JP2016192839A - Electric power substation connection direction determination method - Google Patents

Electric power substation connection direction determination method Download PDF

Info

Publication number
JP2016192839A
JP2016192839A JP2015070630A JP2015070630A JP2016192839A JP 2016192839 A JP2016192839 A JP 2016192839A JP 2015070630 A JP2015070630 A JP 2015070630A JP 2015070630 A JP2015070630 A JP 2015070630A JP 2016192839 A JP2016192839 A JP 2016192839A
Authority
JP
Japan
Prior art keywords
voltage
primary
substation
tap
connection direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015070630A
Other languages
Japanese (ja)
Other versions
JP6430878B2 (en
Inventor
謙治 苻川
Kenji Fukawa
謙治 苻川
寛 梶田
Hiroshi Kajita
寛 梶田
俊明 高木
Toshiaki Takagi
俊明 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP2015070630A priority Critical patent/JP6430878B2/en
Publication of JP2016192839A publication Critical patent/JP2016192839A/en
Application granted granted Critical
Publication of JP6430878B2 publication Critical patent/JP6430878B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric power substation connection direction determination method of an automatic voltage controller installed on a distribution line.SOLUTION: An electric power substation connection direction is determined by comparing a primary impedance and a secondary impedance of an automatic voltage controller. When a determination result is different from the determination result of the last time, by returning a tap position to a position before the tap changeover and repeating the determination once again, the accuracy of the determination result is enhanced.SELECTED DRAWING: Figure 3

Description

本発明は、配電線上に設置した自動電圧調整器の変電所接続方向の判定方法に関する。   The present invention relates to a method for determining a substation connection direction of an automatic voltage regulator installed on a distribution line.

図1は自動電圧調整器(SVR:Step Voltage Regulator)を設置した配電系統を単純化した等価回路である。配電線上に設置したSVRは、変電所の接続方向を判定し、その反対側である負荷側の電圧を適正電圧(運用電圧)に保つようタップ制御する。前記変電所の接続方向は系統の切換えによって変更される。   FIG. 1 is an equivalent circuit that simplifies a power distribution system in which an automatic voltage regulator (SVR) is installed. The SVR installed on the distribution line determines the connection direction of the substation and performs tap control so that the voltage on the load side, which is the opposite side, is maintained at an appropriate voltage (operating voltage). The connection direction of the substation is changed by switching the system.

変電所の接続方向の判定としては一例が下記特許文献1で開示されている。   An example of determining the connection direction of a substation is disclosed in Patent Document 1 below.

特開2003−102128号公報JP 2003-102128 A

前記特許文献1に記載される判定方法は、SVRからみた一次側と二次側の各インピーダンスZ1,Z2を算出し、その大小比較を行うことで変電所の接続方向を判定するものである。変電所接続側は実質的に無限大母線に接続されていると考えられるので、変電所接続側のインピーダンスが負荷側のインピーダンスより小さくなることに基づき変電所の接続方向を判定する。 The determination method described in Patent Document 1 calculates the impedances Z 1 and Z 2 on the primary side and the secondary side viewed from the SVR, and determines the connection direction of the substation by comparing the magnitudes thereof. is there. Since the substation connection side is considered to be substantially connected to an infinite bus, the connection direction of the substation is determined based on the fact that the impedance on the substation connection side is smaller than the impedance on the load side.

具体的には、タップの切換えがあったとき、タップ切換前後の一次側電圧V1と二次側電圧V2及び二次側電流I2を測定し、各々の測定値から一次側電圧V1の変化分ΔV1と二次側電圧V2の変化分ΔV2及び二次側電流の変化分ΔI2を算出する。 Specifically, when the tap is switched, the primary side voltage V 1 , the secondary side voltage V 2 and the secondary side current I 2 before and after the tap switching are measured, and the primary side voltage V 1 is measured from each measured value. Change ΔV 1 , secondary voltage V 2 change ΔV 2, and secondary current change ΔI 2 are calculated.

