JP2009130952A - Bus-bar voltage adjusting method - Google Patents

Bus-bar voltage adjusting method Download PDF

Info

Publication number
JP2009130952A
JP2009130952A JP2007300215A JP2007300215A JP2009130952A JP 2009130952 A JP2009130952 A JP 2009130952A JP 2007300215 A JP2007300215 A JP 2007300215A JP 2007300215 A JP2007300215 A JP 2007300215A JP 2009130952 A JP2009130952 A JP 2009130952A
Authority
JP
Japan
Prior art keywords
voltage
processing
tap
bus
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007300215A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kimura
清志 木村
Atsuhiko Terada
敦彦 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2007300215A priority Critical patent/JP2009130952A/en
Publication of JP2009130952A publication Critical patent/JP2009130952A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a bus-bar voltage from being controlled out of a specified value, and to prevent a loading switch tap from being controlled excessively largely or extremely insufficiently. <P>SOLUTION: It is determined whether a tap operation is in the fourth time in a step S1, processing is progressed to determination processing in a step S2 when the determination is "N", and in this step S2, it is determined whether a voltage deviates from "voltage adjustment relay 90+dead band" by the release of a branch reactor ShR. When the determination is "Y" in the step S2, the processing is progressed to determination processing in a step S3, it is determined whether the voltage deviates from "program control-dead band" when an LR tap is lowered in this step S3, the processing is progressed to processing in a step S4 when the determination is in "N", the "lowering" of an LRT tap is performed in a step S5 by resetting the relay 90 integration, and the processing is returned to the step S1. In the determination processing in the steps S1, S3, alarm output processing is performed when the determination is "Y", and in the determination processing in the step S2, a "phase modification operation" output is performed when the determination is "N". <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、変電所における母線電圧調整方法に関するものである。   The present invention relates to a bus voltage adjusting method in a substation.

この種、母線電圧調整方法として、安定な電圧を供給するために、母線に調相設備を有する変電所に負荷時タップ切換変圧器を設置し、電圧調整リレーにより、負荷時タップ切換変圧器のタップを切り換えて変圧器の出力電圧、即ち、変電所の母線電圧
を一定に保つように調整している。
As this type of bus voltage adjustment method, in order to supply a stable voltage, a load tap change transformer is installed in a substation having a phase adjusting facility on the bus, and the load tap change transformer is connected by a voltage adjustment relay. The tap is switched to adjust the output voltage of the transformer, that is, the bus voltage of the substation to be kept constant.

図3は変電所における母線電圧調整方法の概念構成説明図を示し、同図により電圧調整方法を説明する。図3において、1は1次母線、2は2次母線、LRT1,LRT2は負荷時タップ切換機構を有する負荷時タップ切換変圧器を示し、これら各変圧器LRT1,LRT2は、その1次側が遮断器CBを介して1次母線1に、2次側は遮断器CBを介して2次母線2に接続され、2次母線2の電圧は、この負荷時タップ切換変圧器LRT1,LRT2のタップを切り換えることで調整される。 FIG. 3 is a conceptual diagram illustrating the bus voltage adjustment method in the substation, and the voltage adjustment method will be described with reference to FIG. In FIG. 3, 1 is a primary bus, 2 is a secondary bus, LRT 1 and LRT 2 are load tap switching transformers having a load tap switching mechanism, and these transformers LRT 1 and LRT 2 are The primary side is connected to the primary bus 1 via the circuit breaker CB, and the secondary side is connected to the secondary bus 2 via the circuit breaker CB. The voltage of the secondary bus 2 is the tap switching transformer LRT 1 during loading. , LRT 2 is adjusted by switching the tap.

