JP2006042546A - Automatic voltage regulator - Google Patents

Automatic voltage regulator Download PDF

Info

Publication number
JP2006042546A
JP2006042546A JP2004221481A JP2004221481A JP2006042546A JP 2006042546 A JP2006042546 A JP 2006042546A JP 2004221481 A JP2004221481 A JP 2004221481A JP 2004221481 A JP2004221481 A JP 2004221481A JP 2006042546 A JP2006042546 A JP 2006042546A
Authority
JP
Japan
Prior art keywords
load
current
voltage regulator
distribution system
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004221481A
Other languages
Japanese (ja)
Inventor
Taikichi Kondo
泰吉 近藤
Junzo Takemura
順三 武村
Kunio Iwata
邦男 岩田
Kenji Fukawa
謙治 苻川
Hiroshi Kajita
寛 梶田
Susumu Kato
進 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Aichi Electric Co Ltd
Original Assignee
Chubu Electric Power Co Inc
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Aichi Electric Co Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP2004221481A priority Critical patent/JP2006042546A/en
Publication of JP2006042546A publication Critical patent/JP2006042546A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automatic voltage regulator capable of regularly controlling a voltage on a load side according to a cause for generation of an adverse tidal current. <P>SOLUTION: This automatic voltage regulator includes a reverse-current relay 9 for detecting a direction of a power tidal current at a ground contact point of the automatic voltage regulator 1; a load 11 for measuring impedance, connected to a secondary-side distribution line of the automatic voltage regulator 1 when the adverse tidal current of an electric power is detected by the reverse-current relay 9; a first instrument current transformer 7 for detecting a current which flows to the secondary-side of the automatic voltage regulator 1; a second instrument current transformer 15 for detecting the current which flows to the load 11 when the load 11 is connected; and a distribution system state detector 13 for deciding a cause for the adverse tidal current from the impedance of a primary-side distribution system to the impedance of a secondary-side distribution system calculated on the basis of the change of the detected current with the second instrument current transformer 15 and the detected current with the first instrument current transformer 7 before and after the load 11 is connected. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、配電系統に設置される自動電圧調整器において、配電系統の系統切換えや、分散電源との連係によって前記自動電圧調整器に逆潮流が生じた場合、前記自動電圧調整器の1次側と2次側の何れに電源変電所が接続されているかを即座に判断して、配電系統の状態を正確に把握することにより、常に負荷側の電圧調整を適正に行うことのできる自動電圧調整器に関する。   In the automatic voltage regulator installed in the power distribution system, when a reverse power flow occurs in the automatic voltage regulator due to system switching of the distribution system or linkage with a distributed power source, the primary voltage regulator of the automatic voltage regulator Automatic voltage that can always adjust the voltage on the load side properly by immediately determining whether the power substation is connected to the secondary side or the secondary side, and accurately grasping the state of the distribution system Regarding the regulator.

従来の配電系統では、配電線の電圧制御を目的として配電線路の途中に設置される自動電圧調整器(以下、SVRという)の設置点における電力潮流が逆潮流となる条件は、配電系統における系統の切り換えが行われた場合が想定されており、1次側に接続されていた変電所が前記配電系統の切換え動作によって2次側に接続されることにより、SVRの2次側から1次側に向かって電力が供給されると考えられてきた。   In the conventional distribution system, the condition that the power flow at the installation point of the automatic voltage regulator (hereinafter referred to as SVR) installed in the middle of the distribution line for the purpose of voltage control of the distribution line is a reverse flow is the system in the distribution system The substation connected to the primary side is connected to the secondary side by the switching operation of the distribution system, so that the SVR secondary side to the primary side are assumed. It has been thought that power is supplied toward

しかし、近年、太陽光発電装置等の自家発電設備が普及するにしたがって、これらの設備が分散電源として配電系統と連係されるようになった。この結果、SVRの1次側に変電所が存在している系統でも分散電源の容量と負荷容量との関係から、SVR設置点の電力潮流が逆潮流となる場合がある。   However, in recent years, as private power generation facilities such as solar power generation devices have become widespread, these facilities have been linked to the distribution system as distributed power sources. As a result, even in a system where a substation exists on the primary side of the SVR, the power flow at the SVR installation point may be a reverse flow due to the relationship between the capacity of the distributed power source and the load capacity.

従来のSVRには、電力の順送時に2次側の電圧を目標電圧に保持する構成のものがあり、この種のSVRは、上記のように配電系統の切換えや分散電源の連係によってその設置点に電力の逆潮流が生じた場合、タップを固定制御するものが存在する(特許文献1参照)。
特公平2−35326号公報
Some conventional SVRs have a configuration in which the secondary voltage is maintained at the target voltage when power is forwarded. This type of SVR is installed by switching the distribution system or linking distributed power sources as described above. When a reverse power flow occurs at a point, there is one in which a tap is fixedly controlled (see Patent Document 1).
Japanese Patent Publication No. 2-35326

然るに、この種のSVRが配電系統に設置された状態で、SVRの設置点に逆潮流が生じて、タップの固定制御を実行した場合、配電系統の電圧に異常が発生することは阻止できるが、前記逆潮流が2次側に接続した分散電源に起因(自家発電設備等の出力が2次側に接続した負荷より大きい場合等)して発生した場合、タップを固定制御することによって、2次側に接続された負荷の電圧調整動作を停止してしまうという問題があった。   However, when this type of SVR is installed in the distribution system, if a reverse power flow occurs at the installation point of the SVR and the tap fixing control is executed, the occurrence of an abnormality in the voltage of the distribution system can be prevented. When the reverse power flow is caused by a distributed power source connected to the secondary side (such as when the output of the private power generation facility is larger than the load connected to the secondary side), the tap is fixedly controlled to There was a problem that the voltage adjustment operation of the load connected to the secondary side was stopped.

本発明は、このような問題点に鑑み、配電系統に設置された自動電圧調整器の設置点に逆潮流が生じた場合、前記自動電圧調整器の1次側と2次側のどちらに変電所および負荷が接続されているかを判定して、確実に負荷側の電圧調整を常時適正に実行することのできる自動電圧調整器を提供する。   In view of such problems, the present invention provides a substation on either the primary side or the secondary side of the automatic voltage regulator when a reverse power flow occurs at the installation point of the automatic voltage regulator installed in the distribution system. An automatic voltage regulator is provided that can determine whether or not a place and a load are connected and reliably perform load-side voltage adjustment at all times.

第1の局面によれば、配電線路の途中に設置された負荷時タップ切換器による電圧調整変圧器のタップ切換え操作によって、負荷側電圧の調整を自動的に行う自動電圧調整器において、かかる自動電圧調整器の設置点における電力潮流の方向を検出する逆流継電器と、当該逆流継電器によって逆潮流が検出された際、前記自動電圧調整器の2次側の配電線に接続されるインピーダンス計測用の負荷と、前記自動電圧調整器の2次側を流れる電流を検出する第1の計器用変流器と、前記負荷が接続された際、前記負荷に流れる電流を検出する第2の計器用変流器、および、前記第2の計器用変流器による検出電流と前記負荷の接続前後における前記第1の計器用変流器による検出電流の変化に基づいて算出される1次側配電系統のインピーダンスと2次側配電系統のインピーダンスの比から前記逆潮流の原因を判定する配電系統状態検出手段を具備して構成した。   According to the first aspect, in the automatic voltage regulator that automatically adjusts the load side voltage by the tap switching operation of the voltage regulating transformer by the on-load tap switching device installed in the middle of the distribution line, A reverse flow relay that detects the direction of the power flow at the installation point of the voltage regulator, and an impedance measurement unit that is connected to the distribution line on the secondary side of the automatic voltage regulator when the reverse flow is detected by the reverse flow relay A load, a first current transformer for detecting the current flowing through the secondary side of the automatic voltage regulator, and a second instrument current detecting for detecting the current flowing through the load when the load is connected. A primary current distribution system calculated based on a current detected by the current transformer and a change in the current detected by the first current transformer before and after connection of the load. Impedan When configured by comprising determining the distribution system condition detecting means cause the reverse flow from the ratio of the impedance on the secondary side distribution system.

