を行うSVRを、「逆送時タップ固定型SVR」と呼ぶことにする。また系統切換時に調整変圧器のタップを固定する動作を行わないSVRを「一般型のSVR」と呼ぶことにする。逆送時タップ固定型SVRにおいては、系統切換え時に選択する固定タップとして、最初素通しタップが選択され、その後、電力の逆潮流時に一次側の系統電圧を昇圧させることになるタップが選択される。   In SVR used in a distribution system that links a plurality of systems, system switching is performed in which a primary distribution line is disconnected from a power substation and a secondary distribution line is connected to a power substation of another system. When done, a reverse power flow occurs. In this case, if the tap is raised so that the SVR keeps the secondary system voltage within the set range, the primary system voltage falls below the lower limit of the set range, and the SVR primary side distribution system The voltage drops abnormally. In order to prevent such an abnormal state from occurring, an SVR used in a distribution system that links a plurality of systems is operated by a command station installed at a substation or the like when a system that generates reverse power flow is switched. Is configured to perform an operation of fixing the tap of the adjustment transformer to a predetermined tap. An SVR that performs such an operation will be referred to as a “back feed fixed tap type SVR”. An SVR that does not perform the operation of fixing the tap of the adjustment transformer at the time of system switching will be referred to as a “general type SVR”. In the reverse feed tap fixed type SVR, the first through tap is selected as the fixed tap to be selected at the time of system switching, and then the tap that will boost the primary system voltage during the reverse power flow is selected.

複数の系統が連係している配電系統において、系統切換時のみにSVRで電力の逆潮流が生じる場合には、上記のような逆送時タップ固定型SVRを用いることにより、SVRで電力の逆潮流が生じた時に系統電圧が異常になるのを防ぐことができる。しかしながら、系統に分散電源が連係していることに起因してSVRで電力の逆潮流が生じる場合には、逆送時タップ固定型SVRを用いても適正な電圧調整を行うことができないことがある。このことを示すために、図10及び図11を参照して、一般型SVR及び逆送時タップ固定型SVRの種々の電力潮流状態における動作を説明する。   In a distribution system in which a plurality of systems are linked, if a reverse power flow occurs in the SVR only at the time of system switching, the reverse power tap is used in the SVR by using the above-described reverse feed tap fixing type SVR. It is possible to prevent the system voltage from becoming abnormal when a power flow occurs. However, when a reverse power flow occurs in the SVR due to the fact that the distributed power sources are linked to the system, it may not be possible to perform proper voltage adjustment using the reverse feed tap fixed SVR. is there. In order to show this, the operation of the general type SVR and the reverse tap fixed type SVR in various power flow states will be described with reference to FIGS.

図10(A)ないし(C)はそれぞれ、一般型SVRが設置された配電系統において、SVRの一次側に電源変電所が接続されていて、SVRでの電力の潮流が順方向潮流状態であるとき、系統の切換によりSVRの二次側に他の系統の電源変電所が接続された状態になって、SVRで電力の逆潮流が生じているとき、及びSVRの一次側に電源変電所が接続されているが、SVRの二次側で分散電源が連系したことによりSVRで電力の逆潮流が生じているときの系統の状態を示す単線結線図を、SVRが調整動作を行ったときに生じる系統の電圧分布の変化を示すグラフとともに示した説明図である。   FIGS. 10A to 10C each show a power distribution substation connected to the primary side of the SVR in the distribution system where the general type SVR is installed, and the power flow in the SVR is in the forward flow state. When the system is switched, the power substation of another system is connected to the secondary side of the SVR, and a reverse power flow occurs in the SVR, and the power substation is connected to the primary side of the SVR. When the SVR performs the adjustment operation, a single line connection diagram showing the state of the system when the reverse flow of power is generated in the SVR due to the connection of the distributed power supply on the secondary side of the SVR is connected It is explanatory drawing shown with the graph which shows the change of the voltage distribution of the system | strain which arises.

また図11(A)ないし(C)はそれぞれ、逆送時タップ固定型SVRが設置された配電系統において、SVRの一次側に電源変電所が接続されていて、SVRでの電力の潮流が順方向潮流状態であるとき、系統の切換によりSVRの二次側に他の系統の電源変電所が接続された状態になって、SVRで電力の逆潮流が生じているとき、及びSVRの一次側に電源変電所が接続されているが、SVRの二次側で分散電源が連系したことによりSVRで電力の逆潮流が生じているときの系統の状態を示す単線結線図を、系統の電圧分布の変化を示すグラフとともに示した説明図である。   11 (A) to 11 (C), respectively, in the distribution system in which the reverse feed tap fixing type SVR is installed, a power substation is connected to the primary side of the SVR, and the power flow in the SVR is normal. When the power flow is in a directional state, the power supply substation of another system is connected to the secondary side of the SVR by switching the system, and a reverse power flow occurs in the SVR, and the primary side of the SVR Is connected to the power supply substation, but a single-line diagram showing the state of the system when a reverse power flow occurs in the SVR due to the connection of the distributed power supply on the secondary side of the SVR It is explanatory drawing shown with the graph which shows the change of distribution.

図10(A)ないし(C)及び図11(A)ないし(C)に示された単線結線図において、1は系統の電源である変電所(電源変電所)を示し、2は変電所1に開閉器3と配電線4とを通して接続されたSVRを示している。また5はSVRの二次側に一端が接続された配電線を示し、6は配電線5の他端に開閉器7を介して接続された他系統の配電線を示している。図10(C)及び図11(C)において、8はSVRの二次側の配電線5に接続された分散電源を示している。図10及び図11に示されたグラフにおいて、max及びminはそれぞれ系統電圧の設定範囲の上限値及び下限値を示している。   In the single-line connection diagrams shown in FIGS. 10A to 10C and FIGS. 11A to 11C, 1 indicates a substation (power supply substation) which is a power source of the system, and 2 indicates a substation 1 The SVR connected through the switch 3 and the distribution line 4 is shown. Reference numeral 5 denotes a distribution line having one end connected to the secondary side of the SVR, and reference numeral 6 denotes a distribution line of another system connected to the other end of the distribution line 5 via a switch 7. 10 (C) and 11 (C), 8 indicates a distributed power source connected to the distribution line 5 on the secondary side of the SVR. In the graphs shown in FIGS. 10 and 11, max and min indicate the upper limit value and the lower limit value of the system voltage setting range, respectively.

図10(A)に示されているように、一般型SVRが設置された配電系統において、系統切換が行われておらず、SVRの一次側の配電線が電源変電所に接続されていて、SVRにおける電力の潮流が順潮流状態である場合には、図に破線で示したように系統電圧が設定範囲の下限値未満に下降しようとした時に、SVRにタップ上げを行わせることにより系統電圧を設定範囲に保つことができ、系統電圧が上昇して設定範囲の上限値を超えようとした時には、SVRにタップ下げを行わせることにより系統電圧を設定範囲に保つことができる。SVRの一次側の配電線が電源変電所に接続されていて、SVRでの電力の潮流が順潮流状態であるときには、図11(A)に示すように、逆送時タップ固定型SVRも一般型SVRと同様の動作を行う。   As shown in FIG. 10 (A), in the distribution system in which the general type SVR is installed, the system is not switched, and the distribution line on the primary side of the SVR is connected to the power substation, When the power flow in the SVR is a forward power flow state, as shown by the broken line in the figure, when the system voltage is about to fall below the lower limit value of the setting range, the system voltage is increased by causing the SVR to tap up. Can be kept within the set range, and when the system voltage rises and exceeds the upper limit value of the set range, the system voltage can be kept within the set range by causing the SVR to tap down. When the primary distribution line of the SVR is connected to the power substation and the power flow in the SVR is in the forward power flow state, as shown in FIG. The same operation as that of the type SVR is performed.

また一般型SVRが設置された配電系統において、図10(B)に示されているように、系統切換により、SVRの二次側の配電線が他の系統の電源変電所に接続された状態になって、SVRにおける電力の潮流が逆潮流状態になった場合には、図に破線で示したように二次側の系統電圧が下降しようとした時にSVRがその二次側電圧を上昇させるべくタップ上げを行うと、結果的に一次側電圧が押し下げられることになり、SVRの一次側の系統電圧が設定範囲の下限値未満に低下する異常状態が生じることがある。また系統電圧が設定範囲の上限値を超えて上昇しようとした時に、SVRがその二次側電圧を下降させるべくタップ下げを行うと、結果的に一次側電圧を押し上げることになり、SVRの一次側の系統電圧が設定範囲の上限値を超える異常状態が生じることがある。   Further, in the distribution system in which the general type SVR is installed, as shown in FIG. 10B, the distribution line on the secondary side of the SVR is connected to the power substation of another system by switching the system. When the power flow in the SVR becomes a reverse power flow state, the SVR increases the secondary side voltage when the secondary system voltage is about to fall as shown by the broken line in the figure. If the tap is raised as much as possible, the primary side voltage will be pushed down as a result, and an abnormal state may occur in which the system voltage on the primary side of the SVR falls below the lower limit value of the setting range. Also, when the system voltage is going to rise beyond the upper limit of the set range, if the SVR taps down to lower the secondary side voltage, the primary side voltage will be boosted, resulting in the primary of the SVR. An abnormal state may occur in which the system voltage on the side exceeds the upper limit value of the setting range.

これに対し、逆送時タップ固定型SVRが設置された配電系統においては、系統切換によりSVRでの電力の潮流が逆潮流状態になったときに、SVRが有する潮流判定機能により、その一次側の系統電圧を上昇させるように予め指定したタップに調整変圧器のタップを固定する動作を行うため、図11(B)に示されているように、SVRの二次側電圧が低下しようとしたときに一次側電圧を上昇させ、二次側電圧が上昇しようとしたときには一次側電圧を下降させて、系統電圧を設定範囲に保つことができる。   On the other hand, in the distribution system in which the reverse feed tap fixed type SVR is installed, when the power flow in the SVR becomes a reverse power flow state due to the system switching, the power flow judgment function of the SVR has the primary side As shown in FIG. 11 (B), the secondary voltage of the SVR is going to be lowered to perform the operation of fixing the tap of the adjustment transformer to the tap specified in advance so as to increase the system voltage of Sometimes the primary side voltage is raised, and when the secondary side voltage is going to rise, the primary side voltage is lowered to keep the system voltage in the set range.

上記のように、系統切換によりSVRで電力の逆潮流が生じた際に系統電圧を異常に低下させたり、上昇させたりしないようにするためには、SVRとして、逆送時タップ固定型SVRを用いればよいが、SVRの一次側に電源変電所が接続されている状態で、SVRの二次側で系統に分散電源が連係したことによりSVRで電力の逆潮流が生じた場合には、以下に示すように、逆送時タップ固定型SVRを用いると、SVRの二次側の系統電圧が異常に低下する現象が生じることがある。   As described above, in order to prevent the system voltage from being abnormally lowered or raised when a reverse power flow occurs in the SVR due to the system switching, as a SVR, the tap fixing type SVR for reverse feed is used. However, if a power supply substation is connected to the primary side of the SVR and a distributed power supply is linked to the grid on the secondary side of the SVR, a reverse power flow occurs in the SVR. As shown in FIG. 4, when the reverse feed tap fixed type SVR is used, a phenomenon may occur in which the system voltage on the secondary side of the SVR is abnormally lowered.

一般型SVRが設置された配電系統において、図10(C)に示されているように、SVRの一次側の配電線が電源変電所に接続されている状態で、二次側で系統に分散電源が連系していることに起因してSVRで電力の逆潮流状態が生じている場合に、図10(C)に破線で示されているように、二次側の系統電圧が設定範囲の上限値を超えて上昇しようとしたときには、SVRがタップ下げを行って、系統電圧を設定範囲に保つ調整動作を行う。また二次側の系統電圧が設定範囲の下限値未満に下降しようとしたときには、SVRがタップ上げを行って、一次側の系統電圧を設定範囲に保つ調整動作を行う。従って、一般型SVRが設置された配電系統においては、SVRの一次側の配電線が電源変電所に接続され、二次側で分散電源が連系していることに起因してSVRで電力の逆潮流が生じている状態でも、系統電圧を設定範囲に保つことができる。   In the distribution system where the general type SVR is installed, as shown in FIG. 10 (C), the distribution line on the primary side of the SVR is connected to the power substation and distributed to the system on the secondary side. When a reverse power flow state occurs in the SVR due to the power supply being connected, the secondary system voltage is within the set range as shown by the broken line in FIG. When an attempt is made to increase beyond the upper limit, the SVR taps down and performs an adjustment operation to keep the system voltage in the set range. When the secondary system voltage is going to fall below the lower limit value of the setting range, the SVR performs tap adjustment to perform an adjustment operation to keep the primary system voltage within the setting range. Therefore, in the distribution system in which the general type SVR is installed, the distribution line on the primary side of the SVR is connected to the power substation, and the distributed power supply is connected on the secondary side, so that the power of the SVR is Even in a state where reverse power flow occurs, the system voltage can be kept within the set range.

これに対し、逆送時タップ固定型SVRが設置された配電系統において、図11(C)に示すように、変電所1の開閉器3が閉じ、SVRの一次側の配電線が電源変電所1に接続されている状態で、SVRの二次側で系統に分散電源8が連系していることに起因してSVRで電力の逆潮流が生じたときには、逆潮流時に一次電圧を上昇させるように予め指定したタップに調整変圧器のタップが固定されるが、電源変電所に接続されているSVRの一次側電圧が大容量の系統電圧により固定されているため、結果的に、図11(C)に示すように、二次側電圧が押し下げられて、二次側の系統電圧が設定範囲の下限値minを下回る異常状態が生じることがある。   On the other hand, in the distribution system in which the reverse feed tap fixing type SVR is installed, as shown in FIG. 11C, the switch 3 of the substation 1 is closed and the primary distribution line of the SVR is connected to the power substation. 1, when a reverse power flow occurs in the SVR due to the connection of the distributed power supply 8 to the system on the secondary side of the SVR, the primary voltage is increased during the reverse flow. As shown in FIG. 11, the adjustment transformer tap is fixed to the tap specified in advance, but the primary voltage of the SVR connected to the power substation is fixed by the large-capacity system voltage. As shown in (C), the secondary side voltage may be pushed down and an abnormal state may occur in which the secondary system voltage falls below the lower limit value min of the setting range.

上記のことから、系統切換によりSVRで電力の逆潮流が生じた場合及び一次側の配電線が電源変電所に接続されている状態で二次側の系統に分散電源が連係したことによりSVRで電力の逆潮流が生じた場合の何れの場合にも系統電圧を適正な範囲に維持するためには、系統切換によりSVRで電力の逆潮流が生じたときにSVRを逆送時タップ固定型SVRの動作モードで動作させ、分散電源が系統に連係したことによりSVRで電力の逆潮流が生じたときには、SVRを一般型SVRの動作モードで動作させることが必要であることが分かる。   From the above, when a reverse power flow occurs in the SVR due to system switching, and because the distributed power supply is linked to the secondary system while the primary distribution line is connected to the power substation, the SVR In order to maintain the system voltage in an appropriate range in any case where a reverse power flow occurs, when the reverse power flow occurs in the SVR due to the system switching, the SVR is a tap-fixed SVR for reverse feed. When a reverse power flow occurs in the SVR because the distributed power supply is linked to the system, it is understood that it is necessary to operate the SVR in the operation mode of the general type SVR.

上記のようにSVRの動作モードを切り換えるためには、SVRで電力の逆潮流が生じた際に、その逆潮流の原因が系統切換に起因するのか、一次側に電源があるSVRの二次側で系統に分散電源が連係したことに起因するのかを判定する必要がある。   In order to switch the operation mode of the SVR as described above, when a reverse power flow occurs in the SVR, the cause of the reverse power flow is caused by system switching, or the secondary side of the SVR having a power source on the primary side. Therefore, it is necessary to determine whether it is caused by the fact that the distributed power supply is linked to the system.

逆送時タップ固定型SVRが用いられる場合には、系統の切換が行われる際に変電所などに設けられた指令所から与えられる素通し制御指令により、SVRの調整変圧器のタップを一旦素通しタップに切り換える素通し制御が行われる。従って、SVRで電力の逆潮流が検出されたときに素通し制御指令が与えられている場合には、電力の逆潮流が生じた原因が、系統切換が行われたことにあり、SVRで電力の逆潮流が検出されたときに素通し制御指令が与えられていない場合には、電力の逆潮流が生じた原因が、系統に分散電源が連係したことにあると一応判定することができる。しかしながら、SVRの動作モードの切換を誤りなく行うためには、電力の逆潮流の原因を更に別の方法によっても行って、原因特定の正確を期することが好ましい。また素通し制御を行わない系統において、SVRの電力逆潮流時の動作モードの切換を適確に行わせるためには、素通し制御指令によらずに電力の逆潮流の原因を判定する方法を確立することが必須である。   When the reverse feed tap fixed type SVR is used, the tap of the adjustment transformer of the SVR is once passed through the passing control command given from the command station provided in the substation when the system is switched. The through control to switch to is performed. Therefore, when a through control command is given when a reverse power flow is detected in the SVR, the cause of the reverse power flow is that the system has been switched, and the power change in the SVR If the through control command is not given when the reverse power flow is detected, it can be temporarily determined that the cause of the reverse power flow is that the distributed power supply is linked to the system. However, in order to switch the operation mode of the SVR without error, it is preferable that the cause of the reverse power flow is also performed by another method so that the cause is accurately identified. Also, in a system that does not perform through control, in order to switch the operation mode at the time of reverse power flow of the SVR appropriately, a method for determining the cause of reverse power flow without using the through control command is established. It is essential.

そこで、本出願人等は先に、特許文献1に示されているように、電力の逆潮流が検出されている状態でタップ切換が行われた時に生じるSVRの一次側電圧の変化量と二次側電圧の変化量とから逆潮流の原因を特定する方法を提案した。この方法においては、SVRの一次側の配電線が電源変電所に接続されている状態では、タップ切換時に系統容量が大きいSVRの一次側(変電所側)で生じる電圧の変化量が、SVRの二次側(負荷側)で生じる電圧の変化量に比べて小さくなることに着目して、電力の逆潮流の原因を判別する。   Therefore, as described in Patent Document 1, the present applicants and others previously described the amount of change in the primary voltage of the SVR generated when tap switching is performed in a state where a reverse power flow is detected and A method to identify the cause of reverse power flow from the amount of change in secondary voltage was proposed. In this method, when the distribution line on the primary side of the SVR is connected to the power supply substation, the amount of change in the voltage generated on the primary side (substation side) of the SVR having a large system capacity at the time of tap switching is SVR. Focusing on the fact that it becomes smaller than the amount of change in voltage generated on the secondary side (load side), the cause of the reverse power flow is determined.

系統の状態とタップ切換時の一次側電圧の変化量及び二次側電圧の変化量との関係を、表にまとめた形で図12に示した。図12に示された関係は下記の(a)ないし(c)の通りである。
(i)SVRの一次側の配電線が電源変電所に接続されていてSVRを通して順方向に電力が潮流しているとき:
SVRでタップ上げを行った際にSVRの二次側電圧がほぼステップ状に上昇するが、一次側電圧はほとんど変化しない。
またSVRでタップ下げを行った際には、SVRの二次側電圧がほぼステップ状に下降するが、一次側電圧はほとんど変化しない。
(ii)SVRの一次側の配電線が電源変電所から切り離され、二次側の配電線が他系統の変電所に接続された(系統切換が行われた)ために電力が逆潮流しているとき:
SVRでタップ上げを行った際にSVRの一次側電圧がほぼステップ状に下降する(負側に変化する)。このときSVRの二次側電圧はステップ状に上昇するがその変化量は僅かである。
またSVRでタップ下げを行った際には、一次側電圧がほぼステップ状に上昇する(正側に変化する)。このときSVRの二次側電圧は僅かに下降するがその変化量は僅かである。
(iii)SVRの一次側の配電線が変電所に接続されている状態で、二次側に分散電源が連系しているためにSVRを通して電力が逆潮流しているとき:
SVRでタップ上げを行った際にSVRの二次側電圧がステップ状に上昇する。SVRの一次側電圧は僅かに下降するがその変化量は僅かである。
またSVRでタップ下げを行った際に二次側電圧がステップ状に下降する。このときSVRの一次側電圧は僅かに上昇するがその変化量は僅かである。
The relationship between the state of the system and the change amount of the primary side voltage and the change amount of the secondary side voltage at the time of tap switching is shown in FIG. The relationship shown in FIG. 12 is as follows (a) to (c).
(I) When the distribution line on the primary side of the SVR is connected to the power substation and power is flowing in the forward direction through the SVR:
When tapping is performed with the SVR, the secondary voltage of the SVR rises almost stepwise, but the primary voltage hardly changes.
Further, when the tap is lowered by SVR, the secondary voltage of SVR drops almost stepwise, but the primary voltage hardly changes.
(Ii) Since the SVR primary distribution line was disconnected from the power substation and the secondary distribution line was connected to the substation of another system (system switching was performed) When:
When tapping is performed with the SVR, the primary voltage of the SVR drops almost stepwise (changes to the negative side). At this time, the secondary voltage of the SVR rises stepwise, but the amount of change is slight.
In addition, when the tap is lowered by SVR, the primary side voltage increases almost stepwise (changes to the positive side). At this time, the secondary voltage of the SVR slightly decreases, but the amount of change is small.
(Iii) When SVR primary side distribution lines are connected to the substation and the distributed power supply is linked to the secondary side and power is flowing backward through the SVR:
When tapping is performed with the SVR, the secondary voltage of the SVR rises stepwise. The primary voltage of the SVR decreases slightly, but the amount of change is small.
Further, when the tap is lowered by SVR, the secondary side voltage drops stepwise. At this time, the primary voltage of the SVR slightly increases, but the amount of change is small.

