JP2008099527A - Storage battery equipment in private power generation equipment connected to power system and operation method of storage battery equipment - Google Patents

Storage battery equipment in private power generation equipment connected to power system and operation method of storage battery equipment Download PDF

Info

Publication number
JP2008099527A
JP2008099527A JP2006281474A JP2006281474A JP2008099527A JP 2008099527 A JP2008099527 A JP 2008099527A JP 2006281474 A JP2006281474 A JP 2006281474A JP 2006281474 A JP2006281474 A JP 2006281474A JP 2008099527 A JP2008099527 A JP 2008099527A
Authority
JP
Japan
Prior art keywords
storage battery
power flow
power
storage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006281474A
Other languages
Japanese (ja)
Other versions
JP4850019B2 (en
Inventor
Takao Ogata
隆雄 緒方
Tsutomu Tokumoto
勉 徳本
Tatsuya Tsukada
龍也 塚田
Satoru Yamagishi
哲 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2006281474A priority Critical patent/JP4850019B2/en
Publication of JP2008099527A publication Critical patent/JP2008099527A/en
Application granted granted Critical
Publication of JP4850019B2 publication Critical patent/JP4850019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】電力系統に連系され、並列に接続した複数の蓄電池からなる蓄電池設備を備えた自家発電設備において、間断なく連系点潮流を制御することを可能とする。
【解決手段】電力系統9に連系される自家発電設備における蓄電池設備1であって、並列に接続された複数台の蓄電池11と、該蓄電池に直列に接続された複数台の充電回路12と、複数台の蓄電池のいずれか1つに接続される放電回路13と、電力系統9からの潮流を検出する潮流検出手段2からの潮流信号に基づいて充電回路12および放電回路13を制御する制御装置14と、複数台の蓄電池のうちの1つの蓄電池を選択して放電回路13に接続する選択スイッチ15とを備え、潮流信号が連系線潮流設定値の上限値を超えると放電回路選択信号を出力し、潮流信号が前記連系線潮流設定値の下限値を下回ると充電回路選択信号を出力する。
【選択図】図1
In an in-house power generation facility including a storage battery facility that is connected to a power system and includes a plurality of storage batteries connected in parallel, it is possible to control the connection point power flow without interruption.
A storage battery facility 1 in a private power generation facility linked to an electric power system 9, wherein a plurality of storage batteries 11 connected in parallel, and a plurality of charging circuits 12 connected in series to the storage battery, Control for controlling the charging circuit 12 and the discharge circuit 13 based on the discharge circuit 13 connected to any one of the plurality of storage batteries and the power flow signal from the power flow detection means 2 for detecting the power flow from the power system 9 Device 14 and a selection switch 15 for selecting one of the plurality of storage batteries and connecting to the discharge circuit 13, and when the power flow signal exceeds the upper limit value of the interconnection power flow setting value, the discharge circuit selection signal When the power flow signal falls below the lower limit value of the interconnection power flow setting value, the charging circuit selection signal is output.
[Selection] Figure 1

Description

本発明は、電力系統に系統連系された自家発電設備と複数台の蓄電池設備とを組み合わせた自家発電設備における蓄電池設備および蓄電池設備の運転方法に関する。   The present invention relates to a storage battery facility in a private power generation facility that combines a private power generation facility that is grid-connected to a power system and a plurality of storage battery facilities, and a method for operating the storage battery facility.

近年、太陽光発電設備や風力発電設備などの導入が進んでいるが、これらの発電設備は、気象条件により出力が変動するため、大幅に導入量が進んだ場合には、その変動を補完する必要があるとされている。変動を補完する設備としては、充放電機能を有する蓄電池設備を用いて連系点の電力潮流を一定の範囲内に収めるシステム(マイクログリッド)が考えられている。   In recent years, the introduction of solar power generation facilities and wind power generation facilities has progressed. However, since the output of these power generation facilities fluctuates depending on weather conditions, if the amount of introduction greatly advances, the fluctuations are compensated. It is said that it is necessary. As a facility that complements the fluctuation, a system (microgrid) is considered that uses a storage battery facility having a charge / discharge function to keep the power flow at the interconnection point within a certain range.

図4に、従来の充放電制御機能を有する蓄電池設備を有する自家発電設備の構成を説明する。この自家発電設備は、電力線5と、電力線5に接続されるとともに蓄電池11と双方向コンバータ19を有する蓄電池設備1と、電力線5に接続された太陽光発電設備3と、電力線5に接続された風力発電設備4と、連系線潮流検出手段2とを備えて構成される。この自家発電設備は、電力線5が連系線91を介して電力系統9に接続されるとともに、電力線5に開閉器6−1〜6−nを介して負荷7−1〜7−nが接続される。   FIG. 4 illustrates a configuration of a private power generation facility having a storage battery facility having a conventional charge / discharge control function. This private power generation facility is connected to the power line 5, the storage battery facility 1 connected to the power line 5 and having the storage battery 11 and the bidirectional converter 19, the solar power generation facility 3 connected to the power line 5, and the power line 5. It comprises wind power generation equipment 4 and interconnection line power flow detection means 2. In this private power generation facility, the power line 5 is connected to the power system 9 via the interconnection line 91, and loads 7-1 to 7-n are connected to the power line 5 via the switches 6-1 to 6-n. Is done.

太陽光発電設備3や風力発電設備4は、自然条件の変化によってその出力が自然変動する自然変動電源である。蓄電池設備1は、負荷変動や自然変動電源の電力変動に対処するために、蓄電池11を充電しておき、連系線91の潮流(連系線潮流)を連系線潮流検出手段2で監視し、太陽光発電設備3や風力発電設備4などの自然変動電源の出力変動や負荷7−1〜7−nの変動によって、連系線91の連系線潮流(電力)が予め設定された設定電力を超えると、蓄電池設備1が、超過した潮流を補完するように動作する。このとき、蓄電池設備1は負荷変動に迅速に応答することができ、連系線潮流を設定電力に抑えるように動作するので、連系線潮流は設定された範囲内に戻される。   The solar power generation equipment 3 and the wind power generation equipment 4 are natural fluctuation power sources whose outputs naturally fluctuate due to changes in natural conditions. The storage battery facility 1 charges the storage battery 11 in order to deal with load fluctuations and power fluctuations of a naturally fluctuating power source, and monitors the power flow (connection line power flow) of the connection line 91 with the connection line power flow detection means 2. Then, the interconnection line power flow (electric power) of the interconnection line 91 is set in advance by the output fluctuation of the natural fluctuation power source such as the solar power generation equipment 3 and the wind power generation equipment 4 and the fluctuation of the loads 7-1 to 7-n. When the set power is exceeded, the storage battery facility 1 operates to supplement the excess power flow. At this time, the storage battery facility 1 can quickly respond to the load fluctuation and operates so as to suppress the interconnection power flow to the set power, so that the interconnection power flow is returned to the set range.