第2の局面によれば、配電線路の途中に設置された負荷時タップ切換器による電圧調整変圧器のタップ切換え操作によって、負荷側電圧の調整を自動的に行う自動電圧調整器において、かかる自動電圧調整器の設置点における電力潮流の方向を検出する逆流継電器と、当該逆流継電器によって逆潮流が検出された際、前記電圧調整変圧器によって励磁される降圧用変圧器を介して配電線に接続されるインピーダンス計測用の負荷と、前記自動電圧調整器の2次側を流れる電流を検出する第1の計器用変流器と、前記負荷が接続された際、前記負荷に流れる電流を検出する第2の計器用変流器、および、前記第2の計器用変流器による検出電流と前記負荷の接続前後における前記第1の計器用変流器による検出電流の変化に基づいて算出される1次側配電系統のインピーダンスと2次側配電系統のインピーダンスの比から前記逆潮流の原因を判定する配電系統状態検出手段を具備して構成した。   According to the second aspect, in the automatic voltage regulator that automatically adjusts the load side voltage by the tap switching operation of the voltage adjusting transformer by the on-load tap switching device installed in the middle of the distribution line, Connects to the distribution line via a reverse relay that detects the direction of the power flow at the installation point of the voltage regulator, and a step-down transformer that is excited by the voltage adjustment transformer when the reverse flow is detected by the reverse relay A load for impedance measurement, a first current transformer for detecting a current flowing through the secondary side of the automatic voltage regulator, and a current flowing through the load when the load is connected Calculated on the basis of a change in the detected current by the second instrument current transformer and the detected current by the first instrument current transformer before and after the connection of the load with the detected current by the second instrument current transformer From the ratio of the impedance of the impedance and the secondary side power distribution system of the next-side power lines were configured by including determining distribution system condition detecting means cause the reverse flow.

第3の局面によれば、第1,2の局面において、前記配電系統状態検出手段は、その出力信号に応じて投入/解除されるスイッチング手段を具備し、前記逆流継電器の出力信号に応じて前記スイッチング手段を操作することにより、前記配電線に対する前記負荷の接続/非接続を切り換えるように構成した。   According to a third aspect, in the first and second aspects, the distribution system state detection means includes switching means that is turned on / off according to the output signal, and according to the output signal of the reverse flow relay. By operating the switching means, the connection / disconnection of the load to the distribution line is switched.

第4の局面によれば、第3の局面において、前記配電系統状態検出手段は、前記スイッチング手段が投入された際、前記第1,2の計器用変流器にて検出される電流値を記憶させる記憶手段を備え、前記スイッチング手段の投入が解除されたとき前記第1の計器用変流器により検出される電流値と前記記憶手段に記憶した電流値とから前記インピーダンス比を算出する機能を具備して構成した。   According to a fourth aspect, in the third aspect, the power distribution system state detecting means calculates a current value detected by the first and second current transformers when the switching means is turned on. A function for calculating the impedance ratio from a current value detected by the first current transformer for current and a current value stored in the storage means when the switching means is released; It comprised and was comprised.

第5の局面によれば、第1ないし4の局面において、前記配電系統状態検出手段は、1次側配電系統のインピーダンスの2次側配電系統のインピーダンスに対する比が1より小さい場合は、前記自動電圧調整器の2次側に分散電源が連係したことに起因して前記逆潮流が発生したと判定し、前記1次側配電系統のインピーダンスの2次側配電系統のインピーダンスに対する比が1より大きい場合は、系統の切り換えにより前記自動電圧調整器の2次側に電源変電所が接続されたことに起因して前記逆潮流が発生したと判定する機能を具備して構成した。   According to a fifth aspect, in the first to fourth aspects, the distribution system state detecting means is configured such that when the ratio of the impedance of the primary distribution system to the impedance of the secondary distribution system is less than 1, the automatic It is determined that the reverse power flow has occurred due to the connection of the distributed power supply to the secondary side of the voltage regulator, and the ratio of the impedance of the primary side distribution system to the impedance of the secondary side distribution system is greater than 1. In this case, it was configured to have a function of determining that the reverse power flow occurred due to the fact that a power substation was connected to the secondary side of the automatic voltage regulator by switching the system.

第6の局面によれば、第5の局面において、自動電圧調整器の2次側電圧を検出する計器用変圧器と、前記2次側電圧を整定値に保持する電圧調整継電器を具備し、前記配電系統状態検出手段による逆潮流発生原因の判定が、前記自動電圧調整器の2次側に分散電源が連係したことに起因する場合、負荷時タップ切換器が前記電圧調整変圧器のタップを予め整定されたタップに固定することを禁止して、前記2次側電圧の自動調整を行い、また、前記配電系統状態検出手段による逆潮流発生原因の判定が、前記自動電圧調整器の2次側に電源変電所が接続されたことに起因する場合、負荷時タップ切換器が電圧調整変圧器のタップを予め整定されたタップに固定するように制御するように構成した。   According to a sixth aspect, in the fifth aspect, comprising an instrument transformer for detecting the secondary voltage of the automatic voltage regulator, and a voltage regulation relay for holding the secondary voltage at a set value, When the determination of the cause of reverse power flow by the distribution system state detection means is due to the fact that the distributed power source is linked to the secondary side of the automatic voltage regulator, the on-load tap changer switches the tap of the voltage regulation transformer. The secondary voltage is automatically adjusted by prohibiting fixing to a tap set in advance, and the determination of the cause of the reverse power flow by the distribution system state detection means is the secondary voltage of the automatic voltage regulator. When the power transformer substation is connected to the side, the on-load tap changer is configured to control the tap of the voltage regulating transformer to be fixed to the tap set in advance.

請求項1記載の発明によれば、逆流継電器によって自動電圧調整器の設置点に逆潮流が生じたことを検出した場合、自動電圧調整器の2次側の配電線に負荷を接続して、前記負荷に流れる電流と自動電圧調整器の2次側電流を検出し、次に、前記負荷の接続を解除したときの前記2次側電流を検出することにより、これら電流値から1次側配電系統のインピーダンスと2次側配電系統のインピーダンスの比を算出することができるので、既存の自動電圧調整器に、前記電流を検出する計器用変流器とインピーダンス比を算出する配電系統状態検出手段を付加的に備えることによって、前記インピーダンス比から自動電圧調整器の設置点における逆潮流の原因を簡単,確実に解明することができ、有効である。   According to the invention described in claim 1, when it is detected that a reverse power flow has occurred at the installation point of the automatic voltage regulator by the reverse current relay, a load is connected to the distribution line on the secondary side of the automatic voltage regulator, By detecting the current flowing through the load and the secondary current of the automatic voltage regulator, and then detecting the secondary current when the load is disconnected, the primary power distribution is obtained from these current values. Since it is possible to calculate the ratio between the impedance of the system and the impedance of the secondary distribution system, the existing automatic voltage regulator is equipped with a current transformer for detecting the current and a distribution system state detecting means for calculating the impedance ratio. In addition, the cause of the reverse power flow at the installation point of the automatic voltage regulator can be easily and reliably clarified from the impedance ratio, which is effective.

請求項2記載の発明によれば、逆流継電器によって自動電圧調整器の設置点に逆潮流が生じたことを検出した場合、自動電圧調整器の電圧調整変圧器によって励磁される降圧用変圧器を介して配電線に負荷を接続して、前記負荷に流れる電流と自動電圧調整器の2次側電流を検出し、次に、前記負荷の接続を解除したときの前記2次側電流を検出することにより、これら電流値から1次側配電系統のインピーダンスと2次側配電系統のインピーダンスの比を算出することができるので、前記負荷を自動電圧調整器内に一体的に組み込むことが可能となり、自動電圧調整器の小型化を図りつつ、算出したインピーダンス比から自動電圧調整器の設置点における逆潮流の原因を簡単,確実に解明することができ、有効である   According to the second aspect of the present invention, the step-down transformer excited by the voltage adjustment transformer of the automatic voltage regulator is detected when the reverse current is detected by the reverse relay at the installation point of the automatic voltage regulator. A load is connected to the distribution line, the current flowing through the load and the secondary current of the automatic voltage regulator are detected, and then the secondary current when the load is disconnected is detected. Thus, since the ratio of the impedance of the primary distribution system and the impedance of the secondary distribution system can be calculated from these current values, the load can be integrated into the automatic voltage regulator, While reducing the size of the automatic voltage regulator, the cause of the reverse power flow at the installation point of the automatic voltage regulator can be easily and reliably clarified from the calculated impedance ratio.