そして、一次側電圧V1と二次側電圧V2と二次側電流I2を所定の式に代入することにより、一次側電流I1を求め、その変化分ΔI1を算出し、一次側のインピーダンスをZ1=ΔV1/ΔI1として、二次側のインピーダンスZ2=ΔV2/ΔI2として求め、両者Z1,Z2の大小を比較する。 Then, the primary side current I 1 is obtained by substituting the primary side voltage V 1 , the secondary side voltage V 2 and the secondary side current I 2 into a predetermined formula, and the change ΔI 1 is calculated. Is obtained as Z 1 = ΔV 1 / ΔI 1 and the impedance on the secondary side Z 2 = ΔV 2 / ΔI 2 , and the magnitudes of Z 1 and Z 2 are compared.

しかし、上記特許文献1記載の判定方法は、電圧・電流変動の大きい箇所では判定精度が低下し、変電所の接続方向を誤判定する可能性がある。   However, the determination method described in Patent Document 1 has a possibility that the determination accuracy is lowered at a location where the voltage / current fluctuation is large, and the connection direction of the substation may be erroneously determined.

本発明は上記欠点を解消できるものとして開示する。   The present invention is disclosed as being able to eliminate the above drawbacks.

請求項1記載の発明は、配電線に設置される自動電圧調整器のタップの切換前後で発生する一次側電圧と一次側電流の変化量から一次側配電系統のインピーダンスを算出し、前記タップの切換前後で発生する二次側電圧と二次側電流の変化量から二次側配電系統のインピーダンスを算出し、両インピーダンスの大小比較を行うことによって当該調整器の一次側又は二次側の何れに変電所が接続されているかの判定を、前記変電所の接続方向の判定結果が前回の判定結果から変更された場合、タップ位置をタップ切換前に戻す段階で、再度、判定を実行することに特徴を有する。   The invention according to claim 1 calculates the impedance of the primary side distribution system from the amount of change in the primary side voltage and the primary side current generated before and after the switching of the tap of the automatic voltage regulator installed in the distribution line, Calculate the impedance of the secondary power distribution system from the amount of change in the secondary side voltage and secondary current generated before and after switching, and compare the magnitude of both impedances to determine whether the primary side or secondary side of the regulator If the determination result of the connection direction of the substation has been changed from the previous determination result, the determination is performed again at the stage where the tap position is returned to before tap switching. It has the characteristics.

請求項2記載の発明は、請求項1記載の発明において、自動電圧調整器の一次側電圧と二次側電圧のタップ切換前後の差電圧変化量が一定サイクルの間、所定の電圧値を超えた場合、その最初に超えたサイクルを自動電圧調整器のタップ切換完了点として検出することに特徴を有する。   According to a second aspect of the present invention, in the first aspect of the invention, the amount of change in the difference voltage before and after tap switching between the primary voltage and the secondary voltage of the automatic voltage regulator exceeds a predetermined voltage value during a certain cycle. In this case, the first cycle exceeding the first cycle is detected as a tap switching completion point of the automatic voltage regulator.

請求項3記載の発明は、請求項1又は請求項2の何れかに記載の発明において、自動電圧調整器のタップの切換前後で発生する一次側電圧、二次側電圧と一次側電流、二次側電流の変化量の測定において、配電線の電圧変動を考慮して、一次側電圧、二次側電圧、一次側電流、二次側電流のサンプリングサイクル数とタップ切換前後の測定を除外するインターバル時間とを決定したことに特徴を有する。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the primary voltage, the secondary voltage and the primary current generated before and after the tap switching of the automatic voltage regulator, In measuring the amount of change in the secondary current, considering the voltage fluctuation of the distribution line, exclude the primary side voltage, the secondary side voltage, the primary side current, the number of sampling cycles of the secondary side current, and the measurement before and after tap switching. It is characterized in that the interval time is determined.

請求項1記載の発明によれば、変電所接続方向の判定を繰り返し実行することにより、タップ切換前後で発生する電圧・電流変動の影響から生じる誤判定の確率を減少させることができる。   According to the first aspect of the present invention, by repeatedly executing the determination of the substation connection direction, it is possible to reduce the probability of erroneous determination caused by the influence of voltage / current fluctuations occurring before and after tap switching.