系統の状態と、SVRのタップ切換時の一次側電圧及び二次側電圧の変化との間には上記のような関係があるため、SVRで電力の逆潮流が検出されている状態でタップ切換が行われた際に生じる一次側電圧の変化量及び二次側電圧の変化量との関係を判別することにより、その逆潮流が如何なる原因で生じたかを判別することができる。   Since there is a relationship as described above between the system state and changes in the primary side voltage and the secondary side voltage at the time of SVR tap switching, tap switching is performed in a state where a reverse power flow is detected by SVR. By determining the relationship between the amount of change in the primary side voltage and the amount of change in the secondary side voltage that occurs when the operation is performed, it is possible to determine the cause of the reverse power flow.

特許文献1に示された方法では、SVRの一次側及び二次側でそれぞれ生じる電圧の変化を計測し、SVRで電力の逆潮流が生じていることが計測され、かつタップが切り換えられた際に生じるSVRの一次側電圧の変化量が二次側電圧の変化量よりも大きいことが計測されたときに、SVRの一次側の配電線が電源変電所から切り離されて二次側の配電線が他系統の電源変電所に接続される系統切換が行われたことに起因して電力の逆潮流が生じていると判定する。またSVRで電力の逆潮流が生じていることが計測され、かつタップが切り換えられた際に生じるSVRの二次側電圧の変化量が一次側電圧の変化量よりも大きいことが計測されたときに、SVRの一次側の配電線が電源変電所に接続されている状態でSVRの二次側の系統に分散電源が連系していることに起因して電力の逆潮流が生じていると判定する。   In the method disclosed in Patent Document 1, a change in voltage generated on the primary side and the secondary side of the SVR is measured, and it is measured that a reverse power flow occurs in the SVR, and the tap is switched. When it is measured that the amount of change in the primary voltage of the SVR that is larger than the amount of change in the secondary voltage is measured, the distribution line on the primary side of the SVR is disconnected from the power substation and the distribution line on the secondary side Determines that a reverse power flow has occurred due to the system switching connected to the power substation of another system. Also, when it is measured that a reverse power flow has occurred in the SVR, and it is measured that the amount of change in the secondary voltage of the SVR that occurs when the tap is switched is greater than the amount of change in the primary voltage In addition, when the SVR primary side distribution line is connected to the power substation, a reverse power flow occurs due to the distributed power supply connected to the secondary side system of the SVR. judge.

即ち、特許文献1に示された方法では、SVRで電力の逆潮流が生じている状態で、タップ切換時に計測される一次側電圧の変化量と二次側電圧の変化量との間に「一次側電圧の変化量<二次側電圧の変化量」の関係があるときに、電源がSVRの一次側にあると判定して、SVRでの電力の逆潮流の原因がSVRの二次側で系統に分散電源が連係していることにあると判定し、「一次側電圧の変化量>二次側電圧の変化量」の関係があるときに、電源がSVRの二次側にあると判定して、電力の逆潮流の原因が系統の切換が行われたことにあると判定する。   In other words, in the method disclosed in Patent Document 1, in a state where a reverse power flow occurs in the SVR, the change between the change amount of the primary side voltage and the change amount of the secondary side voltage measured at the time of tap switching is “ When there is a relationship of primary voltage change <secondary voltage change, it is determined that the power source is on the primary side of the SVR, and the cause of the reverse power flow in the SVR is the secondary side of the SVR. In this case, it is determined that the distributed power supply is linked to the system, and the power supply is on the secondary side of the SVR when there is a relationship of “amount of change in the primary side voltage> amount of change in the secondary side voltage”. It is determined that the cause of the reverse power flow is that the system has been switched.

以下の説明では、SVRの一次側の配電線が電源変電所から切り離されて二次側の配電線が他系統の電源変電所に接続される系統切換が行われたことに起因してSVRで起こる電力の逆潮流を、「系統切換に起因する電力の逆潮流」と呼び、SVRの一次側の配電線が電源変電所に接続されている状態でSVRの二次側の系統に分散電源が連系していることに起因してSVRで起こる電力の逆潮流を「分散電源の連系に起因する電力の逆潮流」と呼ぶ。   In the description below, the SVR primary distribution line is disconnected from the power substation and the secondary side distribution line is connected to another power supply substation. The reverse power flow that occurs is called “reverse power flow caused by system switching”. When the primary distribution line of the SVR is connected to the power substation, a distributed power source is connected to the secondary system of the SVR. The reverse power flow that occurs in the SVR due to the interconnection is referred to as “the reverse power flow caused by the connection of the distributed power sources”.

特開2000−295774号公報JP 2000-295774 A

特許文献1に示された方法により電力の逆潮流が生じた原因を正確に特定するためには、タップが切り換えられた際に生じる一次側電圧の変化量及び二次側電圧の変化量を正確に計測する必要がある。従来の方法では、SVRがタップ切換動作を開始した後、該切換動作が終了するまでの期間を計測期間として、SVRの一次側電圧及び二次側電圧を一定の時間間隔で発生する計測タイミングで計測し、各計測タイミングで計測した一次側電圧の計測値と、2つ前の計測タイミングで計測した一次側電圧の計測値との差の絶対値を一次側電圧の変化量として順次求めていた。同様に、各計測タイミングで計測した二次側電圧の計測値と、2つ前の計測タイミングで計測した二次側電圧の計測値との差の絶対値を二次側電圧の変化量として順次求め、タップ切り換え時の一次側電圧の変化量及び二次側電圧の変化量が求まる毎に、両者の変化量の差を電圧変化量差として演算して、この電圧変化量差の大小関係から、系統の状態を判定していた。しかしながら、このような判定方法では、SVRが電圧調整動作(タップ切換)を行った直後に、系統の負荷変動によりSVRの一次側電圧及び二次側電圧が変動した場合に、判定を誤ることがあった。   In order to accurately identify the cause of the reverse power flow by the method disclosed in Patent Document 1, the amount of change in the primary side voltage and the amount of change in the secondary side voltage that occur when the tap is switched are accurately determined. Need to be measured. In the conventional method, the period from when the SVR starts the tap switching operation to the end of the switching operation is taken as a measurement period, and the SVR primary voltage and secondary voltage are generated at a certain time interval. Measured, the absolute value of the difference between the measured value of the primary side voltage measured at each measurement timing and the measured value of the primary side voltage measured at the previous measurement timing was sequentially obtained as the amount of change in the primary side voltage . Similarly, the absolute value of the difference between the measured value of the secondary side voltage measured at each measurement timing and the measured value of the secondary side voltage measured at the previous measurement timing is sequentially used as the amount of change in the secondary side voltage. Every time the amount of change in the primary voltage and the amount of change in the secondary voltage at the time of tap switching is found, the difference between the two is calculated as the voltage change amount difference, and from the magnitude relationship of this voltage change amount difference , Was determining the state of the system. However, in such a determination method, immediately after the SVR performs the voltage adjustment operation (tap switching), the determination may be erroneous if the primary side voltage and the secondary side voltage of the SVR fluctuate due to system load fluctuations. there were.

一例として、SVRの一次側の配電線が電源変電所に接続されている状態でSVRの二次側で系統に分散電源が連係したことに起因して電力の逆潮流が生じている状態で、SVRの二次側電圧を下降させる方向にタップを切り換えた場合を例にとって、誤判定が生じる理由につき説明する。   As an example, in a state where a reverse power flow is generated due to the fact that the distributed power supply is linked to the system on the secondary side of the SVR while the distribution line on the primary side of the SVR is connected to the power substation, The reason why the erroneous determination occurs will be described by taking as an example a case where the tap is switched in the direction in which the secondary voltage of the SVR is lowered.

図9(A)は、SVRの一次側電圧及び二次側電圧を計測する期間を定める計測指令信号で、この信号は、計測期間Ta とそれ以外の期間とで異なるレベルを示す矩形波信号である。計測期間Ta は、SVRがタップ切換動作を行う期間を含むように設定される。通常SVRのタップ切換装置は、タップ切換指令が与えられたときにモータにより駆動軸を回転させて、該駆動軸が所定の角度回転する間に、調整変圧器のタップを切り換えるために必要な一連の動作を行わせる。上記計測期間は例えば、タップ切換指令が与えられたタイミングで始まり、調整変圧器のタップが新たなタップに切り換えられた後、更に一定の時間が経過したタイミングで終了するように設定される。   FIG. 9A shows a measurement command signal for determining a period during which the primary voltage and the secondary voltage of the SVR are measured. This signal is a rectangular wave signal indicating different levels in the measurement period Ta and other periods. is there. The measurement period Ta is set so as to include a period during which the SVR performs a tap switching operation. Normally, the tap switching device of the SVR rotates a drive shaft by a motor when a tap switch command is given, and a series of steps necessary to switch the tap of the adjustment transformer while the drive shaft rotates by a predetermined angle. Let's do the operation. The measurement period starts, for example, at a timing when a tap switching command is given, and is set to end at a timing when a certain time has passed after the tap of the adjustment transformer is switched to a new tap.

図9(B)及び(C)はそれぞれ分散電源が連係したことに起因してSVRで電力の逆潮流が起こっている状態で、SVRでタップ下げを行った際に生じるSVRの一次側電圧の変化及び二次側電圧の変化を示したものである。SVRの一次側の配電線が変電所に接続されていて、二次側で分散電源が連係したことよりSVRを通して逆方向に電力が潮流している状態でSVRでタップ下げを行った際には、図9(B)に実線で示したように、一次側電圧はほとんど変化しないが、二次側電圧は、同図(C)に実線で示したように、タップ切換時にほぼステップ状に下降する。図9(C)に符号aで示した電圧変化がタップ切換の際に二次側電圧に生じる変化である。SVRで電力の逆潮流が検出されている状態で、このタップ切換時の二次側電圧の変化量が、一次側電圧の変化量よりも大きいことが計測されたときに、その電力の逆潮流の原因が、SVRの二次側で系統に分散電源が連係したことにあると判定することができる。   FIGS. 9B and 9C show the state of the primary voltage of the SVR generated when the tap is lowered in the SVR in the state where the reverse flow of the electric power occurs in the SVR due to the cooperation of the distributed power sources. The change and the change of a secondary side voltage are shown. When the SVR's primary distribution line is connected to the substation and the distributed power supply is linked on the secondary side, power is flowing in the reverse direction through the SVR, and when tapping down with the SVR, As shown by the solid line in FIG. 9 (B), the primary side voltage hardly changes, but the secondary side voltage drops almost stepwise at the time of tap switching as shown by the solid line in FIG. 9 (C). To do. The voltage change indicated by symbol a in FIG. 9C is a change that occurs in the secondary side voltage when the tap is switched. When a reverse flow of power is detected in the SVR, when it is measured that the change amount of the secondary side voltage at the time of the tap switching is larger than the change amount of the primary side voltage, the reverse flow of the power It can be determined that the cause of this is that the distributed power supply is linked to the system on the secondary side of the SVR.

従来の方法では、計測指令信号が発生するタイミングt1を最初の計測タイミングとして、一定の時間毎に発生する計測タイミングt1,t2,t3,…,tnでSVRの一次側電圧V11,V12,…,V1n及び二次側電圧V21,V22,…,V2nを計測し、各計測タイミングtk(k=3,4,…,n)で計測した一次側電圧の計測値と、2つ前の計測タイミングtk-2で計測した一次側電圧の計測値との差の絶対値を一次側電圧の変化量ΔV1k=|V1k-2 −V1k|として順次求める。同様に、各計測タイミングで計測した二次側電圧の計測値と、2つ前の計測タイミングで計測した二次側電圧の計測値との差の絶対値を二次側電圧の変化量ΔV2k=|V2k-2 −V2k|として順次求め、一次側電圧の変化量ΔV1k及び二次側電圧の変化量ΔV2kが演算される毎に、一次側電圧の変化量と二次側電圧の変化量との差ΔVk=ΔV1k−ΔV2kを電圧変化量差として求めて、この電圧変化量差ΔVkの符号が正であるか負であるかを判別する。その結果、電圧変化量差ΔVkが正でその絶対値がしきい値以上であることが計測されたときに、系統切換に起因してSVRで電力の逆潮流が生じていると判定する。また、電圧変化量差ΔVkが負で、その絶対値がしきい値以上であることが計測されたときに、分散電源の連系に起因してSVRで電力の逆潮流が生じていると判定する。   In the conventional method, with the timing t1 when the measurement command signal is generated as the first measurement timing, the primary voltages V11, V12,..., SVR at the measurement timings t1, t2, t3,. V1n and secondary side voltages V21, V22,..., V2n are measured, and the measured value of the primary side voltage measured at each measurement timing tk (k = 3, 4,..., N) and the measurement timing tk two times before. The absolute value of the difference from the measured value of the primary side voltage measured in -2 is sequentially obtained as a change amount ΔV1k = | V1k−2−V1k | of the primary side voltage. Similarly, the absolute value of the difference between the measured value of the secondary side voltage measured at each measurement timing and the measured value of the secondary side voltage measured at the previous measurement timing is calculated as the change amount ΔV2k of the secondary side voltage = | V2k-2−V2k | is calculated sequentially, and the primary voltage change amount and the secondary voltage change amount are calculated each time the primary side voltage change amount ΔV1k and the secondary side voltage change amount ΔV2k are calculated. The difference ΔVk = ΔV1k−ΔV2k is obtained as a voltage change amount difference, and it is determined whether the sign of the voltage change amount ΔVk is positive or negative. As a result, when it is measured that the voltage change amount difference ΔVk is positive and the absolute value is greater than or equal to the threshold value, it is determined that a reverse power flow has occurred in the SVR due to system switching. Further, when it is measured that the voltage change difference ΔVk is negative and the absolute value thereof is equal to or greater than the threshold value, it is determined that a reverse power flow is generated in the SVR due to the interconnection of the distributed power sources. To do.

図9に示した例において、一次側電圧及び二次側電圧がそれぞれ図に実線で示したように変化した場合には、計測タイミングtn-1で、ΔV1n-1=|V1n-3 −V1n-1|、ΔV2n-1=|V2n-3 −V2n-1|が演算され、ΔVn-1=ΔV1n-1 − ΔV2n-1<0であると判定されるため、計測タイミングtn-1で、分散電源の連係に起因して電力の逆潮流が生じていると判定することができる。   In the example shown in FIG. 9, when the primary side voltage and the secondary side voltage change as indicated by solid lines in the figure, at the measurement timing tn-1, ΔV1n-1 = | V1n-3−V1n− 1 |, ΔV2n−1 = | V2n−3−V2n−1 | are calculated and it is determined that ΔVn−1 = ΔV1n−1−ΔV2n−1 <0. It can be determined that a reverse power flow has occurred due to the linkage.

しかしながら、SVRの調整変圧器でタップ切換が行われた直後にたまたま系統の負荷変動により、図9に破線で示したようにSVRの一次側電圧及び二次側電圧が変動した場合には、ΔVn-1=ΔV1n-1 − ΔV2n-1>0となるため、系統切換に起因して電力の逆潮流が生じているとの誤った判定がされることになる。また既提案の方法では、多くのサンプリングデータを扱う必要がある上に、何回も演算処理を行う必要があるため、逆潮流原因の判定に手間がかかるという問題があった。   However, if the primary voltage and the secondary voltage of the SVR fluctuate as shown by the broken line in FIG. 9 due to the load fluctuation of the system immediately after the tap switching is performed by the adjusting transformer of the SVR, ΔVn Since −1 = ΔV1n−1−ΔV2n−1> 0, it is erroneously determined that a reverse power flow has occurred due to system switching. Further, the proposed method has a problem that it takes time to determine the cause of the reverse power flow because it needs to deal with a lot of sampling data and needs to perform arithmetic processing many times.

本発明の目的は、配電系統に設置された自動電圧調整器で電力の逆潮流が生じていることが計測されたときにその原因を正確かつ簡単に判定することができるようにした配電用自動電圧調整器の電力逆潮流原因判定方法及びこの方法を実施するために用いる電力逆潮流原因判定装置を提供することにある。   An object of the present invention is to provide an automatic distribution power supply capable of accurately and easily determining the cause when a reverse power flow is measured by an automatic voltage regulator installed in a distribution system. An object of the present invention is to provide a reverse power flow cause determination method for a voltage regulator and a reverse power flow cause determination device used to implement this method.

本発明は、配電系統に設置された負荷時タップ切換式の自動電圧調整器で二次側から一次側に電力の逆潮流が生じたときに、その原因を判定する配電用自動電圧調整器の電力逆潮流原因判定方法を対象とする。   The present invention is an automatic voltage regulator for distribution that determines the cause when a reverse power flow occurs from the secondary side to the primary side in the automatic voltage regulator of the tap switching type on load installed in the distribution system. The method for determining the cause of reverse power flow is targeted.

本発明に係る判定方法においては、自動電圧調整器で電力の逆潮流が検出された状態で自動電圧調整器が電圧調整を行う際に、自動電圧調整器のタップが切り換わるタイミングよりも前のタイミングに設定された第1の計測タイミング、タップが切り換った直後のタイミングに設定された第2の計測タイミング及び該第2の計測タイミングよりも僅かに遅れたタイミングに設定された第3の計測タイミングでそれぞれ自動電圧調整器の一次側電圧を第1の一次電圧、第2の一次電圧及び第3の一次電圧として計測するとともに、自動電圧調整器の二次側電圧を第1の二次電圧、第2の二次電圧及び第3の二次電圧として計測して以下の(1)ないし(4)の過程を行う。
(1)第2の一次電圧と第3の一次電圧との比較及び(又は)第2の二次電圧と第3の二次電圧の比較を行って、その比較の結果から、自動電圧調整器が電圧調整動作を行った直後の系統の負荷状態が、負荷変動が無い状態、系統の負荷が軽くなる軽負荷変動が生じている状態、及び系統の負荷が重くなる重負荷変動が生じている状態のうちの何れであったかを判定する負荷状態判定過程。
(2)自動電圧調整器が行う電圧調整動作が、自動電圧調整器の一次側の配電線に電源変電所が接続されていて自動電圧調整器を通して順方向に電力が潮流しているとした場合に該自動電圧調整器の二次側電圧を昇圧させることになる方向にタップを切り換えるタップ上げであるのか、該タップ上げ時と逆方向にタップを切り換えるタップ下げであるのかを判定する電圧調整動作判定過程。
(3)第1の一次電圧と第3の一次電圧との比較及び(又は)第1の二次電圧と第3の二次電圧との比較を行って、比較した電圧の高低の関係を判定するタップ切換時電圧変化判定過程。
(4)負荷状態判定過程での判定結果と電圧調整動作判定過程での判定結果とタップ切換時電圧変化判定過程での判定結果とを、これらの判定結果に対して予め用意した判定要件と照合することにより、逆潮流が生じている原因が、自動電圧調整器の一次側の配電線が電源変電所に接続されている状態で自動電圧調整器の二次側の配電線に分散電源が連係したことにあるのか、系統の切換により自動電圧調整器の一次側の配電線が電源変電所から切り離されて、二次側の配電線が他の系統の電源変電所に接続されたことにあるのかを判定する逆潮流原因判定過程。
In the determination method according to the present invention, when the automatic voltage regulator performs voltage adjustment in a state where the reverse power flow is detected by the automatic voltage regulator, the timing before the timing at which the tap of the automatic voltage regulator is switched. The first measurement timing set to the timing, the second measurement timing set to the timing immediately after the tap is switched, and the third measurement timing set to a timing slightly delayed from the second measurement timing At the measurement timing, the primary voltage of the automatic voltage regulator is measured as the first primary voltage, the second primary voltage, and the third primary voltage, respectively, and the secondary voltage of the automatic voltage regulator is measured as the first secondary voltage. The following steps (1) to (4) are performed by measuring the voltage, the second secondary voltage, and the third secondary voltage.
(1) A comparison between the second primary voltage and the third primary voltage and / or a comparison between the second secondary voltage and the third secondary voltage, and from the result of the comparison, an automatic voltage regulator The load state of the system immediately after the voltage adjustment operation is performed is a state where there is no load variation, a light load variation where the load on the system is light, and a heavy load variation where the load on the system is heavy A load state determination process for determining which of the states.
(2) When the voltage adjustment operation performed by the automatic voltage regulator assumes that a power substation is connected to the distribution line on the primary side of the automatic voltage regulator and power is flowing in the forward direction through the automatic voltage regulator Voltage adjustment operation for determining whether the tap is to be switched in the direction in which the secondary side voltage of the automatic voltage regulator is boosted or whether the tap is to be switched in the opposite direction to that when the tap is raised Judgment process.
(3) A comparison between the first primary voltage and the third primary voltage and / or a comparison between the first secondary voltage and the third secondary voltage is performed to determine the relationship between the compared voltages. Voltage change judgment process at tap switching.
(4) The determination result in the load state determination process, the determination result in the voltage adjustment operation determination process, and the determination result in the voltage change determination process at tap switching are collated with the determination requirements prepared in advance for these determination results. The cause of the reverse power flow is that the distributed power supply is linked to the distribution line on the secondary side of the automatic voltage regulator while the distribution line on the primary side of the automatic voltage regulator is connected to the power substation. This is because the distribution line on the primary side of the automatic voltage regulator was disconnected from the power substation by switching the system, and the distribution line on the secondary side was connected to the power substation of another system. Reverse power flow cause determination process to determine whether or not.