請求項3記載の発明によれば、自動電圧調整器の設置点に逆潮流が生じた際、その出力信号によってスイッチング手段を一旦投入して配電線にインピーダンス計測用の負荷を接続し、所定の制御を実行した後、再び前記スイッチング手段の投入状態を解除する構成であるので、非常に簡易な構成により前記インピーダンス計測用負荷の接続と接続解除を切り換えることができ、利便である。   According to the third aspect of the present invention, when a reverse power flow occurs at the installation point of the automatic voltage regulator, the switching means is once turned on by the output signal, and the load for impedance measurement is connected to the distribution line. Since the configuration is such that the switching means is again released after the control is executed, connection and disconnection of the impedance measurement load can be switched with a very simple configuration, which is convenient.

請求項4記載の発明によれば、所要なデータを記憶するための記憶手段を備えて構成したので、インピーダンス計測用の負荷が接続されたときの2次側電流と前記負荷に流れる電流を一旦記憶しておき、この負荷の接続を解除したときの前記2次側電流と前記記憶手段に記憶させた2次側電流および負荷電流に基づいて、1次側配電系統のインピーダンスと2次側配電系統のインピーダンスの比を算出することが可能となる。   According to the fourth aspect of the present invention, since the storage means for storing necessary data is provided, the secondary current when the load for impedance measurement is connected and the current flowing through the load are temporarily stored. Based on the secondary current when the load is disconnected and the secondary current and load current stored in the storage means, the impedance of the primary distribution system and the secondary distribution are stored. It becomes possible to calculate the impedance ratio of the system.

請求項5記載の発明によれば、算出した前記インピーダンス比が1より大きいか小さいかによって自動電圧調整器の1次側と2次側のどちらに変電所および負荷が接続されているかを判定することができ、逆潮流が生じた原因が系統切換えによるものであるか分散電源との連係に起因するものであるかを確実に判別することが可能となる。   According to the invention of claim 5, it is determined whether the substation and the load are connected to the primary side or the secondary side of the automatic voltage regulator depending on whether the calculated impedance ratio is larger or smaller than 1. It is possible to reliably determine whether the cause of the reverse power flow is due to system switching or due to linkage with the distributed power source.

請求項6記載の発明によれば、前記逆潮流の発生原因が自動電圧調整器の2次側に分散電源が連係したことに起因する場合、負荷時タップ切換器によって電圧調整継電器のタップを整定タップに固定することを禁止して、2次側の電圧を整定値に近づける制御を停止することなく続行し、また、前記逆潮流の発生原因が、配電系統の系統切換えによって変電所が2次側に接続されたことに起因するものである場合、負荷時タップ切換器によって電圧調整変圧器のタップを整定タップに固定するように制御することによって、常に負荷側の電圧を制御することができ、効果的である。   According to the sixth aspect of the present invention, when the cause of the reverse power flow is due to the fact that the distributed power source is linked to the secondary side of the automatic voltage regulator, the tap of the voltage regulating relay is settled by the on-load tap changer. Prohibiting fixing to the tap and continuing the control to bring the secondary voltage close to the set value without stopping, and the cause of the reverse power flow is that the substation is secondary to the distribution system switching The voltage on the load side can always be controlled by controlling the tap of the voltage regulating transformer to be fixed to the settling tap by the load tap changer. Is effective.

以下、本発明の実施の形態を図1ないし図3により説明する。図1は、本発明の自動電圧調整器(以下、SVRという)1を示す回路図であり、図1において、2はタップ付の電圧調整変圧器を示している。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 1 is a circuit diagram showing an automatic voltage regulator (hereinafter referred to as SVR) 1 according to the present invention. In FIG. 1, reference numeral 2 denotes a tapped voltage regulating transformer.

3および4はそれぞれ電圧調整変圧器2の1次側および2次側に接続された配電線であり、5は電圧調整変圧器2のタップを切り換える負荷時タップ切換器を示している。6は前記SVR1の2次側電圧を検出する計器用変圧器であり、7はSVR1の2次側に接続した配電線4に流れる電流(以下、2次側電流という)を検出する第1の計器用変流器である。   Reference numerals 3 and 4 denote distribution lines connected to the primary side and the secondary side of the voltage adjustment transformer 2, respectively, and 5 denotes a load tap changer for switching the tap of the voltage adjustment transformer 2. 6 is an instrument transformer for detecting the secondary side voltage of the SVR 1, and 7 is a first for detecting a current (hereinafter referred to as a secondary side current) flowing through the distribution line 4 connected to the secondary side of the SVR 1. It is a current transformer for instruments.

8は計器用変圧器6によって検出されるSVR1の2次側の電圧を整定値に保つように負荷時タップ切換器5に切換指令を与える電圧調整継電器(90リレー)であり、9は計器用変圧器6の出力と第1の計器用変流器7の出力とを入力としてSVR1の設置点における電力潮流の方向を検出する逆流継電器(67リレー)を示している。   8 is a voltage adjusting relay (90 relay) that gives a switching command to the on-load tap changer 5 so as to keep the secondary voltage of the SVR 1 detected by the instrument transformer 6 at a set value, and 9 is for the instrument. The reverse flow relay (67 relay) which detects the direction of the electric power flow in the installation point of SVR1 by using the output of the transformer 6 and the output of the 1st instrumental current transformer 7 as input is shown.

すなわち、図1に示すSVR1は、上記電圧調整変圧器2と、負荷時タップ切換器5、計器用変圧器6、第1の計器用変流器7、電圧調整継電器8と、逆流継電器9を備えて構成されており、順潮流時は2次側電圧を制御し、逆潮流時は、予め整定されたタップに固定制御する。   That is, the SVR 1 shown in FIG. 1 includes the voltage regulating transformer 2, the on-load tap changer 5, the instrument transformer 6, the first instrument current transformer 7, the voltage regulation relay 8, and the reverse current relay 9. The secondary side voltage is controlled during forward flow, and fixedly controlled to a tap set in advance during reverse flow.

10は前記SVR1に附属する配電系統状態検出装置であり、該配電系統状態検出装置10は、負荷11と後述するスイッチング手段を使用可能な電圧に降圧する変圧器(以下、降圧用変圧器という)12と、負荷11を前記降圧用変圧器12を介して配電線4に接続したときに当該負荷11に流れる電流(以下、負荷電流という)と、負荷11の接続前後における2次側電流に基づいて、1次側配電系統のインピーダンスと2次側配電系統のインピーダンスの比を算出する配電系統状態検出手段13と、該配電系統状態検出手段13の出力に応じて、負荷11と配電線4の接続と接続解除を切り換えるスイッチング手段14、配電線4と降圧用変圧器12間に具備されて、負荷11に流れる電流を検出する第2の計器用変流器15、および、2次側電流を検出して配電系統状態検出手段13に入力する第3の計器用変流器16を備えて構成されている。   Reference numeral 10 denotes a distribution system state detection device attached to the SVR 1, and the distribution system state detection device 10 is a transformer that steps down a load 11 and a switching means described later to a usable voltage (hereinafter referred to as a step-down transformer). 12, based on the current flowing through the load 11 when the load 11 is connected to the distribution line 4 via the step-down transformer 12 (hereinafter referred to as load current) and the secondary current before and after the connection of the load 11. Then, the distribution system state detection means 13 for calculating the ratio of the impedance of the primary side distribution system and the impedance of the secondary side distribution system, and the load 11 and the distribution line 4 according to the output of the distribution system state detection means 13 A switching means 14 for switching between connection and disconnection, a second instrument current transformer 15 provided between the distribution line 4 and the step-down transformer 12 for detecting the current flowing through the load 11, and The secondary current is detected and is configured to include a third current transformer 16 to be input to the power distribution system condition detecting means 13.