3は積分形電圧調整リレーで、ディジタル形の例を示し、2次母線2の電圧を計器用変圧器PT、入力部4を介して入力し、リレー内部で整定値と比較演算し、電圧偏差が規定値以上の場合には、偏差が小さくなるように負荷時タップ切換変圧器LRT1,LRT2のタップ切換機構に対し、上げ又は下げ指令を与えて、電圧偏差が規定値以内になるまで繰り返し実行される。 Reference numeral 3 denotes an integral type voltage adjusting relay, which is an example of a digital type. The voltage of the secondary bus 2 is input via the instrument transformer PT and the input unit 4 and is compared with a set value in the relay to obtain a voltage deviation. When the voltage is over the specified value, an increase or decrease command is given to the tap switching mechanism of the on-load tap switching transformers LRT 1 and LRT 2 so that the deviation becomes small until the voltage deviation falls within the specified value. Repeatedly executed.

この積分形電圧調整リレー3は、ハンチングを防止し、有害無益な切換操作を無くするために、不感帯の上限と下限の幅は、変圧器の1タップ電圧以上に設定され、また、系統故障時の電圧変動あるいは負荷の一時変化による電圧変動などには応動しないように、その動作時間は、整定基準電圧よりの偏差に反比例した積分特性を持たせてある。これらの諸特性は、次に示すディジタル形電圧調整リレーに有し、かつこのリレーにて動作は処理される。   In order to prevent hunting and eliminate harmful and useless switching operations, the integral voltage regulating relay 3 is set so that the upper and lower limits of the dead band are set to be equal to or higher than one tap voltage of the transformer. The operating time has an integral characteristic that is inversely proportional to the deviation from the settling reference voltage so that it does not respond to voltage fluctuations due to voltage fluctuations or voltage fluctuations due to temporary changes in the load. These characteristics are present in the digital voltage regulating relay described below, and the operation is processed in this relay.

ディジタル形電圧調整リレーは、図3に概念構成を示すように、演算部CPU、メモリPROM,RAM、入力インタフェースDI、出力インタフェースDOおよび時計ユニット等で構成され、これらはバスを介して接続され、演算部CPUがメモリに書き込まれたプログラムを順次読み出し、プログラムに従ってメモリや入力インタフェースDIからの情報を用いてリレー演算やシーケンス演算を行う。   As shown in the conceptual configuration in FIG. 3, the digital voltage adjustment relay is composed of a calculation unit CPU, a memory PROM, a RAM, an input interface DI, an output interface DO, a clock unit, and the like, which are connected via a bus, The calculation unit CPU sequentially reads out the program written in the memory, and performs relay calculation and sequence calculation using information from the memory and the input interface DI according to the program.

6,7,8は調相設備で、電力用コンデンサSC、分路リアクトルShRから成り、調相設備6,7は負荷時タップ切換変圧器LRT1,LTR2の3次巻線に接続され、また、調相設備8は、2次母線2に接続されている。これら調相設備6〜8は、負荷の無効電力消費に備え、各電力用コンデンサ又は分路リアクトルに有する開閉器を投入、又は開放して無効電力を調整する。 6, 7, and 8 are phase adjusting equipments, which include a power capacitor SC and a shunt reactor ShR, and the phase adjusting equipments 6 and 7 are connected to the tertiary windings of the on-load tap switching transformers LRT 1 and LTR 2 , Further, the phase adjusting equipment 8 is connected to the secondary bus 2. In preparation for reactive power consumption of the load, these phase adjusting facilities 6 to 8 adjust the reactive power by turning on or opening the switches included in each power capacitor or shunt reactor.

9は調相設備6,7又は8の一方又は両方の電力用コンデンサSC又は分路リアクトルShRを選択的に投入・開放する調相制御装置で、時間帯毎にあらかじめ設定した量をプログラム制御によって又は手動で投入・開放する。プログラム制御の場合は通常はタイマが使用される。   9 is a phase control device that selectively turns on and off the power capacitor SC or the shunt reactor ShR of one or both of the phase adjusting equipment 6, 7 or 8, and the amount set in advance for each time zone is controlled by program control. Or manually turn it on / off. In the case of program control, a timer is usually used.