請求項2記載の発明によれば、正確なタップ切換完了点を検出できるので、一次側及び二次側インピーダンスの判定データ範囲を適切に設定することができる。   According to the second aspect of the present invention, since an accurate tap switching completion point can be detected, the determination data ranges of the primary side and secondary side impedance can be appropriately set.

請求項3記載の発明によれば、配電線の電圧変動やタップ切換時に発生する過渡現象に応じた、一次側及び二次側インピーダンスの判定データの取得を適切に行うことができる。   According to the third aspect of the invention, it is possible to appropriately acquire the determination data of the primary side and the secondary side impedance according to the voltage fluctuation of the distribution line and the transient phenomenon that occurs at the time of tap switching.

配電系統の単純化した等価回路である。It is a simplified equivalent circuit of the distribution system. タップ切換完了点とインピーダンス判定用のデータ範囲の関係を示すタイムチャートである。It is a time chart which shows the relationship between the tap switching completion point and the data range for impedance determination. 本発明に係る変電所接続方向の判定方法を示すフローチャートである。It is a flowchart which shows the determination method of the substation connection direction which concerns on this invention.

以下、本発明の実施の形態について図1乃至図3を用いて説明する。図1に示す等価回路において、SVRの一次側と二次側の何れに変電所が接続されているか判定する場合、前述した特許文献1記載の発明と同様に、タップ切換前のSVRの一次側電圧V1,二次側電圧V2,二次側電流I2と、タップ切換後の一次側電圧V1´,二次側電圧V2´,二次側電流I2´を測定する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 3. In the equivalent circuit shown in FIG. 1, when determining whether the substation is connected to the primary side or the secondary side of the SVR, the primary side of the SVR before tap switching, as in the invention described in Patent Document 1 described above. The voltage V 1 , the secondary side voltage V 2 , the secondary side current I 2 , the primary side voltage V 1 ′, the secondary side voltage V 2 ′, and the secondary side current I 2 ′ after tap switching are measured.

タップ切換前後の一次側電流I1,I1´は、タップ切換前後の二次側電流I2,I2´と一次側電圧V1,V1´及び二次側電圧V2,V2´の比から算出する。 The primary currents I 1 and I 1 ′ before and after the tap switching are the secondary currents I 2 and I 2 ′ before and after the tap switching, the primary voltages V 1 and V 1 ′, and the secondary voltages V 2 and V 2 ′. Calculated from the ratio of

上記データの測定は、タップ切換前の一次側電圧V1と二次側電圧V2及び二次側電流I2については、図2(a)に示すように、タップ切換完了点前のタップ切換前除外サイクル数以前の演算サイクル数分をサンプリングする。 Measurement of the data, for the primary voltage V 1 of the previous tap changer and the secondary-side voltage V 2 and the secondary current I 2, as shown in FIG. 2 (a), the tap switching of the tap changer completion temae Sample the number of operation cycles before the number of previous exclusion cycles.

タップ切換後の一次側電圧V1と二次側電圧V2及び二次側電流I2は、タップ切換完了点後のタップ切換後除外サイクル数以後の演算サイクル数分をサンプリングする。 The primary side voltage V 1 , the secondary side voltage V 2 and the secondary side current I 2 after the tap switching sample the number of operation cycles after the tap switching exclusion cycle number after the tap switching completion point.

一次側電流I1は、サンプリング毎に二次側電流I2と一次側電圧V1,二次側電圧V2の比から算出する。 The primary side current I 1 is calculated from the ratio of the secondary side current I 2 to the primary side voltage V 1 and the secondary side voltage V 2 every sampling.

図2(a)に示すタップ切換前後のデータ測定の演算サイクル数は、タップ切換前後のインターバル時間を極力短くする目的と、当該サイクル数で配電線の電圧変動の標準偏差σが極小になることから、後述する変電所の接続方向の判定精度を高める目的で設定している。また、タップ切換後の除外サイクル数は、タップ切換後の過渡現象を考慮して設定している。   The number of calculation cycles for data measurement before and after tap switching shown in FIG. 2A is for the purpose of shortening the interval time before and after tap switching as much as possible, and that the standard deviation σ of the voltage fluctuation of the distribution line is minimized at the number of cycles. Therefore, it is set for the purpose of improving the determination accuracy of the connection direction of the substation described later. Further, the number of excluded cycles after tap switching is set in consideration of a transient phenomenon after tap switching.