蓄電設備としては残量管理が比較的簡単なキャパシタが用いられることもある(例えば、特許文献1参照)が、キャパシタは容量が少ないことから、現実的には、鉛蓄電池などの電気化学電池が用いられることになる。電気化学電池の残量(蓄電量)の管理は、電池電圧や充電量と放電量の積算などにより行われる。また、電気化学電池としては、鉛蓄電池以外の電気化学電池は、非常に高価であることから鉛蓄電池が一般的に用いられる。   A capacitor with relatively simple remaining amount management may be used as a power storage facility (see, for example, Patent Document 1). However, since a capacitor has a small capacity, an electrochemical battery such as a lead storage battery is practically used. Will be used. Management of the remaining amount (charged amount) of the electrochemical battery is performed by integrating the battery voltage, the charge amount and the discharge amount, or the like. In addition, as the electrochemical battery, an electrochemical battery other than the lead storage battery is very expensive, and thus a lead storage battery is generally used.

蓄電池の電圧は、充放電状態や経年により大幅に変動するため、電池電圧のみによる残量管理は不可能と考えられている。充放電量を積算して行われる残量管理(例えば、特許文献2参照)は、長い時間を経過すると、誤差が積算され、充放電量の積算量によって得た残量と実際の残量との乖離が生じる。したがって、残量管理では、定期的に満充電操作などのリセット操作を行う必要があり、この間は連系点の潮流を一定の範囲内に保つ制御を行えないという問題がある。   Since the voltage of the storage battery varies greatly depending on the charge / discharge state and aging, it is considered impossible to manage the remaining amount only by the battery voltage. In the remaining amount management performed by integrating the charge / discharge amount (see, for example, Patent Document 2), when a long time elapses, errors are integrated, and the remaining amount obtained by the accumulated amount of charge / discharge amount and the actual remaining amount This divergence occurs. Therefore, in the remaining amount management, it is necessary to periodically perform a reset operation such as a full charge operation, and there is a problem that it is not possible to perform control to keep the flow at the interconnection point within a certain range during this period.

また、残量管理の精度が低いと、蓄電池の容量の選定に当たってその分余裕のある蓄電池容量選定が必要となり、蓄電池容量が増大するという問題を有している。   In addition, when the accuracy of the remaining amount management is low, it is necessary to select a storage battery capacity with a margin for selecting the storage battery capacity, and there is a problem that the storage battery capacity increases.

さらに、鉛蓄電池は、充電容量が小さく、放電時間が1時間1Cに対して、充電時間が10時間0.1C程度であることから、補完する変動量(kW)のうち充電部分(変動量の1/2)の10倍の蓄電池容量(kW)が必要である。キャパシタやニッケル水素系の電池は、充電容量が鉛蓄電池より多いが、まだ非常に高価であり、それ自体にコストがかかる。
特開2001−211549号公報 特開2003−70165号公報
Furthermore, since the lead storage battery has a small charge capacity and a discharge time of about 1 hour 1 C, and a charge time of about 10 hours 0.1 C, the charged portion (of the amount of fluctuation) of the fluctuation amount (kW) to be complemented. A storage battery capacity (kW) of 10 times that of 1/2) is required. Capacitors and nickel metal hydride batteries have more charge capacity than lead-acid batteries, but are still very expensive and cost themselves.
JP 2001-2111549 A JP 2003-70165 A

本発明は、電力系統に連系され、並列に接続した複数の蓄電池からなる蓄電池設備を備えた自家発電設備において、間断なく連系点潮流を制御することが可能となる自家発電設備の蓄電池設備および蓄電池設備の運転方法を提供することを目的とする。   The present invention relates to a storage battery facility for a private power generation facility that can control the interconnection point power flow without interruption in a private power generation facility that includes a storage battery facility that is connected to a power system and is connected in parallel. And it aims at providing the operating method of storage battery equipment.

上記課題を解決するために、本発明は、電力系統に連系された自家発電設備において、互いに並列に接続された複数台の蓄電池とそれぞれの蓄電池に直列に接続された充電回路と、それぞれの蓄電池を選択して放電する放電回路とを備えることによって、潮流制御用としての1台の蓄電池を選択して放電状態とし、残りの蓄電池を充電状態として、潮流制御を放電方向の1台の蓄電池でのみ行い、放電量を制御することで連系点潮流を一定にする。   In order to solve the above problems, the present invention provides a plurality of storage batteries connected in parallel to each other, a charging circuit connected in series with each storage battery, And a discharge circuit for selecting and discharging the storage battery to select one storage battery for power flow control to be in a discharge state, the remaining storage battery to be in a charged state, and one power storage battery in the discharge direction. This is done only at, and the interconnection point power flow is made constant by controlling the discharge amount.

さらに、本発明は、電力系統に連系される自家発電設備における蓄電池設備であって、並列に接続された複数台の蓄電池と、それぞれの蓄電池に直列に接続された複数台の充電回路と、複数台の蓄電池のいずれか1つに接続される放電回路と、電力系統からの潮流を検出する潮流検出手段からの潮流信号に基づいて前記充電回路および前記放電回路を制御する制御装置と、複数台の蓄電池のうちの1つの蓄電池を選択して前記放電回路に接続する選択スイッチとを備えた。   Furthermore, the present invention is a storage battery facility in a private power generation facility linked to the power system, a plurality of storage batteries connected in parallel, a plurality of charging circuits connected in series to each storage battery, A discharge circuit connected to any one of a plurality of storage batteries; a control device for controlling the charging circuit and the discharge circuit based on a power flow signal from a power flow detection means for detecting a power flow from the power system; And a selection switch for selecting one of the storage batteries and connecting it to the discharge circuit.

また、本発明は上記蓄電池設備において、前記制御装置は、連系線の潮流の設定値を設定する連系潮流値設定部と、前記潮流検出手段が検出した連系線の潮流信号と予め前記連系潮流値設定部に設定された前記連系潮流設定値とを比較する比較部と、前記放電回路の放電電流および前記充電回路の充電電流を監視して各蓄電池の蓄電量を記憶する蓄電量監視部と、前記比較部からの放電/充電選択信号および蓄電量監視部からの各蓄電池の蓄電量信号に基づいて前記放電回路に接続される蓄電池を選択して前記放電回路に接続し該放電回路を制御するとともに、前記充電回路に接続される蓄電池を選択して充電回路を制御する放電回路/充電回路制御部とを備える。   Further, in the storage battery facility according to the present invention, the control device includes an interconnection power value setting unit that sets a setting value of a tidal current of the interconnection line, a tidal current signal detected by the tidal current detection means, A comparison unit that compares the connection power flow setting value set in the connection power flow value setting unit, and a power storage that stores a storage amount of each storage battery by monitoring a discharge current of the discharge circuit and a charging current of the charging circuit. A storage battery connected to the discharge circuit on the basis of a charge monitoring signal from the amount monitoring unit, a discharge / charge selection signal from the comparison unit, and a storage amount signal of each storage battery from the storage amount monitoring unit, and connected to the discharge circuit; A discharge circuit / charging circuit control unit that controls the charging circuit by controlling a discharging circuit and selecting a storage battery connected to the charging circuit.

さらに、本発明は、上記蓄電池設備において、前記比較部は、前記潮流信号が前記連系線潮流設定値の上限値を超えると放電回路選択信号を出力し、前記潮流信号が前記連系線潮流設定値の下限値を下回ると充電回路選択信号を出力する。   Further, in the storage battery facility according to the present invention, the comparison unit outputs a discharge circuit selection signal when the power flow signal exceeds an upper limit value of the interconnection line power flow setting value, and the power flow signal is output from the interconnection line power flow. When it falls below the lower limit of the set value, a charging circuit selection signal is output.