調相設備の電力用コンデンサSCや分路リアクトルShRが投入・開放されると、2次母線2の電圧は、1タップ又は2タップの電圧相当分変動する。そのときの電圧変化量をΔVとすると、ΔVは次式で表せる。次式において、Trn%Zは変圧器のパーセントインピーダンス、Trn容量は、変圧器容量、Σ1/Znは併用バンクの和である。 When the power capacitor SC and the shunt reactor ShR of the phase adjusting equipment are turned on / off, the voltage of the secondary bus 2 fluctuates by the amount corresponding to the voltage of 1 tap or 2 taps. If the voltage change amount at that time is ΔV, ΔV can be expressed by the following equation. In the following equation, Tr n % Z is the transformer's percent impedance, Tr n capacity is the transformer capacity, and Σ1 / Z n is the sum of the combined banks.

Figure 2009130952
Figure 2009130952

ここで、1次インピーダンス(以下1次Zと称す)は系統構成により変化し、1次Zが変化することにより電圧変化量ΔVも変化することになる。   Here, the primary impedance (hereinafter referred to as the primary Z) changes depending on the system configuration, and the voltage change amount ΔV also changes as the primary Z changes.

例えば、V=77(kV)、調相設備容量=40(MVar)、Z=0.3とした場合、次式のように電圧変化量ΔV1になる。 For example, when V = 77 (kV), phase adjusting equipment capacity = 40 (MVar), and Z = 0.3, the voltage change amount ΔV 1 is given by the following equation.

Figure 2009130952
Figure 2009130952

これが、1次Zが変化したことにより、Z=0.5となった場合、次式の電圧変化量ΔV2のようになる。 When Z = 0.5 due to the change of the primary Z, the voltage change amount ΔV 2 in the following equation is obtained.

Figure 2009130952
Figure 2009130952
特開平09−028037号公報JP 09-028037 A

前述した1次Zは、そこに接続されている送電線・他変電所の変圧器・発電所の発電機等を全て考慮する必要があるため、例えば、20箇所の変電所/発電所と接続されていたものが、系統構成を変更することにより、25箇所に増えたとすれば、その全てについて計算をし直す必要がある。従って、1次Zを求める計算が煩わしくなる問題がある。このため、想定される系統構成より予め算出して与えられる固定値として1次Zを扱っており、系統構成が変化すれば、実際と異なり、ΔVが正しく算出できなくなってしまう問題がある。   The primary Z mentioned above needs to consider all the transmission lines connected to it, transformers of other substations, generators of the power plant, etc., so, for example, connected to 20 substations / power plants. If what has been increased to 25 locations by changing the system configuration, it is necessary to recalculate all of them. Therefore, there is a problem that the calculation for obtaining the primary Z becomes troublesome. For this reason, the primary Z is handled as a fixed value that is calculated and given in advance from the assumed system configuration. If the system configuration changes, there is a problem that ΔV cannot be calculated correctly unlike the actual system configuration.

そこで、上記の不具合を解消するために、調相設備を操作することにより、母線電圧が規定値から外れるか(過電圧あるいは不足電圧になるか)否かを予測して、外れる場合には、操作を禁止する機能を備えた装置あるが、この装置においても、誤った結果により、母線電圧が規定値から外れて制御してしまう。   Therefore, in order to solve the above problems, it is predicted whether or not the bus voltage will deviate from the specified value (overvoltage or undervoltage) by operating the phase adjusting equipment. However, even in this device, the bus voltage is deviated from the specified value due to an erroneous result.