本発明者は、上記のように、SVRで電力の逆潮流が検出された状態で自動電圧調整器が電圧調整を行う際に、タップが切り換わるタイミングよりも前のタイミングに設定された第1の計測タイミング、タップが切り換った直後のタイミングに設定された第2の計測タイミング及び該第2の計測タイミングよりも僅かに遅れたタイミングに設定された第3の計測タイミングで自動電圧調整器の一次側電圧を第1ないし第3の一次電圧として計測し、二次側電圧を第1ないし第3の二次電圧として計測すると、第2の一次電圧と第3の一次電圧との間の高低の関係及び(又は)第2の二次電圧と第3の二次電圧との間の高低の関係から、自動電圧調整器が電圧調整動作を行った直後の系統の負荷状態が、(イ)系統負荷に変動がない状態、(ロ)系統負荷が軽くなる方向への変動である軽負荷変動が生じている状態及び(ハ)系統負荷が重くなる方向への変動である重負荷変動が生じている状態のいずれの状態にあるのかを判別できることを見出した。   As described above, when the automatic voltage regulator performs voltage adjustment in a state where the reverse power flow is detected in the SVR, the first time set before the timing at which the tap is switched is set. The automatic voltage regulator at the measurement timing, the second measurement timing set immediately after the tap is switched, and the third measurement timing set slightly later than the second measurement timing When the primary side voltage is measured as the first to third primary voltages and the secondary side voltage is measured as the first to third secondary voltages, the second primary voltage and the third primary voltage are measured. From the high / low relationship and / or the high / low relationship between the second secondary voltage and the third secondary voltage, the load state of the system immediately after the automatic voltage regulator performs the voltage adjustment operation is ) No change in system load, Whether the system is in a state where a light load fluctuation, which is a fluctuation in the direction of lightening the system load, or (c) a state of heavy load fluctuation, which is a fluctuation in the direction of increasing the system load, is present I found out that it can be distinguished.

また、判別された系統の負荷状態と、自動電圧調整器が実行する電圧調整動作がタップ上げであるのかタップ下げであるのかの判定結果と、第1の計測タイミング及び第3の計測タイミングでそれぞれ計測された一次電圧同士の比較判定結果(タップ切換の直後の一次電圧の変化)及び(又は)二次電圧同士の比較判定結果(タップ切換の直後の二次電圧の変化)と、自動電圧調整器で生じている電力の逆潮流の原因との間に一定の関係があること、従って、負荷状態判定過程での判定結果と電圧調整動作判定過程での判定結果とタップ切換時電圧変化判定過程での判定結果とを、これらの判定結果に対して予め用意した判定要件と照合することにより、自動電圧調整器で電力の逆潮流が生じている原因が、自動電圧調整器の一次側の配電線が電源変電所に接続されている状態で自動電圧調整器の二次側の配電線に分散電源が連係したことにあるのか、系統の切換により自動電圧調整器の一次側の配電線が電源変電所から切り離されて、二次側の配電線が他の系統の電源変電所に接続されたことにあるのかを判定できることを見出した。   Further, the determined load state of the system, the determination result of whether the voltage adjustment operation executed by the automatic voltage regulator is tap-up or tap-down, and the first measurement timing and the third measurement timing, respectively. Comparison determination result between primary voltages measured (change in primary voltage immediately after tap switching) and / or comparison determination result between secondary voltages (change in secondary voltage immediately after tap switching) and automatic voltage adjustment Therefore, there is a certain relationship between the cause of the reverse power flow generated in the transformer, and therefore, the judgment result in the load state judgment process, the judgment result in the voltage adjustment operation judgment process, and the voltage change judgment process at tap switching By comparing the judgment results obtained in step 1 with the judgment requirements prepared in advance for these judgment results, the cause of the reverse power flow in the automatic voltage regulator is the distribution of the primary side of the automatic voltage regulator. Electrical wire Whether the distributed power supply is linked to the distribution line on the secondary side of the automatic voltage regulator while connected to the power supply substation, or the primary distribution line on the automatic voltage regulator is connected to the power supply substation by switching the system It was found that it is possible to determine whether the secondary distribution line is connected to a power substation of another system.

上記の判定方法を実施する配電用自動電圧調整器の電力逆潮流原因判定装置は、自動電圧調整器で電力の逆潮流が検出された状態で自動電圧調整器が電圧調整を行う際に、自動電圧調整器のタップが切り換わるタイミングよりも前のタイミングに設定された第1の計測タイミング、タップが切り換った直後のタイミングに設定された第2の計測タイミング及び該第2の計測タイミングよりも僅かに遅れたタイミングに設定された第3の計測タイミングでそれぞれ自動電圧調整器の一次側電圧を第1の一次電圧、第2の一次電圧及び第3の一次電圧として計測するとともに、自動電圧調整器の二次側電圧を第1の二次電圧、第2の二次電圧及び第3の二次電圧として計測する電圧計測手段と、第2の一次電圧と第3の一次電圧との比較及び(又は)第2の二次電圧と第3の二次電圧の比較を行って、その比較の結果から、自動電圧調整器が電圧調整動作を行った直後の系統の負荷状態が、負荷変動が無い状態、系統の負荷が軽くなる方向への変動である軽負荷変動が生じている状態、及び系統の負荷が重くなる方向への変動である重負荷変動が生じている状態のうちの何れの状態にあるのかを判定する負荷状態判定手段と、自動電圧調整器が行う電圧調整動作が、自動電圧調整器の一次側に電源変電所が接続されている状態で自動電圧調整器の二次側電圧を昇圧させる方向にタップを切り換えるタップ上げであるのか、該タップ上げ時と逆方向にタップを切り換えるタップ下げであるのかを判定する電圧調整動作判定手段と、第1の一次電圧と第3の一次電圧との比較及び(又は)第1の二次電圧と第3の二次電圧との比較を行って、比較した電圧の高低の関係を判定するタップ切換時電圧変化判定手段と、負荷状態判定手段による判定結果と、電圧調整動作判定手段による判定結果と、タップ切換時電圧変化判定手段による判定結果とを、これらの判定結果に対して予め用意した判定要件と照合することにより、電力の逆潮流が生じている原因が、自動電圧調整器の一次側の配電線が電源変電所に接続されている状態で自動電圧調整器の二次側の配電線に分散電源が連係したことにあるのか、系統の切換により自動電圧調整器の一次側の配電線が電源変電所から切り離されて、二次側の配電線が他の系統の電源変電所に接続されたことにあるのかを判定する逆潮流原因判定手段とを備えることにより構成される。   The power reverse flow cause determination device of the automatic voltage regulator for distribution that implements the above judgment method is automatic when the automatic voltage regulator performs voltage adjustment in the state where the reverse flow of power is detected by the automatic voltage regulator. From the first measurement timing set at the timing before the timing when the tap of the voltage regulator is switched, the second measurement timing set at the timing immediately after the tap is switched, and the second measurement timing The primary voltage of the automatic voltage regulator is measured as the first primary voltage, the second primary voltage, and the third primary voltage, respectively, at the third measurement timing set at a slightly delayed timing, and the automatic voltage Comparison of voltage measuring means for measuring the secondary side voltage of the regulator as the first secondary voltage, the second secondary voltage, and the third secondary voltage, and the second primary voltage and the third primary voltage And (also ) Comparison between the second secondary voltage and the third secondary voltage, and from the comparison result, the load state of the system immediately after the automatic voltage regulator performs the voltage adjustment operation is a state in which there is no load fluctuation. In any state of a state where a light load variation, which is a variation in a direction in which the load on the system is lightened, and a state in which a heavy load variation, which is a variation in a direction in which the load on the system is heavy, are occurring The load condition determination means for determining whether or not there is a voltage adjustment operation performed by the automatic voltage regulator, the secondary voltage of the automatic voltage regulator is set with the power supply substation connected to the primary side of the automatic voltage regulator. Voltage adjustment operation determination means for determining whether the tap is to be switched in the direction of boosting, or to be a tap lowering to switch the tap in the direction opposite to that when the tap is lifted; and the first primary voltage and the third primary voltage And / or second The comparison between the secondary voltage and the third secondary voltage is performed, and the voltage change determination means at the time of tap switching for determining the relationship between the levels of the compared voltages, the determination result by the load state determination means, and the voltage adjustment operation determination By comparing the determination result by the means and the determination result by the voltage change determination means at the time of tap switching with the determination requirements prepared in advance for these determination results, the cause of the reverse power flow is the automatic voltage Whether the distributed power supply is linked to the secondary distribution line of the automatic voltage regulator while the primary distribution line of the regulator is connected to the power substation, or the automatic voltage regulator Constructed by including reverse power flow cause determination means for determining whether the primary distribution line is disconnected from the power supply substation and the secondary distribution line is connected to the power supply substation of another system Is done.

本発明によれば、自動電圧調整器のタップが切り換わるタイミングよりも前のタイミングに設定された第1の計測タイミング、タップが切り換った直後のタイミングに設定された第2の計測タイミング及び該第2の計測タイミングよりも僅かに遅れたタイミングに設定された第3の計測タイミングでそれぞれ自動電圧調整器の一次側電圧を第1の一次電圧、第2の一次電圧及び第3の一次電圧として計測するとともに、二次側電圧を第1の二次電圧、第2の二次電圧及び第3の二次電圧として計測して、タップ切換が行われた直後に計測された第2の一次電圧と第3の一次電圧との間の高低の関係及び(又は)第2の二次電圧と第3の二次電圧との間の高低の関係から、自動電圧調整器が電圧調整動作を行った直後の系統の負荷状態を判定して、この負荷状態の判定結果を考慮しながら、電圧調整動作がタップ上げであるかタップ下げであるかの判定結果と、電圧調整動作の前後に計測された第1の一次電圧と第3の一次電圧との間の高低の関係及び(又は)第1の二次電圧と第3の二次電圧との間の高低の関係とに基づいて、逆潮流の原因を判定するようにしたので、自動電圧調整器で電力の逆潮流が生じている状態で電圧調整動作が行われた直後に系統で負荷変動が生じた場合でも、逆潮流の原因を正確に特定することができる。また本発明によれば、第1の計測タイミングないし第3の計測タイミングでそれぞれ計測した一次電圧同士及び二次電圧同士の比較判定結果から電圧調整動作が行われた直後の負荷状態の判定と、逆潮流の原因の特定とを行うので、多くのサンプリングデータを扱ったり、何回も演算を繰り返したりすることなく、電圧を比較するだけの簡単な処理を行うだけで、電力の逆潮流が生じた原因を特定することができる。   According to the present invention, the first measurement timing set at a timing before the timing at which the tap of the automatic voltage regulator is switched, the second measurement timing set at the timing immediately after the tap is switched, and The primary voltage of the automatic voltage regulator is changed to the first primary voltage, the second primary voltage, and the third primary voltage at the third measurement timing set at a timing slightly delayed from the second measurement timing, respectively. And measuring the secondary side voltage as the first secondary voltage, the second secondary voltage, and the third secondary voltage, and measuring the second primary voltage immediately after the tap switching is performed. The automatic voltage regulator performs a voltage adjustment operation based on the high-low relationship between the voltage and the third primary voltage and / or the high-low relationship between the second secondary voltage and the third secondary voltage. The load status of the system immediately after The determination result of whether the voltage adjustment operation is a tap-up or tap-down, the first primary voltage and the third primary voltage measured before and after the voltage adjustment operation, while considering the determination result of the load state Since the cause of the reverse power flow is determined based on the high / low relationship between the voltage and / or the high / low relationship between the first secondary voltage and the third secondary voltage, automatic Even when a load fluctuation occurs in the system immediately after the voltage adjustment operation is performed in a state where the reverse flow of power is generated in the voltage regulator, the cause of the reverse flow can be accurately identified. According to the present invention, the determination of the load state immediately after the voltage adjustment operation is performed from the comparison determination result between the primary voltages and the secondary voltages respectively measured at the first measurement timing to the third measurement timing; Since the cause of the reverse power flow is identified, the reverse power flow can be generated simply by comparing the voltages without handling a lot of sampling data or repeating the operation many times. Cause can be identified.

本発明の一実施形態のハードウェアの構成を概略的に示した構成図である。It is the block diagram which showed schematically the structure of the hardware of one Embodiment of this invention. マイクロプロセッサにより構成される各手段を含む本発明の一実施形態の構成を示したブロック図である。It is the block diagram which showed the structure of one Embodiment of this invention containing each means comprised by a microprocessor. 自動電圧調整器の構成の一例を示した結線図である。It is the connection diagram which showed an example of the structure of the automatic voltage regulator. (A)ないし(C)は、SVRが設置された配電系統において、SVRの一次側の配電線が電源変電所に接続され、二次側に分散電源が連携していることにより電力の逆潮流が生じている状態でタップ上げが行われたときの電圧変化を系統の種々の負荷状態に対して示したグラフである。(A) to (C) show the reverse power flow in the distribution system where the SVR is installed, because the distribution line on the primary side of the SVR is connected to the power substation and the distributed power supply is linked to the secondary side. It is the graph which showed the voltage change when tapping is performed in the state where the occurrence has occurred with respect to various load states of the system. (A)ないし(C)は、SVRが設置された配電系統において、SVRの一次側の配電線が電源変電所に接続され、二次側に分散電源が連携していることにより電力の逆潮流が生じている状態でタップ下げが行われたときの電圧変化を系統の種々の負荷状態に対して示したグラフである。(A) to (C) show the reverse power flow in the distribution system where the SVR is installed, because the distribution line on the primary side of the SVR is connected to the power substation and the distributed power supply is linked to the secondary side. It is the graph which showed the voltage change when tap lowering was performed in the state which has occurred with respect to various load conditions of a system. (A)ないし(C)は、SVRが設置された配電系統において、SVRの一次側の配電線が電源変電所から切り離され、二次側の配電線が他系統の電源変電所に接続されたことにより電力の逆潮流が生じている状態でタップ上げが行われたときの電圧変化を系統の種々の負荷状態に対して示したグラフである。In (A) to (C), in the distribution system where the SVR is installed, the primary distribution line of the SVR is disconnected from the power supply substation, and the secondary distribution line is connected to the power supply substation of another system. It is the graph which showed the voltage change when tapping was performed in the state where the reverse power flow has arisen by this with respect to the various load conditions of a system | strain. (A)ないし(C)は、SVRが設置された配電系統において、SVRの一次側の配電線が電源変電所から切り離され、二次側の配電線が他系統の電源変電所に接続されたことにより電力の逆潮流が生じている状態でタップ下げが行われたときの電圧変化を系統の種々の負荷状態に対して示したグラフである。In (A) to (C), in the distribution system where the SVR is installed, the primary distribution line of the SVR is disconnected from the power supply substation, and the secondary distribution line is connected to the power supply substation of another system. It is the graph which showed the voltage change when the tap lowering was performed in the state in which the reverse power flow has arisen by this with respect to the various load conditions of a system | strain. (A)ないし(C)はそれぞれ、自動電圧調整器の電圧調整動作と一次電圧及び二次電圧の変化と逆潮流の原因との間の関係を、逆潮流時に系統に負荷変動がないとき、逆潮流時に系統に負荷が軽くなる方向の変動である軽負荷変動が生じているとき、及び逆潮流時に系統に負荷が重くなる方向の変動である重負荷変動が生じているときについて示した図表である。(A) to (C) respectively show the relationship between the voltage regulation operation of the automatic voltage regulator and the change of the primary voltage and the secondary voltage and the cause of the reverse power flow, when there is no load fluctuation in the system during the reverse power flow. A chart showing when a light load fluctuation, which is a fluctuation in the direction of lightening the load in the system during reverse power flow, and a heavy load fluctuation, a fluctuation in the direction of increasing the load in the system, during reverse power flow It is. 従来の判定方法を説明するために用いる各部の信号波形図である。It is a signal waveform diagram of each part used in order to explain the conventional judgment method. (A)ないし(C)はそれぞれ、一般型自動電圧調整器が設置された配電系統において、自動電圧調整器での電力の潮流が順方向潮流状態であるとき、系統の切換により自動電圧調整器で電力の逆潮流が生じているとき、及び分散電源の連系により自動電圧調整器で電力の逆潮流が生じているときの系統の状態を示す単線結線図を、系統の電圧分布の変化を示すグラフとともに示した説明図である。(A) to (C), respectively, in a distribution system in which a general automatic voltage regulator is installed, when the power flow in the automatic voltage regulator is in a forward flow state, the automatic voltage regulator is switched by switching the system. A single-line diagram showing the state of the system when the reverse power flow occurs and when the automatic voltage regulator causes a reverse power flow due to the interconnection of distributed power sources, the change in the voltage distribution of the system It is explanatory drawing shown with the graph to show. (A)ないし(C)はそれぞれ、逆送時タップ固定型自動電圧調整器が設置された配電系統において、自動電圧調整器での電力の潮流が順方向潮流状態であるとき、系統の切換により自動電圧調整器で電力の逆潮流が生じているとき、及び分散電源の連系により自動電圧調整器で電力の逆潮流が生じているときの系統の状態を示す単線結線図を、系統の電圧分布の変化を示すグラフとともに示した説明図である。(A) to (C), respectively, in the distribution system in which the reverse feed tap fixed automatic voltage regulator is installed, when the power flow in the automatic voltage regulator is in the forward flow state, A single-line diagram showing the state of the system when reverse power flow occurs in the automatic voltage regulator and when reverse power flow occurs in the automatic voltage regulator due to the interconnection of distributed power sources. It is explanatory drawing shown with the graph which shows the change of distribution. 系統の状態とタップ切換時の一次側電圧の変化及び二次側電圧の変化との関係をまとめて示した図表である。It is the graph which showed collectively the relationship between the state of a system | strain, the change of the primary side voltage at the time of tap switching, and the change of a secondary side voltage.

図1は、本発明に係る電力逆潮流原因判定方法を実施する装置のハードウェアの構成例を概略的に示したものである。同図において2は自動電圧調整器、4は一端が図示しない変電所のトランスに開閉器を介して接続され、他端が自動電圧調整器の一次側に接続されたU,V,W三相の一次側配電線である。また5は一端が自動電圧調整器2の二次側に接続され、他端が開閉器を介して他の系統の配電線に接続されたU,V,W三相の二次側配電線である。   FIG. 1 schematically shows an example of the hardware configuration of an apparatus that implements the reverse power flow cause determination method according to the present invention. In the figure, 2 is an automatic voltage regulator, 4 is a U, V, W three-phase one end connected to a transformer in a substation (not shown) via a switch and the other end connected to the primary side of the automatic voltage regulator. Primary side distribution line. 5 is a U, V, W three-phase secondary distribution line with one end connected to the secondary side of the automatic voltage regulator 2 and the other end connected to a distribution line of another system via a switch. is there.

自動電圧調整器2は、例えば図3に示すように構成される。図3において、2Aはタップa1 〜a9 を有する単巻変圧器からなる調整変圧器、2Bは調整変圧器のタップを切り換える負荷時タップ切換装置である。調整変圧器2Aの一次側には負荷時タップ切換装置2Bを通して配電線4の電圧が入力されている。また調整変圧器2Aの二次側は配電線5に接続されている。2Cは自動電圧調整器の二次側の電圧V1 を計測する計器用変圧器(PT)、2Dは二次側電圧を目標電圧に保つようにタップ切換装置2Bにタップ切換指令を与える電圧調整継電器(90リレー)、2Eは電圧調整継電器2Dに対して直列に接続された線路電圧降下補償器(LDC)で、電圧調整継電器2Dと線路電圧降下補償器2Eとの直列回路が計器用変圧器2Cの出力端子間に接続されている。LDC2Eには、二次側の配電線5を流れる負荷電流IL を計測する変流器(CT)2Fの出力が入力されている。V1及びV2はそれぞれ自動電圧調整器の一次側電圧及び二次側電圧である。   The automatic voltage regulator 2 is configured as shown in FIG. 3, for example. In FIG. 3, reference numeral 2A denotes a regulating transformer composed of a single-winding transformer having taps a1 to a9, and 2B denotes a load-time tap switching device for switching taps of the regulating transformer. The voltage of the distribution line 4 is input to the primary side of the adjustment transformer 2A through the on-load tap switching device 2B. The secondary side of the adjustment transformer 2 </ b> A is connected to the distribution line 5. 2C is a voltage transformer (PT) for measuring the secondary side voltage V1 of the automatic voltage regulator, and 2D is a voltage regulating relay for giving a tap switching command to the tap switching device 2B so as to keep the secondary side voltage at the target voltage. (90 relay) 2E is a line voltage drop compensator (LDC) connected in series with the voltage adjustment relay 2D. The series circuit of the voltage adjustment relay 2D and the line voltage drop compensator 2E is an instrument transformer 2C. Is connected between the output terminals of The output of the current transformer (CT) 2F that measures the load current IL flowing through the secondary distribution line 5 is input to the LDC 2E. V1 and V2 are the primary side voltage and the secondary side voltage of the automatic voltage regulator, respectively.

図3に示した自動電圧調整器においては、電圧調整継電器2Dが計器用変圧器2Cの出力電圧VL'から二次側電圧V2 を計測して、一次側配電線4側から二次側配電線5側に電力が送られているとき(電力順送時)に二次側電圧V2 を目標電圧に保つようにタップ切換装置2Bにタップ切換指令を与える。タップ切換装置2Bは、電圧調整継電器2Dから与えられるタップ切換指令に応じて調整変圧器2Aのタップを切り換えて、自動電圧調整器の二次側電圧V2 を目標電圧に保つように(二次側電圧V2 と目標電圧との差を許容範囲に収めるように)調整する。   In the automatic voltage regulator shown in FIG. 3, the voltage regulating relay 2D measures the secondary side voltage V2 from the output voltage VL 'of the instrument transformer 2C, and the secondary side distribution line from the primary side distribution line 4 side. When power is being sent to the side 5 (during progressive power feeding), a tap switching command is given to the tap switching device 2B so as to keep the secondary side voltage V2 at the target voltage. The tap switching device 2B switches the tap of the adjusting transformer 2A according to the tap switching command given from the voltage adjusting relay 2D so as to keep the secondary voltage V2 of the automatic voltage regulator at the target voltage (secondary side). Adjust so that the difference between the voltage V2 and the target voltage is within the allowable range.