つづいて、前記配電系統状態検出装置10を具備した自動電圧調整器(SVR)1の動作について説明する。まず、前記SVR1が単独で動作する場合について説明する。図1に示すSVR1の逆流継電器9は、SVR1の2次側の電圧位相を基準にして電流位相を監視することによって、SVR1の設置点における電力潮流の順送と逆送の判定を行っている。   Next, the operation of the automatic voltage regulator (SVR) 1 including the distribution system state detection device 10 will be described. First, the case where the SVR 1 operates alone will be described. The reverse relay 9 of the SVR 1 shown in FIG. 1 determines whether the power flow is forward or reverse at the installation point of the SVR 1 by monitoring the current phase with reference to the voltage phase on the secondary side of the SVR 1. .

電圧調整継電器8は、計器用変圧器6の出力電圧からSVR1の2次側電圧を検出して、逆流継電器9の出力結果によって電力潮流が順送のときは2次側電圧を整定値に近づけるように負荷時タップ切換器5にタップの切換指令を与える。   The voltage adjustment relay 8 detects the secondary side voltage of the SVR 1 from the output voltage of the instrument transformer 6 and brings the secondary side voltage close to a set value when the power flow is forward based on the output result of the reverse flow relay 9. As described above, a tap switching command is given to the on-load tap changer 5.

負荷時タップ切換器5は、電圧調整継電器8のタップ切換指令に基づき、電圧調整変圧器2のタップを切り換えて、SVR1の2次側電圧を電圧調整継電器8の整定値に近づけるように電圧を調整する。   The on-load tap changer 5 switches the tap of the voltage adjustment transformer 2 based on the tap change command of the voltage adjustment relay 8, and sets the voltage so that the secondary side voltage of the SVR 1 approaches the set value of the voltage adjustment relay 8. adjust.

すなわち、電力潮流が順送時にSVR1の2次側電圧が整定値より低い場合には、電圧調整継電器8から負荷時タップ切換器5に昇圧指令が与えられ、この結果、前記負荷時タップ切換器5は、電圧調整変圧器2のタップを昇圧側に切り換えて、2次側電圧を整定値に近づけるように電圧を調整する。   That is, if the secondary voltage of the SVR 1 is lower than the set value when the power flow is forward, the voltage adjustment relay 8 gives a boost command to the on-load tap changer 5, and as a result, the on-load tap changer 5 switches the tap of the voltage adjustment transformer 2 to the step-up side and adjusts the voltage so that the secondary side voltage approaches the settling value.

また、SVR1の2次側電圧が整定値より高い場合には、電圧調整継電器8から負荷時タップ切換器5に降圧指令が与えられ、電圧調整変圧器2はタップを降圧側に切り換えることにより、2次側電圧を整定値に近づけるように電圧調整する。   When the secondary voltage of SVR1 is higher than the set value, the voltage adjustment relay 8 gives a step-down command to the on-load tap changer 5, and the voltage adjustment transformer 2 switches the tap to the step-down side. Adjust the voltage so that the secondary voltage approaches the set value.

一方、前記SVR1を設置した配電系統の系統切換えによって配電線3側の電源変電所が切り離され、配電線4側に存在する電源変電所によってSVR1の2次側の配電線4側からSVR1の1次側の配電線3側に電力潮流が逆送された場合、逆流継電器9は、計器用変圧器6の出力と第1の計器用変流器7の出力を入力してSVR1の設置点における電力潮流の方向を検出する。   On the other hand, the power substation on the distribution line 3 side is disconnected by switching the distribution system in which the SVR 1 is installed, and the power substation existing on the distribution line 4 side causes 1 of the SVR 1 from the secondary distribution line 4 side of the SVR 1. When the power flow is reversely sent to the distribution line 3 on the next side, the reverse flow relay 9 inputs the output of the instrument transformer 6 and the output of the first instrument current transformer 7 and at the installation point of the SVR 1. Detect the direction of power flow.

そして、前記逆流継電器9によって逆潮流が検出された場合、当該逆流継電器9は、負荷時タップ切換器5にタップの切換指令を与え、電圧調整変圧器2のタップを予め整定されたタップに固定する。   When a reverse power flow is detected by the reverse flow relay 9, the reverse flow relay 9 gives a tap switching command to the on-load tap changer 5 and fixes the tap of the voltage adjusting transformer 2 to the tap set in advance. To do.

つまり、図1に示すSVR1は、単独でも逆流継電器9によって電力潮流の方向を検出し、順送状態が検出された場合は、SVR1の2次側電圧を制御し、また、逆送状態が検出された場合は、電圧調整変圧器2のタップを予め整定されたタップ(整定タップ)に固定して、1次側電圧が異常となることを阻止するように制御される。   That is, the SVR 1 shown in FIG. 1 alone detects the direction of the power flow by the reverse flow relay 9 and controls the secondary voltage of the SVR 1 when the forward state is detected, and the reverse state is detected. When it is done, the tap of the voltage adjustment transformer 2 is fixed to a previously set tap (setting tap), and control is performed to prevent the primary side voltage from becoming abnormal.

しかしながら、電力潮流の逆潮流が系統切換えに起因するものではなく分散電源の連係に起因する場合において、上記のようにSVR1が予め整定されたタップに固定する制御を実行した場合、前記[背景技術]欄で説明した従来技術と同様に、配電系統の電圧に異常が発生することは阻止できるが、2次側に接続された負荷の電圧調整動作を停止してしまうことになる。   However, in the case where the reverse flow of the power flow is not caused by system switching but is caused by linkage of distributed power sources, when the control for fixing the SVR 1 to the tap set in advance as described above is executed, the above [Background Art ], It is possible to prevent the occurrence of an abnormality in the voltage of the distribution system, as in the prior art described in the section], but the voltage adjustment operation of the load connected to the secondary side is stopped.

そこで、前記SVR1に図1に示す配電系統状態検出装置10を具備することにより、逆潮流の原因が系統の切換えに起因するものであるか、分散電源に起因するものであるかを判定して、その原因が系統の切り換えによるものである場合は、タップの固定制御を行い、分散電源によるものである場合は、2次側電圧制御を行うように構成した。   Thus, by providing the SVR 1 with the power distribution system state detection device 10 shown in FIG. 1, it is determined whether the cause of the reverse power flow is due to the switching of the system or the distributed power source. When the cause is due to the switching of the system, the tap is fixedly controlled. When the cause is due to the distributed power source, the secondary side voltage control is performed.

つまり、図1に示すSVR1を構成する計器用変圧器6の出力と第1の計器用変流器7の出力に基づき、逆流継電器9によってSVR1の設置点における電力の潮流方向を検出(図2のステップS1)した結果、逆潮流が生じている場合、配電系統状態検出手段13は逆流継電器9の出力信号から逆潮流が生じていることを把握して、図2のステップS2において、スイッチング手段14をオン(投入)して、負荷11を降圧用変圧器12を介して配電線4に接続する。   That is, based on the output of the instrument transformer 6 constituting the SVR 1 shown in FIG. 1 and the output of the first instrument current transformer 7, the reverse flow relay 9 detects the power flow direction at the installation point of the SVR 1 (FIG. 2). As a result of step S1), the distribution system state detecting means 13 grasps that the reverse power flow is generated from the output signal of the reverse relay 9, and the switching means in step S2 of FIG. 14 is turned on (input), and the load 11 is connected to the distribution line 4 via the step-down transformer 12.

