JP4101788B2 - Voltage adjusting device and voltage adjusting method - Google Patents

Voltage adjusting device and voltage adjusting method Download PDF

Info

Publication number
JP4101788B2
JP4101788B2 JP2004154479A JP2004154479A JP4101788B2 JP 4101788 B2 JP4101788 B2 JP 4101788B2 JP 2004154479 A JP2004154479 A JP 2004154479A JP 2004154479 A JP2004154479 A JP 2004154479A JP 4101788 B2 JP4101788 B2 JP 4101788B2
Authority
JP
Japan
Prior art keywords
voltage
distribution system
low
adjustment
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004154479A
Other languages
Japanese (ja)
Other versions
JP2005341668A (en
Inventor
謙治 小川
雅浩 渡辺
秀彦 島村
実 川瀬
知治 中村
淳 吉永
祥治 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2004154479A priority Critical patent/JP4101788B2/en
Publication of JP2005341668A publication Critical patent/JP2005341668A/en
Application granted granted Critical
Publication of JP4101788B2 publication Critical patent/JP4101788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Description

本発明は、配電系統の電圧を規定範囲に調整する電圧調整装置および電圧調整方法に関する。   The present invention relates to a voltage adjustment device and a voltage adjustment method for adjusting a voltage of a distribution system to a specified range.

単相配電系統の負荷端に設置される自動電圧調整装置を小型、低価格化する目的で、直列変圧器、インバータ、コンバータを用いて構成した電圧調整装置をその出力容量を負荷の定格容量の10〜20%程度にする技術が特許文献1に開示されている。   For the purpose of reducing the size and price of an automatic voltage regulator installed at the load end of a single-phase power distribution system, the output capacity of the voltage regulator constructed using a series transformer, inverter, and converter is adjusted to the rated capacity of the load. Japanese Patent Application Laid-Open No. H10-228688 discloses a technique for making the content about 10 to 20%.

また、配電線路の途中に設置して電圧の位相を調整する三相電圧位相調整装置を、三相タップ切替位相調整器と直列変圧器及び三相静止形電圧調整器の組合せで構成し、タップ幅の制約を受けず、電圧の大きさ及び位相の調整を行う技術が特許文献2に開示されている。   Also, a three-phase voltage phase adjustment device that is installed in the middle of the distribution line and adjusts the voltage phase is composed of a combination of a three-phase tap switching phase adjuster, a series transformer, and a three-phase static voltage regulator. A technique for adjusting the magnitude and phase of a voltage without being limited by the width is disclosed in Patent Document 2.

特開2001−5541号公報Japanese Patent Laid-Open No. 2001-5541

特開2000−232735号公報JP 2000-232735 A

しかし、上記従来技術には電圧調整方法、特に分散型電源が配電系統に連系された場合に、配電(低圧)系統の電圧を適正範囲に調整する手法が明確にされていない。特に、太陽光発電が導入された低圧配電系統の全域に渡って適正電圧を維持可能とする低圧配電系統が実現されていない。   However, the above prior art does not clarify a voltage adjustment method, particularly a method for adjusting the voltage of the distribution (low voltage) system to an appropriate range when the distributed power source is connected to the distribution system. In particular, a low-voltage distribution system capable of maintaining an appropriate voltage over the entire low-voltage distribution system in which solar power generation is introduced has not been realized.

本発明の目的は、従来技術の現状に鑑み、全域に渡って適正電圧を維持可能とする低圧配電系統とその電圧調整方法及び装置を提供することにある。   An object of the present invention is to provide a low-voltage distribution system capable of maintaining an appropriate voltage over the entire area, and a voltage adjustment method and apparatus thereof in view of the current state of the prior art.

上記目的を達成する本発明は、高圧配電系統と低圧配電系統を接続する柱上変圧器と、低圧配電系統に接続された需要家負荷および分散型電源で構成される電力系統の電圧調整装置において、前記柱上変圧器の二次側に直列に一次側を接続される直列変圧器と、低圧配電系統の電圧測定値を入力とする調整電圧制御回路と、該調整電圧制御回路の出力に基づいて前記直列変圧器の二次側に調整電圧を発生させる調整電圧発生回路と、を設けることを特徴とする。   The present invention that achieves the above object provides a voltage regulator for a power system that includes a pole transformer connecting a high-voltage distribution system and a low-voltage distribution system, a consumer load connected to the low-voltage distribution system, and a distributed power source. A series transformer having a primary side connected in series to a secondary side of the pole transformer, a regulated voltage control circuit that receives a voltage measurement value of a low-voltage distribution system, and an output of the regulated voltage control circuit And an adjustment voltage generation circuit for generating an adjustment voltage on the secondary side of the series transformer.

また、前記柱上変圧器の二次側に直列に一次側を接続される直列変圧器と、該直列変圧器の二次側端子間に接続されたバイパススイッチと、低圧配電系統の電圧測定値を入力とする調整電圧制御回路と、該調整電圧制御回路の出力に基づいて前記直列変圧器の二次側に調整電圧を発生させる調整電圧発生回路と、低圧配電系統の電圧に応じて前記調整電圧発生回路を起動または停止させるために、前記バイパススイッチを開または閉する保護回路と、を設けることを特徴とする。   In addition, a series transformer connected in primary to the secondary side of the pole transformer, a bypass switch connected between the secondary terminals of the series transformer, and a voltage measurement value of the low-voltage distribution system An adjustment voltage control circuit that receives the adjustment voltage, an adjustment voltage generation circuit that generates an adjustment voltage on the secondary side of the series transformer based on the output of the adjustment voltage control circuit, and the adjustment according to the voltage of the low-voltage distribution system In order to start or stop the voltage generation circuit, a protection circuit for opening or closing the bypass switch is provided.

前記調整電圧制御回路は、低圧配電系統の電圧を検出するセンサと、該センサによって検出された電圧測定値から電圧実効値を演算する電圧演算部と、予め目標電圧を設定する目標電圧設定部と、前記電圧実効値と前記目標電圧から前記調整電圧を演算する調整電圧演算部と、で構成されることを特徴とする。   The adjustment voltage control circuit includes a sensor that detects a voltage of the low-voltage distribution system, a voltage calculation unit that calculates a voltage effective value from a voltage measurement value detected by the sensor, and a target voltage setting unit that sets a target voltage in advance. And an adjustment voltage calculation unit that calculates the adjustment voltage from the effective voltage value and the target voltage.

また、本発明は高圧配電系統と低圧配電系統を接続する柱上変圧器と、低圧配電系統に接続された需要家負荷または分散型電源で構成される電力系統であって、前記柱上変圧器は上記電圧調整装置を含んで構成することを特徴とする。   The present invention is also a power system comprising a pole transformer connecting a high voltage distribution system and a low voltage distribution system, and a consumer load or a distributed power source connected to the low voltage distribution system, the pole transformer Includes the voltage regulator.