本発明は、上記課題を解決するために、並列に接続された複数台の蓄電池と、それぞれの蓄電池に直列に接続された複数台の充電回路と、複数台の蓄電池のいずれか1つに接続される放電回路と、電力系統からの潮流を検出する潮流検出手段からの潮流信号に基づいて前記充電回路および前記放電回路を制御する制御装置と、複数台の蓄電池のうちの1つの蓄電池を選択して前記放電回路に接続する選択スイッチとを備えた、電力系統に連系される自家発電設備における蓄電池設備の運転方法であって、電力系統からの潮流が予め設定された連系線潮流設定値の上限値を超えると前記複数台の蓄電池のうちの充電量が最も高い蓄電池を選択して前記放電回路に接続して潮流制御用蓄電池として潮流を補完し、電力系統からの潮流が予め設定された連系線潮流設定値の下限値を下回ると前記複数台の蓄電池のうちの潮流制御用蓄電池として使用されていない蓄電池を充電する。   In order to solve the above problems, the present invention is connected to any one of a plurality of storage batteries connected in parallel, a plurality of charging circuits connected in series to each storage battery, and a plurality of storage batteries. A control circuit for controlling the charging circuit and the discharging circuit based on a power flow signal from a power flow detection means for detecting a power flow from a power system, and one storage battery among a plurality of storage batteries And a selection switch connected to the discharge circuit, and a method for operating a storage battery facility in a private power generation facility linked to a power system, wherein a power flow from the power system is preset. When the upper limit of the value is exceeded, the storage battery having the highest charge amount among the plurality of storage batteries is selected and connected to the discharge circuit to supplement the power flow as a power flow control storage battery, and the power flow from the power system is preset. The And charging said plurality of storage batteries which are not used as a flow controller for a storage battery of the battery and the lower limit of the tie-line power flow setpoint.

本発明は、上記課題を解決するために、電力系統に連系される自家発電設備における蓄電池設備であって、並列に接続された複数台の蓄電池と、それぞれの蓄電池に直列に接続された複数台の充電回路と、複数台の蓄電池のいずれか1つに接続される放電回路と、電力系統からの潮流を検出する潮流検出手段からの潮流信号に基づいて前記放電回路を制御し、放電が完了した蓄電池から順番に充電するよう前記充電回路を制御する制御装置と、複数台の蓄電池のうちの1つの蓄電池を選択して前記放電回路に接続する選択スイッチと、を備え、放電方向のみで潮流制御を行い、放電が完了した蓄電池から順番に満充電に充電する。   In order to solve the above problems, the present invention is a storage battery facility in an in-house power generation facility linked to an electric power system, and a plurality of storage batteries connected in parallel and a plurality of storage batteries connected in series to each storage battery. A discharge circuit connected to any one of a plurality of storage batteries and a power flow signal from a power flow detection means for detecting a power flow from a power system, and the discharge circuit A control device that controls the charging circuit so as to sequentially charge from the completed storage battery; and a selection switch that selects one storage battery from a plurality of storage batteries and connects the storage battery to the discharge circuit. The power flow is controlled, and the battery is fully charged in order from the storage battery that has been discharged.

上記構成を備えることによって、本発明は、電力系統に連系され、並列に接続した複数の蓄電池からなる蓄電池設備を備えた自家発電設備において、間断なく連系点潮流を制御することが可能となる自家発電設備の蓄電池設備および蓄電池設備の運転方法を提供することができる。   By providing the above configuration, the present invention is capable of controlling the interconnection point power flow without interruption in a private power generation facility including a storage battery facility that is connected to a power system and connected in parallel. It is possible to provide a storage battery facility for an in-house power generation facility and a method for operating the storage battery facility.

以下、本発明に係る系統連系された自家発電設備の構成を、図1を用いて説明する。本発明に係る電力系統に系統連系された自家発電設備は、連系線91を介して電力系統9に連系される。自家発電設備は、充電源に並列に接続された複数の蓄電池を有する蓄電池設備1と、太陽光発電設備3および風力発電設備4等の自然変動電源とを電力線5で接続するとともに、連系線潮流検出手段2とを有して構成される。自家発電設備の電力線5が、連系線91を介して電力系統9に接続され、負荷7−1〜7−nが開閉器6−1〜6−nを介して電力線5に接続される。   Hereinafter, the configuration of a grid-connected private power generation facility according to the present invention will be described with reference to FIG. The private power generation facility grid-connected to the power grid according to the present invention is linked to the power grid 9 via the grid 91. The private power generation facility connects a storage battery facility 1 having a plurality of storage batteries connected in parallel to a charging source, and a natural power source such as a solar power generation facility 3 and a wind power generation facility 4 through a power line 5 and a connection line. And tidal current detection means 2. The power line 5 of the private power generation facility is connected to the power system 9 via the interconnection line 91, and the loads 7-1 to 7-n are connected to the power line 5 via the switches 6-1 to 6-n.

蓄電池設備1は、充電電源(例えば電力線5)に並列に接続された鉛蓄電池などの複数台の蓄電池11−1〜11−nと、出力端がこの蓄電池11−1〜11−nにそれぞれ直列に接続され他端が電力線5に接続されてそれぞれの蓄電池11−1〜11−nへの充電電流を制御する複数台の充電回路(インバータ)12−1〜11−nと、蓄電池11−1〜11−nに一端が電力線5に他端が接続され選択された蓄電池11−1〜11−nからの放電電流を制御する放電回路(インバータ)13と、蓄電池11−1〜11−nを選択して充電回路12−1〜12−nを充電制御しまたは放電回路13を放電制御する制御回路14と、制御回路14からの指示により充電が完了している蓄電池を選択して放電回路13に接続する選択スイッチ15−1〜15−nを備えている。   The storage battery facility 1 includes a plurality of storage batteries 11-1 to 11-n such as lead storage batteries connected in parallel to a charging power source (for example, the power line 5), and output terminals connected in series to the storage batteries 11-1 to 11-n, respectively. A plurality of charging circuits (inverters) 12-1 to 11-n for controlling the charging current to each of the storage batteries 11-1 to 11-n with the other end connected to the power line 5, and the storage battery 11-1. A discharge circuit (inverter) 13 for controlling the discharge current from the selected storage batteries 11-1 to 11-n, one end of which is connected to the power line 5 and the other end of the storage battery 11-1 to 11-n A control circuit 14 that controls charging of the charging circuits 12-1 to 12-n or discharge control of the discharging circuit 13 and a storage battery that has been charged according to an instruction from the control circuit 14 are selected and discharged. Selection switch 1 connected to It has a -1~15-n.