即ち、電力順送時に二次側電圧V2 が目標電圧よりも低くなったときには電圧調整継電器2Dが昇圧指令を発生し、これにより調整変圧器2Aのタップを昇圧側に切り換えるタップ上げを行って、二次側電圧V2 と目標電圧との差を許容範囲以下にするように電圧を調整する。また二次側電圧V2 が目標電圧を超えたときには電圧調整継電器2Dが降圧指令を発生し、これにより調整変圧器2Aのタップを降圧側に切り換えるタップ下げを行って二次側電圧と目標電圧との差を許容範囲以下とするように電圧を調整する。   That is, when the secondary side voltage V2 becomes lower than the target voltage during the forward power transmission, the voltage adjustment relay 2D generates a step-up command, thereby performing a tap up to switch the tap of the adjustment transformer 2A to the step-up side. The voltage is adjusted so that the difference between the secondary side voltage V2 and the target voltage is within an allowable range. Further, when the secondary side voltage V2 exceeds the target voltage, the voltage adjusting relay 2D generates a step-down command, thereby performing a tap lowering to switch the tap of the adjusting transformer 2A to the step-down side, and the secondary side voltage and the target voltage. Adjust the voltage so that the difference between the two is less than the allowable range.

線路電圧降下補償器2Eは、配電線5の線路インピーダンスを模擬した抵抗とリアクタンスとから成っていて、該抵抗及びリアクタンスにCT2Fの出力電流ILDC が流れるように設けられている。線路電圧降下補償器2Eの両端には、線路インピーダンスによる電圧降下に比例した電圧降下VLDC が生じる。このとき電圧調整継電器2Dに加わる電圧V90はV2 −VLDC となり、線路電圧降下補償器2Eが挿入されていない場合に比べて、VLDCだけ低くなる。そのため電圧調整継電器2Dは、調整変圧器2Aのタップを線路電圧降下VLDC 分だけ昇圧側に切り換えるように負荷時タップ切換装置2Bにタップ切換指令を与えて、線路インピーダンスによる電圧降下を補償する。   The line voltage drop compensator 2E is composed of a resistance and a reactance simulating the line impedance of the distribution line 5, and is provided so that an output current ILDC of CT2F flows through the resistance and the reactance. At both ends of the line voltage drop compensator 2E, a voltage drop VLDC proportional to the voltage drop due to the line impedance occurs. At this time, the voltage V90 applied to the voltage adjusting relay 2D is V2-VLDC, which is lower by VLDC than when the line voltage drop compensator 2E is not inserted. Therefore, the voltage regulation relay 2D gives a tap switching command to the on-load tap switching device 2B so as to switch the tap of the regulation transformer 2A to the boost side by the line voltage drop VLDC to compensate for the voltage drop due to the line impedance.

図1において、10は自動電圧調整器の二次側に設けられてW相電流と位相が反転されたU相電流とが入力された変流器、11は変流器10の出力が入力された逆電力継電器で、変流器10と逆電力継電器11とにより電力逆潮流検出装置12が構成されている。13及び14はそれぞれ自動電圧調整器のU,W相間から一次側電圧V1 及び二次側電圧V2 を計測する計器用変圧器(PT)である。計器用変圧器13及び14から得られる一次側電圧及び二次側電圧の計測信号はそれぞれ負担抵抗などを備えた一次側電圧検出回路15及び二次側電圧検出回路16を通して第1及び第2のA/D変換器17及び18に入力されてデジタル信号に変換される。19は電力逆潮流検出装置12が電力の逆潮流を検出している状態で自動電圧調整器のタップ切換装置がタップ切換を行う際に計測指令信号を発生する計測指令信号発生手段である。   In FIG. 1, reference numeral 10 denotes a current transformer provided on the secondary side of the automatic voltage regulator, to which a W-phase current and a U-phase current whose phase is inverted are input, and 11 is an output of the current transformer 10. In the reverse power relay, the current transformer 10 and the reverse power relay 11 constitute a power reverse flow detector 12. Reference numerals 13 and 14 are transformers (PT) for measuring the primary side voltage V1 and the secondary side voltage V2 from the U and W phases of the automatic voltage regulator, respectively. The measurement signals of the primary side voltage and the secondary side voltage obtained from the instrument transformers 13 and 14 are first and second through the primary side voltage detection circuit 15 and the secondary side voltage detection circuit 16 each having a load resistance. The signals are input to A / D converters 17 and 18 and converted into digital signals. Reference numeral 19 denotes a measurement command signal generating means for generating a measurement command signal when the tap switching device of the automatic voltage regulator performs tap switching in a state where the power reverse flow detection device 12 detects the reverse power flow.

計測指令信号発生手段19は、電力逆潮流検出装置12が自動電圧調整器2で電力の逆潮流が生じていることを検出している状態で自動電圧調整器2が電圧調整を行う際に、図4ないし図7に示されているように、自動電圧調整器2のタップが切り換わるタイミングt1よりも前のタイミングに設定された第1の計測タイミングta、タップが切り換った直後のタイミングに設定された第2の計測タイミングtb及び第2の計測タイミングtbよりも僅かに遅れたタイミングに設定された第3の計測タイミングtcでそれぞれ第1の計測指令信号、第2の計測指令信号及び第3の計測指令信号を発生する。   When the automatic voltage regulator 2 performs voltage adjustment in a state where the power reverse flow detection device 12 detects that the reverse flow of power has occurred in the automatic voltage regulator 2, the measurement command signal generation means 19 As shown in FIGS. 4 to 7, the first measurement timing ta set at a timing before the timing t1 at which the tap of the automatic voltage regulator 2 is switched, the timing immediately after the tap is switched. The first measurement command signal, the second measurement command signal, and the second measurement timing tb set at a timing slightly behind the second measurement timing tb and the third measurement timing tc set slightly later than the second measurement timing tb, respectively. A third measurement command signal is generated.

第1及び第2のA/D変換器17及び18から得られるデジタル信号は、電力逆潮流検出装置12の出力及び計測指令信号発生手段19の出力とともにマイクロプロセッサ20に入力されている。マイクロプロセッサ20は、所定のプログラムを実行することにより、種々の機能を果たす手段を構成する。   Digital signals obtained from the first and second A / D converters 17 and 18 are input to the microprocessor 20 together with the output of the power reverse flow detector 12 and the output of the measurement command signal generator 19. The microprocessor 20 constitutes means for performing various functions by executing a predetermined program.

図2は、マイクロプロセッサ20により構成される機能実現手段を含む本実施形態に係る判定装置の構成を示したものである。本実施形態では、マイクロプロセッサ20が、電圧計測手段22と、負荷状態判定手段23と、電圧調整動作判定手段24と、タップ切換時電圧変化判定手段26と、逆潮流原因判定手段27とを構成する。   FIG. 2 shows the configuration of the determination apparatus according to the present embodiment including function realizing means constituted by the microprocessor 20. In the present embodiment, the microprocessor 20 includes a voltage measuring unit 22, a load state determining unit 23, a voltage adjustment operation determining unit 24, a tap switching voltage change determining unit 26, and a reverse power flow cause determining unit 27. To do.

電圧計測手段22は、電力逆潮流検出装置12が自動電圧調整器2で電力の逆潮流が生じていることを検出している状態で自動電圧調整器2が電圧調整を行う際に、計測指令信号発生手段19が、第1の計測タイミングta、第2の計測タイミングtb及び第3の計測タイミングtcでそれぞれ第1ないし第3の計測指令信号を発生したときに、SVR2の一次側電圧を第1の一次電圧V1a,第2の一次電圧V1b及び第3の一次電圧V1cとして計測する。電圧計測手段22はまた、計測指令信号発生手段19が、第1の計測タイミングta、第2の計測タイミングtb及び第3の計測タイミングtcでそれぞれ第1ないし第3の計測指令信号を発生したときに、SVR2の二次側電圧を第1の二次電圧V2a,第2の二次電圧V2b及び第3の二次電圧V2cとして計測する。   When the automatic voltage regulator 2 performs voltage adjustment in a state in which the power reverse flow detection device 12 detects that the reverse flow of power has occurred in the automatic voltage regulator 2, the voltage measuring means 22 When the signal generating means 19 generates the first to third measurement command signals at the first measurement timing ta, the second measurement timing tb, and the third measurement timing tc, respectively, the primary side voltage of the SVR 2 is changed to the first voltage. The first primary voltage V1a, the second primary voltage V1b, and the third primary voltage V1c are measured. The voltage measuring means 22 also generates the first to third measurement command signals at the first measurement timing ta, the second measurement timing tb, and the third measurement timing tc, respectively. In addition, the secondary side voltage of SVR2 is measured as a first secondary voltage V2a, a second secondary voltage V2b, and a third secondary voltage V2c.

負荷状態判定手段23は、SVRが電圧調整を行った直後の系統の負荷状態を判定する手段であり、SVRが電圧調整動作を行った(タップ切換を行った)直後に系統の負荷変動の有無と、負荷変動の内容とを判定する手段である。負荷状態判定手段23は、第2の一次電圧V1bと第3の一次電圧V1cとの比較及び(又は)第2の二次電圧V2bと第3の二次電圧V2cの比較を行って、その比較の結果から、電圧調整直後の系統の負荷状態が、負荷変動が無い状態、系統の負荷が軽くなる方向への変動である軽負荷変動が生じている状態、及び系統の負荷が重くなる方向への変動である重負荷変動が生じている状態のうちの何れの状態にあるのかを判定する。   The load state determination means 23 is a means for determining the load state of the system immediately after the SVR performs voltage adjustment, and whether or not there is a load change in the system immediately after the SVR performs the voltage adjustment operation (performs tap switching). And means for determining the content of the load fluctuation. The load state determination means 23 compares the second primary voltage V1b and the third primary voltage V1c and / or compares the second secondary voltage V2b and the third secondary voltage V2c, and compares them. From the results, the load state of the system immediately after voltage adjustment is in a state where there is no load change, a light load change that is a change in the direction of lightening the system load, and a direction in which the load of the system becomes heavy It is determined which state is in the state where the heavy load fluctuation, which is the fluctuation of, is occurring.

なお「負荷変動が無い状態」とは、負荷の変動が零である場合のみを意味するのでは無く、電力の逆潮流の原因の判定に用いるパラメータ(第1ないし第3の一次電圧及び第1ないし第3の二次電圧)を計測する期間(第1の計測タイミングから第3の計測タイミングまでの間の期間)において、タップを切換えた際の電圧変動に比べれば、無視できる程度の小さな電圧変動が生じている状態をも含むものとする。   Note that “the state where there is no load fluctuation” does not mean only when the fluctuation of the load is zero, but is a parameter (first to third primary voltages and first and third parameters) used for determining the cause of the reverse power flow. Or a third secondary voltage) (a period between the first measurement timing and the third measurement timing), and a voltage that is negligible compared to the voltage fluctuation when the tap is switched. It also includes the state where fluctuation occurs.

電圧調整動作判定手段24は、電圧調整継電器2Dが発生するタップ切換指令から、自動電圧調整器が行う電圧調整動作が、自動電圧調整器の一次側に電源変電所が接続されている状態で自動電圧調整器の二次側電圧を昇圧させる方向にタップを切り換えるタップ上げであるのか、該タップ上げ時と逆方向にタップを切り換えるタップ下げであるのかを判定する手段である。SVR2が行う電圧調整動作がタップ上げであるかタップ下げであるかは、電圧調整継電器2Dが発生するタップ切換指令から判別することができる。   The voltage adjustment operation determination means 24 automatically performs the voltage adjustment operation performed by the automatic voltage regulator from the tap switching command generated by the voltage adjustment relay 2D in a state where the power substation is connected to the primary side of the automatic voltage regulator. It is a means for determining whether the tap-up is to switch the tap in the direction of increasing the secondary side voltage of the voltage regulator or the tap-down is to switch the tap in the opposite direction to the tap-up. Whether the voltage adjustment operation performed by the SVR 2 is tap-up or tap-down can be determined from a tap switching command generated by the voltage adjustment relay 2D.

タップ切換時電圧変化判定手段26は、第1の一次電圧V1aと第3の一次電圧V1cとの比較及び(又は)第1の二次電圧V2aと第3の二次電圧V2cとの比較を行って、比較した電圧の高低の関係を判定する手段である。   The tap change voltage change judging means 26 compares the first primary voltage V1a with the third primary voltage V1c and / or compares the first secondary voltage V2a with the third secondary voltage V2c. Thus, it is a means for determining the relationship between the levels of the compared voltages.

逆潮流原因判定手段27は、負荷状態判定過程による判定結果と、電圧調整動作判定過程による判定結果と、タップ切換時電圧変化判定過程による判定結果とを、これらの判定結果に対して予め用意した判定要件と照合することにより、逆潮流が生じている原因が、自動電圧調整器の一次側の配電線が電源変電所に接続されている状態で自動電圧調整器の二次側の配電線に分散電源が連係したことにあるのか、系統の切換により自動電圧調整器の一次側の配電線が電源変電所から切り離されて、二次側の配電線が他の系統の電源変電所に接続されたことにあるのかを判定する手段である。   The reverse power flow cause determination means 27 prepares in advance a determination result in the load state determination process, a determination result in the voltage adjustment operation determination process, and a determination result in the voltage change determination process at tap switching for these determination results. By comparing with the judgment requirements, the cause of reverse power flow is caused by the distribution line on the secondary side of the automatic voltage regulator with the distribution line on the primary side of the automatic voltage regulator connected to the power substation. Whether the distributed power supply is linked or not, the distribution line on the primary side of the automatic voltage regulator is disconnected from the power substation by switching the system, and the distribution line on the secondary side is connected to the power substation of the other system This is a means for determining whether or not there is a problem.

本発明者は、SVR2で電力の逆潮流が生じていることが検出されている状態で、SVR2が電圧調整動作を行う際に観測されるSVRの一次側電圧及び二次側電圧について詳細に検討した結果、SVRが電圧調整動作を行う前後の期間に設定した上記第1ないし第3の計測タイミングta,tb及びtcでSVR2の一次側電圧V1及び二次側電圧V2を計測すると、SVRが行う電圧調整動作がタップ上げである場合も、タップ下げである場合も、計測した電圧と系統の負荷状態との間、及び計測した電圧と逆潮流の原因との間に一定の関係があること、及びこれらの関係から、系統の負荷状態及び逆潮流の原因を判定できることを見出した。以下、SVR2で電力の逆潮流が生じている状態で、SVR2が電圧調整動作を行う際に観測されるSVRの一次側電圧及び二次側電圧について、図4ないし図7を参照して詳細に説明する。   The present inventor examined in detail the primary side voltage and the secondary side voltage of the SVR observed when the SVR 2 performs the voltage adjustment operation in a state where the reverse power flow is detected in the SVR 2. As a result, when the primary voltage V1 and the secondary voltage V2 of the SVR 2 are measured at the first to third measurement timings ta, tb, and tc set before and after the voltage adjustment operation of the SVR, the SVR performs the measurement. Whether the voltage adjustment operation is tapping or tapping, there is a certain relationship between the measured voltage and the load state of the system, and between the measured voltage and the cause of reverse power flow, From these relationships, it was found that the load state of the system and the cause of reverse power flow can be determined. Hereinafter, the primary side voltage and the secondary side voltage of the SVR observed when the SVR 2 performs the voltage adjustment operation in the state where the reverse power flow is generated in the SVR 2 will be described in detail with reference to FIGS. explain.

図4は、SVR2の一次側の配電線が本系統の電源変電所に接続され、SVR2の二次側の配電線が他の系統の電源変電所から切り離された状態で、SVR2の二次側に分散電源が連係している(二次側の配電線に分散電源が接続されている)ことが原因で、SVR2で電力の逆潮流が生じているときに、SVRが「タップ上げ」を行った際のSVR2の一次側電圧及び二次側電圧の変化を、(A)タップ上げを行った直後に系統に負荷変動がない場合、(B)タップ上げを行った直後に系統に軽負荷変動(系統の負荷が軽くなる方向への変動)が生じた場合、及び(C)タップ上げを行った直後に系統に重負荷変動(系統の負荷が重くなる方向への変動)が生じている場合の3つの場合について模式的に示したものである。   FIG. 4 shows the secondary side of SVR2 in a state where the primary side distribution line of SVR2 is connected to the power supply substation of this system and the secondary side distribution line of SVR2 is disconnected from the power supply substation of the other system. The SVR performs “tap-up” when a reverse power flow occurs in the SVR2 due to the fact that the distributed power supply is linked to (the distributed power supply is connected to the distribution line on the secondary side). The change in primary voltage and secondary voltage of SVR2 when (A) there is no load fluctuation in the system immediately after the tap is raised, (B) light load fluctuation in the system immediately after the tap is raised (Fluctuation in the direction of lightening the system load) and (C) Heavy load fluctuation (fluctuation in the direction of increasing system load) immediately after the tap is raised These three cases are schematically shown.

SVR2で電力の逆潮流が生じている状態で、タップ上げを行った直後に系統に負荷変動がなかった場合には、図4(A)に示すように、SVRの一次側電圧は変化しないが、二次側電圧はタップが切り換わったタイミングt1でステップ状に上昇する。この場合、第2の計測タイミングtbで計測した第2の一次電圧V1bと第3の計測タイミングtcで計測した第3の一次電圧V1cとを比較すると、V1b=V1cであり、第2の計測タイミングtbで計測した第2の二次電圧V2bと第3の計測タイミングtcで計測した第3の二次電圧V2cとを比較すると、V2b=V2cである。また第1の計測タイミングtaで計測した一次電圧V1aと第3の計測タイミングtcで計測した一次電圧V1cとの間には、V1a=V1cの関係があり、第1の計測タイミングtaで計測した二次電圧V2aと第3の計測タイミングtcで計測した二次電圧V2cとの間には、V2a<V2cの関係がある。   When there is no load fluctuation in the system immediately after tapping in the state where the reverse power flow is generated in SVR2, the primary voltage of SVR does not change as shown in FIG. The secondary side voltage increases stepwise at the timing t1 when the tap is switched. In this case, when the second primary voltage V1b measured at the second measurement timing tb is compared with the third primary voltage V1c measured at the third measurement timing tc, V1b = V1c and the second measurement timing is obtained. When the second secondary voltage V2b measured at tb is compared with the third secondary voltage V2c measured at the third measurement timing tc, V2b = V2c. Further, there is a relationship of V1a = V1c between the primary voltage V1a measured at the first measurement timing ta and the primary voltage V1c measured at the third measurement timing tc, and the two measured at the first measurement timing ta. There is a relationship of V2a <V2c between the secondary voltage V2a and the secondary voltage V2c measured at the third measurement timing tc.

SVR2で電力の逆潮流が生じている状態で、タップ上げを行った直後に軽負荷変動が生じていた場合には、図4(B)に示すように、SVRの一次側電圧がタップ切換が行われた直後から負荷の減少に伴って上昇していき、SVRの二次側電圧はタップ切換が行われた瞬間にステップ状に上昇した後、負荷の減少に伴って上昇していく。この場合、第2の計測タイミングtbで計測した第2の一次電圧V1bと第3の計測タイミングtcで計測した第3の一次電圧V1cとの間には、V1b<V1cの関係があり、第2の計測タイミングtbで計測した第2の二次電圧V2bと第3の二次電圧V2cとの間にもV2b<V2cの関係がある。また第1の計測タイミングtaで計測した一次電圧V1aと第3の計測タイミングtcで計測した一次電圧V1cとの間には、V1a<V1cの関係があり、第1の計測タイミングtaで計測した二次電圧V2aと第3の計測タイミングtcで計測した二次電圧V2cとの間には、V2a<V2cの関係がある。   When a light load fluctuation occurs immediately after the tap is raised in the state where the reverse power flow occurs in the SVR2, the primary voltage of the SVR is changed to the tap change as shown in FIG. 4 (B). Immediately after being performed, the voltage increases as the load decreases. The secondary voltage of the SVR increases stepwise at the moment when tap switching is performed, and then increases as the load decreases. In this case, there is a relationship of V1b <V1c between the second primary voltage V1b measured at the second measurement timing tb and the third primary voltage V1c measured at the third measurement timing tc. There is also a relationship of V2b <V2c between the second secondary voltage V2b and the third secondary voltage V2c measured at the measurement timing tb. Further, there is a relationship of V1a <V1c between the primary voltage V1a measured at the first measurement timing ta and the primary voltage V1c measured at the third measurement timing tc, and the two measured at the first measurement timing ta. There is a relationship of V2a <V2c between the secondary voltage V2a and the secondary voltage V2c measured at the third measurement timing tc.

SVR2で電力の逆潮流が生じている状態で、タップ上げを行った直後に重負荷変動が生じていた場合には、図4(C)に示すように、SVRの一次側電圧がタップ切換が行われた直後から負荷の増大に伴って下降していき、SVRの二次側電圧はタップ切換が行われた瞬間にほぼステップ状に上昇した後、負荷の増大に伴って下降していく。この場合、第2の計測タイミングtbで計測した第2の一次電圧V1bと第3の計測タイミングtcで計測した第3の一次電圧V1cとの間には、V1b>V1cの関係があり、第2の計測タイミングtbで計測した第2の二次電圧V2bと第3の二次電圧V2cとの間にもV2b>V2cの関係がある。また第1の計測タイミングtaで計測した一次電圧V1aと第3の計測タイミングtcで計測した一次電圧V1cとの間には、V1a>V1cの関係があり、第1の計測タイミングtaで計測した二次電圧V2aと第3の計測タイミングtcで計測した二次電圧V2cとの間には、V2a<V2cの関係がある。   When a heavy load fluctuation occurs immediately after the tap is raised in the state where the reverse power flow occurs in the SVR2, as shown in FIG. Immediately after being performed, the voltage decreases as the load increases, and the secondary voltage of the SVR increases approximately stepwise at the moment when the tap switching is performed, and then decreases as the load increases. In this case, there is a relationship of V1b> V1c between the second primary voltage V1b measured at the second measurement timing tb and the third primary voltage V1c measured at the third measurement timing tc. There is also a relationship of V2b> V2c between the second secondary voltage V2b and the third secondary voltage V2c measured at the measurement timing tb. Further, there is a relationship of V1a> V1c between the primary voltage V1a measured at the first measurement timing ta and the primary voltage V1c measured at the third measurement timing tc, and the two measured at the first measurement timing ta. There is a relationship of V2a <V2c between the secondary voltage V2a and the secondary voltage V2c measured at the third measurement timing tc.