また、本発明の電圧調整方法は、柱上変圧器により高圧配電系統と低圧配電系統を接続し、低圧配電系統に需要家負荷および分散型電源を接続する電力系統の電圧調整方法であって、低圧配電系統の線間電圧の計測値から電圧の実効値を求め、該実効値と予め定めた目標電圧との偏差に基づいて調整電圧発生回路を制御し、前記柱上変圧器の二次側に一次側を接続される直列変圧器の一次側電圧が前記偏差相当となるように前記調整電圧発生回路の出力を前記直列変圧器の二次側に供給することを特徴とする。   The voltage adjustment method of the present invention is a voltage adjustment method for a power system in which a high voltage distribution system and a low voltage distribution system are connected by a pole transformer, and a consumer load and a distributed power source are connected to the low voltage distribution system, Obtain the effective value of the voltage from the measured value of the line voltage of the low-voltage distribution system, control the adjustment voltage generation circuit based on the deviation between the effective value and a predetermined target voltage, the secondary side of the pole transformer The output of the adjustment voltage generating circuit is supplied to the secondary side of the series transformer so that the primary side voltage of the series transformer connected to the primary side is equivalent to the deviation.

また、低圧配電系統の線間電圧の計測値から電圧の実効値を求め、該実効値と予め定めた目標電圧との偏差に基づいて調整電圧発生回路を制御し、前記柱上変圧器の二次側に一次側を接続される直列変圧器の一次側電圧が前記偏差相当となるように前記調整電圧発生回路の出力を前記直列変圧器の二次側に供給し、かつ低圧配電系統の電圧に応じて前記調整電圧発生回路と前記直列変圧器間のバイパススイッチを開または閉することを特徴とする。   Further, the effective value of the voltage is obtained from the measured value of the line voltage of the low-voltage distribution system, and the adjustment voltage generating circuit is controlled based on the deviation between the effective value and a predetermined target voltage. Supply the output of the regulated voltage generation circuit to the secondary side of the series transformer so that the primary side voltage of the series transformer connected to the primary side is equivalent to the deviation, and the voltage of the low-voltage distribution system The bypass switch between the adjustment voltage generating circuit and the series transformer is opened or closed according to the operation.

また、前記目標電圧は101Vに設定する。あるいは、目標電圧を低圧系統に接続される負荷契約容量と分散型電源契約容量に基づいて設定する。あるいは、目標電圧を(1)式により設定する。
目標電圧=負荷契約容量/(負荷契約容量+分散型電源契約容量)×12+95 …(1)
また、前記低圧配電系統の電圧が最低電圧整定値を超える時間がタイマ整定値より長くなった場合に,前記調整電圧発生回路(電力変換器)を起動するか前記バイパススイッチを開放することを特徴とする。
The target voltage is set to 101V. Alternatively, the target voltage is set based on the load contract capacity connected to the low voltage system and the distributed power contract capacity. Alternatively, the target voltage is set according to equation (1).
Target voltage = load contract capacity / (load contract capacity + distributed power contract capacity) x 12 + 95 (1)
In addition, when the time during which the voltage of the low-voltage distribution system exceeds the minimum voltage setting value becomes longer than the timer setting value, the adjustment voltage generation circuit (power converter) is started or the bypass switch is opened. And

また、前記低圧配電系統の電圧が不感帯最小電圧整定値より大きく、かつ不感帯最大電圧整定値より小さい場合で、その継続時間がタイマ整定値より長くなった場合に、前記バイパススイッチを短絡することを特徴とする。   In addition, when the voltage of the low voltage distribution system is larger than the dead band minimum voltage setting value and smaller than the dead band maximum voltage setting value, the bypass switch is short-circuited when the duration becomes longer than the timer setting value. Features.

本発明の電圧調整装置および電圧調整方法によれば、低圧配電系統の系統電圧を適正範囲に維持できる。これに伴い、従来、適正電圧維持のために実施してきた変圧器大容量化、低圧線太線化、系統分割などの対策が不要となる。また、低圧系統における太陽光発電などの分散型電源の発電効率を改善できる。また、負荷変化とインバータ制御の相互干渉によるフリッカの発生を抑制できる。   According to the voltage regulator and the voltage regulation method of the present invention, the system voltage of the low-voltage distribution system can be maintained in an appropriate range. As a result, measures such as increasing the capacity of the transformer, increasing the voltage of the low-voltage line, and dividing the system, which have been conventionally performed for maintaining an appropriate voltage, become unnecessary. In addition, the power generation efficiency of a distributed power source such as solar power generation in a low-voltage system can be improved. Further, it is possible to suppress the occurrence of flicker due to mutual interference between load change and inverter control.

また、本発明の電圧調整装置および電圧調整方法によれば、系統状態が不安定な状態で電圧調整装置が再起動することを防ぐので、系統に擾乱を与えることなく安定に再起動できる利点がある。   Further, according to the voltage regulator and the voltage regulation method of the present invention, the voltage regulator is prevented from restarting in an unstable system state, so that there is an advantage that the system can be stably restarted without causing disturbance to the system. is there.

また、本発明の電圧調整装置および電圧調整方法によれば、電圧制御が不要な場合に休止状態となるので、柱上変圧器の電圧調整部で発生する損失を低減し、電圧調整装置の寿命を延ばすことができる利点がある。   Further, according to the voltage regulator and voltage regulation method of the present invention, when voltage control is unnecessary, the voltage regulation device and the voltage regulation method are in a dormant state. There is an advantage that can be extended.

図1は、本発明の一実施例を示す電圧調整装置の構成図である。線間定格電圧6kVの高圧配電系統の配電線の2相である線路10u,10vに柱上変圧器110の一次側が接続され,柱上変圧器110の二次側は±105V定格の低圧配電線路20a,20bおよび中性線20nに接続されている。電圧調整装置100は柱上変圧器110及び電圧調整回路120によって構成される。   FIG. 1 is a configuration diagram of a voltage adjusting apparatus showing an embodiment of the present invention. The primary side of the pole transformer 110 is connected to the lines 10u and 10v which are the two phases of the distribution line of the high voltage distribution system with a line voltage rating of 6kV, and the secondary side of the pole transformer 110 is a low voltage distribution line with a rating of ± 105V. 20a, 20b and neutral wire 20n. The voltage adjusting device 100 includes a pole transformer 110 and a voltage adjusting circuit 120.

電圧調整回路120は以下に示すように、直列変圧器211,212、バイパススイッチ220、調整電圧発生回路230、電圧センサ213、調整電圧制御回路240、保護装置214及びそれらを結合する回路および情報伝達手段によって構成される。直列変圧器211,212は各々の一次側を低圧配電線路20a,20bにそれぞれ直列に挿入される。   As shown below, the voltage adjustment circuit 120 includes series transformers 211 and 212, a bypass switch 220, an adjustment voltage generation circuit 230, a voltage sensor 213, an adjustment voltage control circuit 240, a protection device 214, a circuit that combines them, and information transmission Consists of means. The series transformers 211 and 212 are inserted in series in the low-voltage distribution lines 20a and 20b, respectively, on the primary side.