また、調相設備操作前に電圧変化量ΔVを予測し、このΔVに見合った分だけ事前に負荷時タップ切換変圧器のタップを切換制御し系統に与える電圧ショックを軽減させる装置もあるが、この装置においても、誤った結果により、過剰にまたは過小に負荷時タップ切換変圧器のタップを切換制御してしまう。   In addition, there is a device that predicts the voltage change amount ΔV before operating the phase adjusting equipment and reduces the voltage shock applied to the system by controlling the tap of the load tap change transformer in advance by an amount corresponding to this ΔV. Even in this apparatus, the tap of the on-load tap switching transformer is switched or controlled excessively or too little due to an erroneous result.

上記何れの場合も、1次Zを求めることが煩わしいということに問題があった。   In any of the above cases, there is a problem in that it is troublesome to obtain the primary Z.

なお、上記において、誤った結果とは、ある時点で求めた1次Zを元に計算したZ(インピーダンス)と、現時点の1次Zを元に計算したZが、2倍になっていれば、同じ容量の調相設備を制御しても電圧変化量ΔVは2倍になるということである。つまり、ある時点で電圧変化量ΔVが、1000Vだったものが、現時点では2000Vになることで、例えば、系統状態は2000V変化するのに、装置の計算結果は、1000Vしか変化しないということである。   In the above, the erroneous result is that the Z (impedance) calculated based on the primary Z obtained at a certain time and the Z calculated based on the current primary Z are doubled. That is, the voltage change ΔV is doubled even if the phase control equipment having the same capacity is controlled. That is, the voltage change amount ΔV at a certain point in time is 1000 V, but is now 2000 V. For example, the system state changes by 2000 V, but the calculation result of the device changes only by 1000 V. .

本発明は、上記の事情に鑑みてなされたもので、予め容量が判っている小容量の調相設備を操作したときの母線電圧変化量ΔVを、1次インピーダンスZと調相容量から算出することにより、母線電圧が規定値から外れて制御してしまうことを防止するとともに、過剰にまたは過小に負荷時切換タップを制御してしまうことを防止する母線電圧調整方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and calculates a bus voltage change amount ΔV when operating a small-capacity phase-adjusting facility whose capacity is known in advance from the primary impedance Z and the phase-adjusting capacity. It is an object of the present invention to provide a bus voltage adjustment method that prevents the bus voltage from being controlled outside the specified value and prevents the load switching tap from being excessively or excessively controlled. To do.

本発明は、上記の課題を達成するために、変電所内の母線電圧を、負荷時タップ切換変圧器のタップを切り換えて制御目標電圧に調整するとともに、前記母線の無効電力を消費する調相設備を有し、該調相設備を投入・開放する制御手段を備え、前記負荷時タップ切換変圧器のタップ切り換え操作は、積分形電圧調整リレーで行うようにした電圧調整方法において、
予め容量が判っている小容量の調相設備を操作して、母線電圧変化量から系統構成の1次インピーダンスZを下記式により演算し、演算の結果から系統構成が持っている1次インピーダンスZの値を自動的に変更するようにしたことを特徴とする。
In order to achieve the above object, the present invention adjusts the bus voltage in the substation to the control target voltage by switching the tap of the on-load tap switching transformer, and also uses the reactive power of the bus. And a control means for turning on and off the phase adjusting equipment, wherein the tap switching operation of the on-load tap switching transformer is performed by an integral voltage regulating relay.
Operate a small-capacity phase-adjusting facility whose capacity is known in advance, calculate the primary impedance Z of the system configuration from the amount of change in bus voltage by the following formula, and calculate the primary impedance Z of the system configuration from the calculation result The value of is automatically changed.

Figure 2009130952
Figure 2009130952

但し、Vは変化前の母線電圧、Σ/Znは併用バンクの和、調相設備容量はMVarを示す。   However, V is the bus voltage before the change, Σ / Zn is the sum of the combined bank, and the phase adjusting equipment capacity is MVar.