図5は、SVR2の一次側の配電線が本系統の電源変電所に接続され、SVR2の二次側の配電線が他の系統の電源変電所から切り離された状態で、SVR2の二次側に分散電源が連係していることが原因で、SVR2で電力の逆潮流が生じているときに、SVRが「タップ下げ」を行った際のSVR2の一次側電圧及び二次側電圧の変化を、(A)タップ下げを行った直後に系統に負荷変動がない場合、(B)タップ下げを行った直後に系統に軽負荷変動(系統の負荷が軽くなる方向への変動)が生じた場合、及び(C)タップ下げを行った直後に系統に重負荷変動(系統の負荷が重くなる方向への変動)が生じている場合の3つの場合について示したものである。   FIG. 5 shows the secondary side of SVR2 in a state where the primary side distribution line of SVR2 is connected to the power supply substation of this system and the secondary side distribution line of SVR2 is disconnected from the power supply substation of the other system. When there is a reverse power flow in the SVR2 due to the fact that the distributed power supply is linked to the SVR2, the change in the primary voltage and the secondary voltage of the SVR2 when the SVR "taps down" (A) When there is no load fluctuation in the system immediately after the tap is lowered, (B) When a light load fluctuation (change in the direction in which the load on the system is reduced) occurs immediately after the tap is lowered. And (C) Three cases where heavy load fluctuations (fluctuations in the direction in which the load on the system becomes heavier) occur in the system immediately after the tap is lowered.

SVR2で電力の逆潮流が生じている状態で、タップ下げを行った直後に系統に負荷変動がなかった場合には、図5(A)に示すように、SVRの一次側電圧は変化しないが、二次側電圧はタップが切り換わったタイミングt1でステップ状に下降する。この場合、第2の計測タイミングtbで計測した第2の一次電圧V1bと第3の計測タイミングtcで計測した第3の一次電圧V1cとの間には、V1b=V1cの関係があり、第2の計測タイミングtbで計測した第2の二次電圧V2bと第3の二次電圧V2cとの間には、V2b=V2cの関係がある。また第1の計測タイミングtaで計測した一次電圧V1aと第3の計測タイミングtcで計測した一次電圧V1cとの間には、V1a=V1cの関係があり、第1の計測タイミングtaで計測した二次電圧V2aと第3の計測タイミングtcで計測した二次電圧V2cとの間には、V2a>V2cの関係がある。   When there is no load fluctuation in the system immediately after the tap is lowered in the state where the reverse power flow occurs in SVR2, the primary side voltage of SVR does not change as shown in FIG. The secondary side voltage drops stepwise at the timing t1 when the tap is switched. In this case, there is a relationship of V1b = V1c between the second primary voltage V1b measured at the second measurement timing tb and the third primary voltage V1c measured at the third measurement timing tc. There is a relationship of V2b = V2c between the second secondary voltage V2b and the third secondary voltage V2c measured at the measurement timing tb. Further, there is a relationship of V1a = V1c between the primary voltage V1a measured at the first measurement timing ta and the primary voltage V1c measured at the third measurement timing tc, and the two measured at the first measurement timing ta. There is a relationship of V2a> V2c between the secondary voltage V2a and the secondary voltage V2c measured at the third measurement timing tc.

またSVR2で電力の逆潮流が生じている状態で、タップ下げを行った直後に軽負荷変動が生じていた場合には、図5(B)に示すように、SVRの一次側電圧がタップ切換が行われた直後から負荷の減少に伴って上昇していき、SVRの二次側電圧はタップ切換が行われた瞬間にステップ状に下降した後、負荷の減少に伴って上昇していく。この場合、第2の計測タイミングtbで計測した第2の一次電圧V1bと第3の計測タイミングtcで計測した第3の一次電圧V1cとの間には、V1b<V1cの関係があり、第2の計測タイミングtbで計測した第2の二次電圧V2bと第3の計測タイミングtcで計測された第3の二次電圧V2cとの間にもV2b<V2cの関係がある。また第1の計測タイミングtaで計測した一次電圧V1aと第3の計測タイミングtcで計測した一次電圧V1cとの間には、V1a<V1cの関係があり、第1の計測タイミングtaで計測した二次電圧V2aと第3の計測タイミングtcで計測した二次電圧V2cとの間には、V2a>V2cの関係がある。   In addition, when a light load fluctuation occurs immediately after the tap is lowered in a state where a reverse power flow occurs in SVR2, the primary voltage of SVR is tapped as shown in FIG. 5B. Immediately after is performed, the voltage increases as the load decreases, and the secondary voltage of the SVR decreases stepwise at the moment when the tap switching is performed, and then increases as the load decreases. In this case, there is a relationship of V1b <V1c between the second primary voltage V1b measured at the second measurement timing tb and the third primary voltage V1c measured at the third measurement timing tc. There is also a relationship of V2b <V2c between the second secondary voltage V2b measured at the measurement timing tb and the third secondary voltage V2c measured at the third measurement timing tc. Further, there is a relationship of V1a <V1c between the primary voltage V1a measured at the first measurement timing ta and the primary voltage V1c measured at the third measurement timing tc, and the two measured at the first measurement timing ta. There is a relationship of V2a> V2c between the secondary voltage V2a and the secondary voltage V2c measured at the third measurement timing tc.

SVR2で電力の逆潮流が生じている状態で、タップ下げを行った直後に重負荷変動が生じていた場合には、図5(C)に示すように、SVRの一次側電圧がタップ切換が行われた直後から負荷の増大に伴って下降していき、SVRの二次側電圧はタップ切換が行われた瞬間にほぼステップ状に下降した後、負荷の増大に伴って下降していく。この場合、第2の計測タイミングtbで計測した第2の一次電圧V1bと第3の一次電圧V1cとの間には、V1b>V1cの関係があり、第2の計測タイミングtbで計測した第2の二次電圧V2bと第3の二次電圧V2cとの間にもV2b>V2cの関係がある。また第1の計測タイミングtaで計測した一次電圧V1aと第3の計測タイミングtcで計測した一次電圧V1cとの間には、V1a>V1cの関係があり、第1の計測タイミングtaで計測した二次電圧V2aと第3の計測タイミングtcで計測した二次電圧V2cとの間には、V2a>V2cの関係がある。   When a heavy load fluctuation occurs immediately after the tap is lowered in the state where the reverse power flow occurs in SVR2, as shown in FIG. 5C, the primary voltage of the SVR is changed over by tap switching. Immediately after being performed, the voltage decreases as the load increases, and the secondary voltage of the SVR decreases approximately stepwise at the moment when the tap switching is performed, and then decreases as the load increases. In this case, there is a relationship of V1b> V1c between the second primary voltage V1b measured at the second measurement timing tb and the third primary voltage V1c, and the second measured at the second measurement timing tb. There is also a relationship of V2b> V2c between the secondary voltage V2b and the third secondary voltage V2c. Further, there is a relationship of V1a> V1c between the primary voltage V1a measured at the first measurement timing ta and the primary voltage V1c measured at the third measurement timing tc, and the two measured at the first measurement timing ta. There is a relationship of V2a> V2c between the secondary voltage V2a and the secondary voltage V2c measured at the third measurement timing tc.

図6は、SVR2の一次側の配電線が本系統の電源変電所から切り離され、SVR2の二次側の配電線が他の系統の電源変電所に接続されたことに起因して、SVR2で電力の逆潮流が生じているときに、SVRが「タップ上げ」を行った際のSVR2の一次側電圧及び二次側電圧の変化を、(A)電圧調整動作(タップ切換)を行った直後に系統に負荷変動がない場合、(B)電圧調整動作を行った直後に系統に軽負荷変動(系統の負荷が軽くなる方向への変動)が生じた場合、及び(C)電圧調整動作を行った直後に系統に重負荷変動(系統の負荷が重くなる方向への変動)が生じている場合の3つの場合について示したものである。   FIG. 6 shows that the SVR 2 primary side distribution line is disconnected from the mains power substation and the SVR 2 secondary side distribution line is connected to the other power source substation. Changes in the primary and secondary voltages of the SVR 2 when the SVR performs “tap-up” when a reverse power flow occurs, immediately after (A) voltage adjustment operation (tap switching) When there is no load fluctuation in the system, (B) When a light load fluctuation (change in the direction in which the load on the system becomes lighter) occurs immediately after performing the voltage adjustment operation, and (C) The voltage adjustment operation is performed. This shows three cases where heavy load fluctuations (fluctuations in the direction in which the load on the system becomes heavier) occur in the system immediately after being performed.

SVR2で電力の逆潮流が生じている状態で、タップ上げを行った直後に系統に負荷変動がなかった場合には、SVRの二次側が大容量の電源変電所に接続されているため、図6(B)に示すように、SVRの二次側電圧は変化しないが、一次側電圧はタップが切り換わったタイミングt1で押し下げられてステップ状に下降する。この場合、第2の計測タイミングtbで計測した第2の一次電圧V1bと第3の計測タイミングtcで計測した第3の一次電圧V1cとの間にはV1b=V1cの関係があり、第2の計測タイミングtbで計測した第2の二次電圧V2bと第3の計測タイミングtcで計測した第3の二次電圧V2cとの間にも、V2b=V2cの関係がある。また第1の計測タイミングtaで計測した一次電圧V1aと第3の計測タイミングtcで計測した一次電圧V1cとの間には、V1a>V1cの関係があり、第1の計測タイミングtaで計測した二次電圧V2aと第3の計測タイミングtcで計測した二次電圧V2cとの間には、V2a=V2cの関係がある。   If there is no load fluctuation in the system immediately after tapping in the state where the reverse power flow occurs in SVR2, the secondary side of SVR is connected to a large-capacity power substation. As shown in FIG. 6 (B), the secondary voltage of the SVR does not change, but the primary voltage is pushed down at the timing t1 when the tap is switched and falls stepwise. In this case, there is a relationship of V1b = V1c between the second primary voltage V1b measured at the second measurement timing tb and the third primary voltage V1c measured at the third measurement timing tc. There is also a relationship of V2b = V2c between the second secondary voltage V2b measured at the measurement timing tb and the third secondary voltage V2c measured at the third measurement timing tc. Further, there is a relationship of V1a> V1c between the primary voltage V1a measured at the first measurement timing ta and the primary voltage V1c measured at the third measurement timing tc, and the two measured at the first measurement timing ta. There is a relationship of V2a = V2c between the secondary voltage V2a and the secondary voltage V2c measured at the third measurement timing tc.

SVR2で電力の逆潮流が生じている状態で、タップ上げを行った直後に軽負荷変動が生じていた場合には、図6(B)に示すように、SVRの二次側電圧がタップ切換が行われた直後から負荷の減少に伴って上昇していき、SVRの一次側電圧はタップ切換が行われた瞬間にステップ状に下降した後、負荷の減少に伴って上昇していく。この場合、第2の計測タイミングtbで計測した第2の一次電圧V1bと第3の計測タイミングtcで計測した第3の一次電圧V1cとの間には、V1b<V1cの関係があり、第2の計測タイミングtbで計測した第2の二次電圧V2bと第3の計測タイミングtcで計測した二次電圧V2cとの間にもV2b<V2cの関係がある。また第1の計測タイミングtaで計測した一次電圧V1aと第3の計測タイミングtcで計測した一次電圧V1cとの間には、V1a>V1cの関係があり、第1の計測タイミングtaで計測した二次電圧V2aと第3の計測タイミングtcで計測した二次電圧V2cとの間には、V2a<V2cの関係がある。   When a light load fluctuation occurs immediately after the tap is raised in the state where the reverse power flow occurs in SVR2, as shown in FIG. 6B, the secondary voltage of SVR is changed over to the tap. Immediately after the operation is performed, the voltage increases as the load decreases. The primary voltage of the SVR decreases stepwise at the moment when the tap switching is performed, and then increases as the load decreases. In this case, there is a relationship of V1b <V1c between the second primary voltage V1b measured at the second measurement timing tb and the third primary voltage V1c measured at the third measurement timing tc. There is also a relationship of V2b <V2c between the second secondary voltage V2b measured at the measurement timing tb and the secondary voltage V2c measured at the third measurement timing tc. Further, there is a relationship of V1a> V1c between the primary voltage V1a measured at the first measurement timing ta and the primary voltage V1c measured at the third measurement timing tc, and the two measured at the first measurement timing ta. There is a relationship of V2a <V2c between the secondary voltage V2a and the secondary voltage V2c measured at the third measurement timing tc.

SVR2で電力の逆潮流が生じている状態で、タップ上げを行った直後に重負荷変動が生じていた場合には、図6(C)に示すように、SVRの二次側電圧がタップ切換が行われた直後から負荷の増大に伴って下降していき、SVRの一次側電圧はタップ切換が行われた瞬間にほぼステップ状に下降した後、負荷の増大に伴って下降していく。この場合、第2の計測タイミングtbで計測した第2の一次電圧V1bと第3の計測タイミングtcで計測した第3の一次電圧V1cとの間には、V1b>V1cの関係があり、第2の計測タイミングtbで計測した第2の二次電圧V2bと第3の二次電圧V2cとの間にもV2b>V2cの関係がある。また第1の計測タイミングtaで計測した一次電圧V1aと第3の計測タイミングtcで計測した一次電圧V1cとの間には、V1a>V1cの関係があり、第1の計測タイミングtaで計測した二次電圧V2aと第3の計測タイミングtcで計測した二次電圧V2cとの間には、V2a>V2cの関係がある。   When a heavy load fluctuation occurs immediately after the tap is raised in the state where the reverse power flow occurs in the SVR2, as shown in FIG. 6C, the secondary side voltage of the SVR is changed to the tap switching. Immediately after the operation is performed, the voltage decreases as the load increases. The primary voltage of the SVR decreases approximately stepwise at the moment when the tap switching is performed, and then decreases as the load increases. In this case, there is a relationship of V1b> V1c between the second primary voltage V1b measured at the second measurement timing tb and the third primary voltage V1c measured at the third measurement timing tc. There is also a relationship of V2b> V2c between the second secondary voltage V2b and the third secondary voltage V2c measured at the measurement timing tb. Further, there is a relationship of V1a> V1c between the primary voltage V1a measured at the first measurement timing ta and the primary voltage V1c measured at the third measurement timing tc, and the two measured at the first measurement timing ta. There is a relationship of V2a> V2c between the secondary voltage V2a and the secondary voltage V2c measured at the third measurement timing tc.

図7は、SVR2の一次側の配電線が本系統の電源変電所から切り離され、SVR2の二次側の配電線が他の系統の電源変電所に接続されたことに起因して、SVR2で電力の逆潮流が生じているときに、SVRが「タップ下げ」を行った際のSVR2の一次側電圧及び二次側電圧の変化を、(A)タップ上げを行った直後に系統に負荷変動がない場合、(B)タップ上げを行った直後に系統に軽負荷変動が生じた場合、及び(C)タップ上げを行った直後に系統に重負荷変動が生じている場合の3つの場合について示したものである。   FIG. 7 shows that the distribution line on the primary side of SVR2 is disconnected from the power supply substation of this system, and the distribution line on the secondary side of SVR2 is connected to the power supply substation of another system. Changes in the primary and secondary voltages of SVR2 when SVR performs “tap down” when reverse power flow is occurring. (A) Load fluctuations in system immediately after tap increase There are three cases: (B) when a light load fluctuation occurs in the system immediately after tapping, and (C) when a heavy load fluctuation occurs in the system immediately after tapping. It is shown.

SVR2で電力の逆潮流が生じている状態で、タップ下げを行った直後に系統に負荷変動がなかった場合には、図7(A)に示すように、SVRの二次側電圧は変化しないが、一次側電圧はタップが切り換わったタイミングt1でステップ状に上昇する。この場合、第2の計測タイミングtbで計測した第2の一次電圧V1bと第3の計測タイミングtcで計測した第3の一次電圧V1cとの間には、V1b=V1cの関係があり、第2の計測タイミングtbで計測した第2の二次電圧V2bと第3の計測タイミングtcで計測した第3の二次電圧V2cとの間にも、V2b=V2cの関係がある。また第1の計測タイミングtaで計測した一次電圧V1aと第3の計測タイミングtcで計測した一次電圧V1cとの間には、V1a<V1cの関係があり、第1の計測タイミングtaで計測した二次電圧V2aと第3の計測タイミングtcで計測した二次電圧V2cとの間には、V2a=V2cの関係がある。   When there is no load fluctuation in the system immediately after tapping in a state where a reverse power flow occurs in SVR2, the secondary voltage of SVR does not change as shown in FIG. 7A. However, the primary voltage rises stepwise at the timing t1 when the tap is switched. In this case, there is a relationship of V1b = V1c between the second primary voltage V1b measured at the second measurement timing tb and the third primary voltage V1c measured at the third measurement timing tc. There is also a relationship of V2b = V2c between the second secondary voltage V2b measured at the measurement timing tb and the third secondary voltage V2c measured at the third measurement timing tc. Further, there is a relationship of V1a <V1c between the primary voltage V1a measured at the first measurement timing ta and the primary voltage V1c measured at the third measurement timing tc, and the two measured at the first measurement timing ta. There is a relationship of V2a = V2c between the secondary voltage V2a and the secondary voltage V2c measured at the third measurement timing tc.

SVR2で電力の逆潮流が生じている状態で、タップ下げを行った直後に軽負荷変動が生じていた場合には、図7(B)に示すように、SVRの二次側電圧がタップ切換が行われた直後から負荷の減少に伴って上昇していき、SVRの一次側電圧はタップ切換が行われた瞬間にステップ状に上昇した後、負荷の減少に伴って上昇していく。この場合、第2の計測タイミングtbで計測した第2の一次電圧V1bと第3の計測タイミングtaで計測した第3の一次電圧V1cとの間には、V1b<V1cの関係があり、第2の計測タイミングtbで計測した第2の二次電圧V2bと第3の二次電圧V2cとの間にもV2b<V2cの関係がある。また第1の計測タイミングtaで計測した一次電圧V1aと第3の計測タイミングtcで計測した一次電圧V1cとの間には、V1a<V1cの関係があり、第1の計測タイミングtaで計測した二次電圧V2aと第3の計測タイミングtcで計測した二次電圧V2cとの間には、V2a<V2cの関係がある。   When a light load fluctuation occurs immediately after the tap is lowered in the state where the reverse power flow occurs in SVR2, as shown in FIG. 7B, the secondary voltage of SVR is tapped. Immediately after the operation is performed, the voltage increases as the load decreases. The primary voltage of the SVR increases stepwise at the moment when the tap is switched, and then increases as the load decreases. In this case, there is a relationship of V1b <V1c between the second primary voltage V1b measured at the second measurement timing tb and the third primary voltage V1c measured at the third measurement timing ta. There is also a relationship of V2b <V2c between the second secondary voltage V2b and the third secondary voltage V2c measured at the measurement timing tb. Further, there is a relationship of V1a <V1c between the primary voltage V1a measured at the first measurement timing ta and the primary voltage V1c measured at the third measurement timing tc, and the two measured at the first measurement timing ta. There is a relationship of V2a <V2c between the secondary voltage V2a and the secondary voltage V2c measured at the third measurement timing tc.

またSVR2で電力の逆潮流が生じている状態で、タップ下げを行った直後に重負荷変動が生じていた場合には、図7(C)に示すように、SVRの二次側電圧がタップ切換が行われた直後から負荷の増大に伴って下降していき、SVRの一次側電圧はタップ切換が行われた瞬間にほぼステップ状に上昇した後、負荷の増大に伴って下降していく。この場合、第2の計測タイミングtbで計測した第2の一次電圧V1bと第3の計測タイミングtcで計測した第3の一次電圧V1cとの間には、V1b>V1cの関係があり、第2の計測タイミングtbで計測した第2の二次電圧V2bと第3の計測タイミングtcで計測した第3の二次電圧V2cとの間にもV2b>V2cの関係がある。また第1の計測タイミングtaで計測した一次電圧V1aと第3の計測タイミングtcで計測した一次電圧V1cとの間には、V1a<V1cの関係があり、第1の計測タイミングtaで計測した二次電圧V2aと第3の計測タイミングtcで計測した二次電圧V2cとの間には、V2a>V2cの関係がある。   In addition, when a heavy load fluctuation occurs immediately after the tap is lowered in the state where the reverse power flow occurs in SVR2, the secondary voltage of SVR is changed to the tap as shown in FIG. 7C. Immediately after switching is performed, the voltage decreases as the load increases, and the primary voltage of the SVR increases almost stepwise at the moment when the tap is switched, and then decreases as the load increases. . In this case, there is a relationship of V1b> V1c between the second primary voltage V1b measured at the second measurement timing tb and the third primary voltage V1c measured at the third measurement timing tc. There is also a relationship of V2b> V2c between the second secondary voltage V2b measured at the measurement timing tb and the third secondary voltage V2c measured at the third measurement timing tc. Further, there is a relationship of V1a <V1c between the primary voltage V1a measured at the first measurement timing ta and the primary voltage V1c measured at the third measurement timing tc, and the two measured at the first measurement timing ta. There is a relationship of V2a> V2c between the secondary voltage V2a and the secondary voltage V2c measured at the third measurement timing tc.