直列変圧器211,212の二次側は調整電圧発生回路230のインバータ231の交流端子に接続される。インバータ231と直列変圧器211,212二次側の間にはバイパススイッチ220が設けられ、保護装置214からの開閉指令に基づいて線間を短絡・開放する。調整電圧発生回路230はインバータ231、コンバータ232、直流コンデンサ233、変換器制御装置234で構成される。   The secondary sides of series transformers 211 and 212 are connected to the AC terminal of inverter 231 of adjustment voltage generation circuit 230. A bypass switch 220 is provided between the inverter 231 and the secondary side of the series transformers 211 and 212, and shorts and opens between the lines based on an opening / closing command from the protection device 214. The adjustment voltage generation circuit 230 includes an inverter 231, a converter 232, a DC capacitor 233, and a converter control device 234.

コンバータ232の交流側端子は低圧配電線路20a,20bに接続され、直流端子は直流コンデンサ233に接続される。インバータ231の直流端子も直列コンデンサ233に接続される。インバータ231、コンバータ232の制御指令は変換器制御装置234によって与えられる。調整電圧制御回路240は電圧演算部241、調整電圧演算部242、目標電圧設定部243で構成される。   The AC side terminal of the converter 232 is connected to the low voltage distribution lines 20 a and 20 b, and the DC terminal is connected to the DC capacitor 233. The DC terminal of the inverter 231 is also connected to the series capacitor 233. Control commands for inverter 231 and converter 232 are given by converter control device 234. The adjustment voltage control circuit 240 includes a voltage calculation unit 241, an adjustment voltage calculation unit 242, and a target voltage setting unit 243.

なお、図1ではコンバータ232の交流側端子は直列変圧器211,212より高圧系統側(柱上変圧器110と直列変圧器211,212の間)で低圧配電線路20a,20bと接続しているが、直列変圧器211,212より低圧系統側で低圧配電線路20a,20bと接続しても良い。   In FIG. 1, the AC side terminal of the converter 232 is connected to the low voltage distribution lines 20a and 20b on the high voltage system side (between the pole transformer 110 and the series transformers 211 and 212) from the series transformers 211 and 212. However, you may connect with the low voltage distribution line 20a, 20b by the low voltage | pressure system side from the series transformer 211,212.

次に、電圧調整装置100による電圧調整の概要を説明する。低圧系統のan間およびbn間の線間電圧は電圧センサ213で計測され、測定された信号は調整電圧制御回路240の電圧演算部241に送られ、電圧実効値Veおよび電圧位相θに変換される。Veは調整電圧演算部242と保護装置214に、θは変換器制御装置234に送られる。目標電圧設定部243には予め目標電圧Vrefが整定されており、このVrefは調整電圧演算部242に送られる。調整電圧演算部242では、電圧調整装置100で調整すべき電圧偏差ΔVを計算する。すなわち、目標電圧Vrefと低圧系統の電圧Veとの偏差を計算し、調整電圧演算部242の出力とする。ΔV信号は変換器制御装置234に送られ、変換器制御装置234は直列変圧器211,212の一次側電圧がΔV相当の電圧となるように、インバータ231およびコンバータ232を制御する。   Next, an outline of voltage adjustment by the voltage adjustment apparatus 100 will be described. The line voltage between an and bn of the low-voltage system is measured by the voltage sensor 213, and the measured signal is sent to the voltage calculation unit 241 of the adjustment voltage control circuit 240 and converted into the voltage effective value Ve and the voltage phase θ. The Ve is sent to the adjustment voltage calculation unit 242 and the protection device 214, and θ is sent to the converter control device 234. A target voltage Vref is set in advance in the target voltage setting unit 243, and this Vref is sent to the adjustment voltage calculation unit 242. The adjustment voltage calculation unit 242 calculates a voltage deviation ΔV to be adjusted by the voltage adjustment device 100. That is, the deviation between the target voltage Vref and the voltage Ve of the low voltage system is calculated and used as the output of the adjustment voltage calculator 242. The ΔV signal is sent to the converter control device 234, and the converter control device 234 controls the inverter 231 and the converter 232 so that the primary side voltages of the series transformers 211 and 212 are equivalent to ΔV.

すなわち、直列変圧器211,212の変圧比が一次:二次が1:mであれば、インバータ231の出力電圧がΔV×mとなるようにインバータ231およびコンバータ232に制御指令を与える。このとき、a相に加えられるΔVaはan間の電圧V'anの位相θaと同位相となるように制御される。また、b相に加えられるΔVbはΔVaと180゜位相が反転した電圧となる。このようにして、直列変圧器211,212の一次側にはΔVa,ΔVbの電圧が発生される。   That is, if the transformation ratio of the series transformers 211 and 212 is primary: secondary is 1: m, a control command is given to the inverter 231 and the converter 232 so that the output voltage of the inverter 231 becomes ΔV × m. At this time, ΔVa applied to the a phase is controlled to be in phase with the phase θa of the voltage V′an between an. Further, ΔVb applied to the b phase is a voltage whose phase is inverted by 180 ° from ΔVa. In this way, the voltages ΔVa and ΔVb are generated on the primary side of the series transformers 211 and 212.

低圧配電系統が平衡である場合、柱上変圧器110の二次側の電圧Va,Vbに、直列変圧器211,212の一次側電圧ΔVa,ΔVbが加えられることで,低圧系統の電圧V'an,V'bnは目標電圧Vrefとなるように制御される。   When the low-voltage distribution system is balanced, the primary-side voltages ΔVa and ΔVb of the series transformers 211 and 212 are added to the secondary-side voltages Va and Vb of the pole transformer 110, whereby the low-voltage system voltage V ′ an and V′bn are controlled to be the target voltage Vref.

また、電圧調整回路120において、直列変圧器211、212、バイパススイッチ220、調整電圧発生回路230のインバータ231を、an間,bn間で独立して構成した場合でも、低圧系統の電圧V'an,V'bnを目標電圧Vrefとなるように制御することできる。さらに、調整電圧制御回路240および調整電圧発生回路230の変換器制御装置234において、電圧調整装置100で調整すべき電圧偏差ΔVを、an間,bn間で独立して計算、出力するよう構成する。これにより、低圧系統が不平衡である場合でも、低圧系統の電圧V'an,V'bnを目標電圧Vrefとなるように制御することができる。   Further, in the voltage adjustment circuit 120, even when the series transformers 211 and 212, the bypass switch 220, and the inverter 231 of the adjustment voltage generation circuit 230 are configured independently between an and bn, the voltage V′an of the low voltage system , V′bn can be controlled to be the target voltage Vref. Further, the converter control device 234 of the adjustment voltage control circuit 240 and the adjustment voltage generation circuit 230 is configured to calculate and output the voltage deviation ΔV to be adjusted by the voltage adjustment device 100 independently between an and bn. . Thereby, even when the low voltage system is unbalanced, the voltages V′an and V′bn of the low voltage system can be controlled to be the target voltage Vref.