本発明によれば、予め容量の判っている小容量の調相設備を操作することにより、母線電圧が規定値から外れるか(過電圧あるいは不足電圧になるか)否かを予測して、外れる場合には、操作を禁止する機能を有する装置において、誤った結果により、母線電圧が規定値から外れて制御してしまうことが防止できる利点がある。   According to the present invention, by operating a small-capacity phase-adjusting facility whose capacity is known in advance, whether or not the bus voltage is deviated from a specified value (overvoltage or undervoltage) is deviated. Has an advantage that in a device having a function of prohibiting operation, it is possible to prevent the bus voltage from being controlled out of a specified value due to an erroneous result.

また、調相設備を操作することにより、母線電圧変化量ΔVを予測し、このΔVに見合って分だけ事前に負荷時タップ切換変圧器(LRT)のタップを制御し、系統に与える電圧ショックを軽減させる装置において、誤った結果により、過剰にまたは過小に前記タップを制御してしまうことが防止できる利点がある。   In addition, by operating the phase-adjusting equipment, the bus voltage change amount ΔV is predicted, and the tap of the on-load tap change transformer (LRT) is controlled in advance by an amount corresponding to this ΔV, and the voltage shock applied to the system is reduced. In the mitigating device, there is an advantage that it is possible to prevent the tap from being controlled excessively or excessively due to an erroneous result.

以下本発明の実施の形態を図面に基づいて説明する。本発明においては、調相設備を操作(投入/開放)して変化する母線電圧変化量ΔVは、1次Zと調相容量から算出することにある。このことは、逆に、調相容量が予め判っていて、この調相設備を操作したときの母線電圧変化量ΔVを計測すれば、下記式より1次Zを算出することができることを意味している。   Embodiments of the present invention will be described below with reference to the drawings. In the present invention, the bus voltage change amount ΔV that changes by operating (turning on / opening) the phase adjusting equipment is calculated from the primary Z and the phase adjusting capacity. This means that the primary Z can be calculated from the following equation by measuring the bus voltage change amount ΔV when the phase adjusting equipment is operated in advance and the phase adjusting equipment is operated. ing.

Figure 2009130952
Figure 2009130952

但し、Vは変化前の母線電圧、Σ/Znは併用バンクの和、調相設備容量はMVarを示す。   However, V is the bus voltage before the change, Σ / Zn is the sum of the combined bank, and the phase adjusting equipment capacity is MVar.

このため、本発明では、予め容量の判っている小容量の調相設備を操作することにより、母線電圧変化量ΔVから1次Zを逆算し、得られた演算結果から装置が持っている1次Zの値を自動的に変更すれば、次からの調相操作では正確に制御されるようになる。   For this reason, in the present invention, by operating a small-capacity phase-adjusting facility whose capacity is known in advance, the device calculates the primary Z from the bus voltage change amount ΔV, and the apparatus has 1 from the obtained calculation result. If the value of the next Z is automatically changed, the next phase adjustment operation can be accurately controlled.

ここで、小容量の調相設備としたのは、容量が小さければ母線電圧変動も小さくなるからである。また、上記式を用いると、1次Zが煩わしい計算をしないで適切な値が得られる。   Here, the reason why the phase adjusting equipment has a small capacity is that if the capacity is small, the bus voltage fluctuation is also small. In addition, when the above formula is used, an appropriate value can be obtained without performing complicated calculations for the primary Z.

[実施の形態1]
上記式から調相設備を操作することにより、母線電圧が規定値から外れるか(過電圧あるいは不足電圧になるか)否かを予測して、外れる場合には、操作を禁止する機能を有する装置において、誤った結果により、母線電圧が規定値から外れて制御してしまうことが防止できる。
[Embodiment 1]
By operating the phase adjusting equipment from the above formula, it is predicted whether or not the bus voltage will deviate from the specified value (overvoltage or undervoltage). It is possible to prevent the bus voltage from being controlled out of the specified value due to an erroneous result.