制御装置14には、連系線潮流検出手段2からの潮流信号が入力される。制御装置14は、潮流信号を予め設定されている連系線潮流設定値と比較し、連系線潮流が連系線潮流設定値の上限値を超えている場合には、超過した潮流の値を補完するように蓄電池11−1〜11−nのいずれか1台を選択してその出力電流を制御する。また、制御装置14は、連系線潮流が連系線潮流設定値の下限値を下回る状態では、潮流の余剰分で蓄電池11−1〜11−nを充電するように制御する。制御装置14は、放電回路13を経由した潮流制御用蓄電池の放電量と、充電回路12を経由した充電状態蓄電池の各蓄電池ごとの充電量を監視しており、満充電状態もしくは最も充電量の大きな状態にある蓄電池を選択して放電に充当される蓄電池、すなわち、潮流制御用蓄電池と決定し、その蓄電池の選択スイッチ15を閉状態にして放電回路13に接続する。このとき、選択された蓄電池11に直列に接続された充電回路12には充電を行わせない。充電回路12および放電回路13の構成は周知であり、その構成および動作についての説明を省略する。   The tidal current signal from the interconnection power flow detecting means 2 is input to the control device 14. The control device 14 compares the tidal current signal with a preset interconnection current setting value, and if the interconnection current exceeds the upper limit of the interconnection current setting value, the value of the excess tidal current To select one of the storage batteries 11-1 to 11-n and control its output current. Moreover, the control apparatus 14 is controlled to charge the storage batteries 11-1 to 11-n with the surplus of the tidal current in a state where the telecommunication current flows below the lower limit value of the interconnecting power flow set value. The control device 14 monitors the discharge amount of the power flow control battery via the discharge circuit 13 and the charge amount of each storage battery of the charged state storage battery via the charging circuit 12, and is in a fully charged state or the most charged amount. A storage battery in a large state is selected and determined as a storage battery to be used for discharge, that is, a power flow control storage battery, and the storage battery selection switch 15 is closed and connected to the discharge circuit 13. At this time, the charging circuit 12 connected in series with the selected storage battery 11 is not charged. The configurations of the charging circuit 12 and the discharging circuit 13 are well known, and descriptions of the configurations and operations are omitted.

負荷7−1〜7−nは、電力線5に開閉器6を介して接続され、それぞれの負荷の動作状態によって、連系線潮流に変動を生じる。   The loads 7-1 to 7-n are connected to the power line 5 via the switch 6, and the interconnection power flow varies depending on the operating state of each load.

太陽光発電設備3は、日照の有無や大小によってその出力が変動する自然変動発電設備であり、その出力の変動によって連系線潮流に変動を生じる要因となる。さらに、風力発電設備4は、風の有無や風量によってその出力が変動する自然変動発電設備であり、その出力の変動によって連系線潮流に変動を生じる要因となる。本発明においては、太陽光発電設備3および風力発電設備4は、負の負荷としてみることができ、さらに、負荷、太陽光、風力のうちのいずれか2つを省略することができる。   The photovoltaic power generation facility 3 is a natural variation power generation facility whose output fluctuates depending on the presence or absence of sunlight or the magnitude of the sunshine, and causes fluctuations in the interconnected power flow due to fluctuations in the output. Further, the wind power generation facility 4 is a natural variation power generation facility whose output fluctuates depending on the presence / absence of the wind and the amount of wind, and causes fluctuations in the interconnected power flow due to fluctuations in the output. In the present invention, the photovoltaic power generation facility 3 and the wind power generation facility 4 can be regarded as negative loads, and any two of the load, sunlight, and wind power can be omitted.

連系線潮流検出手段2は、連系線91の潮流を検出して連系線潮流信号を出力する手段であり、CT、VT、トランスデューサなどにより構成することができる。   The interconnecting line power flow detecting means 2 is a means for detecting the power flow of the connecting line 91 and outputting a connecting line power flow signal, and can be constituted by a CT, a VT, a transducer, or the like.

蓄電池設備1の制御装置14の構成を、図2を用いて説明する。制御装置14は、連系潮流値設定部141と、比較部142と、蓄電量化監視部143と、充電回路/放電回路制御部144とを有して構成される。   The structure of the control apparatus 14 of the storage battery equipment 1 is demonstrated using FIG. The control device 14 includes an interconnected power flow value setting unit 141, a comparison unit 142, an electricity storage amount monitoring unit 143, and a charging circuit / discharging circuit control unit 144.

連系潮流値設定部141は、連系線91の潮流の許容値である連系潮流設定値が設定される手段であり、連系潮流設定値は範囲を持って、例えば上限値と下限値が設定される。   The interconnected tidal current value setting unit 141 is a means for setting an interconnected tidal current set value that is an allowable value of the tidal current of the interconnecting line 91. The interconnected tidal current set value has a range, for example, an upper limit value and a lower limit value. Is set.

比較部142は、潮流検出手段2が検出した連系線91の潮流信号と予め連系潮流値設定部141に設定された連系潮流設定値とを比較し、蓄電池設備1から電力線5へ電力を供給する放電状態か、電力線5から蓄電池設備1へ電力を供給する充電状態かを選択する充電/放電選択信号を出力する。すなわち、比較部142は、潮流信号が連系線潮流設定値の上限を超えると放電回路選択信号を出力し、潮流信号が連系線潮流設定値の下限値を下回ると充電回路選択信号を出力する。   The comparison unit 142 compares the power flow signal of the connection line 91 detected by the power flow detection means 2 with the connection power flow setting value set in advance in the connection power flow value setting unit 141, and supplies power from the storage battery facility 1 to the power line 5. Or a charge / discharge selection signal for selecting a charge state for supplying power from the power line 5 to the storage battery facility 1. That is, the comparison unit 142 outputs a discharge circuit selection signal when the power flow signal exceeds the upper limit of the interconnection power flow setting value, and outputs a charging circuit selection signal when the power flow signal falls below the lower limit value of the interconnection power flow setting value. To do.

蓄電量監視部143は、放電回路13の放電電流信号および充電回路12の充電電流信号を積算・監視して、各蓄電池11の蓄電量を算出し記憶する手段である。   The storage amount monitoring unit 143 is a unit that calculates and stores the storage amount of each storage battery 11 by integrating and monitoring the discharge current signal of the discharge circuit 13 and the charge current signal of the charging circuit 12.

放電回路/充電回路制御部144は、比較部142からの放電/充電選択信号および蓄電量監視部143からの各蓄電池の蓄電量信号に基づいて放電回路13に接続される蓄電池11を選択する選択スイッチ制御信号と、放電回路13を制御する放電回路制御信号と、充電回路12に接続される蓄電池11を選択して充電回路12を制御する充電回路充電信号を出力する。すなわち、放電回路/充電回路制御部144は、電力系統9からの潮流が予め設定された連系線潮流設定値の上限を超えると複数台の蓄電池11のうちの充電量が最も高い蓄電池を選択して放電回路13に接続して潮流制御用蓄電池として潮流を補完し、電力系統9からの潮流が予め設定された連系線潮流設定値の下限値を下回ると複数台の蓄電池のうちの潮流制御用蓄電池として使用されていない蓄電池を充電する。   The discharge circuit / charge circuit control unit 144 selects the storage battery 11 connected to the discharge circuit 13 based on the discharge / charge selection signal from the comparison unit 142 and the storage amount signal of each storage battery from the storage amount monitoring unit 143. A switch control signal, a discharge circuit control signal for controlling the discharge circuit 13, and a storage battery 11 connected to the charge circuit 12 are selected and a charge circuit charge signal for controlling the charge circuit 12 is output. That is, the discharge circuit / charge circuit control unit 144 selects the storage battery having the highest charge amount among the plurality of storage batteries 11 when the power flow from the power system 9 exceeds the preset upper limit of the interconnection power flow setting value. Then, it is connected to the discharge circuit 13 to supplement the power flow as a power flow control storage battery, and when the power flow from the power system 9 falls below a preset lower limit value of the interconnected power flow setting value, the power flow of the plurality of storage batteries A storage battery that is not used as a control storage battery is charged.