また、上述したタップ切換完了点は、タップ切換前の一次側電圧V1と二次側電圧V2の差電圧V12とタップ切換後の一次側電圧V1´と二次側電圧V2´の差電圧V12´間の差ΔV12が1タップ分の電圧変化(例えば50[V])を越えたサイクルが連続して一定サイクル(例えば10サイクル)に達したときの最初の1サイクル時として検出する。このタップ切換完了点の検出条件は、タップ切換のインターバルを極力短くし、かつ、正確なタップ切換点の算出を可能とする目的で設定している。 The tap switching completion points described above are the difference voltage V 12 between the primary side voltage V 1 and the secondary side voltage V 2 before the tap switching, the primary side voltage V 1 ′ and the secondary side voltage V 2 ′ after the tap switching. At the first cycle when a cycle in which the difference ΔV 12 between the difference voltages V 12 ′ exceeds a voltage change for one tap (for example, 50 [V]) reaches a constant cycle (for example, 10 cycles) continuously. Detect as. The detection condition of the tap switching completion point is set for the purpose of shortening the tap switching interval as much as possible and enabling accurate tap switching point calculation.

このようにしてサンプリングしたタップ切換前後の各データV1,V1´,V2,V2´,I1,I1´,I2,I2´は、SVRの一次側インピーダンスの大きさを|Z1|=ΔV1/ΔI1として、SVRの二次側インピーダンスの大きさを|Z2|=ΔV2/ΔI2として算出し、算出した両インピーダンスの大きさ|Z1|,|Z2|を大小比較することにより、|Z1|≦|Z2|の場合は順送として、SVRの一次側に変電所が接続されていると判定し、|Z1|>|Z2|の場合は逆送として、SVRの二次側に変電所が接続されていると判定する。 The data V 1 , V 1 ′, V 2 , V 2 ′, I 1 , I 1 ′, I 2 , I 2 ′ before and after the tap switching sampled in this way indicate the magnitude of the primary side impedance of the SVR. | Z 1 | = ΔV 1 / ΔI 1 , the secondary impedance of the SVR is calculated as | Z 2 | = ΔV 2 / ΔI 2 , and the calculated magnitudes of both impedances | Z 1 |, | Z 2 | is compared, and in the case of | Z 1 | ≦ | Z 2 |, it is determined that a substation is connected to the primary side of the SVR as a forward feed, and | Z 1 |> | Z 2 | In the case of, it is determined that the substation is connected to the secondary side of the SVR as reverse transmission.

このように、一次側インピーダンス|Z1|と二次側インピーダンス|Z2|を大小比較することにより、SVRのどちらに変電所が接続されているか一定の精度で判定することができるが、本発明は、このような判定を複数回実行することに特徴を有する。 Thus, by comparing the magnitude of the primary side impedance | Z 1 | and the secondary side impedance | Z 2 |, it is possible to determine to which of the SVR the substation is connected with a certain accuracy. The invention is characterized in that such determination is executed a plurality of times.

図3は本発明の判定方法を説明するためのフローチャートである。まず、ステップS1の順送状態において、SVRが負荷側電圧を適正電圧に保つためにステップS2でタップ切換を行うと、ステップS3で上述したインピーダンス|Z1|,|Z2|の大小比較がなされ、順送か逆送かの判定を行う。 FIG. 3 is a flowchart for explaining the determination method of the present invention. First, in the progressive state of step S 1, the SVR performs tap changer in step S 2 in order to keep the load voltage to a proper voltage, the impedance described above in step S 3 | Z 1 |, | Z 2 | of A size comparison is made, and it is determined whether forward or backward.