図4ないし図7にそれぞれ示された第2の一次電圧V1bと第3の一次電圧V1cとの間の関係及び第2の二次電圧V2bと第3の二次電圧V2cとの間の関係から、次のことがいえる。
(イ)タップ切換直後に負荷変動がない場合には、電力の逆潮流が生じている原因の如何に関わりなく、また電圧調整動作がタップ上げであるかタップ下げであるかに関わりなく、V1b=V1c、及びV2b=V2cである。
(ロ)タップ切換直後に軽負荷変動が生じた場合には、電力の逆潮流が生じている原因の如何に関わりなく、また電圧調整動作がタップ上げであるかタップ下げであるかに関わりなく、V1b<V1c、及びV2b<V2cである。
(ハ)タップ切換直後に重負荷変動が生じた場合には、電力の逆潮流が生じている原因の如何に関わりなく、また電圧調整動作がタップ上げであるかタップ下げであるかに関わりなく、V1b>V1c、V2b>V2cである。
以上のことから、図2に示された負荷状態判定手段23は、第2の一次電圧V1bと第3の一次電圧V1cとの比較及び(又は)第2の二次電圧V2bと第3の二次電圧V2cの比較を行って、その比較の結果から、自動電圧調整器が電圧調整動作を行った直後の系統の負荷状態が、負荷変動が無い状態、系統の負荷が軽くなる方向への変動である軽負荷変動が生じている状態、及び系統の負荷が重くなる方向への変動である重負荷変動が生じている状態のうちの何れの状態にあるのかを判定するように構成することができることが分かる。
From the relationship between the second primary voltage V1b and the third primary voltage V1c and the relationship between the second secondary voltage V2b and the third secondary voltage V2c shown in FIGS. The following can be said.
(A) When there is no load fluctuation immediately after the tap switching, V1b regardless of the cause of the reverse power flow, regardless of whether the voltage adjustment operation is tapping or tapping. = V1c and V2b = V2c.
(B) When a light load change occurs immediately after tap switching, regardless of the cause of the reverse power flow, regardless of whether the voltage adjustment operation is tapping or tapping. , V1b <V1c, and V2b <V2c.
(C) If a heavy load change occurs immediately after tap switching, regardless of the cause of the reverse power flow, and regardless of whether the voltage adjustment operation is tap-up or tap-down V1b> V1c and V2b> V2c.
From the above, the load state determination means 23 shown in FIG. 2 compares the second primary voltage V1b with the third primary voltage V1c and / or the second secondary voltage V2b and the third second voltage V1b. Comparison of the next voltage V2c, and from the comparison result, the load state of the system immediately after the automatic voltage regulator performs the voltage adjustment operation is a state in which there is no load fluctuation, and the fluctuation in the direction in which the load on the system becomes lighter It is configured to determine which state is in a state where a light load fluctuation is occurring and a state where a heavy load fluctuation is occurring which is a fluctuation in a direction in which the load on the system becomes heavier. I understand that I can do it.

より具体的には、V1b=V1c及び(又は)V2b=V2cであるときに、タップ切換直後に負荷変動がなかったと判定することができ、V1b<V1c、及び(又は)V2b<V2cであるときにタップ切換直後に軽負荷変動が生じていたと判定することができる。また、V1b>V1c及び(又は)V2b>V2cであるときに、タップ切換直後に重負荷変動が生じていたと判定することができる。即ち、第2の計測タイミング及び第3の計測タイミングでそれぞれ計測された一次電圧同士または二次電圧同士を比較するか、又は一次電圧同士及び二次電圧同士を比較することにより、タップ切換直後の系統の負荷状態を判定することができる。   More specifically, when V1b = V1c and / or V2b = V2c, it can be determined that there is no load fluctuation immediately after the tap switching, and when V1b <V1c and / or V2b <V2c. It can be determined that a light load fluctuation has occurred immediately after the tap switching. Further, when V1b> V1c and / or V2b> V2c, it can be determined that the heavy load fluctuation has occurred immediately after the tap switching. That is, by comparing primary voltages or secondary voltages measured at the second measurement timing and the third measurement timing, respectively, or by comparing primary voltages and secondary voltages, The load state of the system can be determined.

またタップ切換直後の負荷状態の判定結果と、電圧調整動作がタップ上げであるかタップ下げであるかの判定結果と、図4及び図5に示された第1の一次電圧V1aと第3の一次電圧V1cとの間の関係及び第1の二次電圧V2aと第3の二次電圧V2cとの間の関係から、SVRで逆潮流が生じている原因が、SVRの一次側の配電線が電源変電所に接続されている状態でSVRの二次側の配電線に分散電源が連係したことにある場合には、以下の(a)’ないし(f)’のことがいえる。
(a)’電圧調整動作がタップ上げであって、タップ上げを行った直後に系統に負荷変動がなかった場合には、第3の一次電圧V1cが第1の一次電圧V1aに等しく、第3の二次電圧V2cが第1の二次電圧V2aに等しい。
(b)’電圧調整動作がタップ下げであって、タップ下げを行った直後に系統に負荷変動がなかった場合には、第3の一次電圧V1cが第1の一次電圧V1aに等しく、第3の二次電圧V2cが第1の二次電圧V2aよりも低い。
(c)’電圧調整動作がタップ上げであって、タップ上げを行った直後に系統に軽負荷変動が生じていた場合には、第3の一次電圧V1cが第1の一次電圧V1aよりも高く、第3の二次電圧V2cが第1の二次電圧V2aよりも高い。
(d)’電圧調整動作がタップ下げであって、タップ下げを行った直後に系統に軽負荷変動が生じていた場合には、第3の一次電圧V1cが第1の一次電圧V1aよりも高く、第3の二次電圧V2cが第1の二次電圧V2aよりも低い。
(e)’電圧調整動作がタップ上げであって、タップ上げを行った直後に系統に重負荷変動が生じていた場合には、第3の一次電圧V1cが第1の一次電圧V1aよりも低く、第3の二次電圧V2cが第1の二次電圧V2cよりも高い。
(f)’電圧調整動作がタップ下げであって、タップ下げを行った直後に系統に重負荷変動が生じていた場合には、第3の一次電圧V1cが第1の一次電圧V1aよりも低く、第3の二次電圧V2cが第1の二次電圧V2cよりも低い。
Also, the determination result of the load state immediately after the tap switching, the determination result of whether the voltage adjustment operation is a tap up or a tap down, the first primary voltage V1a and the third voltage shown in FIGS. From the relationship between the primary voltage V1c and the relationship between the first secondary voltage V2a and the third secondary voltage V2c, the cause of the reverse power flow in the SVR is the distribution line on the primary side of the SVR. When the distributed power supply is linked to the secondary distribution line of the SVR while being connected to the power substation, the following (a) 'to (f)' can be said.
(A) 'When the voltage adjustment operation is tap-up and there is no load fluctuation in the system immediately after the tap-up, the third primary voltage V1c is equal to the first primary voltage V1a, and the third The secondary voltage V2c is equal to the first secondary voltage V2a.
(B) 'When the voltage adjustment operation is tap reduction, and there is no load fluctuation in the system immediately after tap reduction, the third primary voltage V1c is equal to the first primary voltage V1a, and the third Secondary voltage V2c is lower than the first secondary voltage V2a.
(C) When the voltage adjustment operation is a tap-up and a light load fluctuation has occurred in the system immediately after the tap-up, the third primary voltage V1c is higher than the first primary voltage V1a. The third secondary voltage V2c is higher than the first secondary voltage V2a.
(D) 'If the voltage adjustment operation is a tap reduction and a light load fluctuation has occurred in the system immediately after the tap reduction, the third primary voltage V1c is higher than the first primary voltage V1a. The third secondary voltage V2c is lower than the first secondary voltage V2a.
(E) 'When the voltage adjustment operation is a tap-up and a heavy load fluctuation has occurred in the system immediately after the tap-up, the third primary voltage V1c is lower than the first primary voltage V1a. The third secondary voltage V2c is higher than the first secondary voltage V2c.
(F) 'If the voltage adjustment operation is a tap reduction and a heavy load fluctuation occurs immediately after the tap reduction, the third primary voltage V1c is lower than the first primary voltage V1a. The third secondary voltage V2c is lower than the first secondary voltage V2c.

またタップ切換直後の負荷状態の判定結果と、電圧調整動作がタップ上げであるかタップ下げであるかの判定結果と、図6及び図7に示された第1の一次電圧V1aと第3の一次電圧V1cとの間の関係及び第1の二次電圧V2aと第3の二次電圧V2cとの間の関係から、SVRで逆潮流が生じている原因が、系統の切換によりSVRの一次側の配電線が電源変電所から切り離されて、二次側の配電線が他の系統の電源変電所に接続されたことにある場合には、以下の(g)’ないし(l)’のことがいえる。
(g)’電圧調整動作がタップ上げであって、タップ上げを行った直後に負荷変動がなかった場合には、第3の一次電圧V1cが第1の一次電圧V1aよりも低く、第3の二次電圧V2cが第1の二次電圧V2aに等しい。
(h)’電圧調整動作がタップ下げであって、タップ下げを行った直後に負荷変動がなかった場合には、第3の一次電圧V1cが第1の一次電圧V1aよりも高く、第3の二次電圧V2cが第1の二次電圧V1cに等しい。
(i)’電圧調整動作がタップ上げであって、タップ上げを行った直後に軽負荷変動が生じていた場合には、第3の一次電圧V1cが第1の一次電圧V1aよりも低く、第3の二次電圧V2cが第1の二次電圧V2aよりも高い。
(j)’電圧調整動作がタップ下げであって、タップ下げを行った直後に軽負荷変動が生じていた場合には、第3の一次電圧V1cが第1の一次電圧V1aよりも高く、第3の二次電圧V2cが第1の二次電圧V2aよりも高い。
(k)’電圧調整動作がタップ上げであって、タップ上げを行った直後に重負荷変動が生じていた場合には、第3の一次電圧V1cが第1の一次電圧V1aよりも低く、第3の二次電圧V2cが第1の二次電圧V2aよりも低い。
(l)’電圧調整動作がタップ下げであって、タップ下げを行った直後に重負荷変動が生じていた場合には、第3の一次電圧V1cが第1の一次電圧V1aよりも高く、第3の二次電圧V2cが第1の二次電圧V2aよりも低い。
Further, the determination result of the load state immediately after the tap switching, the determination result of whether the voltage adjustment operation is a tap-up or tap-down, the first primary voltage V1a and the third voltage shown in FIGS. From the relationship between the primary voltage V1c and the relationship between the first secondary voltage V2a and the third secondary voltage V2c, the cause of the reverse power flow in the SVR is the primary side of the SVR due to the system switching. (G) 'to (l)' below when the distribution line is disconnected from the power substation and the secondary distribution line is connected to another power supply substation I can say.
(G) 'When the voltage adjustment operation is tapping, and there is no load fluctuation immediately after tapping, the third primary voltage V1c is lower than the first primary voltage V1a, and the third The secondary voltage V2c is equal to the first secondary voltage V2a.
(H) 'When the voltage adjustment operation is tap reduction and there is no load fluctuation immediately after the tap reduction, the third primary voltage V1c is higher than the first primary voltage V1a, and the third The secondary voltage V2c is equal to the first secondary voltage V1c.
(I) When the voltage adjustment operation is a tap-up and a light load fluctuation occurs immediately after the tap-up, the third primary voltage V1c is lower than the first primary voltage V1a, 3 secondary voltage V2c is higher than the first secondary voltage V2a.
(J) 'When the voltage adjustment operation is tap reduction and a light load fluctuation occurs immediately after tap reduction, the third primary voltage V1c is higher than the first primary voltage V1a, 3 secondary voltage V2c is higher than the first secondary voltage V2a.
(K) ′ When the voltage adjustment operation is a tap-up and a heavy load fluctuation occurs immediately after the tap-up, the third primary voltage V1c is lower than the first primary voltage V1a, 3 secondary voltage V2c is lower than the first secondary voltage V2a.
(L) 'When the voltage adjustment operation is tap reduction, and a heavy load fluctuation occurs immediately after tap reduction, the third primary voltage V1c is higher than the first primary voltage V1a, 3 secondary voltage V2c is lower than the first secondary voltage V2a.

上記の結果をまとめた表を図8に示した。図8においては、図4ないし図7の図中に示されているように、第3の一次電圧V1cが第1の一次電圧V1aに等しい状態(タップ切換の前後で電圧の変化がない状態)を「0」で表し、第3の一次電圧V1cが第1の一次電圧V1aよりも高い状態(タップ切換後にタップ切換前よりも電圧が上昇した状態)を「+」で表し、第3の一次電圧V1cが第1の一次電圧V1aよりも低い状態(タップ切換後にタップ切換前よりも電圧が下降した状態)を「−」で表している。また第3の二次電圧V2cが第1の二次電圧V2aに等しい状態(タップ切換の前後で電圧の変化がない状態)を「0」で表し、第3の二次電圧V2cが第1の二次電圧V2aよりも高い状態(タップ切換後にタップ切換前よりも電圧が上昇した状態)を「+」で表し、第3の二次電圧V2cが第1の二次電圧V2aよりも低い状態(タップ切換後にタップ切換前よりも電圧が下降した状態)を「−」で表している。図8(A)は、逆潮流時に電圧調整動作が行われた直後に系統に負荷変動がなかった場合を示し、図8(B)は、逆潮流時に電圧調整動作が行われた直後に系統に軽負荷変動が生じていたた場合を示している。また図8(C)は、、逆潮流時に電圧調整動作が行われた直後に系統に重負荷変動が生じていた場合を示している。   A table summarizing the above results is shown in FIG. In FIG. 8, as shown in FIGS. 4 to 7, the third primary voltage V1c is equal to the first primary voltage V1a (a state in which there is no change in voltage before and after tap switching). Is represented by “0”, and a state in which the third primary voltage V1c is higher than the first primary voltage V1a (a state in which the voltage is increased after the tap switching than before the tap switching) is represented by “+”. A state in which the voltage V1c is lower than the first primary voltage V1a (a state in which the voltage has decreased after the tap switching than before the tap switching) is represented by “−”. A state in which the third secondary voltage V2c is equal to the first secondary voltage V2a (a state in which there is no voltage change before and after tap switching) is represented by “0”, and the third secondary voltage V2c is the first secondary voltage V2c. A state higher than the secondary voltage V2a (a state where the voltage has increased after the tap switching than before the tap switching) is represented by “+”, and the third secondary voltage V2c is lower than the first secondary voltage V2a ( “−” Indicates a state in which the voltage is lower than that before the tap switching after the tap switching. FIG. 8A shows a case where there is no load fluctuation in the system immediately after the voltage adjustment operation is performed during reverse power flow, and FIG. 8B is a diagram of the system immediately after the voltage adjustment operation is performed during reverse power flow. Shows the case where light load fluctuation occurred. FIG. 8C shows a case where a heavy load fluctuation has occurred in the system immediately after the voltage adjustment operation during reverse power flow.

以上のように、判別された系統の負荷状態と、SVRが実行する電圧調整動作がタップ上げであるのかタップ下げであるのかの判定結果と、第1の計測タイミング及び第3の計測タイミングでそれぞれ計測された一次電圧同士の比較判定結果(タップ切換の直後の一次電圧の変化)と、SVRで生じている電力の逆潮流の原因との間には一定の関係がある。また判別された系統の負荷状態と、SVRが実行する電圧調整動作がタップ上げであるのかタップ下げであるのかの判定結果と、第1の計測タイミング及び第3の計測タイミングでそれぞれ計測された二次電圧同士の比較判定結果(タップ切換の直後の二次電圧の変化)と、SVRで生じている電力の逆潮流の原因との間にも一定の関係がある。   As described above, the determined load state of the system, the determination result of whether the voltage adjustment operation performed by the SVR is tap-up or tap-down, and the first measurement timing and the third measurement timing, respectively. There is a certain relationship between the measured result of comparison between the primary voltages (change in the primary voltage immediately after the tap switching) and the cause of the reverse power flow occurring in the SVR. Also, the determined load state of the system, the determination result of whether the voltage adjustment operation performed by the SVR is tap-up or tap-down, and the two measured at the first measurement timing and the third measurement timing, respectively. There is also a certain relationship between the comparison determination result between the secondary voltages (change in the secondary voltage immediately after the tap switching) and the cause of the reverse power flow generated in the SVR.

従って、SVRで電力の逆潮流が検出された状態でSVRが電圧調整を行う際に、SVRのタップが切り換わるタイミングよりも前のタイミングに設定された第1の計測タイミング、タップが切り換った直後のタイミングに設定された第2の計測タイミングtb及び該第2の計測タイミングよりも僅かに遅れたタイミングに設定された第3の計測タイミングtcでそれぞれSVRの一次側電圧を第1の一次電圧、第2の一次電圧及び第3の一次電圧として計測するとともに、SVRの二次側電圧を第1の二次電圧、第2の二次電圧及び第3の二次電圧として計測し、第2の一次電圧と第3の一次電圧との比較及び(又は)第2の二次電圧と第3の二次電圧の比較を行って、その比較の結果から、SVRが電圧調整動作を行った直後の系統の負荷状態が、負荷変動が無い状態、系統の負荷が軽くなる軽負荷変動が生じている状態、及び系統の負荷が重くなる重負荷変動が生じている状態のうちの何れであったかを判定する負荷状態判定過程と、SVRが行う電圧調整動作が、SVRの一次側に電源変電所が接続されていてSVRを通して順方向に電力が潮流しているとした場合にSVRの二次側電圧を昇圧させることになる方向にタップを切り換えるタップ上げであるのか、該タップ上げ時と逆方向にタップを切り換えるタップ下げであるのかを判定する電圧調整動作判定過程と、第1の一次電圧と第3の一次電圧との比較及び(又は)第1の二次電圧と第3の二次電圧との比較を行って、比較した電圧の高低の関係を判定するタップ切換時電圧変化判定過程と、負荷状態判定過程での判定結果と電圧調整動作判定過程での判定結果とタップ切換時電圧変化判定過程での判定結果とを、これらの判定結果に対して予め用意した判定要件と照合することにより、逆潮流が生じている原因が、SVRの一次側の配電線が電源変電所に接続されている状態でSVRの二次側の配電線に分散電源が連係したことにあるのか、系統の切換によりSVRの一次側の配電線が電源変電所から切り離されて、二次側の配電線が他の系統の電源変電所に接続されたことにあるのかを判定する逆潮流原因判定過程とを行うことにより、SVRで生じている電力の逆潮流の原因を正確に特定することができる。   Therefore, when the SVR performs voltage adjustment in the state where the reverse power flow is detected in the SVR, the first measurement timing and the tap that are set before the timing when the SVR tap is switched are switched. The SVR primary side voltage is set to the first primary voltage at the second measurement timing tb set immediately after the second measurement timing and at the third measurement timing tc set slightly later than the second measurement timing. Measuring the voltage, the second primary voltage, and the third primary voltage, and measuring the secondary voltage of the SVR as the first secondary voltage, the second secondary voltage, and the third secondary voltage, The comparison between the primary voltage of 2 and the third primary voltage and / or the comparison of the second secondary voltage and the third secondary voltage was performed, and from the comparison result, the SVR performed the voltage adjustment operation. Immediate load on the system A load state that determines whether the state is a state where there is no load variation, a light load variation where the load on the system is light, or a heavy load variation where the load on the system is heavy The voltage adjustment operation performed by the determination process and the SVR boosts the secondary voltage of the SVR when a power substation is connected to the primary side of the SVR and power flows in the forward direction through the SVR. A voltage adjustment operation determination process for determining whether the tap is to be switched up in a direction to become a tap-up or a tap-down to be switched in a direction opposite to the direction at which the tap is raised, a first primary voltage and a third primary voltage And / or a comparison between the first secondary voltage and the third secondary voltage, and a voltage change determination process at the time of tap switching for determining the relationship between the levels of the compared voltages and a load state determination process Size By comparing the determination result in the voltage adjustment operation determination process and the determination result in the voltage change determination process at tap switching with the determination requirements prepared in advance for these determination results, a reverse power flow occurs. The reason is that the distributed power supply is linked to the secondary distribution line of the SVR while the primary distribution line of the SVR is connected to the power substation, or the primary side of the SVR is changed by switching the system. It occurs in SVR by performing the reverse power flow cause determination process that determines whether the distribution line is disconnected from the power supply substation and the secondary distribution line is connected to another power supply substation. The cause of the reverse power flow can be accurately identified.

図2に示した逆潮流原因判定手段27は、負荷状態判定手段による判定結果と、電圧調整動作判定手段24による判定結果と、タップ切換時電圧変化判定手段26による判定結果とを、これらの判定結果に対して予め用意した判定要件と照合することにより、逆潮流が生じている原因が、自動電圧調整器の一次側の配電線が電源変電所に接続されている状態で自動電圧調整器の二次側の配電線に分散電源が連係したことにあるのか、系統の切換により前記自動電圧調整器の一次側の配電線が電源変電所から切り離されて、二次側の配電線が他の系統の電源変電所に接続されたことにあるのかを判定するように構成することができる。   The reverse power flow cause determination unit 27 shown in FIG. 2 determines the determination result by the load state determination unit, the determination result by the voltage adjustment operation determination unit 24, and the determination result by the voltage change determination unit 26 at tap switching. By comparing the results with the judgment requirements prepared in advance, the cause of the reverse power flow is that the automatic voltage regulator primary power distribution line is connected to the power substation. Whether the distributed power supply is linked to the distribution line on the secondary side, the distribution line on the primary side of the automatic voltage regulator is disconnected from the power substation by switching the system, and the distribution line on the secondary side is connected to the other It can be configured to determine whether it is connected to the power supply substation of the system.