このような構成を有する自家発電設備を電力系統9に連系線91を介して接続した場合に、制御装置14は、連系線潮流(潮流信号)が連系線潮流設定値を超えると、蓄電池11の充電状態に基づいていずれかの蓄電池11を潮流制御用蓄電池として選択し、選択した蓄電池11から電力線5への出力電力を制御する。   When the private power generation facility having such a configuration is connected to the power system 9 via the connection line 91, the control device 14, when the connection line power flow (power flow signal) exceeds the connection power flow setting value, Based on the state of charge of the storage battery 11, one of the storage batteries 11 is selected as a power flow control storage battery, and the output power from the selected storage battery 11 to the power line 5 is controlled.

蓄電池11を6台並列に接続した蓄電池設備1における各蓄電池11−1〜11−6の充放電の態様の1例を、図3を用いて説明する。図3において、横軸は時間を、縦軸は各電池の蓄電量と充電電流Icまたは放電電流Idを示している。充電電流Icと放電電流Idでは電流の流れる方向が逆となるがこの図では同じ方向に示している。放電電流Idと充電電流Icは、自然変動電源の出力の変動や負荷の変動によって変化するが、それぞれ一定の値として示し、放電電流Idと充電電流Icが交互に現れ全体として放電量と充電量とがバランスし他状態を模式的に示している。   One example of the charging / discharging aspect of each storage battery 11-1 to 11-6 in the storage battery facility 1 in which six storage batteries 11 are connected in parallel will be described with reference to FIG. In FIG. 3, the horizontal axis represents time, and the vertical axis represents the charged amount of each battery and the charging current Ic or discharging current Id. The charging current Ic and the discharging current Id have opposite directions of current flow, but are shown in the same direction in this figure. The discharge current Id and the charge current Ic change depending on the output fluctuation of the natural fluctuation power supply and the fluctuation of the load. However, the discharge current Id and the charge current Ic are shown as constant values, respectively. And the other states are schematically shown.

時間t0では、蓄電池1が満充電とされており、制御装置14は、蓄電池1を選択して潮流制御用蓄電池として放電回路14に接続して放電電流Id1で超過した潮流を補完し、蓄電池2〜6を充電回路12に接続して、潮流の余剰時に充電電流Ic2〜Ic6で充電する。制御装置14は、蓄電池1の放電量および蓄電池2〜6の充電量を監視し、時間t1で蓄電池1が放電を完了すると、潮流制御用蓄電池として満充電とされた蓄電池2を選択して放電回路13に接続して放電電流Id2で超過した潮流を補完し、蓄電池1、3〜6を充電回路12に接続して、潮流の余剰時に充電電流Ic1、Ic3〜Ic6で充電する。制御装置14は、蓄電池2の放電量および蓄電池1、3〜6の充電量を監視し、時間t2で蓄電池2が放電を完了すると、潮流制御用蓄電池として満充電とされた蓄電池3を選択して放電回路13に接続して放電電流Id3で超過した潮流を補完し、蓄電池1、2、4〜6を充電回路12に接続して、潮流の余剰時に充電電流Ic1、Ic2、Ic4〜Ic6で充電する。同様に蓄電池4〜6を順治選択して放電回路13に接続し残りの蓄電池を充電回路12に接続することによって、1台の蓄電池で超過した潮流を補完し、余剰の電力(潮流)で他の蓄電池を充電することができ、各電池の充電電流を小さくして充電時間を長くすることができる。   At time t0, the storage battery 1 is fully charged, and the control device 14 selects the storage battery 1 and connects it to the discharge circuit 14 as a power flow control storage battery to complement the power flow that has been exceeded by the discharge current Id1. .. To 6 are connected to the charging circuit 12 and charged with charging currents Ic2 to Ic6 when the power flow is surplus. The control device 14 monitors the discharge amount of the storage battery 1 and the charge amounts of the storage batteries 2 to 6, and when the storage battery 1 completes discharging at time t1, selects the storage battery 2 that has been fully charged as the storage battery for power flow control and discharges it. The battery 13 is connected to the circuit 13 to supplement the power flow that has been exceeded by the discharge current Id2, and the storage batteries 1 and 3 to 6 are connected to the charging circuit 12 and charged with the charge currents Ic1 and Ic3 to Ic6 when the power flow is surplus. The control device 14 monitors the discharge amount of the storage battery 2 and the charge amounts of the storage batteries 1 and 3-6, and when the storage battery 2 completes discharging at time t2, selects the storage battery 3 that has been fully charged as the power flow control storage battery. And connected to the discharge circuit 13 to supplement the power flow that has been exceeded by the discharge current Id3, and the storage batteries 1, 2, 4 to 6 are connected to the charging circuit 12, and when the power flow is surplus, the charging currents Ic1, Ic2, and Ic4 to Ic6 Charge. Similarly, the storage batteries 4 to 6 are selected in an orderly manner, connected to the discharge circuit 13, and the remaining storage battery is connected to the charging circuit 12, so that the power flow that has been exceeded by one storage battery is supplemented, and the surplus power (power flow) is used. The storage battery can be charged, the charging current of each battery can be reduced and the charging time can be extended.

すなわち、本発明においては、潮流制御用蓄電池の蓄電量(残量)が0%となると満充電(100%)となっている蓄電池を新たな潮流制御用蓄電池として放電回路13へ切り替えて、潮流制御を継続し、残量が下限値となった蓄電池には充電を行う。蓄電池の容量は、変動する容量と同じ容量を設定すればよい。   That is, in the present invention, when the storage amount (remaining amount) of the power flow control storage battery reaches 0%, the storage battery that is fully charged (100%) is switched to the discharge circuit 13 as a new power flow control storage battery, The control is continued and the storage battery whose remaining amount reaches the lower limit is charged. The capacity of the storage battery may be set to the same capacity as the variable capacity.

用意する蓄電池の個数は、蓄電池の充放電速度によって決まる。例えば、残量が0%から100%への充電時間が10時間(0.1C)、残量が100%から0%への放電時間が1時間(1C)である蓄電池を考えると、放電制御中の蓄電池は最小0、最大1Cの放電を行いながら負荷の変動を補完するために2時間の放電が可能となる。一方、充電には10時間が必要であり、放電用蓄電池1個と充電用蓄電池5個を用意し、順番に切り替えて、放電回路に接続して潮流制御用蓄電池とすることになる。このシステムでは、蓄電池の個数は増えるが、それぞれの蓄電池の容量は5分の1程度となり、蓄電池の総容量はそれほど変化しない。   The number of storage batteries to be prepared is determined by the charge / discharge speed of the storage battery. For example, considering a storage battery in which the charge time from 0% to 100% is 10 hours (0.1C) and the discharge time from 100% to 0% is 1 hour (1C), discharge control is considered. The storage battery inside can discharge for 2 hours in order to compensate for fluctuations in the load while discharging at a minimum of 0 and a maximum of 1C. On the other hand, 10 hours are required for charging, and one discharging storage battery and five charging storage batteries are prepared, switched in order, and connected to a discharging circuit to form a power flow control storage battery. In this system, the number of storage batteries increases, but the capacity of each storage battery is about 1/5, and the total capacity of the storage batteries does not change so much.