ステップS3の判定結果が順送であれば、ステップS1の現状に変化がないので、ステップS1で電源側と判定されていた方向に変電所が接続されていると判定する。逆に、ステップS3の判定結果が逆送であった場合は、系統の切換等によって変電所の接続方向に変更が生じたと考えられる。この場合、ステップS3の判定結果を受けて負荷側と判定した電圧を適正電圧に保つためにタップ切換を行うのではなく、ステップS4において、安全性の観点からタップを一旦切換前の状態に復帰させた後、ステップS5において再度、順送か逆送かの判定を行う。このように、一定精度の判定を複数回繰り返すことにより、最終的な判定精度を高めることができる。 If the test result in step S 3 is the feed forward, because there is no change in the state of step S 1, it determines that the substation is connected in a direction that has been determined to the power supply side in Step S 1. Conversely, if the decision result in the step S 3 was a backhaul, changes in the connection direction of the substation by line switching換等is considered to have occurred. In this case, instead of performing tap changer in order to keep the voltage determined load side receives the determination result of step S 3 to a proper voltage, in step S 4, the once before switching the taps from the viewpoint of safety conditions after returning to again in step S 5, it is determined whether progressive or backhaul. Thus, the final determination accuracy can be improved by repeating the determination with a certain accuracy a plurality of times.

ステップS5の判定結果が順送であれば、ステップS3の判定結果が誤りであったことになるので、ステップS1まで戻って変電所接続方向に変更はないとしてSVRの負荷側電圧を適正に保つ制御を継続する。ステップS5の判定結果が逆送であった場合は、ステップS3の判定結果が正しかったとして、ステップS6に移行し、変電所接続方向に変更があったと判定して、その反対側となるSVRの負荷側電圧を適正に保つ制御を実行する。 If the test result in step S 5 is a feed forward, since the determination result of step S 3 is that was wrong, the load side voltage of the SVR as no change in the substation connecting direction returns to step S 1 Continue control to keep it appropriate. If the decision result in the step S 5 was the reverse feeding, as the determination result of step S 3 is correct, the process proceeds to step S 6, it is determined that there is a change in the substation connection direction, and the opposite side The control which maintains the load side voltage of SVR which becomes becomes appropriate is performed.

その後、ステップS7でSVRの負荷側電圧のタップ切換が行われると、ステップS8で再度インピーダンス|Z1|,|Z2|の大小比較を実行し、順送か逆送かの判定を行う。 After that, when tap switching of the SVR load side voltage is performed in step S 7 , the magnitudes of the impedances | Z 1 | and | Z 2 | are again compared in step S 8 to determine whether forward feeding or backward feeding is performed. Do.

ステップS8の判定結果が逆送であれば、ステップS6の現状に変化がないので、ステップS6で電源側と判定していた方向に変電所が接続されていると判定する。逆にステップS8の判定結果が順送であった場合は、系統の切換等によって変電所の接続方向に変更が生じたと考えられるので、ステップS9において、安全性の観点からタップを一旦切換前の状態に復帰させた後、ステップS10で再度、順送か逆送かの判定を実行し、最終的な判定精度を高める。 If the test result in step S 8 is a backhaul, since there is no change in the state of step S 6, it determines that the substation in a direction that has been determined to the power supply side in step S 6 is connected. If conversely the determination result in step S 8 is was fed forward, since changes in the connection direction of the substation by line switching換等is considered to have occurred, in step S 9, the tap from the viewpoint of safety temporarily switching after returning to the previous state, again in step S 10, performs a determination of whether progressive or backhaul, increasing the final determination accuracy.

ステップS10の判定結果が逆送であれば、ステップS8の判定結果が誤りであったとして、ステップS6まで戻って変電所の接続方向に変更はないとしてSVRの負荷側電圧を適正に保つ制御を継続する。ステップS10の判定結果が順送であれば、ステップS8の判定結果が正しかったとして、ステップS1に移行して、変電所の接続方向に変更があったとして、その反対側となる負荷側の電圧を適正に保つ制御を実行する。 If the test result in step S 10 is the backhaul, as the determination result of step S 8 it was erroneous, the proper load side voltage of the SVR as no change in the connection direction of the substation back to Step S 6 Continue to maintain control. If the test result in step S 10 is the feed forward, as the determination result of step S 8 is correct, the process proceeds to step S 1, when there is a change in the connection direction of the substation, the opposite load Executes control to keep the side voltage properly.