保護装置214では、電圧演算部241で計算された電圧Veを元に、バイパススイッチ220の開閉指令および変換器制御装置234への開閉器起動停止指令を与える。保護装置214の処理アルゴリズムについては後述する。   The protection device 214 gives an opening / closing command for the bypass switch 220 and a switch start / stop command to the converter control device 234 based on the voltage Ve calculated by the voltage calculation unit 241. The processing algorithm of the protection device 214 will be described later.

変換器制御装置234の応答速度は、低圧系統に連系される他のインバータ装置との相互干渉や、電圧フリッカの発生を押さえるために一定値以下に制限する必要がある。例えば、フリッカは人間の視感度係数がもっとも大きくなる10Hz付近の電圧振動で発生し易くなるため、これよりも十分遅い1秒程度以上の応答速度としておくことが目安となる。   The response speed of the converter control device 234 needs to be limited to a certain value or less in order to suppress mutual interference with other inverter devices linked to the low-voltage system and generation of voltage flicker. For example, flicker is likely to occur due to voltage oscillations in the vicinity of 10 Hz at which the human visibility coefficient is the largest, so it is a guideline to set a response speed of about 1 second or more sufficiently slower than this.

次に,本発明の電圧調整装置100を適用した配電系統の構成について、図2に示す単線結線図を用いて説明する。配電変電所11に接続される高圧配電線路10に、電圧調整装置100の一次側(高圧側)が接続され、その二次側(低圧側)に低圧配電線路20が接続される。低圧配電線路20には需要家への引込線21が接続され、引込線21の末端に需要家負荷22および太陽光発電設備23が接続されている。   Next, the configuration of the power distribution system to which the voltage regulator 100 of the present invention is applied will be described with reference to the single-line connection diagram shown in FIG. The primary side (high voltage side) of the voltage regulator 100 is connected to the high voltage distribution line 10 connected to the distribution substation 11, and the low voltage distribution line 20 is connected to the secondary side (low voltage side). A service line 21 to the customer is connected to the low-voltage distribution line 20, and a customer load 22 and solar power generation equipment 23 are connected to the end of the service line 21.

電気事業法による規定により、需要家への引込線末端の電圧は101±6V内に保つ必要がある。今、太陽光発電23が接続されない配電系統の場合を考えると、高圧配電線10を介して受電している需要家のもっとも高い電圧を107V以下とし、もっとも低い電圧は95V以上とすればよい。配電線に負荷がつながる場合、負荷電流によって各線路や変圧器のインピーダンスに応じて電圧低下が生じる。この場合、例えば図3に示すような電圧降下量の配分(100V換算値)よりも小さい電圧低下に収まるような配電系統の構成とすれば、需要家端の電圧は前述の101±6Vに収まることになる。   According to the provisions of the Electricity Business Law, the voltage at the end of the lead-in line to the consumer needs to be kept within 101 ± 6V. Now, considering the case of a distribution system to which the solar power generation 23 is not connected, the highest voltage of a customer receiving power via the high-voltage distribution line 10 may be set to 107 V or lower, and the lowest voltage may be set to 95 V or higher. When a load is connected to the distribution line, a voltage drop occurs according to the impedance of each line or transformer due to the load current. In this case, for example, if the configuration of the distribution system is such that the voltage drop is smaller than the voltage drop amount distribution (100 V converted value) as shown in FIG. 3, the voltage at the consumer end falls within the above-mentioned 101 ± 6V. It will be.

このようにして設計された配電系統に太陽光発電23のような分散型電源が接続された場合の電圧分布への影響について説明する。図4は配電系統の各構成要素(図2)の電圧分布の例を示したグラフである。横軸は配電系統の代表的な場所を、縦軸は100V定格換算の電圧値を示す。   The influence on the voltage distribution when a distributed power source such as the photovoltaic power generation 23 is connected to the power distribution system designed in this way will be described. FIG. 4 is a graph showing an example of the voltage distribution of each component (FIG. 2) of the power distribution system. The horizontal axis represents a representative location of the power distribution system, and the vertical axis represents a voltage value converted to 100 V rating.

グラフ410は分散型電源がない場合に、図3の電圧降下配分によって、もっとも電圧低下が大きい場合の電圧分布を示す。すなわち、配電変電所直近の定圧系統で107Vとなる電圧を配電変電所11の送り出し電圧とした場合、高圧系統で4V相当の電圧低下が生じて柱上変圧器高圧側では103V、柱上変圧器で2V相当の電圧低下が生じて低圧側では101V、同様に低圧線で3V、引込線で3Vの電圧低下が生じる。結局、需要家端ではせいぜい95Vに電圧が維持されるように、配電系統を構成することができる。   A graph 410 shows the voltage distribution when the voltage drop is the largest due to the voltage drop distribution of FIG. 3 when there is no distributed power source. In other words, when a voltage of 107 V in the constant voltage system in the immediate vicinity of the distribution substation is used as the delivery voltage of the distribution substation 11, a voltage drop equivalent to 4 V occurs in the high voltage system, and the pole transformer is 103 V on the high voltage side. As a result, a voltage drop corresponding to 2V occurs, causing a voltage drop of 101V on the low voltage side, similarly 3V on the low voltage line, and 3V on the lead-in line. Eventually, the power distribution system can be configured so that the voltage is maintained at 95 V at most at the consumer end.

ところが、太陽光発電23のような分散型電源が接続された場合で負荷が小さい場合、分散型電源からの逆潮流によって配電線路の電流の向きが末端の需要家側から配電変電所側に流れ、そのために配電系統の末端の電圧が上昇する場合が生じる。例えば、グラフ411の電圧分布は、需要家負荷容量と同容量の太陽光発電が定格出力しており、需要家負荷は0の例を示している。この場合、引込線の需要家端付近で電圧が107Vを超えてしまう。   However, when a distributed power source such as the solar power generation 23 is connected and the load is small, the direction of the current of the distribution line flows from the terminal customer side to the distribution substation side due to the reverse power flow from the distributed power source. As a result, the voltage at the end of the power distribution system may increase. For example, the voltage distribution in the graph 411 shows an example in which the photovoltaic power generation having the same capacity as the consumer load capacity is rated output and the consumer load is zero. In this case, the voltage exceeds 107 V near the customer end of the service line.