このように、本発明においては、充電する状態にある蓄電池を負荷とみなすことができ、それぞれの蓄電池の放電制御と充電制御を行うことができる。   Thus, in this invention, the storage battery in the state to charge can be considered as load, and discharge control and charge control of each storage battery can be performed.

上記の実施例では、蓄電池の充電と放電の両方で潮流一定制御を行うようにしたが、蓄電池の放電方向のみで潮流制御を行い、充電は放電が完了した蓄電池から順番に充電して、満充電とする制御方式を採用することができる。   In the above embodiment, constant power flow control is performed for both charging and discharging of the storage battery.However, power flow control is performed only in the discharge direction of the storage battery, and charging is performed in order from the storage battery that has completed discharging. A control method for charging can be employed.

上記の説明では、それぞれの蓄電池11に充電回路12を接続し、1台の蓄電池を放電回路13に切り替えるように構成したが、充電回路12として双方向コンバータを用いることにより、放電回路13を省略することができ、いずれか1台の双方向コンバータを選択して放電回路として用い、残りの双方向コンバータを充電用インバータとして用いることができる。   In the above description, the charging circuit 12 is connected to each storage battery 11 and one storage battery is switched to the discharging circuit 13. However, the discharging circuit 13 is omitted by using a bidirectional converter as the charging circuit 12. One of the bidirectional converters can be selected and used as a discharge circuit, and the remaining bidirectional converter can be used as a charging inverter.

本発明の自家発電設備は、太陽光発電設備3、風力発電設備4、コージェネシステムなどの自家発電装置を備えることができる。例えば、負荷の変動幅が大きく、低負荷である時間が長い設備である場合には、本発明は、これらの自家発電装置を備えることは、必須の要件ではない。すなわち、連系線91を介して電力系統9に連系される。自家発電設備は、充電源に並列に接続された複数の蓄電池を有する蓄電池設備1を電力線5で接続するとともに、連系線潮流検出手段2とを有して構成される。自家発電設備の電力線5が、連系線91を介して電力系統9に接続され、負荷7−1〜7−nが開閉器6−1〜6−nを介して電力線5に接続される。この場合、連系線潮流が連系線潮流設定値を超えた場合にひとつの蓄電池を選択して潮流を補完し、連系線潮流が連系線潮流値を下回った場合に潮流補完用蓄電池として働いている蓄電池以外の蓄電池を充電するようにすればよい。   The private power generation facility of the present invention can include a private power generation device such as a solar power generation facility 3, a wind power generation facility 4, or a cogeneration system. For example, in the case of a facility having a large load fluctuation range and a low load for a long time, it is not an essential requirement for the present invention to include these private power generation devices. That is, it is connected to the power system 9 via the connection line 91. The private power generation facility is configured by connecting a storage battery facility 1 having a plurality of storage batteries connected in parallel to a charging source through a power line 5 and also having an interconnection power flow detection means 2. The power line 5 of the private power generation facility is connected to the power system 9 via the interconnection line 91, and the loads 7-1 to 7-n are connected to the power line 5 via the switches 6-1 to 6-n. In this case, if the grid current exceeds the grid power flow set value, one storage battery is selected to supplement the power flow, and if the grid current falls below the grid power flow value, the power supplement storage battery What is necessary is just to make it charge a storage battery other than the storage battery which works as.

本発明に係る電力系統に連系した自家発電設備の構成を説明する図。The figure explaining the structure of the private power generation equipment connected to the electric power system which concerns on this invention. 本発明に係る電力系統に連系した自家発電設備の制御装置の構成を説明する図。The figure explaining the structure of the control apparatus of the private power generation equipment connected to the electric power grid | system which concerns on this invention. 本発明に係る自家発電設備の動作の態様を説明する図。The figure explaining the mode of operation of the private power generation equipment concerning the present invention. 電力系統に連系した蓄電池設備を有する自家発電設備の構成を説明する図。The figure explaining the structure of the private power generation equipment which has the storage battery equipment linked to the electric power system.

符号の説明Explanation of symbols

1:蓄電池設備、11:蓄電池、12:充電回路、13:放電回路、14:制御装置、15:選択スイッチ、2:連系線潮流検出手段、3:太陽光発電設備、4:風力発電設備、5:電力線、6:開閉器、7:負荷、9:電力系統、91:連系線   DESCRIPTION OF SYMBOLS 1: Storage battery equipment, 11: Storage battery, 12: Charge circuit, 13: Discharge circuit, 14: Control apparatus, 15: Selection switch, 2: Interconnection power flow detection means, 3: Solar power generation equipment, 4: Wind power generation equipment 5: Power line, 6: Switch, 7: Load, 9: Power system, 91: Interconnection line

Claims (5)