以上説明したように、本発明の変電所接続方向の判定方法は、順送/逆送状態が現状から変更されたと判定した場合は、再度、順送/逆送判定を繰り返すことにより、最終的な判定精度を高めることができ、変電所の接続方向を高精度で判定することが可能となる。   As described above, the determination method of the substation connection direction according to the present invention, when it is determined that the forward / reverse state has been changed from the current state, repeats the forward / reverse determination again, thereby finally Therefore, it is possible to improve the accuracy of determination and determine the connection direction of the substation with high accuracy.

また、順送/逆送判定を繰り返す際には、タップを切換える前の状態に一旦復帰させるので、安全性が高まる。   Further, when the forward / reverse determination is repeated, the state before the tap is switched is temporarily returned, so that safety is improved.

さらに、タップ切換前後の最適なインターバル時間及び電圧・電流変化量を計算するために使用する交流電圧・交流電流のサイクル数を決定したので、変電所接続方向の判定精度を高めることができる。   Furthermore, since the optimum interval time before and after the tap switching and the number of cycles of the AC voltage / AC current used for calculating the voltage / current change amount are determined, the determination accuracy of the substation connection direction can be improved.

その上、タップ切換完了点を正確に検出することができるので、一次側インピーダンスと二次側インピ―ダンスの判定データ範囲を適切に設定することが可能となる。   In addition, since the tap switching completion point can be accurately detected, it is possible to appropriately set the determination data range of the primary side impedance and the secondary side impedance.

本発明は、配電用自動調整装置に利用される。   The present invention is used in a power distribution automatic adjustment device.

Claims (3)

配電線に設置される自動電圧調整器のタップの切換前後で発生する一次側電圧と一次側電流の変化量から一次側配電系統のインピーダンスを算出し、前記タップの切換前後で発生する二次側電圧と二次側電流の変化量から二次側配電系統のインピーダンスを算出し、両インピーダンスの大小比較をすることによって当該調整器の一次側又は二次側の何れに変電所が接続されているかの判定を、前記変電所の接続方向の判定結果が前回の判定結果から変更された場合、タップ位置をタップ切換前の位置に戻し、再度判定を行うことを特徴とする変電所接続方向判定方法。   Calculate the impedance of the primary distribution system from the change in primary voltage and primary current generated before and after the tap switching of the automatic voltage regulator installed in the distribution line, and generate the secondary side before and after the tap switching. Whether the substation is connected to the primary side or secondary side of the regulator by calculating the impedance of the secondary distribution system from the amount of change in voltage and secondary current and comparing the magnitude of both impedances If the determination result of the connection direction of the substation is changed from the previous determination result, the tap position is returned to the position before the tap switching and the determination is performed again. . 前記自動電圧調整器の一次側電圧と二次側電圧のタップ切換前後の差電圧変化量が一定サイクル所定電圧を超えた場合の最初のサイクル時を自動電圧調整器のタップ切換完了点として検出することを特徴とする請求項1記載の変電所接続方向判定方法。   The automatic voltage regulator detects the first cycle time when the difference in voltage change before and after tap switching between the primary voltage and the secondary voltage of the automatic voltage regulator exceeds a predetermined voltage as a tap switching completion point of the automatic voltage regulator. The substation connection direction determination method according to claim 1. 前記自動電圧調整器のタップの切換前後で発生する一次側電圧、二次側電圧と一次側電流、二次側電流の変化量の測定において、配電線の電圧変動を考慮して、一次側電圧、二次側電圧、一次側電流、二次側電流のサンプリング時間とタップ切換前と切換後のサンプリング周期を決定したことを特徴とする請求項1又は請求項2の何れかに記載の変電所接続方向判定方法。   In measuring the amount of change in the primary side voltage, secondary side voltage and primary side current, and secondary side current generated before and after the tap switching of the automatic voltage regulator, the primary side voltage The substation according to claim 1, wherein the sampling time of the secondary side voltage, the primary side current, and the secondary side current and the sampling period before and after the tap change are determined. Connection direction determination method.
JP2015070630A 2015-03-31 2015-03-31 Substation connection direction judgment method Active JP6430878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015070630A JP6430878B2 (en) 2015-03-31 2015-03-31 Substation connection direction judgment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015070630A JP6430878B2 (en) 2015-03-31 2015-03-31 Substation connection direction judgment method

Publications (2)