更に詳細に述べると、負荷状態判定過程での判定結果と電圧調整動作判定過程での判定結果とタップ切換時電圧変化判定過程での判定結果とが、以下の(a)ないし(f)の何れかの判定要件に該当するときに、自動電圧調整器で逆潮流が生じている原因が、自動電圧調整器の一次側の配電線が電源変電所に接続されている状態で自動電圧調整器の二次側の配電線に分散電源が連係したことにあると判定することができる。
(a)自動電圧調整器が電圧調整動作を行った直後に系統に負荷変動がなかったと判定され、かつ電圧調整動作がタップ上げであると判定された状態で、第3の一次電圧が第1の一次電圧に等しく、第3の二次電圧が第1の二次電圧に等しいと判定されたとき。
(b)自動電圧調整器が電圧調整動作を行った直後に系統に負荷変動がなかったと判定され、かつ電圧調整動作がタップ下げであると判定された状態で、第3の一次電圧が第1の一次電圧に等しく、第3の二次電圧が第1の二次電圧よりも低いと判定されたとき。
(c)自動電圧調整器が電圧調整動作を行った直後に系統に軽負荷変動が生じていたと判定され、かつ電圧調整動作がタップ上げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも高く、第3の二次電圧が第1の二次電圧よりも高いと判定されたとき。
(d)自動電圧調整器が電圧調整動作を行った直後に系統に前記軽負荷変動が生じていたと判定され、かつ電圧調整動作がタップ下げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも高く、第3の二次電圧が第1の二次電圧よりも低いと判定されたとき。
(e)自動電圧調整器が電圧調整動作を行った直後に系統に重負荷変動が生じていたと判定され、かつ電圧調整動作がタップ上げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも低く、第3の二次電圧が第1の二次電圧よりも高いと判定されたとき。
(f)自動電圧調整器が電圧調整動作を行った直後に系統に前記重負荷変動が生じていたと判定され、かつ前記電圧調整動作がタップ下げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも低く、第3の二次電圧が第1の二次電圧よりも低いと判定されたとき。
More specifically, the determination result in the load state determination process, the determination result in the voltage adjustment operation determination process, and the determination result in the voltage change determination process at tap switching are any of the following (a) to (f): When the automatic voltage regulator is in a state where the distribution line on the primary side of the automatic voltage regulator is connected to the power substation, It can be determined that the distributed power supply is linked to the distribution line on the secondary side.
(A) Immediately after the automatic voltage regulator performs the voltage adjustment operation, it is determined that there is no load fluctuation in the system, and the third primary voltage is the first voltage when it is determined that the voltage adjustment operation is a tap-up. Is equal to the primary voltage and the third secondary voltage is determined to be equal to the first secondary voltage.
(B) Immediately after the automatic voltage regulator performs the voltage adjustment operation, it is determined that there is no load fluctuation in the system, and the third primary voltage is the first voltage in a state where it is determined that the voltage adjustment operation is a tap down. When the third secondary voltage is determined to be lower than the first secondary voltage.
(C) Immediately after the automatic voltage regulator performs the voltage adjustment operation, it is determined that a light load fluctuation has occurred in the system, and it is determined that the voltage adjustment operation is a tap-up, the third primary voltage is When it is determined that the third secondary voltage is higher than the first primary voltage and the third secondary voltage is higher than the first secondary voltage.
(D) The third primary voltage in a state where it is determined that the light load fluctuation has occurred in the system immediately after the automatic voltage regulator performs the voltage adjustment operation, and the voltage adjustment operation is determined to be a tap down. Is determined to be higher than the first primary voltage and the third secondary voltage is lower than the first secondary voltage.
(E) In a state where it is determined that a heavy load fluctuation has occurred in the system immediately after the automatic voltage regulator performs the voltage adjustment operation, and it is determined that the voltage adjustment operation is tapping, the third primary voltage is When it is determined that the third secondary voltage is lower than the first primary voltage and the third secondary voltage is higher than the first secondary voltage.
(F) In a state where it is determined that the heavy load fluctuation has occurred in the system immediately after the automatic voltage regulator performs the voltage adjustment operation, and the voltage adjustment operation is determined to be a tap down, the third primary When it is determined that the voltage is lower than the first primary voltage and the third secondary voltage is lower than the first secondary voltage.

また負荷状態判定過程での判定結果と電圧調整動作判定過程での判定結果とタップ切換時電圧変化判定過程での判定結果とが、下記の(g)ないし(l)の何れかの判定要件に該当するときに、逆潮流が生じている原因が、系統の切換により自動電圧調整器の一次側の配電線が電源変電所から切り離されて、二次側の配電線が他の系統の電源変電所に接続されたことにあると判定することができる。
(g)自動電圧調整器が電圧調整動作を行った直後に系統に負荷変動がなかったと判定され、かつ電圧調整動作がタップ上げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも低く、第3の二次電圧が第1の二次電圧に等しいと判定されたとき。
(h)自動電圧調整器が電圧調整動作を行った直後に系統に負荷変動がなかったと判定され、かつ電圧調整動作がタップ下げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも高く、第3の二次電圧が第1の二次電圧に等しいと判定されたとき。
(i)自動電圧調整器が電圧調整動作を行った直後に系統に前記軽負荷変動が生じていたと判定され、かつ電圧調整動作がタップ上げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも低く、第3の二次電圧が第1の二次電圧よりも高いと判定されたとき。
(j)自動電圧調整器が電圧調整動作を行った直後に系統に軽負荷変動が生じていたと判定され、かつ電圧調整動作がタップ下げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも高く、第3の二次電圧が第1の二次電圧よりも高いと判定されたとき。
(k)自動電圧調整器が電圧調整動作を行った直後に系統に前記重負荷変動が生じていたと判定され、かつ電圧調整動作がタップ上げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも低く、第3の二次電圧が第1の二次電圧よりも低いと判定されたとき。
(l)自動電圧調整器が電圧調整動作を行った直後に系統に重負荷変動が生じていたと判定され、かつ電圧調整動作がタップ下げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも高く、第3の二次電圧が第1の二次電圧よりも低いと判定されたとき。
In addition, the determination result in the load state determination process, the determination result in the voltage adjustment operation determination process, and the determination result in the voltage change determination process at the time of tap switching satisfy the following determination requirements (g) to (l): When applicable, the cause of reverse power flow is that the distribution line on the primary side of the automatic voltage regulator is disconnected from the power substation by switching the system, and the distribution line on the secondary side is connected to the power substation of the other system. It can be determined that it is connected to a place.
(G) Immediately after the automatic voltage regulator performs the voltage adjustment operation, it is determined that there is no load fluctuation in the system, and the third primary voltage is the first voltage in a state where it is determined that the voltage adjustment operation is tapping. And when the third secondary voltage is determined to be equal to the first secondary voltage.
(H) Immediately after the automatic voltage regulator performs the voltage adjustment operation, it is determined that there is no load fluctuation in the system, and it is determined that the voltage adjustment operation is a tap down, the third primary voltage is the first voltage And when the third secondary voltage is determined to be equal to the first secondary voltage.
(I) The third primary voltage in a state where it is determined that the light load fluctuation has occurred in the system immediately after the automatic voltage regulator performs the voltage adjustment operation, and the voltage adjustment operation is determined to be tapping. Is lower than the first primary voltage and the third secondary voltage is determined to be higher than the first secondary voltage.
(J) In a state where it is determined that a light load fluctuation has occurred in the system immediately after the automatic voltage regulator performs a voltage adjustment operation, and the voltage adjustment operation is determined to be a tap down, the third primary voltage is When it is determined that the third secondary voltage is higher than the first primary voltage and the third secondary voltage is higher than the first secondary voltage.
(K) The third primary voltage in a state in which it is determined that the heavy load fluctuation has occurred in the system immediately after the automatic voltage regulator performs the voltage adjustment operation and the voltage adjustment operation is determined to be a tap-up. Is determined to be lower than the first primary voltage and the third secondary voltage is lower than the first secondary voltage.
(L) In a state where it is determined that a heavy load fluctuation has occurred in the system immediately after the automatic voltage regulator performs the voltage adjustment operation, and the voltage adjustment operation is determined to be a tap down, the third primary voltage is When it is determined that the voltage is higher than the first primary voltage and the third secondary voltage is lower than the first secondary voltage.

図2に示した潮流原因判定手段27は、負荷状態判定手段23による判定結果と電圧調整動作判定手段24による判定結果とタップ切換時電圧変化判定手段26による判定結果とが、上記(a)ないし(f)の何れかの判定要件に該当するときに、自動電圧調整器で逆潮流が生じている原因が、自動電圧調整器の一次側の配電線が電源変電所に接続されている状態で自動電圧調整器の二次側の配電線に分散電源が連係したことにあると判定し、負荷状態判定手段23による判定結果と電圧調整動作判定手段24による判定結果とタップ切換時電圧変化判定手段26による判定結果とが、上記(g)ないし(l)の何れかの判定要件に該当するときに、逆潮流が生じている原因が、系統の切換により自動電圧調整器の一次側の配電線が電源変電所から切り離されて、二次側の配電線が他の系統の電源変電所に接続されたことにあると判定するように構成することができる。   The power flow cause determination means 27 shown in FIG. 2 includes the determination result by the load state determination means 23, the determination result by the voltage adjustment operation determination means 24, and the determination result by the voltage change determination means 26 at tap switching. When any of the judgment requirements in (f) is met, the cause of reverse power flow in the automatic voltage regulator is that the distribution line on the primary side of the automatic voltage regulator is connected to the power substation. It is determined that the distributed power supply is linked to the distribution line on the secondary side of the automatic voltage regulator, the determination result by the load state determination means 23, the determination result by the voltage adjustment operation determination means 24, and the voltage change determination means at the time of tap switching. When the determination result of 26 corresponds to any of the determination requirements (g) to (l) above, the cause of the reverse power flow is the distribution line on the primary side of the automatic voltage regulator by switching the system Power substation Disconnected from, it may be configured to determine to be in the secondary side of the distribution line is connected to a power supply substation other strains.

上記の実施形態において、第1の計測タイミングtaは、SVRがタップ切換を行うタイミングよりも前のタイミングに設定する。一般にタップ切換器は、タップ切換指令が与えられたときにモータにより駆動軸を回転させて、該駆動軸が所定の角度回転する間に、調整変圧器のタップを切り換えるために必要な一連の動作を行わせる。従って、タップ切換指令が与えられた後、実際にタップを切り換えるまでの間には一定の時間を必要とする。上記第1の計測タイミングtaは、タップ切換器2Bにタップ切換指令が与えられるタイミングとすることができる。また第2の計測タイミングtbは、SVRがタップを切換えた直後のタイミングに設定する。第3の計測タイミングtcは、第2の計測タイミングtbよりも僅かに遅れたタイミングで、かつ第2の一次電圧V1bと第3の一次電圧V1cとの間の差及び第2の二次電圧V2bと第3の二次電圧V2cとの間の差を明確に検出し得るタイミングに設定する。第2の計測タイミングtb及び第3の計測タイミングtcは、実測の結果に基づいて適宜に設定する。   In the above embodiment, the first measurement timing ta is set to a timing before the timing at which the SVR performs tap switching. In general, a tap changer rotates a drive shaft by a motor when a tap change command is given, and a series of operations necessary to change the tap of the adjustment transformer while the drive shaft rotates by a predetermined angle. To do. Therefore, a certain time is required from when the tap switching command is given until when the tap is actually switched. The first measurement timing ta can be a timing at which a tap switching command is given to the tap switch 2B. The second measurement timing tb is set to a timing immediately after the SVR switches the tap. The third measurement timing tc is slightly delayed from the second measurement timing tb, and the difference between the second primary voltage V1b and the third primary voltage V1c and the second secondary voltage V2b. And a timing at which the difference between the second secondary voltage V2c can be clearly detected. The second measurement timing tb and the third measurement timing tc are appropriately set based on the result of actual measurement.

本発明は、太陽光発電設備や風力発電設備のような分散電源が連係する配電系統において、自動電圧調整器で電力の逆潮流が生じたときに、その原因が系統切換にあるのか、分散電源の連係にあるのかを正確に特定できるため、自動電圧調整器で電力の逆潮流が生じたときに、自動電圧調整器の動作モードを系統の状態に適したモードに切換えるための情報を適確に得ることができる。従って、分散電源が連係する配電系統に設置される自動電圧調整器に適用することにより、当該自動電圧調整器の動作を適確に行わせて、系統の安定化に寄与することができる。   The present invention relates to a distribution system in which distributed power sources such as solar power generation facilities and wind power generation facilities are linked, and when a reverse power flow occurs in an automatic voltage regulator, whether the cause is system switching or the distributed power source. Therefore, when the automatic voltage regulator causes a reverse power flow, the information for switching the operation mode of the automatic voltage regulator to a mode suitable for the system status can be accurately determined. Can get to. Therefore, by applying to an automatic voltage regulator installed in a distribution system to which distributed power sources are linked, the automatic voltage regulator can be appropriately operated to contribute to the stabilization of the system.

1 系統の電源変電所
2 自動電圧調整器
3 変電所の開閉器
4 一次側配電線
5 二次側配電線
6 他系統の配電線
7 他系統との間に設けられた開閉器
10 変流器
11 逆電力継電器
12 電力逆潮流検出装置
13 計器用変圧器
14 計器用変圧器
15 一次側電圧検出回路
16 二次側電圧計測回路
17 第1のA/D変換器
18 第2のA/D変換器
19 計測指令信号発生手段
20 マイクロプロセッサ
22 電圧計測手段
23 負荷状態判定手段
24 電圧調整動作判定手段
26 タップ切換時電圧変化判定手段
27 逆潮流原因判定手段
1 system power substation 2 automatic voltage regulator 3 substation switch 4 primary side distribution line 5 secondary side distribution line 6 other system distribution line 7 switch installed between other systems 10 current transformer DESCRIPTION OF SYMBOLS 11 Reverse power relay 12 Power reverse flow detection apparatus 13 Instrument transformer 14 Instrument transformer 15 Primary side voltage detection circuit 16 Secondary side voltage measurement circuit 17 1st A / D converter 18 2nd A / D conversion 19 Measurement command signal generation means 20 Microprocessor 22 Voltage measurement means 23 Load state determination means 24 Voltage adjustment operation determination means 26 Tap change voltage change determination means 27 Reverse power flow cause determination means

Claims (4)