これにより、負荷11に流れる電流I2が第2の計器用変流器15によって検出され、また、負荷11接続時の2次側電流I1´は第1の計器用変流器7から第3の計器用変流器16を介して検出され(図2のステップS3)、それぞれ配電系統状態検出手段13内に具備した図示しない記憶手段に記憶される(図2のステップS4)。   Thereby, the current I2 flowing through the load 11 is detected by the second instrument current transformer 15, and the secondary current I1 ′ when the load 11 is connected is changed from the first instrument current transformer 7 to the third current transformer I3 ′. It is detected via the current transformer 16 (step S3 in FIG. 2) and stored in a storage means (not shown) provided in the distribution system state detection means 13 (step S4 in FIG. 2).

前記記憶手段に電流値I2,I1´が記憶されると、前記配電系統状態検出手段13は、図2に示すステップS5において、スイッチング手段14の投入状態をオフ(投入解除)して、負荷11を配電線4から切り離す。   When the current values I2 and I1 ′ are stored in the storage unit, the distribution system state detection unit 13 turns off (releases input) the switching unit 14 in step S5 shown in FIG. Is disconnected from the distribution line 4.

これにより、前記2次側電流の値は変化するので、配電系統状態検出手段13は、第3の計器用変流器16によって、値が変化した後の2次側電流I1を再度検出して取り込む(図2のステップS6)ことにより、先に前記記憶手段(図示せず)に記憶させた電流値I2,I1´と合わせて、SVR1の2次側配電系統のインピーダンスZ2に対する1次側配電系統のインピーダンスZ1の比を次式によって算出する(図2のステップS7)。   Thereby, since the value of the secondary side current changes, the distribution system state detection means 13 detects again the secondary side current I1 after the value is changed by the third instrument current transformer 16. By taking in (step S6 in FIG. 2), together with the current values I2 and I1 ′ previously stored in the storage means (not shown), the primary power distribution with respect to the impedance Z2 of the secondary power distribution system of SVR1 The ratio of the system impedance Z1 is calculated by the following equation (step S7 in FIG. 2).

Figure 2006042546
Figure 2006042546

そして、図2のステップS8において、前記[数1]によって算出したインピーダンス比(Z1/Z2)が1より大きいか小さいかを判定し、その結果、前記インピーダンス比(Z1/Z2)が1より小さい場合は、ステップS9に移行して、図1に示す逆流継電器9は配電系統状態検出手段13の出力信号を受けて、負荷時タップ切換器5にタップの切換え指令を与えて、電圧調整変圧器2のタップを予め整定されたタップ(整定タップ)に固定することを禁止する。   Then, in step S8 of FIG. 2, it is determined whether the impedance ratio (Z1 / Z2) calculated by [Equation 1] is larger or smaller than 1, and as a result, the impedance ratio (Z1 / Z2) is smaller than 1. In step S9, the reverse relay 9 shown in FIG. 1 receives the output signal of the distribution system state detecting means 13, gives a tap switching command to the on-load tap switch 5, and the voltage adjusting transformer. It is prohibited to fix the tap of 2 to a previously set tap (settling tap).

つまり、前記インピーダンス比(Z1/Z2)が1より小さい場合は、SVR1の設置点における逆潮流の原因が分散電源との連係に起因するものであり、電源変電所はSVR1の1次側に存在すると判断して、SVR1の2次側電圧を整定値に近づけるように電圧の自動調整を行う。   That is, when the impedance ratio (Z1 / Z2) is smaller than 1, the cause of the reverse power flow at the installation point of SVR1 is due to the linkage with the distributed power source, and the power supply substation exists on the primary side of SVR1. Accordingly, the voltage is automatically adjusted so that the secondary voltage of SVR1 approaches the set value.

一方、前記ステップS8において、前記[数1]によって算出したインピーダンス比(Z1/Z2)が1より大きい場合は、ステップS10に移行して、図1に示す逆流継電器9は配電系統状態検出手段13の出力信号を受けて、負荷時タップ切換器5にタップの切換指令を与えることにより、電圧調整変圧器2のタップを予め整定されたタップ(整定タップ)に固定し、配電線3,4の電圧が異常になることを阻止するように制御する。   On the other hand, when the impedance ratio (Z1 / Z2) calculated by [Equation 1] is greater than 1 in step S8, the process proceeds to step S10, where the reverse flow relay 9 shown in FIG. The tap of voltage adjustment transformer 2 is fixed to the tap set in advance (setting tap) by giving a tap switching command to on-load tap changer 5 in response to the output signal of Control to prevent the voltage from becoming abnormal.

つまり、前記インピーダンス比(Z1/Z2)が1より大きい場合は、配電系統の系統切換えによって電源変電所がSVR1の2次側に接続されたことによりSVR1の設置点において逆潮流が発生したものと判断して、整定タップに固定する制御を行うのである。   That is, when the impedance ratio (Z1 / Z2) is greater than 1, a reverse power flow occurs at the installation point of SVR1 because the power substation is connected to the secondary side of SVR1 by switching the distribution system. Judgment and control to fix to the settling tap are performed.

なお、前記インピーダンス比(Z1/Z2)と数値1との大小比較によって電源変電所がSVR1の1次側と2次側のどちらに接続されているかを判定できる理由は以下に記すとおりである。   The reason why the power substation is connected to the primary side or the secondary side of the SVR 1 by comparing the impedance ratio (Z1 / Z2) with the numerical value 1 is as follows.

つまり、一般的に電源変電所の系統容量は非常に大きいため、無限大母線とみなすことができる。したがって、前記インピーダンス比(Z1/Z2)が1より小さい場合は、SVR1の1次側が無限大母線(電源変電所)に接続されていると判断することができ、前記インピーダンス比(Z1/Z2)が1より大きい場合は、SVR1の2次側が無限大母線(電源変電所)に接続されていると判断することができるのである。   That is, since the system capacity of a power substation is generally very large, it can be regarded as an infinite bus. Therefore, when the impedance ratio (Z1 / Z2) is smaller than 1, it can be determined that the primary side of SVR1 is connected to an infinite bus (power substation), and the impedance ratio (Z1 / Z2) Is greater than 1, it can be determined that the secondary side of SVR1 is connected to an infinite bus (power substation).

また、ステップS1で逆潮流が検出されない場合は、ステップS11に移行して、2次側電圧の自動制御を行う。   If no reverse power flow is detected in step S1, the process proceeds to step S11 to automatically control the secondary side voltage.

図3は本発明の他の実施例における自動電圧調整器(SVR)1Aの回路構成図を示している。図3に示すSVR1Aは、電圧調整変圧器2によって励磁される降圧用変圧器12を備え、この降圧用変圧器12に、配電系統状態検出手段13からの指令により動作するスイッチング手段14のオン/オフに応じて、降圧用変圧器12を介して配電線4に接続/非接続される負荷11を具備して構成されている。   FIG. 3 shows a circuit configuration diagram of an automatic voltage regulator (SVR) 1A according to another embodiment of the present invention. The SVR 1A shown in FIG. 3 includes a step-down transformer 12 that is excited by the voltage adjusting transformer 2, and the step-down transformer 12 is turned on / off by the switching means 14 that operates according to a command from the distribution system state detection means 13. The load 11 is connected / disconnected to the distribution line 4 via the step-down transformer 12 according to the off state.

また、第2の計器用変流器15は、降圧用変圧器12と負荷11との間に取り付けられ、前記配電系統状態検出手段13は、この第2の計器用変流器15によって前記負荷11に流れる電流を検出して取り込む。以下に、前記SVR1Aの動作について説明する。   The second instrument current transformer 15 is attached between the step-down transformer 12 and the load 11, and the distribution system state detection means 13 is connected to the load by the second instrument current transformer 15. 11 is detected and captured. The operation of the SVR 1A will be described below.