このような状況で、電圧調整装置100によって低圧線送り出し点の電圧を101Vに制御した場合の電圧分布はグラフ412のようになる。低圧線、引込線合計の電圧上昇量は、一般的な発電設備容量が需要家負荷容量を超えない場合はせいぜい6Vであるため、各需要家の分散型電源有無、負荷量の大小に関わらず末端を101±6V以内となるように配電系統を構成することが可能となる。   Under such circumstances, the voltage distribution when the voltage adjusting device 100 controls the voltage at the low-voltage line delivery point to 101 V is as shown in a graph 412. The total voltage increase of the low-voltage line and the lead-in line is 6V at most if the general power generation equipment capacity does not exceed the customer load capacity. The power distribution system can be configured to be within 101 ± 6V.

次に、低圧系統12に接続される負荷22の契約容量と分散型電源23の契約容量が既知の場合の電圧制御方法を説明する。図5は分散型電源の契約容量が負荷の契約容量の1/3である低圧系統の電圧制御時の電圧分布例を示している。ここで、低圧系統12に接続される負荷22の契約容量は,負荷電流最大時に低圧線20と引込線21の電圧降下が最大で6V発生するような容量としている。   Next, a voltage control method when the contract capacity of the load 22 connected to the low-voltage system 12 and the contract capacity of the distributed power source 23 are known will be described. FIG. 5 shows an example of voltage distribution during voltage control of a low-voltage system in which the contracted capacity of the distributed power source is 1/3 of the contracted capacity of the load. Here, the contracted capacity of the load 22 connected to the low-voltage system 12 is set such that a maximum voltage drop of 6 V occurs between the low-voltage line 20 and the lead-in line 21 when the load current is maximum.

この場合、負荷電流が0で分散型電源の出力が最大の場合、分散型電源23から柱上変圧器側に流れる電流によって、低圧線20と引込線21で発生する電圧上昇量は、負荷電流最大時の電圧降下量の1/3の大きさとなる。すなわち、6Vの1/3である2Vほどの電圧上昇が発生する。従って、この低圧系統では、低圧線20、引込線21合計の電圧低下は最大6V、電圧上昇は最大2Vであることがわかる。この場合、電圧規定値の95V,107Vまでの余裕が、上下とも同様の割合で持たせておくことが望ましい。   In this case, when the load current is 0 and the output of the distributed power source is the maximum, the voltage increase generated in the low voltage line 20 and the lead-in line 21 due to the current flowing from the distributed power source 23 to the pole transformer is the maximum load current. 1/3 of the voltage drop at that time. That is, a voltage increase of about 2V, which is 1/3 of 6V, occurs. Therefore, in this low-voltage system, it can be seen that the total voltage drop of the low-voltage line 20 and the lead-in line 21 is 6 V at the maximum and the voltage increase is 2 V at the maximum. In this case, it is desirable that the margins up to the specified voltage values of 95V and 107V are provided at the same ratio in both the upper and lower sides.

そこで、電圧調整装置100の制御電圧目標値Vrefは(1)式で求めればよい。
Vref=WL/(WL+WG)×12+95 …(1)
ここで、WLは負荷の契約容量、WGは分散型電源の契約容量を表す。(1)式は、低圧系統の送り出し点(電圧調整装置100の低圧側)の電圧を、負荷22および分散型電源23の割合に応じて、101Vからずらすことを意味している。
Therefore, the control voltage target value Vref of the voltage regulator 100 may be obtained by equation (1).
Vref = WL / (WL + WG) × 12 + 95 (1)
Here, WL represents the contract capacity of the load, and WG represents the contract capacity of the distributed power source. The expression (1) means that the voltage at the low-voltage system delivery point (low voltage side of the voltage regulator 100) is shifted from 101V in accordance with the ratio of the load 22 and the distributed power source 23.

例えば、図5の例では、WGはWLの1/3であるから、Vrefは(2)式のように求められ、電圧調整装置100の低圧側端を104Vに設定すればよいことがわかる。
Vref=WL/(WL+(1/3)WL)×12+95=104(V) …(2)
次に、保護装置214の処理について説明する。図6は、系統故障や停電が復旧した場合の再起動アルゴリズムの処理フローを示している。ここで、Vは配電系統の電圧、Vlowは再起動の目安となる最低電圧整定値、τは時間カウンタ、τminはタイマ整定値を示す。
For example, in the example of FIG. 5, since WG is 1/3 of WL, it is understood that Vref is obtained as shown in Equation (2), and the low-voltage side end of voltage regulator 100 may be set to 104V.
Vref = WL / (WL + (1/3) WL) × 12 + 95 = 104 (V) (2)
Next, processing of the protection device 214 will be described. FIG. 6 shows a processing flow of the restart algorithm when a system failure or power failure is recovered. Here, V is a voltage of the power distribution system, Vlow is a minimum voltage set value that serves as a standard for restart, τ is a time counter, and τmin is a timer set value.

S1で時間カウンタτを0にリセットする。S2で系統電圧VがVlow以上であるかを監視し、その結果Vlow未満であれば監視を継続するために、処理の最初に戻る。Vlow以上であれば、S3で時間カウンタを増加させる。S4の判定処理で、時間カウンタτが一定値τmin未満であれば、判定処理S2に戻り電圧の大きさを再度判定する。時間カウンタτが一定値τmin以上であれば、S5でバイパススイッチ220をOFFにする指令を出し、S6でインバータ起動指令を変換器制御装置234に与える。   The time counter τ is reset to 0 at S1. In S2, it is monitored whether the system voltage V is equal to or higher than Vlow, and if the result is less than Vlow, the process returns to the beginning to continue monitoring. If it is Vlow or higher, the time counter is incremented in S3. If the time counter τ is less than the constant value τmin in the determination process of S4, the process returns to the determination process S2 to determine the magnitude of the voltage again. If the time counter τ is equal to or greater than a certain value τmin, a command to turn off the bypass switch 220 is issued in S5, and an inverter activation command is given to the converter controller 234 in S6.

これにより、電圧調整装置100を再起動する。この様な処理フローを設けることで、系統故障時や停電時に電圧調整装置100が一旦停止した場合に、系統復帰後に必要以上に早く再起動せずに、十分系統状態が安定となった後(負荷や太陽光発電が再起動した後)に、電圧調整装置100が再起動することとなる。すなわち、系統復帰を検出し、系統状態が安定となったことを確認して、再起動することになる。   Thereby, the voltage regulator 100 is restarted. By providing such a processing flow, when the voltage regulator 100 is temporarily stopped at the time of a system failure or power failure, the system state is sufficiently stabilized without restarting more quickly than necessary after the system recovery ( After the load or solar power is restarted), the voltage regulator 100 is restarted. That is, the system recovery is detected, the system state is confirmed to be stable, and the system is restarted.