[実施の形態2]
上記と同様に、調相設備操作前に電圧変化量ΔVを予測し、電圧変化量ΔVに見合った分だけ事前にLRタップを制御し、系統に与える電圧ショックを軽減させる装置において、誤った結果により、過剰にまたは過小にLRタップを制御してしまうことが防止できる。
[Embodiment 2]
In the same way as above, the voltage change amount ΔV is predicted before operating the phase adjusting equipment, and the LR tap is controlled in advance by an amount corresponding to the voltage change amount ΔV to reduce the voltage shock applied to the system. Therefore, it is possible to prevent the LR tap from being controlled excessively or excessively.

次に、図1により本発明の実施の形態1の電圧調整方法をフローチャートにより述べる。   Next, the voltage adjustment method according to the first embodiment of the present invention will be described with reference to the flowchart in FIG.

図1において、小容量の調相設備である分路リアクトルShRを開放しようとする場合、まず、ステップS1でタップ操作が4回目であるかを判断し、「N」なら、ステップS2の判断処理に進み、このステップS2で分路リアクトルShRを開放し、この開放により図2に示す「電圧調整継電器90+不感帯」を、電圧が逸脱するかを判断する。   In FIG. 1, when attempting to open the shunt reactor ShR, which is a small-capacity phase-adjusting facility, first, in step S1, it is determined whether the tap operation is the fourth time. If “N”, the determination process in step S2 is performed. In step S2, the shunt reactor ShR is opened, and it is determined whether or not the voltage deviates from the “voltage regulating relay 90 + dead zone” shown in FIG.

なお、電圧調整継電器は、基準電圧・±不感帯幅・積分時間を予め設定しておき、系統からの入力電圧が基準電圧に対して±不感帯幅を逸脱すると、その逸脱した電圧値に応じた量を積分して満了になった時点で、LRTタップに対してタップ「昇」あるいは「降」指令を発する継電器である。   In addition, the voltage adjustment relay sets the reference voltage, ± dead band width, integration time in advance, and if the input voltage from the system deviates from the dead band width with respect to the reference voltage, the amount corresponding to the deviated voltage value Is a relay that issues a tap “rising” or “falling” command to the LRT tap when it expires.

前記ステップS2で「Y」なら、ステップS3の判断処理に進み、このステップS3でLRタップを下げると、電圧が、図2に示す「プログラムコントロール(プロコン)−不感帯」を、逸脱するかを判断し、「N」ならステップS4の処理に進んで、90リレー積分を、リセットしてLRTタップ「下げ」をステップS5で行って、ステップS1の処理に戻る。なお、プロコンは、時刻による調相設備の開閉制御を指令するものである。   If “Y” in step S2, the process proceeds to the determination process in step S3. When the LR tap is lowered in step S3, it is determined whether the voltage deviates from “program control (procedure) —dead zone” shown in FIG. If “N”, the process proceeds to step S4, 90 relay integration is reset, the LRT tap “decrease” is performed in step S5, and the process returns to step S1. In addition, the process controller commands the opening / closing control of the phase adjusting equipment according to the time.

前記ステップS1とS3の判断処理において、「Y」なら警報出力処理を行い、ステップS2の判断処理において、「N」なら「調相操作」出力を行う。   If “Y” in the determination process of steps S1 and S3, an alarm output process is performed. If “N” in the determination process of step S2, “phase adjustment operation” is output.

図2は上記における動作説明図で、(1)は分路リアクトルShR開放、(2)は1タップ「下げ」の後、分路リアクトルShR開放、(3)は2タップ「下げ」の後、分路リアクトルShR開放、(4)は警報出力操作せず(タップ制御でプロコン不感帯を逸脱する場合は操作せず、調相操作で90不感帯を逸脱する場合は操作せず)、(5)は警報出力を操作しないことを示している。   FIG. 2 is an operation explanatory diagram in the above, (1) is the shunt reactor ShR is opened, (2) is after one tap “lower”, and the shunt reactor ShR is opened, (3) is after two taps “lower”, Open shunt reactor ShR, (4) does not operate alarm output (does not operate when tap control deviates from pro-con dead zone, does not operate when phase deviation operation deviates from 90 dead zone), (5) Indicates that the alarm output is not operated.