配電系統に設置された負荷時タップ切換式の自動電圧調整器で二次側から一次側に電力が潮流する電力の逆潮流が生じたときに、該電力の逆潮流の原因を判定する配電用自動電圧調整器の電力逆潮流原因判定方法において、
前記自動電圧調整器で電力の逆潮流が検出された状態で前記自動電圧調整器が電圧調整を行う際に、前記自動電圧調整器のタップが切り換わるタイミングよりも前のタイミングに設定された第1の計測タイミングta、前記タップが切り換った直後のタイミングに設定された第2の計測タイミングtb及び該第2の計測タイミングよりも僅かに遅れたタイミングに設定された第3の計測タイミングtcでそれぞれ前記自動電圧調整器の一次側電圧を第1の一次電圧、第2の一次電圧及び第3の一次電圧として計測するとともに、前記自動電圧調整器の二次側電圧を第1の二次電圧、第2の二次電圧及び第3の二次電圧として計測し、
前記第2の一次電圧と第3の一次電圧との比較及び(又は)第2の二次電圧と第3の二次電圧の比較を行って、その比較の結果から、自動電圧調整器が電圧調整動作を行った直後の系統の負荷状態が、負荷変動が無い状態、系統の負荷が軽くなる軽負荷変動が生じている状態、及び系統の負荷が重くなる重負荷変動が生じている状態のうちの何れであったかを判定する負荷状態判定過程と、
前記自動電圧調整器が行う電圧調整動作が、前記自動電圧調整器の一次側に電源変電所が接続されていて自動電圧調整器を通して順方向に電力が潮流しているとした場合に前記自動電圧調整器の二次側電圧を昇圧させることになる方向にタップを切り換えるタップ上げであるのか、該タップ上げ時と逆方向にタップを切り換えるタップ下げであるのかを判定する電圧調整動作判定過程と、
前記第1の一次電圧と第3の一次電圧との比較及び(又は)前記第1の二次電圧と第3の二次電圧との比較を行って、比較した電圧の高低の関係を判定するタップ切換時電圧変化判定過程と、
前記負荷状態判定過程での判定結果と電圧調整動作判定過程での判定結果とタップ切換時電圧変化判定過程での判定結果とを、これらの判定結果に対して予め用意した判定要件と照合することにより、前記逆潮流が生じている原因が、前記自動電圧調整器の一次側の配電線が電源変電所に接続されている状態で前記自動電圧調整器の二次側の配電線に分散電源が連係したことにあるのか、系統の切換により前記自動電圧調整器の一次側の配電線が電源変電所から切り離されて、二次側の配電線が他の系統の電源変電所に接続されたことにあるのかを判定する逆潮流原因判定過程と、
を行うことを特徴とする配電用自動電圧調整器の電力逆潮流原因判定方法。
For power distribution to determine the cause of reverse power flow when a reverse power flow that flows from the secondary side to the primary side occurs with a load-switchable automatic voltage regulator installed in the distribution system. In the method of determining the cause of reverse power flow in the automatic voltage regulator,
When the automatic voltage regulator performs voltage adjustment in a state where a reverse power flow is detected by the automatic voltage regulator, a timing set before the timing at which the tap of the automatic voltage regulator is switched is set. 1 measurement timing ta, a second measurement timing tb set immediately after the tap is switched, and a third measurement timing tc set slightly later than the second measurement timing. And measuring the primary voltage of the automatic voltage regulator as a first primary voltage, a second primary voltage and a third primary voltage, respectively, and measuring the secondary voltage of the automatic voltage regulator as a first secondary voltage. Measured as voltage, second secondary voltage and third secondary voltage,
A comparison between the second primary voltage and the third primary voltage and / or a comparison between the second secondary voltage and the third secondary voltage is performed. The load state of the system immediately after performing the adjustment operation is a state in which there is no load fluctuation, a light load fluctuation in which the system load is light, and a heavy load fluctuation in which the system load is heavy. A load state determination process for determining which one of them,
The automatic voltage regulator performs the voltage regulation operation when a power substation is connected to the primary side of the automatic voltage regulator and power flows in the forward direction through the automatic voltage regulator. A voltage adjustment operation determination process for determining whether the tap is to be switched in the direction in which the secondary side voltage of the regulator is to be boosted, or to be a tap down to switch the tap in the opposite direction to that when the tap is raised,
A comparison between the first primary voltage and the third primary voltage and / or a comparison between the first secondary voltage and the third secondary voltage is performed to determine a level relationship of the compared voltages. Voltage change judgment process at tap switching,
The determination result in the load state determination process, the determination result in the voltage adjustment operation determination process, and the determination result in the voltage change determination process at tap switching are collated with determination requirements prepared in advance for these determination results. The cause of the reverse power flow is that a distributed power source is connected to the secondary distribution line of the automatic voltage regulator in a state where the primary distribution line of the automatic voltage regulator is connected to a power substation. Is it because it was linked? The primary distribution line of the automatic voltage regulator was disconnected from the power substation by switching the system, and the secondary distribution line was connected to the power substation of another system Reverse power flow cause determination process to determine whether or not
A method for determining the cause of reverse power flow in an automatic voltage regulator for power distribution, characterized in that:
前記逆潮流原因判定過程は、
(a)自動電圧調整器が電圧調整動作を行った直後に系統に負荷変動がなかったと判定され、かつ前記電圧調整動作がタップ上げであると判定された状態で、第3の一次電圧が第1の一次電圧に等しく、第3の二次電圧が第1の二次電圧に等しいと判定されたとき、(b)自動電圧調整器が電圧調整動作を行った直後に系統に負荷変動がなかったと判定され、かつ電圧調整動作がタップ下げであると判定された状態で、第3の一次電圧が第1の一次電圧に等しく、第3の二次電圧が第1の二次電圧よりも低いと判定されたとき、(c)自動電圧調整器が電圧調整動作を行った直後に系統に前記軽負荷変動が生じていたと判定され、かつ前記電圧調整動作がタップ上げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも高く、第3の二次電圧が第1の二次電圧よりも高いと判定されたとき、(d)自動電圧調整器が電圧調整動作を行った直後に系統に前記軽負荷変動が生じていたと判定され、かつ前記電圧調整動作がタップ下げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも高く、第3の二次電圧が第1の二次電圧よりも低いと判定されたとき、(e)自動電圧調整器が電圧調整動作を行った直後に系統に前記重負荷変動が生じていたと判定され、かつ前記電圧調整動作がタップ上げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも低く、第3の二次電圧が第1の二次電圧よりも高いと判定されたとき、及び(f)自動電圧調整器が電圧調整動作を行った直後に系統に前記重負荷変動が生じていたと判定され、かつ前記電圧調整動作がタップ下げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも低く、第3の二次電圧が第1の二次電圧よりも低いと判定されたときに、前記逆潮流が生じている原因が、前記自動電圧調整器の一次側の配電線が電源変電所に接続されている状態で前記自動電圧調整器の二次側の配電線に分散電源が連係したことにあると判定し、
(g)自動電圧調整器が電圧調整動作を行った直後に系統に負荷変動がなかったと判定され、かつ前記電圧調整動作がタップ上げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも低く、第3の二次電圧が第1の二次電圧に等しいと判定されたとき、(h)自動電圧調整器が電圧調整動作を行った直後に系統に負荷変動がなかったと判定され、かつ電圧調整動作がタップ下げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも高く、第3の二次電圧が第1の二次電圧に等しいと判定されたとき、(i)自動電圧調整器が電圧調整動作を行った直後に系統に前記軽負荷変動が生じていたと判定され、かつ前記電圧調整動作がタップ上げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも低く、第3の二次電圧が第1の二次電圧よりも高いと判定されたとき、(j)自動電圧調整器が電圧調整動作を行った直後に系統に前記軽負荷変動が生じていたと判定され、かつ前記電圧調整動作がタップ下げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも高く、第3の二次電圧が第1の二次電圧よりも高いと判定されたとき、(k)自動電圧調整器が電圧調整動作を行った直後に系統に前記重負荷変動が生じていたと判定され、かつ前記電圧調整動作がタップ上げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも低く、第3の二次電圧が第1の二次電圧よりも低いと判定されたとき、及び(l)自動電圧調整器が電圧調整動作を行った直後に系統に前記重負荷変動が生じていたと判定され、かつ前記電圧調整動作がタップ下げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも高く、第3の二次電圧が第1の二次電圧よりも低いと判定されたときに、前記逆潮流が生じている原因が、系統の切換により前記自動電圧調整器の一次側の配電線が電源変電所から切り離されて、二次側の配電線が他の系統の電源変電所に接続されたことにあると判定すること、
を特徴とする請求項1に記載の配電用自動電圧調整器の電力逆潮流原因判定方法。
The reverse flow cause determination process includes
(A) Immediately after the automatic voltage regulator performs the voltage adjustment operation, it is determined that there is no load fluctuation in the system, and the third primary voltage is the first voltage when it is determined that the voltage adjustment operation is a tap-up. When it is determined that the third secondary voltage is equal to the first secondary voltage and (b) the automatic voltage regulator performs a voltage regulation operation, there is no load fluctuation in the system. The third primary voltage is equal to the first primary voltage and the third secondary voltage is lower than the first secondary voltage in a state where it is determined that the voltage adjustment operation is a tap-down operation. (C) a state in which it is determined that the light load fluctuation has occurred in the system immediately after the automatic voltage regulator performs the voltage adjustment operation, and the voltage adjustment operation is determined to be a tap-up. And the third primary voltage is higher than the first primary voltage, When it is determined that the secondary voltage of 3 is higher than the first secondary voltage, (d) it is determined that the light load fluctuation has occurred in the system immediately after the automatic voltage regulator performs the voltage adjustment operation, In the state where the voltage adjustment operation is determined to be a tap reduction, it is determined that the third primary voltage is higher than the first primary voltage and the third secondary voltage is lower than the first secondary voltage. (E) in a state where it is determined that the heavy load fluctuation has occurred in the system immediately after the automatic voltage regulator performs the voltage adjustment operation, and the voltage adjustment operation is determined to be a tap-up, When it is determined that the third primary voltage is lower than the first primary voltage and the third secondary voltage is higher than the first secondary voltage; and (f) the automatic voltage regulator performs the voltage adjustment operation. It is determined that the heavy load fluctuation has occurred in the system immediately after being performed, and the voltage When the third primary voltage is determined to be lower than the first primary voltage and the third secondary voltage is determined to be lower than the first secondary voltage with the rectifying operation determined to be a tap down Furthermore, the cause of the reverse power flow is that a distributed power source is connected to the secondary distribution line of the automatic voltage regulator in a state where the primary distribution line of the automatic voltage regulator is connected to a power substation. It ’s determined that it ’s linked,
(G) Immediately after the automatic voltage regulator performs the voltage adjustment operation, it is determined that there is no load fluctuation in the system, and the third primary voltage is the first voltage when it is determined that the voltage adjustment operation is tapping. When it is determined that the third secondary voltage is lower than the primary voltage of 1 and the third secondary voltage is equal to the first secondary voltage, (h) immediately after the automatic voltage regulator performs the voltage adjustment operation, there is a load fluctuation in the system. The third primary voltage is higher than the first primary voltage, and the third secondary voltage is changed to the first secondary voltage in a state where it is determined that the voltage adjustment operation is a tap-down. When it is determined that they are equal, (i) immediately after the automatic voltage regulator performs the voltage adjustment operation, it is determined that the light load fluctuation has occurred in the system, and it is determined that the voltage adjustment operation is tapping. The third primary voltage is lower than the first primary voltage When it is determined that the third secondary voltage is higher than the first secondary voltage, (j) it is determined that the light load fluctuation has occurred in the system immediately after the automatic voltage regulator performs the voltage adjustment operation. And the third primary voltage is higher than the first primary voltage and the third secondary voltage is higher than the first secondary voltage in a state where it is determined that the voltage adjustment operation is a tap down. (K) in a state where it is determined that the heavy load fluctuation has occurred in the system immediately after the automatic voltage regulator performs the voltage adjustment operation, and the voltage adjustment operation is determined to be a tap-up. , When it is determined that the third primary voltage is lower than the first primary voltage and the third secondary voltage is lower than the first secondary voltage, and (l) the automatic voltage regulator operates the voltage adjustment It is determined that the heavy load fluctuation has occurred in the system immediately after When the third primary voltage is determined to be higher than the first primary voltage and the third secondary voltage is determined to be lower than the first secondary voltage with the adjustment operation determined to be a tap down In addition, the cause of the reverse power flow is that the distribution line on the primary side of the automatic voltage regulator is disconnected from the power supply substation by switching the system, and the distribution line on the secondary side is the power supply substation of the other system. Determining that it is connected to
The power reverse power flow cause determination method of the automatic voltage regulator for power distribution according to claim 1.
配電系統に設置された負荷時タップ切換式の自動電圧調整器で二次側から一次側に電力の逆潮流が生じたときに、該電力の逆潮流の原因を判定する配電用自動電圧調整器の電力逆潮流原因判定装置において、
前記自動電圧調整器で電力の逆潮流が検出された状態で前記自動電圧調整器が電圧調整を行う際に、前記自動電圧調整器のタップが切り換わるタイミングよりも前のタイミングに設定された第1の計測タイミングta、前記タップが切り換った直後のタイミングに設定された第2の計測タイミングtb及び該第2の計測タイミングよりも僅かに遅れたタイミングに設定された第3の計測タイミングtcでそれぞれ前記自動電圧調整器の一次側電圧を第1の一次電圧、第2の一次電圧及び第3の一次電圧として計測するとともに、前記自動電圧調整器の二次側電圧を第1の二次電圧、第2の二次電圧及び第3の二次電圧として計測する電圧計測手段と、
前記第2の一次電圧と第3の一次電圧との比較及び(又は)第2の二次電圧と第3の二次電圧の比較を行って、その比較の結果から、自動電圧調整器が電圧調整動作を行った直後の系統の負荷状態が、負荷変動が無い状態、系統の負荷が軽くなる方向への変動である軽負荷変動が生じている状態、及び系統の負荷が重くなる方向への変動である重負荷変動が生じている状態のうちの何れの状態にあるのかを判定する負荷状態判定手段と、
前記自動電圧調整器が行う電圧調整動作が、前記自動電圧調整器の一次側に電源変電所が接続されている状態で前記自動電圧調整器の二次側電圧を昇圧させる方向にタップを切り換えるタップ上げであるのか、該タップ上げ時と逆方向にタップを切り換えるタップ下げであるのかを判定する電圧調整動作判定手段と、
前記第1の一次電圧と第3の一次電圧との比較及び(又は)前記第1の二次電圧と第3の二次電圧との比較を行って、比較した電圧の高低の関係を判定するタップ切換時電圧変化判定手段と、
前記負荷状態判定手段による判定結果と、電圧調整動作判定手段による判定結果と、タップ切換時電圧変化判定手段による判定結果とを、これらの判定結果に対して予め用意した判定要件と照合することにより、前記逆潮流が生じている原因が、前記自動電圧調整器の一次側の配電線が電源変電所に接続されている状態で前記自動電圧調整器の二次側の配電線に分散電源が連係したことにあるのか、系統の切換により前記自動電圧調整器の一次側の配電線が電源変電所から切り離されて、二次側の配電線が他の系統の電源変電所に接続されたことにあるのかを判定する逆潮流原因判定手段と、
を具備したことを特徴とする配電用自動電圧調整器の電力逆潮流原因判定装置。
Automatic voltage regulator for distribution that determines the cause of reverse power flow when a reverse power flow occurs from the secondary side to the primary side using a tap-switchable automatic voltage regulator installed in the distribution system In the reverse power flow cause determination device of
When the automatic voltage regulator performs voltage adjustment in a state where a reverse power flow is detected by the automatic voltage regulator, a timing set before the timing at which the tap of the automatic voltage regulator is switched is set. 1 measurement timing ta, a second measurement timing tb set immediately after the tap is switched, and a third measurement timing tc set slightly later than the second measurement timing. And measuring the primary voltage of the automatic voltage regulator as a first primary voltage, a second primary voltage and a third primary voltage, respectively, and measuring the secondary voltage of the automatic voltage regulator as a first secondary voltage. Voltage measuring means for measuring the voltage, the second secondary voltage and the third secondary voltage;
A comparison between the second primary voltage and the third primary voltage and / or a comparison between the second secondary voltage and the third secondary voltage is performed. The load state of the system immediately after performing the adjustment operation is a state in which there is no load change, a light load change that is a change in a direction in which the load on the system is light, and a direction in which the load on the system becomes heavy. Load state determination means for determining which state is in a state where a heavy load variation that is a variation is occurring;
The voltage adjustment operation performed by the automatic voltage regulator is a tap that switches the tap in the direction of boosting the secondary voltage of the automatic voltage regulator in a state where a power substation is connected to the primary side of the automatic voltage regulator. Voltage adjustment operation determination means for determining whether it is a tap-up or a tap-down switching the tap in the opposite direction to the tap-up time,
A comparison between the first primary voltage and the third primary voltage and / or a comparison between the first secondary voltage and the third secondary voltage is performed to determine a level relationship of the compared voltages. Voltage change determining means at tap switching;
By comparing the determination result by the load state determination unit, the determination result by the voltage adjustment operation determination unit, and the determination result by the voltage change determination unit at tap switching with the determination requirements prepared in advance for these determination results The cause of the reverse power flow is that the distributed power supply is linked to the secondary distribution line of the automatic voltage regulator in a state where the primary distribution line of the automatic voltage regulator is connected to the power substation. This is because the distribution line on the primary side of the automatic voltage regulator is disconnected from the power substation by switching the system, and the distribution line on the secondary side is connected to the power substation in the other system. A reverse power flow cause determination means for determining whether there is,
An apparatus for determining the cause of reverse power flow in an automatic voltage regulator for power distribution, comprising:
前記逆潮流原因判定手段は、
(a)自動電圧調整器が電圧調整動作を行った直後に系統に負荷変動がなかったと判定され、かつ前記電圧調整動作がタップ上げであると判定された状態で、第3の一次電圧が第1の一次電圧に等しく、第3の二次電圧が第1の二次電圧に等しいと判定されたとき、(b)自動電圧調整器が電圧調整動作を行った直後に系統に負荷変動がなかったと判定され、かつ電圧調整動作がタップ下げであると判定された状態で、第3の一次電圧が第1の一次電圧に等しく、第3の二次電圧が第1の二次電圧よりも低いと判定されたとき、(c)自動電圧調整器が電圧調整動作を行った直後に系統に前記軽負荷変動が生じていたと判定され、かつ前記電圧調整動作がタップ上げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも高く、第3の二次電圧が第1の二次電圧よりも高いと判定されたとき、(d)自動電圧調整器が電圧調整動作を行った直後に系統に前記軽負荷変動が生じていたと判定され、かつ前記電圧調整動作がタップ下げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも高く、第3の二次電圧が第1の二次電圧よりも低いと判定されたとき、(e)自動電圧調整器が電圧調整動作を行った直後に系統に前記重負荷変動が生じていたと判定され、かつ前記電圧調整動作がタップ上げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも低く、第3の二次電圧が第1の二次電圧よりも高いと判定されたとき、及び(f)自動電圧調整器が電圧調整動作を行った直後に系統に前記重負荷変動が生じていたと判定され、かつ前記電圧調整動作がタップ下げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも低く、第3の二次電圧が第1の二次電圧よりも低いと判定されたときに、前記逆潮流が生じている原因が、前記自動電圧調整器の一次側の配電線が電源変電所に接続されている状態で前記自動電圧調整器の二次側の配電線に分散電源が連係したことにあると判定し、
(g)自動電圧調整器が電圧調整動作を行った直後に系統に負荷変動がなかったと判定され、かつ前記電圧調整動作がタップ上げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも低く、第3の二次電圧が第1の二次電圧に等しいと判定されたとき、(h)自動電圧調整器が電圧調整動作を行った直後に系統に負荷変動がなかったと判定され、かつ電圧調整動作がタップ下げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも高く、第3の二次電圧が第1の二次電圧に等しいと判定されたとき、(i)自動電圧調整器が電圧調整動作を行った直後に系統に前記軽負荷変動が生じていたと判定され、かつ前記電圧調整動作がタップ上げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも低く、第3の二次電圧が第1の二次電圧よりも高いと判定されたとき、(j)自動電圧調整器が電圧調整動作を行った直後に系統に前記軽負荷変動が生じていたと判定され、かつ前記電圧調整動作がタップ下げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも高く、第3の二次電圧が第1の二次電圧よりも高いと判定されたとき、(k)自動電圧調整器が電圧調整動作を行った直後に系統に前記重負荷変動が生じていたと判定され、かつ前記電圧調整動作がタップ上げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも低く、第3の二次電圧が第1の二次電圧よりも低いと判定されたとき、及び(l)自動電圧調整器が電圧調整動作を行った直後に系統に前記重負荷変動が生じていたと判定され、かつ前記電圧調整動作がタップ下げであると判定された状態で、第3の一次電圧が第1の一次電圧よりも高く、第3の二次電圧が第1の二次電圧よりも低いと判定されたときに、前記逆潮流が生じている原因が、系統の切換により前記自動電圧調整器の一次側の配電線が電源変電所から切り離されて、二次側の配電線が他の系統の電源変電所に接続されたことにあると判定するように構成されていること、
を特徴とする請求項3に記載の配電用自動電圧調整器の電力逆潮流原因判定装置。
The reverse power flow cause determining means is:
(A) Immediately after the automatic voltage regulator performs the voltage adjustment operation, it is determined that there is no load fluctuation in the system, and the third primary voltage is the first voltage when it is determined that the voltage adjustment operation is a tap-up. When it is determined that the third secondary voltage is equal to the first secondary voltage and (b) the automatic voltage regulator performs a voltage regulation operation, there is no load fluctuation in the system. The third primary voltage is equal to the first primary voltage and the third secondary voltage is lower than the first secondary voltage in a state where it is determined that the voltage adjustment operation is a tap-down operation. (C) a state in which it is determined that the light load fluctuation has occurred in the system immediately after the automatic voltage regulator performs the voltage adjustment operation, and the voltage adjustment operation is determined to be a tap-up. And the third primary voltage is higher than the first primary voltage, When it is determined that the secondary voltage of 3 is higher than the first secondary voltage, (d) it is determined that the light load fluctuation has occurred in the system immediately after the automatic voltage regulator performs the voltage adjustment operation, In the state where the voltage adjustment operation is determined to be a tap reduction, it is determined that the third primary voltage is higher than the first primary voltage and the third secondary voltage is lower than the first secondary voltage. (E) in a state where it is determined that the heavy load fluctuation has occurred in the system immediately after the automatic voltage regulator performs the voltage adjustment operation, and the voltage adjustment operation is determined to be a tap-up, When it is determined that the third primary voltage is lower than the first primary voltage and the third secondary voltage is higher than the first secondary voltage; and (f) the automatic voltage regulator performs the voltage adjustment operation. It is determined that the heavy load fluctuation has occurred in the system immediately after being performed, and the voltage When the third primary voltage is determined to be lower than the first primary voltage and the third secondary voltage is determined to be lower than the first secondary voltage with the rectifying operation determined to be a tap down Furthermore, the cause of the reverse power flow is that a distributed power source is connected to the secondary distribution line of the automatic voltage regulator in a state where the primary distribution line of the automatic voltage regulator is connected to a power substation. It ’s determined that it ’s linked,
(G) Immediately after the automatic voltage regulator performs the voltage adjustment operation, it is determined that there is no load fluctuation in the system, and the third primary voltage is the first voltage when it is determined that the voltage adjustment operation is tapping. When it is determined that the third secondary voltage is lower than the primary voltage of 1 and the third secondary voltage is equal to the first secondary voltage, (h) immediately after the automatic voltage regulator performs the voltage adjustment operation, there is a load fluctuation in the system. The third primary voltage is higher than the first primary voltage, and the third secondary voltage is changed to the first secondary voltage in a state where it is determined that the voltage adjustment operation is a tap-down. When it is determined that they are equal, (i) immediately after the automatic voltage regulator performs the voltage adjustment operation, it is determined that the light load fluctuation has occurred in the system, and it is determined that the voltage adjustment operation is tapping. The third primary voltage is lower than the first primary voltage When it is determined that the third secondary voltage is higher than the first secondary voltage, (j) it is determined that the light load fluctuation has occurred in the system immediately after the automatic voltage regulator performs the voltage adjustment operation. And the third primary voltage is higher than the first primary voltage and the third secondary voltage is higher than the first secondary voltage in a state where it is determined that the voltage adjustment operation is a tap down. (K) in a state where it is determined that the heavy load fluctuation has occurred in the system immediately after the automatic voltage regulator performs the voltage adjustment operation, and the voltage adjustment operation is determined to be a tap-up. , When it is determined that the third primary voltage is lower than the first primary voltage and the third secondary voltage is lower than the first secondary voltage, and (l) the automatic voltage regulator operates the voltage adjustment It is determined that the heavy load fluctuation has occurred in the system immediately after When the third primary voltage is determined to be higher than the first primary voltage and the third secondary voltage is determined to be lower than the first secondary voltage with the adjustment operation determined to be a tap down In addition, the cause of the reverse power flow is that the distribution line on the primary side of the automatic voltage regulator is disconnected from the power supply substation by switching the system, and the distribution line on the secondary side is the power supply substation of the other system. Is configured to determine that it is connected to,
The power reverse power flow cause determination device for an automatic voltage regulator for power distribution according to claim 3.
JP2012160405A 2012-07-19 2012-07-19 Reverse power flow factor determination method and device for power distribution automatic voltage regulator Pending JP2014023303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012160405A JP2014023303A (en) 2012-07-19 2012-07-19 Reverse power flow factor determination method and device for power distribution automatic voltage regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012160405A JP2014023303A (en) 2012-07-19 2012-07-19 Reverse power flow factor determination method and device for power distribution automatic voltage regulator

Publications (1)

Publication Number Publication Date
JP2014023303A true JP2014023303A (en) 2014-02-03

Family

ID=50197626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012160405A Pending JP2014023303A (en) 2012-07-19 2012-07-19 Reverse power flow factor determination method and device for power distribution automatic voltage regulator

Country Status (1)

Country Link
JP (1) JP2014023303A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192839A (en) * 2015-03-31 2016-11-10 愛知電機株式会社 Electric power substation connection direction determination method
JP2020022310A (en) * 2018-08-02 2020-02-06 株式会社ダイヘン Voltage adjustment unit and line-to-line voltage detection method
JP7457608B2 (en) 2020-08-27 2024-03-28 株式会社ダイヘン voltage regulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192839A (en) * 2015-03-31 2016-11-10 愛知電機株式会社 Electric power substation connection direction determination method
JP2020022310A (en) * 2018-08-02 2020-02-06 株式会社ダイヘン Voltage adjustment unit and line-to-line voltage detection method
JP7457608B2 (en) 2020-08-27 2024-03-28 株式会社ダイヘン voltage regulator

Similar Documents

Publication Publication Date Title
US11016517B2 (en) On-load tap-changer control method, excitation control system carrying out said control method and power excitation chain
JP4101788B2 (en) Voltage adjusting device and voltage adjusting method
JP5508796B2 (en) Power supply system control method and power supply system control apparatus
JP2008099527A (en) Storage battery system in non-utility generation equipment connected to electric power system and driving method therefor
JP2013192378A (en) Method and device for determining cause of reverse power flow of automatic voltage regulator for power distribution
EP3823152A1 (en) Power conversion system, conversion circuit control method and program
JP6877295B2 (en) Judgment method of voltage regulator and voltage regulator
JP2018137845A (en) Voltage control device with voltage regulator, and voltage control method thereof
JP2014023303A (en) Reverse power flow factor determination method and device for power distribution automatic voltage regulator
US20210288504A1 (en) Power conversion system, method for controlling converter circuit, and program
JP5986857B2 (en) Voltage regulator
US11404868B2 (en) Over-voltage prevention apparatus and method of distribution line connected with distributed generator
US10411469B2 (en) Reactive power control integrated with renewable energy power invertor
EP3301776B1 (en) Power fluctuation mitigation system
JP4224309B2 (en) Voltage adjustment method for distribution system and automatic voltage adjustment device used for the method
US6847184B2 (en) Excitation controller
JP6012492B2 (en) Voltage adjustment system and voltage adjustment method for distribution system
JP6070077B2 (en) Voltage control apparatus and voltage control method
JP6226756B2 (en) Voltage control system and voltage control program
US8946946B2 (en) Converter device and method for converting electrical power
KR102158490B1 (en) Device for controlling vehicle collection voltage of dc electric railway
JP5938312B2 (en) Voltage regulator
JP2010011677A (en) Power converting apparatus
JP2016185005A (en) Operation switching device of hydraulic power generation system
JP2018081563A (en) Power conversion device and control method thereof, and power supply system