図3に示すSVR1Aは、計器用変圧器6の出力と第1の計器用変流器7の出力に基づき、逆流継電器9によってSVR1Aの設置点における電力の潮流方向を検出(図2のステップS1)した結果、逆潮流が生じている場合、配電系統状態検出手段13は逆流継電器9の出力信号から逆潮流が生じていることを把握して、図2のステップS2において、スイッチング手段14をオン(投入)し、負荷11を降圧用変圧器12を介して配電線4に接続する。   The SVR 1A shown in FIG. 3 detects the power flow direction at the installation point of the SVR 1A by the reverse flow relay 9 based on the output of the instrument transformer 6 and the output of the first instrument current transformer 7 (step S1 in FIG. 2). As a result, if a reverse power flow occurs, the distribution system state detection means 13 grasps that the reverse power flow is generated from the output signal of the reverse flow relay 9, and turns on the switching means 14 in step S2 of FIG. The load 11 is connected to the distribution line 4 via the step-down transformer 12.

これにより、負荷11に流れる電流I2が第2の計器用変流器15によって検出され、また、負荷11接続時の2次側電流I1´は第1の計器用変流器7によって検出され(図2のステップS3)、それぞれ配電系統状態検出手段13の図示しない記憶手段に記憶される(図2のステップS4)。   Thereby, the current I2 flowing through the load 11 is detected by the second instrument current transformer 15, and the secondary current I1 'when the load 11 is connected is detected by the first instrument current transformer 7 ( Step S3 in FIG. 2 is stored in the storage means (not shown) of the distribution system state detection means 13 (step S4 in FIG. 2).

前記配電系統状態検出手段13に電流値I2,I1´が記憶されると、前記配電系統状態検出手段13は、図2に示すステップS5において、スイッチング手段14の投入状態をオフ(投入解除)して、負荷11を配電線4から切り離す。   When the current values I2 and I1 ′ are stored in the distribution system state detection unit 13, the distribution system state detection unit 13 turns off (releases the input) the switching unit 14 in step S5 shown in FIG. Then, the load 11 is disconnected from the distribution line 4.

これにより、前記2次側電流の値は変化するので、配電系統状態検出手段13は、第1の計器用変流器7によって、値が変化した後の2次側電流I1を再度検出して取り込む(図2のステップS6)ことにより、先に記憶させた電流値I2,I1´と合わせて、SVR1Aの2次側配電系統のインピーダンスZ2に対する1次側配電系統のインピーダンスZ1の比を次式によって算出する(図2のステップS7)。   Thereby, since the value of the secondary side current changes, the distribution system state detection means 13 again detects the secondary side current I1 after the value is changed by the first instrument current transformer 7. By taking in (step S6 of FIG. 2), the ratio of the impedance Z1 of the primary distribution system to the impedance Z2 of the secondary distribution system of SVR1A together with the current values I2 and I1 ′ stored previously is (Step S7 in FIG. 2).

Figure 2006042546
Figure 2006042546

そして、図2のステップS8において、前記[数2]によって算出したインピーダンス比(Z1/Z2)が1より大きいか小さいかを判定し、その結果、前記インピーダンス比(Z1/Z2)が1より小さい場合は、ステップS9に移行して、図3に示す逆流継電器9は配電系統状態検出手段13の出力信号を受けて、負荷時タップ切換器5にタップの切換え指令を与えて、電圧調整変圧器2のタップを予め整定されたタップ(整定タップ)に固定することを禁止し、2次側電圧を整定値に近づけるべく電圧の自動調整を行う。   Then, in step S8 in FIG. 2, it is determined whether the impedance ratio (Z1 / Z2) calculated by [Equation 2] is larger or smaller than 1, and as a result, the impedance ratio (Z1 / Z2) is smaller than 1. In this case, the process proceeds to step S9, where the reverse relay 9 shown in FIG. 3 receives the output signal from the distribution system state detecting means 13, gives a tap switching command to the on-load tap switch 5, and the voltage adjusting transformer. The second tap is prohibited from being fixed to a previously set tap (settling tap), and the voltage is automatically adjusted to bring the secondary voltage close to the set value.

一方、前記ステップS8において、前記[数2]によって算出したインピーダンス比(Z1/Z2)が1より大きい場合は、ステップS10に移行して、図3に示す逆流継電器9は、配電系統状態検出手段13の出力信号を受けて、負荷時タップ切換器5にタップの切換指令を与えることにより、電圧調整変圧器2のタップを予め整定されたタップ(整定タップ)に固定し、配電線の電圧が異常になることを阻止するように制御する。   On the other hand, when the impedance ratio (Z1 / Z2) calculated by [Equation 2] is larger than 1 in step S8, the process proceeds to step S10, where the reverse flow relay 9 shown in FIG. By receiving the output signal of 13 and giving a tap switching command to the on-load tap changer 5, the tap of the voltage adjusting transformer 2 is fixed to a previously set tap (setting tap), and the voltage of the distribution line is Control to prevent abnormalities.

また、ステップS1で逆潮流が検出されない場合は、ステップS11に移行して、2次側電圧の自動制御を行う。   If no reverse power flow is detected in step S1, the process proceeds to step S11 to automatically control the secondary side voltage.

つまり、図3に示すSVR1Aは、電圧調整変圧器2によって励磁される降圧用変圧器12を備えて、これにスイッチング手段14を介して負荷11を接続するように構成したので、図1に示すSVR1と配電系統状態検出装置10の一体化および装置自体の小型化を簡単,確実に実現することができ、非常に有効である。   That is, the SVR 1A shown in FIG. 3 includes the step-down transformer 12 excited by the voltage adjusting transformer 2, and is configured to connect the load 11 via the switching means 14 to the step-down transformer 12. The integration of the SVR 1 and the distribution system state detection device 10 and the miniaturization of the device itself can be realized easily and reliably, which is very effective.

なお、図3に示すSVR1Aにおいても、前記インピーダンス比(Z1/Z2)と数値1との大小比較から、電源変電所がSVR1Aの1次側と2次側のどちらに接続されているかを判定できる理由は、図1に示す場合と同様であるので、説明は割愛する。   Also in the SVR 1A shown in FIG. 3, it can be determined from the magnitude comparison between the impedance ratio (Z1 / Z2) and the numerical value 1 whether the power substation is connected to the primary side or the secondary side of the SVR 1A. The reason is the same as that shown in FIG.

以上説明したように、本発明の自動電圧調整器(SVR)1,1Aは、SVR1,1Aの設置点において逆潮流が生じた場合、これが配電系統の系統切り換えによるものか、分散電源に起因するものかを確実に判別し、系統切り換えによるものである場合は、SVR1,1Aのタップを整定タップに固定する制御を実行し、また、前記逆潮流の発生原因が分散電源に起因するものである場合は、SVR1,1Aの2次側電圧を自動調整することにより前記2次側電圧を整定値に近づける制御を実行する構成であるので、従前のように、電源変電所が1次側に接続された状態でタップの固定制御を実施した結果、2次側に接続された負荷の電圧調整動作を停止してしまうといった問題の発生を完全に防止することができる。   As described above, the automatic voltage regulator (SVR) 1, 1A according to the present invention is caused by the switching of the distribution system or when the reverse power flow occurs at the installation point of the SVR 1, 1A. If it is due to system switching, control is performed to fix the taps of SVR1 and 1A to the settling tap, and the cause of the reverse power flow is due to the distributed power supply In this case, since the secondary side voltage of SVR1, 1A is automatically adjusted to control the secondary side voltage close to the set value, the power substation is connected to the primary side as before. As a result of performing the tap fixing control in the state of being performed, it is possible to completely prevent the occurrence of a problem that the voltage adjustment operation of the load connected to the secondary side is stopped.

さらに、電圧調整変圧器2によって励磁される降圧用変圧器12と、これにスイッチング手段14を介して接続される負荷11を備えて構成することにより、SVR1と配電系統状態検出装置10を一体的に、且つ、小型に形成したSVR1Aの提供が可能となり、非常に有効である。   Further, the step-down transformer 12 excited by the voltage adjusting transformer 2 and the load 11 connected to the step-down transformer 12 via the switching means 14 are provided, so that the SVR 1 and the distribution system state detection device 10 are integrated. In addition, it is possible to provide a small-sized SVR 1A, which is very effective.