Publication Number Publication Date
JP2016192839A true JP2016192839A (en) 2016-11-10
JP6430878B2 JP6430878B2 (en) 2018-11-28

Family

ID=57246962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015070630A Active JP6430878B2 (en) 2015-03-31 2015-03-31 Substation connection direction judgment method

Country Status (1)

Country Link
JP (1) JP6430878B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204575A (en) * 2000-11-02 2002-07-19 Kitashiba Electric Co Ltd Voltage regulator
JP2003102128A (en) * 2001-09-26 2003-04-04 Tohoku Electric Power Co Inc Self-contained bidirectional automatic voltage- regulating apparatus
JP2006042546A (en) * 2004-07-29 2006-02-09 Aichi Electric Co Ltd Automatic voltage regulator
JP2014023303A (en) * 2012-07-19 2014-02-03 Daihen Corp Reverse power flow factor determination method and device for power distribution automatic voltage regulator
JP2014027810A (en) * 2012-07-27 2014-02-06 Kyushu Electric Power Co Inc Automatic voltage regulator dealing with distributed power supply having remote control function and control method therefor
JP2014187781A (en) * 2013-03-22 2014-10-02 Takaoka Toko Co Ltd Power transmission state determination device and power transmission state determination method for automatic voltage regulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204575A (en) * 2000-11-02 2002-07-19 Kitashiba Electric Co Ltd Voltage regulator
JP2003102128A (en) * 2001-09-26 2003-04-04 Tohoku Electric Power Co Inc Self-contained bidirectional automatic voltage- regulating apparatus
JP2006042546A (en) * 2004-07-29 2006-02-09 Aichi Electric Co Ltd Automatic voltage regulator
JP2014023303A (en) * 2012-07-19 2014-02-03 Daihen Corp Reverse power flow factor determination method and device for power distribution automatic voltage regulator
JP2014027810A (en) * 2012-07-27 2014-02-06 Kyushu Electric Power Co Inc Automatic voltage regulator dealing with distributed power supply having remote control function and control method therefor
JP2014187781A (en) * 2013-03-22 2014-10-02 Takaoka Toko Co Ltd Power transmission state determination device and power transmission state determination method for automatic voltage regulator

Also Published As

Publication number Publication date
JP6430878B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
JP2012198134A (en) Fault point locating device and program
JPWO2015019418A1 (en) Phase control device
US20140253091A1 (en) Determination device, determination method, and non-transitory recording medium
JP2012251817A (en) Insulation deterioration monitoring system
JP2015109440A (en) Power device including current transformer and compensation method for current transformer
US20190049497A1 (en) Islanding detection in an electrical power grid
KR20150136481A (en) Insulation inspection apparatus and insulation inspection method
CN112485743A (en) Mutual inductor deviation identification method based on PMU data
Mutanen et al. Development and testing of a branch current based distribution system state estimator
JP6430878B2 (en) Substation connection direction judgment method
JP2013192378A (en) Method and device for determining cause of reverse power flow of automatic voltage regulator for power distribution
JP2010279115A (en) Power system impedance estimating device and power system impedance estimation method
CN111141784B (en) Oxide semiconductor thin film detection device and oxide semiconductor thin film detection method
WO2019087292A1 (en) Power-system stability analysis device, stabilization apparatus, and method
US11867740B2 (en) Method and apparatus for identifying a grid fault
JP6069060B2 (en) Automatic voltage regulator power transmission state determination device and power transmission state determination method
JP5782208B1 (en) Electricity station direction determination device
KR20140016828A (en) Insulation tester of printed circuit board and insulation test method
JP2023085614A (en) Substation connection direction determination method
JP6809189B2 (en) Insulation resistance measurement method for DC power supply circuit
JPWO2020144734A1 (en) Arc ground fault detection method
JP2019161882A (en) Fault inspection device for photovoltaic power generation system
CN109298231B (en) Current detection method and device for resonance capacitor of arc suppression coil
KR20130138384A (en) Insulation resistance sensing apparatus and control method thereof
Steglich et al. A Novel Method for Earth Fault Distance Calculation in Compensated Grids Using Symmetrical Components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181101

R150 Certificate of patent or registration of utility model

Ref document number: 6430878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150