図2において、#59は過電圧継電器で、この継電器は、予め動作電圧を設定しておき、系統からの入力電圧がこれを超過した場合に動作信号を発するものである。   In FIG. 2, # 59 is an overvoltage relay, which sets an operating voltage in advance, and issues an operating signal when the input voltage from the system exceeds this.

#27は不足継電器で、この継電器は、予め動作電圧を設定しておき、系統からの入力電圧がこれを下回った場合に動作信号を発するものである。   # 27 is a shortage relay. This relay sets an operating voltage in advance, and issues an operating signal when the input voltage from the system falls below this.

分路リアクトルShRを開放する場合の動作
(1)変圧器LRTを2次母線に接続している分路リアクトルShRを開放すれば、2次母線電圧は、その容量と、系統の1次Zに応じた電圧変化量ΔVだけ上昇する。
Operation when the shunt reactor ShR is opened (1) If the shunt reactor ShR connecting the transformer LRT to the secondary bus is opened, the secondary bus voltage is increased to the capacity and the primary Z of the system. The voltage increases by a corresponding voltage change amount ΔV.

(2)ここで、整定されている系統の1次Zと、系統変更があったことにより実際の系統とは異なっていて、「90+不感帯」を逸脱しないという計算結果が出れば分路リアクトルShRを開放し、出力する。   (2) Here, if the calculation result that the primary Z of the set system is different from the actual system due to the system change and does not deviate from “90+ dead zone” is obtained, the shunt reactor ShR Is output.

(3)上記のことが、「誤った結果により、母線電圧が規定値から外れて制御してしまう」ことであり、正しい1次Zを得ることができることは、これを防止できることとなる。   (3) The above is “the bus voltage is controlled to be out of the specified value due to an erroneous result”, and the fact that the correct primary Z can be obtained can be prevented.

本発明の実施の形態を示す電圧調整方法のフローチャート。The flowchart of the voltage adjustment method which shows embodiment of this invention. 実施の形態における動作説明図。Operation | movement explanatory drawing in embodiment. 変電所における母線電圧調整方法の概念構成説明図。The conceptual structure explanatory drawing of the bus voltage adjustment method in a substation.

符号の説明Explanation of symbols

ShR…分路リアクトル
SC…電力用コンデンサ
LRT…負荷時タップ切換変圧器
90…電圧調整継電器
#59…過電圧継電器
#27…不足電圧継電器
ShR ... Shunt reactor SC ... Electric power capacitor LRT ... Load tap change transformer 90 ... Voltage regulator relay # 59 ... Overvoltage relay # 27 ... Undervoltage relay

Claims (1)

変電所内の母線電圧を、負荷時タップ切換変圧器のタップを切り換えて制御目標電圧に調整するとともに、前記母線の無効電力を消費する調相設備を有し、該調相設備を投入・開放する制御手段を備え、前記負荷時タップ切換変圧器のタップ切り換え操作は、積分形電圧調整リレーで行うようにした電圧調整方法において、
予め容量が判っている小容量の調相設備を操作して、母線電圧変化量ΔVから系統構成の1次インピーダンスZを下記式により演算し、演算の結果から系統構成が持っている1次インピーダンスZの値を自動的に変更するようにしたことを特徴とする母線電圧調整方法。
Figure 2009130952
但し、Vは変化前の母線電圧、Σ/Znは併用バンクの和、調相設備容量はMVarを示す。
The bus voltage in the substation is adjusted to the control target voltage by switching the tap of the on-load tap switching transformer, and has a phase adjusting equipment that consumes reactive power of the bus, and the phase adjusting equipment is turned on / off. A voltage adjusting method comprising a control means, wherein the tap switching operation of the on-load tap switching transformer is performed by an integral voltage adjusting relay;
Operate a small-capacity phase-adjusting facility whose capacity is known in advance, calculate the primary impedance Z of the system configuration from the bus voltage change ΔV by the following formula, and calculate the primary impedance of the system configuration from the calculation result A bus voltage adjusting method, wherein the value of Z is automatically changed.
Figure 2009130952
However, V is the bus voltage before the change, Σ / Zn is the sum of the combined bank, and the phase adjusting equipment capacity is MVar.
JP2007300215A 2007-11-20 2007-11-20 Bus-bar voltage adjusting method Pending JP2009130952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007300215A JP2009130952A (en) 2007-11-20 2007-11-20 Bus-bar voltage adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007300215A JP2009130952A (en) 2007-11-20 2007-11-20 Bus-bar voltage adjusting method