本発明によれば、計器用変圧器の出力と第1の計器用変流器の出力に基づき逆流継電器によって逆潮流の発生を検出した場合、配電系統状態検出手段の指令に応じてスイッチング手段を投入して、負荷を降圧用変圧器を介して配電線に接続する。このとき、負荷に流れる電流を第2の計器用変流器によって検出し、また、第1の計器用変流器によって検出したSVRの2次側電流とともに配電系統状態検出手段の記憶手段に記憶させる。その後、前記配電系統状態検出手段は、前記スイッチング手段の投入状態を解除することによって変化した前記2次側電流を第1の計器用変流器にて検出して取得し、先に前記記憶手段に記憶させた電流値とともに1次側配電系統のインピーダンスと2次側配電系統のインピーダンスの比を算出することができる。このインピーダンス比からSVRの設置点における逆潮流が、系統切り換えによるものか分散電源との連係によるものかを確実に判別することが可能となる。つまり、逆潮流の発生原因を特定することが可能となるので、その発生原因に応じて、常に負荷側の電圧制御を行うことができるのである。以って、負荷側電圧を常時、適切に制御することが可能な自動電圧調整器の提供が実現できる。   According to the present invention, when the occurrence of reverse power flow is detected by the reverse flow relay based on the output of the instrument transformer and the output of the first instrument current transformer, the switching means is switched according to the command of the distribution system state detection means. The load is connected to the distribution line via a step-down transformer. At this time, the current flowing through the load is detected by the second instrument current transformer, and stored in the storage means of the distribution system state detection means together with the secondary current of the SVR detected by the first instrument current transformer. Let Thereafter, the distribution system state detecting means detects and acquires the secondary current changed by releasing the switching-on state of the switching means with a first instrument current transformer, and previously stores the storage means. The ratio of the impedance of the primary side distribution system and the impedance of the secondary side distribution system can be calculated together with the current value stored in. From this impedance ratio, it is possible to reliably determine whether the reverse power flow at the installation point of the SVR is due to system switching or linkage with the distributed power source. In other words, the cause of the reverse power flow can be specified, so that the voltage control on the load side can always be performed according to the cause of the reverse power flow. Thus, it is possible to provide an automatic voltage regulator capable of appropriately controlling the load side voltage at all times.

本発明の自動電圧調整器の回路構成図である。It is a circuit block diagram of the automatic voltage regulator of this invention. 前記自動電圧調整器の動作を説明するフローチャート図である。It is a flowchart figure explaining operation | movement of the said automatic voltage regulator. 本発明の他の実施例における自動電圧調整器の回路構成図である。It is a circuit block diagram of the automatic voltage regulator in the other Example of this invention.

符号の説明Explanation of symbols

1,1A 自動電圧調整器
2 電圧調整変圧器
3,4 配電線
5 負荷時タップ切換器
6 計器用変圧器
7 第1の計器用変流器
8 電圧調整継電器
9 逆流継電器
10 配電系統状態検出装置
11 負荷
12 降圧用変圧器
13 配電系統状態検出手段
14 スイッチング手段
15 第2の計器用変流器
16 第3の計器用変流器
DESCRIPTION OF SYMBOLS 1,1A Automatic voltage regulator 2 Voltage regulation transformer 3, 4 Distribution line 5 Load tap changer 6 Instrument transformer 7 1st instrument current transformer 8 Voltage regulation relay 9 Backflow relay 10 Distribution system state detection apparatus DESCRIPTION OF SYMBOLS 11 Load 12 Step-down transformer 13 Distribution system state detection means 14 Switching means 15 2nd instrument current transformer 16 3rd instrument current transformer

Claims (6)

配電線路の途中に設置された負荷時タップ切換器による電圧調整変圧器のタップ切換え操作によって、負荷側電圧の調整を自動的に行う自動電圧調整器において、かかる自動電圧調整器の設置点における電力潮流の方向を検出する逆流継電器と、当該逆流継電器によって逆潮流が検出された際、前記自動電圧調整器の2次側の配電線に接続されるインピーダンス計測用の負荷と、前記自動電圧調整器の2次側に流れる電流を検出する第1の計器用変流器と、前記負荷が接続された際、前記負荷に流れる電流を検出する第2の計器用変流器、および、前記第2の計器用変流器による検出電流と前記負荷の接続前後における前記第1の計器用変流器による検出電流の変化に基づいて算出される1次側配電系統のインピーダンスと2次側配電系統のインピーダンスの比から前記逆潮流の原因を判定する配電系統状態検出手段を具備して構成したことを特徴とする自動電圧調整器。   In the automatic voltage regulator that automatically adjusts the load side voltage by the tap switching operation of the voltage adjustment transformer by the on-load tap changer installed in the middle of the distribution line, the power at the installation point of the automatic voltage regulator A reverse relay for detecting the direction of power flow, a load for impedance measurement connected to a distribution line on the secondary side of the automatic voltage regulator when the reverse power flow is detected by the reverse current relay, and the automatic voltage regulator A first current transformer for detecting a current flowing in the secondary side of the first current transformer, a second current transformer for detecting a current flowing in the load when the load is connected, and the second current transformer The impedance of the primary side distribution system and the secondary side distribution system calculated based on the change in the detection current by the current transformer and the change in the detection current by the first current transformer before and after the connection of the load Automatic voltage regulator, characterized in that the ratio of the impedance and configured by including determining distribution system condition detecting means cause the reverse flow. 配電線路の途中に設置された負荷時タップ切換器による電圧調整変圧器のタップ切換え操作によって、負荷側電圧の調整を自動的に行う自動電圧調整器において、かかる自動電圧調整器の設置点における電力潮流の方向を検出する逆流継電器と、当該逆流継電器によって逆潮流が検出された際、前記電圧調整変圧器によって励磁される降圧用変圧器を介して配電線に接続されるインピーダンス計測用の負荷と、前記自動電圧調整器の2次側に流れる電流を検出する第1の計器用変流器と、前記負荷が接続された際、前記負荷に流れる電流を検出する第2の計器用変流器、および、前記第2の計器用変流器による検出電流と前記負荷の接続前後における前記第1の計器用変流器による検出電流の変化に基づいて算出される1次側配電系統のインピーダンスと2次側配電系統のインピーダンスの比から前記逆潮流の原因を判定する配電系統状態検出手段を具備して構成したことを特徴とする自動電圧調整器。   In the automatic voltage regulator that automatically adjusts the load side voltage by the tap switching operation of the voltage adjustment transformer by the on-load tap changer installed in the middle of the distribution line, the power at the installation point of the automatic voltage regulator A reverse relay for detecting the direction of the power flow, and a load for impedance measurement connected to the distribution line via a step-down transformer excited by the voltage regulating transformer when the reverse power flow is detected by the reverse flow relay. A first instrument current transformer for detecting a current flowing in the secondary side of the automatic voltage regulator, and a second instrument current transformer for detecting a current flowing in the load when the load is connected And the input of the primary-side power distribution system calculated based on the change in the detected current by the second instrument current transformer and the detected current by the first instrument current transformer before and after the connection of the load. -Impedance and automatic voltage regulator, characterized in the ratio of the impedance on the secondary side distribution system that has been configured by including determining distribution system condition detecting means cause the reverse flow. 前記配電系統状態検出手段は、その出力信号に応じて投入/投入解除されるスイッチング手段を具備し、前記逆流継電器の出力信号に応じて前記スイッチング手段を操作することにより、前記配電線に対する前記負荷の接続/非接続を切り換えるように構成したことを特徴とする請求項1,2記載の自動電圧調整器。   The distribution system state detection means includes switching means that is turned on / off according to the output signal, and operates the switching means according to the output signal of the reverse flow relay to thereby load the load on the distribution line. 3. The automatic voltage regulator according to claim 1, wherein the connection / disconnection is switched. 前記配電系統状態検出手段は、前記スイッチング手段が投入された際、前記第1,2の計器用変流器にて検出される電流値を記憶させる記憶手段を備え、前記スイッチング手段の投入が解除されたとき前記第1の計器用変流器により検出される電流値と前記記憶手段に記憶した電流値とから前記インピーダンス比を算出する機能を具備して構成したことを特徴とする請求項3記載の自動電圧調整器。   The distribution system state detection means includes storage means for storing current values detected by the first and second current transformers when the switching means is turned on, and the switching means is released. 4. The apparatus according to claim 3, further comprising a function of calculating the impedance ratio from a current value detected by the first instrument current transformer and a current value stored in the storage means. Automatic voltage regulator as described. 前記配電系統状態検出手段は、1次側配電系統のインピーダンスの2次側配電系統のインピーダンスに対する比が1より小さい場合は、前記自動電圧調整器の2次側に分散電源が連係したことに起因して前記逆潮流が発生したと判定し、前記1次側配電系統のインピーダンスの2次側配電系統のインピーダンスに対する比が1より大きい場合は、系統の切り換えにより前記自動電圧調整器の2次側に電源変電所が接続されたことに起因して前記逆潮流が発生したと判定する機能を具備して構成したことを特徴とする請求項1ないし4記載の自動電圧調整器。   When the ratio of the impedance of the primary side distribution system to the impedance of the secondary side distribution system is smaller than 1, the distribution system state detection means is caused by the fact that the distributed power supply is linked to the secondary side of the automatic voltage regulator. If the ratio of the impedance of the primary distribution system to the impedance of the secondary distribution system is greater than 1, the secondary side of the automatic voltage regulator is switched by switching the system. 5. The automatic voltage regulator according to claim 1, further comprising a function of determining that the reverse power flow has occurred due to the connection of the power substation. 請求項5記載の自動電圧調整器において、当該自動電圧調整器の2次側電圧を検出する計器用変圧器と、前記2次側電圧を整定値に保持する電圧調整継電器を具備し、前記配電系統状態検出手段による逆潮流発生原因の判定が、前記自動電圧調整器の2次側に分散電源が連係したことに起因する場合、負荷時タップ切換器が前記電圧調整変圧器のタップを予め整定されたタップに固定することを禁止して、前記2次側電圧の自動調整を行い、また、前記配電系統状態検出手段による逆潮流発生原因の判定が、前記自動電圧調整器の2次側に電源変電所が接続されたことに起因する場合、負荷時タップ切換器が電圧調整変圧器のタップを予め整定されたタップに固定するように制御するように構成したことを特徴とする自動電圧調整器。   6. The automatic voltage regulator according to claim 5, further comprising an instrument transformer for detecting a secondary side voltage of the automatic voltage regulator, and a voltage regulation relay for holding the secondary side voltage at a set value. When the determination of the cause of the reverse power flow by the system state detection means is due to the fact that the distributed power source is linked to the secondary side of the automatic voltage regulator, the on-load tap changer pre-sets the tap of the voltage regulation transformer The secondary side voltage is automatically adjusted by prohibiting fixing to the tapped tap, and the determination of the cause of reverse power flow by the distribution system state detecting means is performed on the secondary side of the automatic voltage regulator. Automatic voltage regulation, characterized in that, when caused by the connection of a power substation, the on-load tap changer is configured to control the tap of the voltage regulation transformer to be fixed to a preset tap. vessel.
JP2004221481A 2004-07-29 2004-07-29 Automatic voltage regulator Pending JP2006042546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004221481A JP2006042546A (en) 2004-07-29 2004-07-29 Automatic voltage regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004221481A JP2006042546A (en) 2004-07-29 2004-07-29 Automatic voltage regulator