図7は、電圧調整装置の損失低減アルゴリズムの処理フローを示している。ここで、Vは配電系統の電圧、Vminは運転停止の目安となる不感帯最小電圧整定値、Vmaxは運転停止の目安となる不感帯最大電圧整定値、τは時間カウンタ、τminはタイマ整定値を示す。   FIG. 7 shows a processing flow of the loss reduction algorithm of the voltage regulator. Where V is the voltage of the distribution system, Vmin is the minimum dead band voltage setting value that serves as a guide for shutdown, Vmax is the maximum dead band voltage setting value that serves as a guide for shutdown, τ is the time counter, and τmin is the timer setting value. .

S11で時間カウンタτを0にリセットする。S12で系統電圧VがVmin以上かつVmax以下の不感帯範囲であるかを監視し、その結果不感帯外であれば監視を継続するために、処理の最初に戻る。不感帯内であれば、S13で時間カウンタを増加させる。S14の判定処理で時間カウンタτが一定値τmin未満であれば、判定処理S12に戻り電圧の大きさを再度判定する。時間カウンタτが一定値τmin以上であれば、S15でインバータ停止指令を変換器制御装置234に与え、S16でバイパススイッチ220をONにする指令を出す。   In S11, the time counter τ is reset to zero. In S12, it is monitored whether or not the system voltage V is in the dead band range of Vmin or more and Vmax or less. As a result, if it is outside the dead band, the process returns to the beginning to continue monitoring. If it is within the dead zone, the time counter is incremented in S13. If the time counter τ is less than the constant value τmin in the determination process of S14, the process returns to the determination process S12 to determine the magnitude of the voltage again. If the time counter τ is greater than or equal to the constant value τmin, an inverter stop command is given to the converter controller 234 in S15, and a command to turn on the bypass switch 220 is issued in S16.

これにより、電圧調整装置100を停止する。このような処理フローを電圧調整装置100に設けることで,電圧調整装置の変換器部で発生する損失を低減し、また電圧調整装置の寿命を延ばすことができる効果がある。   Thereby, the voltage regulator 100 is stopped. By providing such a processing flow in the voltage regulator 100, there is an effect that the loss generated in the converter part of the voltage regulator can be reduced and the life of the voltage regulator can be extended.

本実施例の電圧調整装置によれば、配電系統に分散型電源が新たに設置された場合でも、配電線路や系統構成を変えることなく配電系統の電圧を規定範囲に保つことができる。また、このような電圧調整機能を持つ柱上変圧器として適用できる。さらに、電圧変動の大きい配電系統に設置し、電圧変動量を低減することで、設備効率のよい配電系統を構成することができる。   According to the voltage regulator of the present embodiment, even when a distributed power source is newly installed in the distribution system, the voltage of the distribution system can be maintained within a specified range without changing the distribution line path or the system configuration. Moreover, it can be applied as a pole transformer having such a voltage adjustment function. Furthermore, it is possible to configure a power distribution system with good facility efficiency by installing it in a power distribution system having a large voltage fluctuation and reducing the amount of voltage fluctuation.

本発明の一実施例による電圧調整装置の構成図。The block diagram of the voltage regulator by one Example of this invention. 電圧調整装置を適用した配電系統の構成図。The block diagram of the distribution system which applied the voltage regulator. 配電系統の電圧降下量の配分を示した説明図。Explanatory drawing which showed distribution of the voltage drop amount of a power distribution system. 配電系統の各構成要素の電圧分布の例を示したグラフ。The graph which showed the example of the voltage distribution of each component of a power distribution system. 電圧調整装置による電圧制御の結果例を示したグラフ。The graph which showed the example of the result of the voltage control by a voltage regulator. 電圧調整装置の再起動アルゴリズムの処理フロー図。The processing flow figure of the restart algorithm of a voltage regulator. 電圧調整装置の損失低減アルゴリズムの処理フロー図。The processing flowchart of the loss reduction algorithm of a voltage regulator.

符号の説明Explanation of symbols

10…高圧配電線路、11…配電変電所、12…配電系統、20…低圧配電線路、21…引込線、22…需要家、23…太陽光発電などの分散型電源、100…電圧調整装置、110…柱上変圧器、120…電圧調整回路、211,212…直列変圧器、213…電圧センサ、214…保護装置、220…バイパススイッチ、230v調整電圧発生回路、231…インバータ、232…コンバータ、233…直流コンデンサ、234…変換器制御装置、240…調整電圧制御回路、241…電圧演算部、242…調整電圧演算部、243…目標電圧設定部。
DESCRIPTION OF SYMBOLS 10 ... High voltage distribution line, 11 ... Distribution substation, 12 ... Distribution system, 20 ... Low voltage distribution line, 21 ... Service line, 22 ... Consumer, 23 ... Distributed power sources, such as photovoltaic power generation, 100 ... Voltage regulator, 110 ... pole transformer, 120 ... voltage regulator, 211, 212 ... series transformer, 213 ... voltage sensor, 214 ... protection device, 220 ... bypass switch, 230v regulator voltage generator, 231 ... inverter, 232 ... converter, 233 DESCRIPTION OF SYMBOLS ... DC capacitor, 234 ... Converter control apparatus, 240 ... Adjustment voltage control circuit, 241 ... Voltage calculation part, 242 ... Adjustment voltage calculation part, 243 ... Target voltage setting part.

Claims (10)