電力系統に連系される自家発電設備における蓄電池設備であって、
並列に接続された複数台の蓄電池と、それぞれの蓄電池に直列に接続された複数台の充電回路と、複数台の蓄電池のいずれか1つに接続される放電回路と、電力系統からの潮流を検出する潮流検出手段からの潮流信号に基づいて前記充電回路および前記放電回路を制御する制御装置と、複数台の蓄電池のうちの1つの蓄電池を選択して前記放電回路に接続する選択スイッチと、
を備えたことを特徴とする蓄電池設備。
A storage battery facility in a private power generation facility linked to the power system,
A plurality of storage batteries connected in parallel, a plurality of charging circuits connected in series to each storage battery, a discharge circuit connected to any one of the plurality of storage batteries, and a power flow from the power system A control device for controlling the charging circuit and the discharging circuit based on a power flow signal from a power flow detecting means for detecting; a selection switch for selecting one storage battery among a plurality of storage batteries and connecting to the discharge circuit;
A storage battery facility characterized by comprising:
請求項1に記載の蓄電池設備において、
前記制御装置は、連系線の潮流の設定値を設定する連系潮流値設定部と、前記潮流検出手段が検出した連系線の潮流信号と予め前記連系潮流値設定部に設定された前記連系潮流設定値とを比較する比較部と、前記放電回路の放電電流および前記充電回路の充電電流を監視して各蓄電池の蓄電量を記憶する蓄電量監視部と、前記比較部からの放電/充電選択信号および蓄電量監視部からの各蓄電池の蓄電量信号に基づいて前記放電回路に接続される蓄電池を選択して前記放電回路に接続し該放電回路を制御するとともに、前記充電回路に接続される蓄電池を選択して充電回路を制御する放電回路/充電回路制御部と、を備える
ことを特徴とする蓄電池設備。
In the storage battery equipment according to claim 1,
The control device is set in the interconnected tidal current value setting unit that sets a set value of the tidal current in the interconnected line, the tidal current signal detected by the tidal current detecting unit, and the interconnected tidal current value setting unit in advance. A comparison unit that compares the connected power flow set value, a storage amount monitoring unit that monitors a discharge current of the discharge circuit and a charging current of the charging circuit and stores a storage amount of each storage battery, and a comparison unit from the comparison unit A storage battery connected to the discharge circuit is selected on the basis of a discharge / charge selection signal and a storage amount signal of each storage battery from the storage amount monitoring unit and connected to the discharge circuit to control the discharge circuit, and the charging circuit A storage battery facility comprising: a discharge circuit / charging circuit control unit that controls a charging circuit by selecting a storage battery connected to the battery.
請求項1または請求項2に記載の蓄電池設備において、
前記比較部は、前記潮流信号が前記連系線潮流設定値の上限値を超えると放電回路選択信号を出力し、前記潮流信号が前記連系線潮流設定値の下限値を下回ると充電回路選択信号を出力する
ことを特徴とする蓄電池設備。
In the storage battery equipment according to claim 1 or 2,
The comparison unit outputs a discharge circuit selection signal when the power flow signal exceeds an upper limit value of the interconnection power flow setting value, and a charging circuit selection when the power flow signal falls below a lower limit value of the interconnection power flow setting value. A storage battery facility characterized by outputting a signal.
並列に接続された複数台の蓄電池と、それぞれの蓄電池に直列に接続された複数台の充電回路と、複数台の蓄電池のいずれか1つに接続される放電回路と、電力系統からの潮流を検出する潮流検出手段からの潮流信号に基づいて前記充電回路および前記放電回路を制御する制御装置と、複数台の蓄電池のうちの1つの蓄電池を選択して前記放電回路に接続する選択スイッチとを備えた、電力系統に連系される自家発電設備における蓄電池設備の運転方法であって、
電力系統からの潮流が予め設定された連系線潮流設定値の上限値を超えると前記複数台の蓄電池のうちの充電量が最も高い蓄電池を選択して前記放電回路に接続して潮流制御用蓄電池として潮流を補完し、
電力系統からの潮流が予め設定された連系線潮流設定値の下限値を下回ると前記複数台の蓄電池のうちの潮流制御用蓄電池として使用されていない蓄電池を充電する
ことを特徴とする蓄電池設備の運転方法。
A plurality of storage batteries connected in parallel, a plurality of charging circuits connected in series to each storage battery, a discharge circuit connected to any one of the plurality of storage batteries, and a power flow from the power system A control device for controlling the charging circuit and the discharging circuit based on a power flow signal from a power flow detecting means for detecting, and a selection switch for selecting one of a plurality of storage batteries and connecting to the discharging circuit. A method for operating a storage battery facility in a private power generation facility linked to an electric power system,
When the power flow from the power system exceeds a preset upper limit value of the interconnected power flow setting value, the storage battery with the highest charge amount among the plurality of storage batteries is selected and connected to the discharge circuit for power flow control Complementing the current as a storage battery,
A storage battery facility for charging a storage battery that is not used as a storage battery for power flow control among the plurality of storage batteries when a power flow from an electric power system falls below a lower limit value of a preset interconnection power flow setting value. Driving method.
電力系統に連系される自家発電設備における蓄電池設備であって、
並列に接続された複数台の蓄電池と、それぞれの蓄電池に直列に接続された複数台の充電回路と、複数台の蓄電池のいずれか1つに接続される放電回路と、電力系統からの潮流を検出する潮流検出手段からの潮流信号に基づいて前記放電回路を制御し、放電が完了した蓄電池から順番に充電するよう前記充電回路を制御する制御装置と、複数台の蓄電池のうちの1つの蓄電池を選択して前記放電回路に接続する選択スイッチと、
を備えたことを特徴とする蓄電池設備。
A storage battery facility in a private power generation facility linked to the power system,
A plurality of storage batteries connected in parallel, a plurality of charging circuits connected in series to each storage battery, a discharge circuit connected to any one of the plurality of storage batteries, and a power flow from the power system A control device that controls the discharge circuit based on a power flow signal from a power flow detection means to detect, and controls the charging circuit so as to sequentially charge from the storage battery that has been discharged; and one storage battery among a plurality of storage batteries A selection switch for selecting and connecting to the discharge circuit;
A storage battery facility characterized by comprising:
JP2006281474A 2006-10-16 2006-10-16 Storage battery equipment in private power generation equipment connected to power system and operation method of storage battery equipment Active JP4850019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006281474A JP4850019B2 (en) 2006-10-16 2006-10-16 Storage battery equipment in private power generation equipment connected to power system and operation method of storage battery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006281474A JP4850019B2 (en) 2006-10-16 2006-10-16 Storage battery equipment in private power generation equipment connected to power system and operation method of storage battery equipment

Publications (2)

Publication Number Publication Date
JP2008099527A true JP2008099527A (en) 2008-04-24
JP4850019B2 JP4850019B2 (en) 2012-01-11

Family

ID=39381763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006281474A Active JP4850019B2 (en) 2006-10-16 2006-10-16 Storage battery equipment in private power generation equipment connected to power system and operation method of storage battery equipment

Country Status (1)

Country Link
JP (1) JP4850019B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101531A (en) * 2009-11-06 2011-05-19 Panasonic Electric Works Co Ltd Distribution system for building and method of protecting trunk line in the same
JP2011147329A (en) * 2010-01-18 2011-07-28 Samsung Sdi Co Ltd Power conservation device and operating method thereof, and power conservation system
EP2352214A1 (en) * 2008-11-19 2011-08-03 Toshiba Mitsubishi-Electric Industrial Systems Corporation Output power control apparatus
JP2011182609A (en) * 2010-03-03 2011-09-15 Fujitsu Ltd Device and method for controlling power leveling, and program
WO2011113219A1 (en) * 2010-03-15 2011-09-22 三一电气有限责任公司 Grid-connected wind-photovoltaic hybrid power generation system and power generation method thereof
WO2011135891A1 (en) * 2010-04-26 2011-11-03 日本電気株式会社 Electricity control system and method
JP2012010453A (en) * 2010-06-23 2012-01-12 Tokyo Electric Power Co Inc:The Storage battery system
JP2012235606A (en) * 2011-04-28 2012-11-29 Daiwa House Industry Co Ltd Building power supply system
WO2013024515A1 (en) * 2011-08-12 2013-02-21 大島工業株式会社 Hybrid generation-type streetlamp
JP2013148459A (en) * 2012-01-19 2013-08-01 Fujitsu Telecom Networks Ltd Calibrator unit for charge/discharge tester
JP2013247716A (en) * 2012-05-23 2013-12-09 Hitachi Maxell Ltd Secondary battery charging system and secondary battery charging method
WO2014068874A1 (en) * 2012-10-31 2014-05-08 パナソニック株式会社 Power distribution panel and storage cell pack
JP2014100066A (en) * 2009-10-05 2014-05-29 Panasonic Corp Control device and control unit
JP2016005358A (en) * 2014-06-17 2016-01-12 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Power assist unit and power assist system
WO2017056503A1 (en) * 2015-09-29 2017-04-06 京セラ株式会社 Electricity storage system, electricity storage device, and electricity storage system control method
US9793723B2 (en) 2012-11-19 2017-10-17 Hitachi, Ltd. Storage battery control device and storage battery control method
US10128656B2 (en) 2014-06-17 2018-11-13 Samsung Sdi Co., Ltd. Power assist unit and power assist system
US10916943B2 (en) 2015-03-27 2021-02-09 Nec Corporation Distributed electricity storage system, power control method, and program
CN113541283A (en) * 2021-09-17 2021-10-22 郯城县水务集团有限公司 Open-air environment water source monitoring system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131939A (en) * 1993-06-15 1995-05-19 Nec Corp Battery charge/discharge circuit
JPH08140285A (en) * 1994-11-07 1996-05-31 Hitachi Ltd Power storage system
JP2000004544A (en) * 1998-06-11 2000-01-07 Nippon Telegr & Teleph Corp <Ntt> Independent photovoltaic power supply control and system
JP2001025169A (en) * 1999-07-06 2001-01-26 Nissin Electric Co Ltd Power storage method and power storage device
JP2002218654A (en) * 2001-01-24 2002-08-02 Furukawa Electric Co Ltd:The Photovoltaic power generation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131939A (en) * 1993-06-15 1995-05-19 Nec Corp Battery charge/discharge circuit
JPH08140285A (en) * 1994-11-07 1996-05-31 Hitachi Ltd Power storage system
JP2000004544A (en) * 1998-06-11 2000-01-07 Nippon Telegr & Teleph Corp <Ntt> Independent photovoltaic power supply control and system
JP2001025169A (en) * 1999-07-06 2001-01-26 Nissin Electric Co Ltd Power storage method and power storage device
JP2002218654A (en) * 2001-01-24 2002-08-02 Furukawa Electric Co Ltd:The Photovoltaic power generation system