Publications (1)

Publication Number Publication Date
JP2006042546A true JP2006042546A (en) 2006-02-09

Family

ID=35906911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004221481A Pending JP2006042546A (en) 2004-07-29 2004-07-29 Automatic voltage regulator

Country Status (1)

Country Link
JP (1) JP2006042546A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027811A (en) * 2012-07-27 2014-02-06 Kyuhen Co Ltd Automatic voltage regulator and method of controlling the same
JP2014027810A (en) * 2012-07-27 2014-02-06 Kyushu Electric Power Co Inc Automatic voltage regulator dealing with distributed power supply having remote control function and control method therefor
JP2014239634A (en) * 2013-05-10 2014-12-18 株式会社明電舎 Distribution line voltage control device and voltage control method
JP2016192876A (en) * 2015-03-31 2016-11-10 北陸電力株式会社 Calculation method of setting of line voltage drop compensator
JP2016192839A (en) * 2015-03-31 2016-11-10 愛知電機株式会社 Electric power substation connection direction determination method
JP2017118820A (en) * 2017-03-17 2017-06-29 株式会社キューヘン Automatic voltage regulator and control method therefor
KR102192000B1 (en) * 2020-04-29 2020-12-16 주식회사 시너지 Apparatus and method for improving efficiency of distributed generation facility

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027811A (en) * 2012-07-27 2014-02-06 Kyuhen Co Ltd Automatic voltage regulator and method of controlling the same
JP2014027810A (en) * 2012-07-27 2014-02-06 Kyushu Electric Power Co Inc Automatic voltage regulator dealing with distributed power supply having remote control function and control method therefor
JP2014239634A (en) * 2013-05-10 2014-12-18 株式会社明電舎 Distribution line voltage control device and voltage control method
JP2016192876A (en) * 2015-03-31 2016-11-10 北陸電力株式会社 Calculation method of setting of line voltage drop compensator
JP2016192839A (en) * 2015-03-31 2016-11-10 愛知電機株式会社 Electric power substation connection direction determination method
JP2017118820A (en) * 2017-03-17 2017-06-29 株式会社キューヘン Automatic voltage regulator and control method therefor
KR102192000B1 (en) * 2020-04-29 2020-12-16 주식회사 시너지 Apparatus and method for improving efficiency of distributed generation facility
WO2021221270A1 (en) * 2020-04-29 2021-11-04 주식회사 시너지 Apparatus and method for improving power generation efficiency of distributed power generation facilities
US11823833B2 (en) 2020-04-29 2023-11-21 Synergy Inc. Apparatus and method for improving efficiency of distributed generation facility

Similar Documents

Publication Publication Date Title
US8558519B2 (en) Apparatus and method for reverse power regulation with measured source side voltage
JP6877295B2 (en) Judgment method of voltage regulator and voltage regulator
WO2011090202A1 (en) Substation automatic control system
JP2006042546A (en) Automatic voltage regulator
JP5793672B2 (en) Electric vehicle charging device and electric vehicle charging system
AU2013291046B2 (en) Excitation inrush current suppressing apparatus and excitation inrush current suppressing method
JP6161880B2 (en) Automatic voltage regulator and control method thereof
CA3070188C (en) Over-voltage prevention apparatus and method of distribution line connected with distributed generator
JP4224309B2 (en) Voltage adjustment method for distribution system and automatic voltage adjustment device used for the method
JP2004222476A (en) Automatic voltage regulator
JP2009201177A (en) Tap switching controller of transformer in substation
JP2003102128A (en) Self-contained bidirectional automatic voltage- regulating apparatus
JP2004235587A (en) Controller for on-load tap changing transformer and control method thereof
JP6069060B2 (en) Automatic voltage regulator power transmission state determination device and power transmission state determination method
JP2007202362A (en) Power supply method coping with power failure and instantaneous voltage drop and device thereof
JP3490302B2 (en) Voltage / reactive power control device
JP5955523B2 (en) Voltage adjusting device and voltage adjusting method
JP4212744B2 (en) Automatic voltage regulator for power distribution and method for determining cause of reverse power flow
JP2014023303A (en) Reverse power flow factor determination method and device for power distribution automatic voltage regulator
JP2014027810A (en) Automatic voltage regulator dealing with distributed power supply having remote control function and control method therefor
JP2010051097A (en) Voltage-reactive power control system
JP2011055599A (en) Automatic voltage regulator
JP2009130952A (en) Bus-bar voltage adjusting method
JP2002023864A (en) On-load tap changer control method for three coil transformer and controller
JP5733115B2 (en) Load switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202