高圧配電系統と低圧配電系統を接続する柱上変圧器と、低圧配電系統に接続された需要家負荷および分散型電源で構成される電力系統の電圧調整装置において、
前記柱上変圧器の二次側に直列に一次側を接続される直列変圧器と、低圧配電系統の電圧測定値を入力とする調整電圧制御回路と、該調整電圧制御回路の出力に基づいて前記直列変圧器の二次側に調整電圧を発生させる調整電圧発生回路と、を設けることを特徴とする電圧調整装置。
In a voltage regulator for a power system composed of a pole transformer connecting a high-voltage distribution system and a low-voltage distribution system, and a consumer load and a distributed power source connected to the low-voltage distribution system,
Based on the series transformer connected in series to the secondary side of the pole transformer, the adjustment voltage control circuit that receives the voltage measurement value of the low-voltage distribution system, and the output of the adjustment voltage control circuit An adjustment voltage generation circuit for generating an adjustment voltage on the secondary side of the series transformer is provided.
高圧配電系統と低圧配電系統を接続する柱上変圧器と、低圧配電系統に接続された需要家負荷および分散型電源で構成される電力系統の電圧調整装置において、
前記柱上変圧器の二次側に直列に一次側を接続される直列変圧器と、該直列変圧器の二次側端子間に接続されたバイパススイッチと、低圧配電系統の電圧測定値を入力とする調整電圧制御回路と、該調整電圧制御回路の出力に基づいて前記直列変圧器の二次側に調整電圧を発生させる調整電圧発生回路と、低圧配電系統の電圧に応じて前記調整電圧発生回路を起動または停止させるために、前記バイパススイッチを開または閉する保護回路と、を設けることを特徴とする電圧調整装置。
In a voltage regulator for a power system composed of a pole transformer connecting a high-voltage distribution system and a low-voltage distribution system, and a consumer load and a distributed power source connected to the low-voltage distribution system,
Input the voltage measurement value of the low-voltage distribution system, the series transformer connected in series to the secondary side of the pole transformer, the bypass switch connected between the secondary terminals of the series transformer An adjustment voltage control circuit for generating an adjustment voltage on the secondary side of the series transformer based on the output of the adjustment voltage control circuit, and the adjustment voltage generation according to the voltage of the low-voltage distribution system And a protection circuit that opens or closes the bypass switch in order to start or stop the circuit.
請求項1または2において、前記調整電圧制御回路は、低圧配電系統の電圧を検出するセンサと、該センサによって検出された電圧測定値から電圧実効値を演算する電圧演算部と、予め目標電圧を設定する目標電圧設定部と、前記電圧実効値と前記目標電圧から前記調整電圧を演算する調整電圧演算部と、で構成されることを特徴とする電圧調整装置。   3. The adjustment voltage control circuit according to claim 1, wherein the adjustment voltage control circuit includes a sensor that detects a voltage of the low-voltage distribution system, a voltage calculation unit that calculates a voltage effective value from a voltage measurement value detected by the sensor, and a target voltage in advance. A voltage regulator comprising: a target voltage setting unit to be set; and an adjustment voltage calculation unit that calculates the adjustment voltage from the voltage effective value and the target voltage. 柱上変圧器により高圧配電系統と低圧配電系統を接続し、低圧配電系統に需要家負荷および分散型電源を接続する電力系統の電圧調整方法において、
低圧配電系統の線間電圧の計測値から電圧の実効値を求め、該実効値と予め定めた目標電圧との偏差に基づいて調整電圧発生回路を制御し、前記柱上変圧器の二次側に一次側を接続される直列変圧器の一次側電圧が前記偏差相当となるように前記調整電圧発生回路の出力を前記直列変圧器の二次側に供給することを特徴とする電圧調整方法。
In the voltage regulation method of the power system, connecting the high-voltage distribution system and the low-voltage distribution system with a pole transformer, and connecting the consumer load and the distributed power source to the low-voltage distribution system,
Obtain the effective value of the voltage from the measured value of the line voltage of the low-voltage distribution system, control the adjustment voltage generation circuit based on the deviation between the effective value and a predetermined target voltage, the secondary side of the pole transformer A voltage adjusting method comprising: supplying an output of the adjustment voltage generating circuit to a secondary side of the series transformer so that a primary side voltage of a series transformer connected to the primary side of the inverter is equivalent to the deviation.
柱上変圧器により高圧配電系統と低圧配電系統を接続し、低圧配電系統に需要家負荷および分散型電源を接続する電力系統の電圧調整方法において、
低圧配電系統の線間電圧の計測値から電圧の実効値を求め、該実効値と予め定めた目標電圧との偏差に基づいて調整電圧発生回路を制御し、前記柱上変圧器の二次側に一次側を接続される直列変圧器の一次側電圧が前記偏差相当となるように前記調整電圧発生回路の出力を前記直列変圧器の二次側に供給し、かつ低圧配電系統の電圧に応じて前記調整電圧発生回路と前記直列変圧器間のバイパススイッチを開または閉することを特徴とする電圧調整方法。
In the voltage regulation method of the power system, connecting the high-voltage distribution system and the low-voltage distribution system with a pole transformer, and connecting the consumer load and the distributed power source to the low-voltage distribution system,
Obtain the effective value of the voltage from the measured value of the line voltage of the low-voltage distribution system, control the adjustment voltage generation circuit based on the deviation between the effective value and a predetermined target voltage, the secondary side of the pole transformer The output of the regulated voltage generation circuit is supplied to the secondary side of the series transformer so that the primary side voltage of the series transformer connected to the primary side corresponds to the deviation, and according to the voltage of the low-voltage distribution system A voltage adjustment method comprising: opening or closing a bypass switch between the adjustment voltage generation circuit and the series transformer.
請求項4または5において、前記目標電圧は低圧系統に接続される負荷契約容量と分散型電源契約容量に基づいて設定することを特徴とする電圧調整方法。   6. The voltage adjustment method according to claim 4, wherein the target voltage is set based on a load contract capacity and a distributed power contract capacity connected to a low voltage system. 請求項4または5において、前記目標電圧は(1)式により設定することを特徴とする電圧調整方法。
目標電圧=負荷契約容量/(負荷契約容量+分散型電源契約容量)×12+95 …(1)
6. The voltage adjustment method according to claim 4, wherein the target voltage is set according to equation (1).
Target voltage = load contract capacity / (load contract capacity + distributed power contract capacity) x 12 + 95 (1)
請求項5において、前記低圧配電系統の電圧が最低電圧整定値を超える時間がタイマ整定値より長くなった場合に,前記調整電圧発生回路を起動するか前記バイパススイッチを開放することを特徴とする電圧調整方法。   6. The adjustment voltage generation circuit is activated or the bypass switch is opened when a time during which the voltage of the low-voltage distribution system exceeds a minimum voltage set value becomes longer than a timer set value. Voltage adjustment method. 請求項5において、前記低圧配電系統の電圧が不感帯最小電圧整定値より大きく、かつ不感帯最大電圧整定値より小さい場合で、その継続時間がタイマ整定値より長くなった場合に、前記バイパススイッチを短絡することを特徴とする電圧調整方法。   6. The bypass switch according to claim 5, wherein when the voltage of the low voltage distribution system is larger than the dead band minimum voltage set value and smaller than the dead band maximum voltage set value, the duration is longer than the timer set value. A voltage adjustment method characterized by: 高圧配電系統と低圧配電系統を接続する柱上変圧器と、低圧配電系統に接続された需要家負荷または分散型電源で構成される電力系統であって、
前記柱上変圧器は請求項1〜3の何れかに記載の電圧調整装置を含んで構成することを特徴とする電力系統。
A power system composed of a pole transformer connecting a high-voltage distribution system and a low-voltage distribution system, and a consumer load or a distributed power source connected to the low-voltage distribution system,
The said pole transformer includes the voltage regulator in any one of Claims 1-3, and is comprised, The electric power system characterized by the above-mentioned.
JP2004154479A 2004-05-25 2004-05-25 Voltage adjusting device and voltage adjusting method Expired - Fee Related JP4101788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004154479A JP4101788B2 (en) 2004-05-25 2004-05-25 Voltage adjusting device and voltage adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004154479A JP4101788B2 (en) 2004-05-25 2004-05-25 Voltage adjusting device and voltage adjusting method

Publications (2)

Publication Number Publication Date
JP2005341668A JP2005341668A (en) 2005-12-08
JP4101788B2 true JP4101788B2 (en) 2008-06-18

Family

ID=35494617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004154479A Expired - Fee Related JP4101788B2 (en) 2004-05-25 2004-05-25 Voltage adjusting device and voltage adjusting method