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2352214A1 (en) * 2008-11-19 2011-08-03 Toshiba Mitsubishi-Electric Industrial Systems Corporation Output power control apparatus
EP2352214A4 (en) * 2008-11-19 2014-12-31 Toshiba Mitsubishi Elec Inc Output power control apparatus
JP2014100066A (en) * 2009-10-05 2014-05-29 Panasonic Corp Control device and control unit
JP2011101531A (en) * 2009-11-06 2011-05-19 Panasonic Electric Works Co Ltd Distribution system for building and method of protecting trunk line in the same
JP2011147329A (en) * 2010-01-18 2011-07-28 Samsung Sdi Co Ltd Power conservation device and operating method thereof, and power conservation system
US8575780B2 (en) 2010-01-18 2013-11-05 Samsung Sdi, Co., Ltd. Power storage apparatus, method of operating the same, and power storage system
JP2011182609A (en) * 2010-03-03 2011-09-15 Fujitsu Ltd Device and method for controlling power leveling, and program
WO2011113219A1 (en) * 2010-03-15 2011-09-22 三一电气有限责任公司 Grid-connected wind-photovoltaic hybrid power generation system and power generation method thereof
WO2011135891A1 (en) * 2010-04-26 2011-11-03 日本電気株式会社 Electricity control system and method
JP6025197B2 (en) * 2010-04-26 2016-11-16 日本電気株式会社 Power control system and method
US9379549B2 (en) 2010-04-26 2016-06-28 Nec Corporation Electric power control system and method
JP2012010453A (en) * 2010-06-23 2012-01-12 Tokyo Electric Power Co Inc:The Storage battery system
JP2012235606A (en) * 2011-04-28 2012-11-29 Daiwa House Industry Co Ltd Building power supply system
WO2013024515A1 (en) * 2011-08-12 2013-02-21 大島工業株式会社 Hybrid generation-type streetlamp
JP2013148459A (en) * 2012-01-19 2013-08-01 Fujitsu Telecom Networks Ltd Calibrator unit for charge/discharge tester
JP2013247716A (en) * 2012-05-23 2013-12-09 Hitachi Maxell Ltd Secondary battery charging system and secondary battery charging method
US9680334B2 (en) 2012-10-31 2017-06-13 Panasonic Intellectual Property Management Co., Ltd. Distribution board and battery pack
JP2015144540A (en) * 2012-10-31 2015-08-06 パナソニック株式会社 Distribution board and storage battery pack
US10536008B2 (en) 2012-10-31 2020-01-14 Panasonic Intellectual Property Management Co., Ltd. Power storage system and power storage systems control method
WO2014068874A1 (en) * 2012-10-31 2014-05-08 パナソニック株式会社 Power distribution panel and storage cell pack
US9793723B2 (en) 2012-11-19 2017-10-17 Hitachi, Ltd. Storage battery control device and storage battery control method
CN105281359A (en) * 2014-06-17 2016-01-27 三星Sdi株式会社 Power assist unit and power assist system
US10128656B2 (en) 2014-06-17 2018-11-13 Samsung Sdi Co., Ltd. Power assist unit and power assist system
CN105281359B (en) * 2014-06-17 2019-05-14 三星Sdi株式会社 Electric power auxiliary unit and electric auxiliary system
JP2016005358A (en) * 2014-06-17 2016-01-12 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Power assist unit and power assist system
US10916943B2 (en) 2015-03-27 2021-02-09 Nec Corporation Distributed electricity storage system, power control method, and program
WO2017056503A1 (en) * 2015-09-29 2017-04-06 京セラ株式会社 Electricity storage system, electricity storage device, and electricity storage system control method
JPWO2017056503A1 (en) * 2015-09-29 2018-03-15 京セラ株式会社 Electric storage system, electric storage device, and electric storage system control method
US10637106B2 (en) 2015-09-29 2020-04-28 Kyocera Corporation Electricity storage system, electricity storage apparatus, and electricity storage system control method
CN113541283A (en) * 2021-09-17 2021-10-22 郯城县水务集团有限公司 Open-air environment water source monitoring system

Also Published As

Publication number Publication date
JP4850019B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP4850019B2 (en) Storage battery equipment in private power generation equipment connected to power system and operation method of storage battery equipment
KR101097260B1 (en) Grid-connected energy storage system and method for controlling grid-connected energy storage system
EP3148037B1 (en) Energy storage system
EP2605359B1 (en) Battery system and its control method
EP2490313B1 (en) Energy storage system and controlling method thereof
KR101243909B1 (en) System for energy storage and control method thereof
KR101146670B1 (en) Energy management system and method for controlling thereof
KR101084216B1 (en) Energy storage system and its control method
CN108288852B (en) Independent DC power system and method
EP2325970A2 (en) Energy management system and grid-connected energy storage system including the energy management system
US20130088900A1 (en) Energy storage system and controlling method of the same
US20150048794A1 (en) Battery charge balancing device and battery charge balancing system
JP2015195674A (en) Power storage battery assembly control system
EP3823152A1 (en) Power conversion system, conversion circuit control method and program
WO2012128252A1 (en) Power storage system
KR20160023865A (en) method and device for storing electrical energy in electrochemical energy accumulators
JP7165953B2 (en) power conversion system
KR20150106694A (en) Energy storage system and method for driving the same
KR20150085227A (en) The control device and method for Energy Storage System
JP4993972B2 (en) Private power generation system combining storage battery equipment and private power generation equipment and output control method of private power generation equipment in the system
US11233403B2 (en) Grid interconnection system
JP6055968B2 (en) Power system
JPWO2018155442A1 (en) DC power supply system
JP6993300B2 (en) Power storage system
KR20140058770A (en) Method and system for operation mode decision of power management system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R150 Certificate of patent or registration of utility model

Ref document number: 4850019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250