Publications (1)

Publication Number Publication Date
JP2009130952A true JP2009130952A (en) 2009-06-11

Family

ID=40821355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007300215A Pending JP2009130952A (en) 2007-11-20 2007-11-20 Bus-bar voltage adjusting method

Country Status (1)

Country Link
JP (1) JP2009130952A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113285623A (en) * 2021-05-25 2021-08-20 苏州蓝石新动力有限公司 Safety control method and traffic equipment
CN114802717A (en) * 2022-05-09 2022-07-29 北京航空航天大学 Airplane electric actuator energy management system based on flight control information and control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113285623A (en) * 2021-05-25 2021-08-20 苏州蓝石新动力有限公司 Safety control method and traffic equipment
CN113285623B (en) * 2021-05-25 2022-08-26 苏州蓝石新动力有限公司 Safety control method and traffic equipment
CN114802717A (en) * 2022-05-09 2022-07-29 北京航空航天大学 Airplane electric actuator energy management system based on flight control information and control method

Similar Documents

Publication Publication Date Title
US9606554B2 (en) Voltage adjustment device for power distribution system, voltage adjusting method, and power control system
JP4101788B2 (en) Voltage adjusting device and voltage adjusting method
US20130307494A1 (en) On-load tap-changer control method, excitation control system carrying out said control method and power excitation chain
CN101553766A (en) Voltage control for electric power systems
US5498954A (en) Control system and method for the parallel operation of voltage regulators
JP6877295B2 (en) Judgment method of voltage regulator and voltage regulator
JP2012039818A (en) Voltage reactive power control system
JP2015090580A (en) Voltage reactive power controller
RU2416855C1 (en) Control device of voltage mode in electric network by using fuzzy logic
JP2009130952A (en) Bus-bar voltage adjusting method
JP2012228045A (en) Voltage adjusting device and method of adjusting voltage
KR20190043297A (en) Apparatus for controlling voltage regulation based on voltage measurement, Method thereof, and Computer readable storage medium having the same
JPH0578250B2 (en)
EP2793343A1 (en) Coordinating voltage controllers within a wind park being connected to a utility grid
JP2016178733A (en) Automatic voltage regulation device and automatic voltage regulation method
JP5244501B2 (en) Voltage reactive power control system
JP2003259554A (en) Device and program for voltage and reactive power monitoring control
US20130310993A1 (en) On-load tap changer control method for a power excitation chain, related unit and power excitation chain comprising such unit
JP2017135904A (en) Voltage reactive power control system
JP2007282390A (en) Current-monitoring reactive power adjustment device
JP2006042546A (en) Automatic voltage regulator
JP2012135113A (en) Voltage adjusting device, voltage adjusting system, program and voltage adjusting method
Gajić et al. Using IEC 61850 analogue goose messages for OLTC control of parallel transformers
JP3475584B2 (en) Voltage adjustment method in substation
RU2790145C1 (en) Method and device for adaptive automatic voltage regulation in an electrical network using capacitor devices