Country Status (1)

Country Link
JP (1) JP4101788B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055194A (en) * 2009-10-26 2011-05-11 通用电气公司 Systems and methods for regulating power in renewable energy sources
CN102820661A (en) * 2012-08-17 2012-12-12 中国电力科学研究院 Overall voltage quality coordinated control method for distribution network being oriented to multi-level objects
CN103701351A (en) * 2013-12-16 2014-04-02 西安交通大学 Adaptive reactive power control method of parallel inverter
CN105552928A (en) * 2016-01-29 2016-05-04 浙江桂容谐平科技有限责任公司 Series-connection/parallel-connection hybrid capacitor compensation apparatus for 10kV power distribution line

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262609A (en) * 2005-03-16 2006-09-28 Tohoku Electric Mfg Co Ltd Single-phase three-wire voltage rationalizing device
JP5117687B2 (en) * 2006-06-07 2013-01-16 河村電器産業株式会社 Grid interconnection inverter
JP5311894B2 (en) * 2008-06-24 2013-10-09 中国電力株式会社 Voltage management method for distribution system, tap selection method for transformer
JP5258698B2 (en) * 2009-08-05 2013-08-07 サンケン電気株式会社 Voltage adjusting device and voltage adjusting method
JP5712043B2 (en) * 2011-04-27 2015-05-07 サンケン電気株式会社 Voltage regulator
JP5833338B2 (en) * 2011-05-10 2015-12-16 サンケン電気株式会社 Low voltage distribution line impedance calculation device
US9099890B2 (en) * 2011-07-19 2015-08-04 General Electric Company Apparatus for decentralized coordinated Volt/Var control (CVVC)
JP5955523B2 (en) * 2011-09-30 2016-07-20 株式会社ダイヘン Voltage adjusting device and voltage adjusting method
RU2467447C1 (en) * 2011-10-11 2012-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный университет" DEVICE OF DYNAMIC CONTROL OF VOLTAGE MODE IN ELECTRIC CIRCUIT WITH APPLICATION OF fuzzy LOGIC
JP5985911B2 (en) * 2012-07-16 2016-09-06 愛知電機株式会社 Instantaneous voltage adjustment device and instantaneous voltage adjustment method
US9042129B2 (en) * 2012-11-15 2015-05-26 General Electric Company System and method for controlling power in a distribution system
WO2015051757A1 (en) * 2013-10-11 2015-04-16 Neal George Stewart Electrical power distribution system for enabling distributed energy generation
CN104362638B (en) * 2014-12-04 2016-08-17 国家电网公司 Key node regulating and controlling voltage method based on the electrical network polymerization that phasor measurement unit measures
CN105470973A (en) * 2015-11-23 2016-04-06 国网四川大英县供电有限责任公司 Improved low-voltage line voltage regulating device
CN105337286A (en) * 2015-11-26 2016-02-17 云南电网有限责任公司电力科学研究院 Series compensation circuit, system and method for power distribution network
JP6701814B2 (en) * 2016-03-04 2020-05-27 富士電機株式会社 Voltage compensator and method of linking inverters in voltage compensator
JP2017169362A (en) * 2016-03-16 2017-09-21 富士電機株式会社 Voltage controller
JP6953689B2 (en) * 2016-08-04 2021-10-27 富士電機株式会社 Adjustment device and adjustment method
JP2018046656A (en) * 2016-09-14 2018-03-22 富士電機株式会社 Adjusting device and adjustment method
JP6809107B2 (en) * 2016-10-06 2021-01-06 富士電機株式会社 Adjustment device and adjustment method
JP7234584B2 (en) * 2018-11-05 2023-03-08 富士電機株式会社 Adjustment device, adjustment method and adjustment program
JP7444002B2 (en) 2020-09-11 2024-03-06 中国電力株式会社 Judgment device and program
CN112531678A (en) * 2020-11-03 2021-03-19 江西中竹生物质科技有限公司 Power supply method and system for reducing power consumption cost of 10KV power consumption enterprise

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055194A (en) * 2009-10-26 2011-05-11 通用电气公司 Systems and methods for regulating power in renewable energy sources
CN102055194B (en) * 2009-10-26 2015-11-25 通用电气公司 For adjusting the system and method for the power of regenerative resource
CN102820661A (en) * 2012-08-17 2012-12-12 中国电力科学研究院 Overall voltage quality coordinated control method for distribution network being oriented to multi-level objects
CN102820661B (en) * 2012-08-17 2015-01-21 中国电力科学研究院 Overall voltage quality coordinated control method for distribution network being oriented to multi-level objects
CN103701351A (en) * 2013-12-16 2014-04-02 西安交通大学 Adaptive reactive power control method of parallel inverter
CN103701351B (en) * 2013-12-16 2016-02-24 西安交通大学 The self adaptation reactive power control method of shunt chopper
CN105552928A (en) * 2016-01-29 2016-05-04 浙江桂容谐平科技有限责任公司 Series-connection/parallel-connection hybrid capacitor compensation apparatus for 10kV power distribution line

Also Published As

Publication number Publication date
JP2005341668A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP4101788B2 (en) Voltage adjusting device and voltage adjusting method
JP5508796B2 (en) Power supply system control method and power supply system control apparatus
KR101233544B1 (en) Dynamic voltage sag correction
US9318988B2 (en) System and method for voltage control of wind generators
CN106100319B (en) Switching power supply and improvements thereof
US8050062B2 (en) Method and system to allow for high DC source voltage with lower DC link voltage in a two stage power converter
US9203333B2 (en) System and method for voltage control of wind generators
CN108011583B (en) Device for inhibiting PID effect
US7816894B2 (en) Method and apparatus for regulating voltage
CN116868469A (en) DC photovoltaic input simulation using AC generator source
JP6707309B2 (en) Power supply system
JP2015231259A (en) Autonomous operation controller of distributed power supply, power conditioner and autonomous operation control method of distributed power supply
CN114844196A (en) Middle-high voltage direct-hanging device and power supply switching circuit thereof
KR100797054B1 (en) Transformation circuit for auto controlling voltage
CN217406243U (en) Middle-high voltage direct-hanging device and power supply switching circuit thereof
KR100756006B1 (en) A apparatus of automatic ac voltage regulator by using serial transformer
Preetha et al. DC link voltage regulation in active filter using drainage power from distribution transformer
JP2006166683A (en) Method and system for suppressing voltage fluctuation
JP2014023303A (en) Reverse power flow factor determination method and device for power distribution automatic voltage regulator
RU119184U1 (en) TRANSFORMER VOLTAGE CONTROL DEVICE
JP2013031309A (en) Power conditioner
JP2013078237A (en) Voltage adjusting device and voltage adjusting method
JP4172408B2 (en) Private generator equipment
KR101738064B1 (en) Power conditioning system and driving method thereof
RU2531389C1 (en) Line voltage control unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4101788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees