JP5893057B2 - Isolated operation detection device and isolated operation detection method - Google Patents

Isolated operation detection device and isolated operation detection method Download PDF

Info

Publication number
JP5893057B2
JP5893057B2 JP2014002836A JP2014002836A JP5893057B2 JP 5893057 B2 JP5893057 B2 JP 5893057B2 JP 2014002836 A JP2014002836 A JP 2014002836A JP 2014002836 A JP2014002836 A JP 2014002836A JP 5893057 B2 JP5893057 B2 JP 5893057B2
Authority
JP
Japan
Prior art keywords
reactive power
frequency
isolated operation
operation detection
injection amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014002836A
Other languages
Japanese (ja)
Other versions
JP2015133785A (en
Inventor
建儒 龍
建儒 龍
準二 大田
準二 大田
智理 長嶺
智理 長嶺
結 永池
結 永池
雅樹 仲石
雅樹 仲石
秀樹 日高
秀樹 日高
杉本 英彦
英彦 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tabuchi Electric Co Ltd
Original Assignee
Tabuchi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tabuchi Electric Co Ltd filed Critical Tabuchi Electric Co Ltd
Priority to JP2014002836A priority Critical patent/JP5893057B2/en
Publication of JP2015133785A publication Critical patent/JP2015133785A/en
Application granted granted Critical
Publication of JP5893057B2 publication Critical patent/JP5893057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Description

本発明は、系統電源と連系するインバータを備えた分散型電源の単独運転検出装置及び単独運転検出方法に関する。   The present invention relates to an isolated operation detection device and an isolated operation detection method for a distributed power supply including an inverter linked to a system power supply.

太陽電池や燃料電池等の分散型電源は、系統電力に連系させて使用するために、周波数や電圧を電力系統に適合するように交流電力に変換するパワーコンディショナを備えている。   A distributed power source such as a solar cell or a fuel cell includes a power conditioner that converts a frequency and a voltage into AC power so as to be compatible with the power system in order to be used in conjunction with system power.

パワーコンディショナは、分散型電源で生成された直流電圧を所定の直流電圧値に調整するDC/DCコンバータと、DC/DCコンバータから出力される直流電力を交流電力に変換するインバータと、インバータの出力から高周波成分を除去するLCフィルタ等を備えている。   The power conditioner includes a DC / DC converter that adjusts a DC voltage generated by a distributed power source to a predetermined DC voltage value, an inverter that converts DC power output from the DC / DC converter into AC power, An LC filter that removes high-frequency components from the output is provided.

分散型電源が系統連系を行なっている配電線に地絡または短絡事故が発生し、或いは計画停電等によって変電所から配電線への電力の送電が停止した状態、即ち単独運転状態に至った場合に、区分開閉器の動作への影響防止及び配電線の作業の安全性を確保するために当該配電線から分散型電源を確実に解列させる必要がある。   A ground fault or short-circuit accident occurs in the distribution line where the distributed power source is connected to the grid, or power transmission from the substation to the distribution line has stopped due to a planned power failure, etc. In this case, it is necessary to reliably disconnect the distributed power source from the distribution line in order to prevent the influence on the operation of the division switch and to ensure the safety of the work of the distribution line.

単独運転検出方式には受動的方式と能動的方式があり、何れか一方または双方がパワーコンディショナに採用されている。   The isolated operation detection method includes a passive method and an active method, and one or both of them are adopted for the power conditioner.

受動的方式とは単独運転移行時の発電出力と負荷の不平衡による電圧位相や周波数等の急変を検出する方式で、電圧位相の急変を検出する電圧位相跳躍検出方式、変圧器の飽和現象に伴う第3次高調波を検出する3次高調波電圧歪急増検出方式等がある。   Passive method is a method to detect sudden changes in voltage phase and frequency due to power generation output and load imbalance at the time of transition to isolated operation, voltage phase jump detection method to detect sudden change in voltage phase, transformer saturation phenomenon There is a third harmonic voltage distortion rapid increase detection method for detecting the accompanying third harmonic.

能動的方式とはパワーコンディショナの制御系や外部に付加した抵抗等により常時電圧や周波数に変動を与えておき単独運転移行時に顕著になる変動を検出する方式で、出力電流位相に微小周波数変化による正帰還をかけることにより周波数異常を検出するスリップモード周波数シフト方式や、出力に周期的な無効電力変動を与え、単独運転移行後に発生する周波数変動を検出する無効電力変動方式等がある。   The active method is a method that constantly changes the voltage and frequency by the control system of the power conditioner and the resistance added to the outside, and detects the change that becomes noticeable when shifting to independent operation. There are a slip mode frequency shift method for detecting frequency anomalies by applying positive feedback according to the above, a reactive power fluctuation method for giving a periodic reactive power fluctuation to an output and detecting a frequency fluctuation generated after shifting to an independent operation.

特許文献1には、系統電源の瞬低等で周波数が急変するような場合に、単独運転状態であるとの誤検出(以下、「不要検出」と記す。)の発現を回避して、FRT(Fault Ride Through)機能つまり系統擾乱時における運転継続性能を備えた単独運転検出装置を提供することを目的したインバータの単独運転検出装置が開示されている。   In Patent Document 1, when the frequency suddenly changes due to an instantaneous drop in the system power supply or the like, it is possible to avoid the occurrence of a false detection (hereinafter referred to as “unnecessary detection”) that is in an isolated operation state, and to An independent operation detection device for an inverter is disclosed that aims to provide a (Fault Ride Through) function, that is, an operation detection device having an operation continuation performance during a system disturbance.

当該単独運転検出装置は、インバータの出力電圧の周波数が正帰還により変化を助長する方向に無効電力を制御するとともに、周波数変化率に応じてステップ状に変化する値が正帰還により変化を助長する方向に無効電力を制御する関数手段と、ステップ状に変化する値に基づく値が単独運転検出レベル以上であるときに異常であると判断してインバータを停止する異常検出手段と、交流電源系統及びインバータ出力の電圧位相に同期するとともに、関数手段の出力により所定の無効電力に制御し、インバータが交流電力系統から切り離されたとき、周波数とステップ状に変化する値とに基づいてインバータの無効電力が変化するよう駆動し、異常が検出されたときにインバータを停止させる駆動手段とを備えている。   The isolated operation detection device controls reactive power in a direction in which the frequency of the output voltage of the inverter promotes a change by positive feedback, and a value that changes stepwise according to the frequency change rate promotes a change by positive feedback. A function means for controlling reactive power in the direction, an abnormality detection means for judging an abnormality when a value based on a step-change value is equal to or higher than the isolated operation detection level, an AC power supply system, and The inverter reactive power is synchronized with the voltage phase of the inverter output and controlled to a predetermined reactive power by the output of the function means, and when the inverter is disconnected from the AC power system, the inverter reactive power is based on the frequency and the value that changes stepwise. Driving means for stopping the inverter when an abnormality is detected.

また、特許文献2には、多数台連系時に各分散型電源から電力系統に注入される無効電力が相殺されるのを防止し、無効電力と負荷無効電力とがバランスしてもそのバランス状態を崩して確実に単独運転を検出できるようにすることを目的とする単独運転検出装置が開示されている。   Further, Patent Document 2 describes that the reactive power injected from each distributed power source to the power system when many units are connected is prevented from being canceled, and even if the reactive power and the load reactive power are balanced, the balanced state is maintained. An isolated operation detection device is disclosed which aims to make it possible to reliably detect an isolated operation by breaking the system.

当該単独運転検出装置は、既注入無効電力が負荷無効電力とバランスしたときに予め定めた位相の追加注入無効電力を一定期間追加注入するように構成され、追加無効電力注入後から一定期間よりも短い期間経過後に、系統周波数偏差の符号に基づいて既注入無効電力の位相を判定し、判定時点での系統周波数偏差の符号からの既注入無効電力の位相が追加注入無効電力の予め定めた位相と逆位相になっているときは、系統周波数偏差の符号に対応した位相の追加注入無効電力を改めて一定期間注入し、判定時点での系統周波数偏差の符号からの既注入無効電力の位相が追加注入無効電力の予め定めた位相と同位相であるときは、追加注入無効電力注入後から一定期間経過するまでの残り期間同じ位相で追加注入無効電力の注入を継続するように構成されている。   The isolated operation detection device is configured to additionally inject additional injection reactive power of a predetermined phase when the already injected reactive power balances with the load reactive power for a certain period, and after the additional reactive power injection for a certain period of time. After a short period of time, the phase of the already injected reactive power is determined based on the sign of the system frequency deviation, and the phase of the already injected reactive power from the sign of the system frequency deviation at the time of determination is a predetermined phase of the additional injected reactive power When the phase is in reverse phase, the additional injection reactive power of the phase corresponding to the sign of the system frequency deviation is injected again for a certain period, and the phase of the already injected reactive power from the sign of the system frequency deviation at the time of determination is added. When it is in phase with the predetermined phase of injection reactive power, the injection of additional injection reactive power is continued in the same phase for the remaining period after the injection of additional injection reactive power until a certain period of time elapses. It is configured.

特許文献3には、連系インバータの出力電力等に与えた能動的な変動の影響が系統周期に出現しづらい場合でも、より確実に電源の単独運転を検出することが可能な単独運転検出装置が開示されている。   Patent Document 3 discloses an isolated operation detection device that can more reliably detect an isolated operation of a power source even when the influence of active fluctuations applied to the output power of a grid-connected inverter does not appear in the system cycle. Is disclosed.

当該単独運転検出装置は、系統電源の系統周期を予め定められた期間毎に計測する系統周期計測部と、系統周期計測部で計測された系統周期に基づいて予め定められた周期分ごとの平均系統周期を算出する平均系統周期算出部と、平均系統周期算出部で算出された直近の複数の平均系統周期それぞれと、予め定められた周期分だけ過去のそれぞれの平均系統周期との偏差をそれぞれ算出し、算出された各偏差それぞれが、予め設定されているそれぞれの閾値を超えている場合に、電源が単独運転状態であると判定する判定部とを備えている。   The islanding operation detection device includes a system cycle measuring unit that measures a system cycle of the system power supply every predetermined period, and an average for each predetermined cycle based on the system cycle measured by the system cycle measuring unit. An average system cycle calculation unit for calculating a system cycle, a plurality of the latest average system cycles calculated by the average system cycle calculation unit, and a deviation from each past average system cycle by a predetermined cycle, respectively. And a determination unit that determines that the power source is in an independent operation state when each of the calculated deviations exceeds a preset threshold value.

特許文献4には、高調波歪電圧が単独運転以外の要因で発生しても単独運転を適確かつ高速に判定可能とすることと目的として、高調波歪電圧の変化値が閾値を超えたか否かに基づき分散型電源が単独運転状態にあるか否かの判定を行う分散型電源の単独運転判定方法で、系統周期の変化に応じて上記判定を複数回以上でかつその判定回数を変え、また閾値を複数に変えて単独運転であるか否かを判定する方法が開示されている。   Patent Document 4 discloses that even if the harmonic distortion voltage occurs due to a factor other than the single operation, the single operation can be accurately and quickly determined, and whether the change value of the harmonic distortion voltage has exceeded a threshold value. This is a method for determining whether or not a distributed power source is in an isolated operation state based on whether or not the above determination is made more than once and the number of determinations is changed according to changes in the system cycle. In addition, a method is disclosed in which it is determined whether or not the vehicle is operating alone by changing the threshold value to a plurality of values.

さらに、非特許文献1には、太陽光発電用パワーコンディショナの標準形能動的単独運転検出方式として規格化されたステップ注入付周波数フィードバック方式が開示されている。当該ステップ注入付周波数フィードバック方式は、系統周波数の偏差に応じて当該偏差を増大させる方向に予め設定された無効電力量を注入するとともに、周波数偏差が小さく且つ高調波電圧または基本波電圧が所定の変動条件を満たす場合に、周波数が低下する方向に一定の無効電力量を所定時間注入する方式である。   Further, Non-Patent Document 1 discloses a frequency feedback system with step injection standardized as a standard active isolated operation detection system of a power conditioner for photovoltaic power generation. The frequency feedback method with step injection injects a preset reactive power in a direction to increase the deviation according to the deviation of the system frequency, and the frequency deviation is small and the harmonic voltage or the fundamental voltage is predetermined. This is a method of injecting a certain amount of reactive power for a predetermined time in the direction of decreasing the frequency when the variation condition is satisfied.

特開2012−120285号公報JP 2012-120285 A 特開2011−55678号公報JP 2011-55678 A 特開2010−142081号公報JP 2010-148201 A 特開2008−35619号公報JP 2008-35619 A

日本電機工業会規格 JEM1498 2012年8月27日発行Japan Electrical Manufacturers' Association JEM1498 issued on August 27, 2012

特許文献1に開示された単独運転検出装置は、インバータの出力電圧の周波数が変動した場合にその偏差を助長する方向に無効電力を注入するように構成され、その際の応答性を向上するために周波数の変化率に応じてさらに無効電力の注入量を増大させるように特性の異なる関数手段を複数備える方式であり、不要検出のための装置構成が複雑になるという問題があった。   The isolated operation detection device disclosed in Patent Document 1 is configured to inject reactive power in a direction that promotes the deviation when the frequency of the output voltage of the inverter fluctuates, in order to improve the responsiveness at that time However, there is a problem in that the apparatus configuration for unnecessary detection is complicated because it has a plurality of function means having different characteristics so as to further increase the amount of reactive power injected in accordance with the frequency change rate.

また、特許文献2,3,4も同様に、不要検出を回避して系統擾乱時における運転継続性能(FRT)を実現するためには、不要検出のための専用の制御ブロックや制御アルゴリズムを構築しなければならず制御が複雑になるという問題があった。   Similarly, in Patent Documents 2, 3, and 4, in order to avoid unnecessary detection and to realize operation continuity performance (FRT) during system disturbance, a dedicated control block and control algorithm for unnecessary detection are constructed. There was a problem that control had to be complicated.

さらに、非特許文献1に規定されたステップ注入付周波数フィードバック方式でも、系統周波数の偏差に応じて無効電力量を注入する周波数フィードバック制御時に十分な応答性を確保するための明確な制御回路が提示されているわけではなく、規格で示される0.2秒以内に単独運転状態を検出するためには、特許文献1に開示されたような周波数変化率の値に応じて無効電力の注入量を嵩上げするような回路等が必要になり、制御が複雑になるという問題が内在されている。   Furthermore, even in the frequency feedback method with step injection defined in Non-Patent Document 1, a clear control circuit for ensuring sufficient responsiveness at the time of frequency feedback control in which reactive energy is injected according to the deviation of the system frequency is presented. However, in order to detect the isolated operation state within 0.2 seconds indicated by the standard, the reactive power injection amount is set according to the value of the frequency change rate as disclosed in Patent Document 1. The problem that the circuit etc. which raises becomes necessary and control becomes complicated is inherent.

本発明の目的は、上述した問題点に鑑み、系統周波数の急変や系統電圧の位相の急変、或いはそれらの変化が長時間継続する場合でも、FRT機能を具備しつつ多数台連系に対応できる単独運転検出装置及び単独運転検出方法を提供する点にある。   In view of the above-described problems, the object of the present invention is to support a multi-unit interconnection while having an FRT function even when a system frequency suddenly changes, a system voltage phase suddenly changes, or even when those changes continue for a long time. An independent operation detection device and an isolated operation detection method are provided.

上述の目的を達成するため、本発明による単独運転検出装置の第一の特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、系統電源と連系するインバータを備えた分散型電源の単独運転検出装置であって、系統電圧(euw)のゼロクロスタイミングに基づいて系統周波数を計測する系統周波数計測部と、前記系統周波数計測部で計測された系統周波数に基づいて得られる周波数偏差に応じて無効電力注入量を算出する無効電力注入量算出部と、系統電圧(euw)が入力され系統電圧(euw)の位相角度(θuw)に同期した基準系統電圧信号を生成する第1のPLL処理部と、逆潮流電流(isp)が入力され逆潮流電流(isp)の位相角度(θsp)に同期した基準逆潮流電流信号を生成する第2のPLL処理部とを備え、両信号の位相差(θuw−θsp)に基づいて帰還信号を生成する帰還信号生成部と、前記無効電力注入量算出部で算出された無効電力注入量に対応する無効電流指令値と前記帰還信号生成部で生成された帰還信号とに基づいて、前記インバータから前記無効電力注入量の無効電力が注入されるように前記インバータに対する出力電流指令値を帰還制御する無効電流制御部と、前記インバータの出力電流値が前記出力電流指令値になるように前記インバータを制御するインバータ制御部と、前記無効電力注入量の無効電力が注入されたときの系統電源の電気量に基づいて単独運転状態であるか否かを検出する単独運転検出部と、を備えている点にある。 In order to achieve the above-mentioned object, the first characteristic configuration of the isolated operation detection device according to the present invention is a distributed type having an inverter linked to a system power supply as described in claim 1 of the claims. A power source isolated operation detection device that measures a system frequency based on a zero cross timing of a system voltage (e uw ), and a frequency obtained based on the system frequency measured by the system frequency measurement unit generating a reactive power injection amount calculating unit for calculating a reactive power injection quantity in accordance with the deviation, a reference system voltage signal synchronized with the phase angle (theta uw) of the system voltage (e uw) is input system voltage (e uw) the first and the PLL processing unit, the second PLL processing for generating a reference reverse flow current signal synchronized with the phase angle (theta sp) of reverse flow current (i sp) are reverse flow current is input (i sp) to With the door, and a feedback signal generator for generating a feedback signal based on the phase difference between the two signals (θ uwsp), reactive current corresponding to the reactive power injected amount calculated by the reactive power injected amount calculating section Based on the command value and the feedback signal generated by the feedback signal generation unit, the reactive current control that feedback-controls the output current command value for the inverter so that the reactive power of the reactive power injection amount is injected from the inverter. And an inverter control unit that controls the inverter so that the output current value of the inverter becomes the output current command value, and the amount of electricity of the system power source when the reactive power of the reactive power injection amount is injected And an isolated operation detecting unit that detects whether or not the vehicle is in an isolated operation state.

系統周波数計測部によって系統電圧(euw)のゼロクロスタイミングから系統周波数が計測され、その系統周波数に基づいて時系列的な周波数偏差が発生すると無効電力注入量算出部によってその周波数偏差に応じた無効電力注入量が算出される。また、帰還信号生成部では、第1のPLL処理部によって生成された系統電圧(euw)の位相角度(θuw)に同期した基準系統電圧信号と第2のPLL処理部によって生成された逆潮流電流(isp)の位相角度(θsp)に同期した基準逆潮流電流信号との位相差(θuw−θsp)に基づいて帰還信号が生成される。 When the system frequency is measured from the zero cross timing of the system voltage (e uw ) by the system frequency measurement unit and a time-series frequency deviation occurs based on the system frequency, the reactive power injection amount calculation unit invalidates the frequency according to the frequency deviation The power injection amount is calculated. In the feedback signal generation unit, the reference system voltage signal synchronized with the phase angle (θ uw ) of the system voltage (e uw ) generated by the first PLL processing unit and the inverse generated by the second PLL processing unit A feedback signal is generated based on the phase difference (θ uw −θ sp ) with the reference reverse flow current signal synchronized with the phase angle (θ sp ) of the tidal current (i sp ).

無効電流制御部は、インバータから当該無効電力注入量の無効電力が適正に注入されるように、当該無効電力注入量に対応する無効電流指令値と帰還信号生成部で生成された帰還信号とに基づいてインバータの出力電流指令値を帰還制御するとともに、インバータ制御部はインバータの出力電流値が当該出力電流指令値になるようにインバータを制御する。そして、単独運転検出部は当該無効電力注入量の無効電力が注入されたときの系統電源の電気量、例えば系統周波数、系統電圧、総合高調波歪率等に基づいて単独運転状態であるか否かを検出する。   The reactive current control unit generates a reactive current command value corresponding to the reactive power injection amount and a feedback signal generated by the feedback signal generation unit so that the reactive power of the reactive power injection amount is appropriately injected from the inverter. Based on the feedback control of the output current command value of the inverter, the inverter control unit controls the inverter so that the output current value of the inverter becomes the output current command value. Then, the isolated operation detection unit is in the isolated operation state based on the amount of electricity of the system power source when the reactive power of the reactive power injection amount is injected, for example, the system frequency, the system voltage, the total harmonic distortion, etc. To detect.

このように、無効電流制御部によってインバータの出力電流指令値が帰還制御されるので、系統電源に目標値である無効電力注入量の無効電力が正確且つ速やかに注入され、その結果、無効電力注入に対する良好な応答性が確保でき、不要検出のための複雑なアルゴリズムを駆使しなくても、不要検出することがなく速やかに単独運転状態であるか否かを検出することができるようになる。   In this way, the reactive current control unit feedback-controls the output current command value of the inverter, so that reactive power of the reactive power injection amount that is the target value is accurately and promptly injected into the system power supply. As a result, reactive power injection Therefore, it is possible to quickly detect whether or not the vehicle is in an isolated operation state without detecting unnecessary, without using a complicated algorithm for detecting unnecessary.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一の特徴構成に加えて、前記第1のPLL処理部のゲインが前記第2のPLL処理部のゲインよりも大きな値に設定されている点にある。   In the second feature configuration, as described in claim 2, in addition to the first feature configuration described above, the gain of the first PLL processing unit is larger than the gain of the second PLL processing unit. The point is set to the value.

系統電圧(euw)の位相角度θuwに同期した基準系統電圧信号を得るための第1のPLL処理部のゲインが、逆潮流電流(isp)の位相角度(θsp)に同期した基準逆潮流電流信号を得るための第2のPLL処理部のゲインよりも大きな値に設定されているので、系統電源側で生じた擾乱によって過渡的に電圧や位相等が変動する系統電圧(euw)を適正に反映した基準系統電圧信号が、基準逆潮流電流信号よりも感度よく得られる。そして、そのような位相差(θuw−θsp)に基づいて無効電流制御部によってインバータの出力電流指令値が適正に帰還制御されるようになる。 The gain of the first PLL processing unit for obtaining the reference system voltage signal synchronized with the phase angle θ uw of the system voltage (e uw ) is the reference synchronized with the phase angle (θ sp ) of the reverse flow current (i sp ). Since it is set to a value larger than the gain of the second PLL processing unit for obtaining the reverse flow current signal, the system voltage (e uw) in which the voltage, phase, etc. fluctuate transiently due to the disturbance generated on the system power supply side ) Can be obtained with higher sensitivity than the reference reverse current signal. Based on such a phase difference (θ uw −θ sp ), the reactive current control unit appropriately feedback-controls the output current command value of the inverter.

同第三の特徴構成は、同請求項3に記載した通り、上述の第一または第二の特徴構成に加えて、前記単独運転検出部は、前記第1のPLL処理部で算出される運転周波数及び前記系統周波数計測部で計測される系統周波数の双方が、連続する複数の系統周期で一方向に変化する場合に単独運転状態と判断するように構成されている点にある。   The third feature configuration is the operation calculated by the first PLL processing unit in addition to the first or second feature configuration described above, as described in claim 3. When both the frequency and the system frequency measured by the system frequency measuring unit change in one direction at a plurality of continuous system periods, the system is determined to be in an isolated operation state.

系統電源に無効電力を注入した状況で、何らかの要因で系統電源の位相が急変するような場合にはその時点で系統周波数が変動してもその前後で系統周波数が変動することがないのに対して、系統電源からの送電が停止して単独運転状態となる場合にはそれ以降周波数が同じ方向に変動する。そこで、第1のPLL処理部で算出される運転周波数と、ゼロクロス信号を用いた系統周波数計測部で計測される系統周波数の双方が、連続する複数の系統周期で一方向に変化する、という傾向が見られる場合に単独運転状態であると判断することによって、系統電源の位相急変時や瞬低による位相急変時(FRT)の不要検出を確実に回避することができるようになる。   When reactive power is injected into the system power supply and the phase of the system power supply changes suddenly for some reason, even if the system frequency changes at that time, the system frequency does not change before and after that. Thus, when the power transmission from the system power supply stops and the single operation state is entered, the frequency subsequently fluctuates in the same direction. Therefore, a tendency that both the operating frequency calculated by the first PLL processing unit and the system frequency measured by the system frequency measuring unit using the zero cross signal change in one direction at a plurality of continuous system periods. By determining that the system is in an isolated operation state, it is possible to reliably avoid unnecessary detection of a sudden phase change (FRT) caused by a sudden phase change or a sudden drop in the system power supply.

また、運転周波数及び系統周波数の双方を用いることにより、系統電圧euwのゼロ付近点でのスパイク状のようなパルス幅が発生する時に、誤検出することを回避することができるようになる。 Further, by using both the operation frequency and the system frequency, it is possible to avoid erroneous detection when a pulse-like pulse width occurs near the zero point of the system voltage euw .

同第四の特徴構成は、同請求項4に記載した通り、上述の第一から第三の何れかの特徴構成に加えて、前記単独運転検出部は、前記第1のPLL処理部で算出される運転周波数及び前記系統周波数計測部で計測される系統周波数の双方の少なくとも現在値、1系統周期前の値及び2系統周期前の値に基づいて単独運転状態であるか否かを検出するように構成されている点にある。   In the fourth feature configuration, in addition to any one of the first to third feature configurations described above, the islanding operation detection unit is calculated by the first PLL processing unit. It is detected whether or not it is in a single operation state based on at least the current value of both the operating frequency and the system frequency measured by the system frequency measuring unit, the value before 1 system cycle, and the value before 2 system cycles It is in the point comprised as follows.

上述した第三の特徴構成と同様、系統電源の位相が急変するような場合にはその時点の前後で系統周波数が変動することがないのに対して、単独運転状態となる場合にはそれ以降周波数が同じ方向に変動する。そこで、少なくとも連続する3系統周期で系統周波数の挙動をチェックすることにより、系統電源の位相急変による系統周波数の変動であるか否かが正確に検出できるようになる。   Similar to the third characteristic configuration described above, when the phase of the system power supply changes suddenly, the system frequency does not fluctuate before and after that point of time, but when it becomes an independent operation state thereafter The frequency varies in the same direction. Therefore, by checking the behavior of the system frequency at least at three consecutive system cycles, it is possible to accurately detect whether or not the system frequency is changed due to a sudden phase change of the system power supply.

同第五の特徴構成は、同請求項5に記載した通り、上述の第一または第二の特徴構成に加えて、前記単独運転検出部は、系統電圧(euw)の高調波電圧変動率が所定比率を超え、その状態が所定時間継続する場合に単独運転状態であると検出するように構成されている点にある。 In the fifth feature configuration, as described in claim 5, in addition to the first or second feature configuration described above, the islanding operation detection unit may detect a harmonic voltage fluctuation rate of the system voltage (e uw ). Is in a point that it is detected that it is in a single operation state when the state exceeds a predetermined ratio and the state continues for a predetermined time.

系統電源に無効電力を注入した状況で、何らかの要因で系統電源の高調波電圧が変動してもその前後の系統周期で高調波電圧が大きく変動することがないのに対して、系統電源からの給電が停止して単独運転状態となる場合にはそれ以降の連続周期で高調波電圧が大きく変動する。そこで、系統電圧の高調波電圧変動率が所定比率を超えた状態が所定時間継続すると単独運転状態であると検出することにより不要検出を回避することができるようになる。   In the situation where reactive power is injected into the system power supply, even if the harmonic voltage of the system power supply fluctuates due to some reason, the harmonic voltage does not fluctuate significantly in the system cycle before and after that. When the power supply is stopped and the single operation state is entered, the harmonic voltage greatly fluctuates in subsequent continuous cycles. Therefore, when the harmonic voltage fluctuation rate of the system voltage exceeds a predetermined ratio continues for a predetermined time, it is possible to avoid unnecessary detection by detecting that the system is in an isolated operation state.

同第六の特徴構成は、同請求項6に記載した通り、上述の第一または第二の特徴構成に加えて、前記単独運転検出部は、前記第1のPLL処理部で算出される運転周波数及び前記系統周波数計測部で計測される系統周波数の双方の現在値、1系統周期前の値及び2系統周期前の値に基づいて、双方が連続する複数の系統周期で一方向に変化すると判定した場合であって、系統電圧(euw)の高調波電圧変動率が所定比率を超え、その状態が所定時間継続する場合に単独運転状態であると検出するように構成されている点にある。 The sixth feature configuration is the operation calculated by the first PLL processing unit in addition to the first or second feature configuration described above, as described in claim 6. Based on the current value of both the frequency and the system frequency measured by the system frequency measurement unit, the value before one system cycle, and the value before two system cycles, when both change in one direction with a plurality of continuous system cycles It is a case where it is determined, and when the harmonic voltage fluctuation rate of the system voltage (e uw ) exceeds a predetermined ratio and the state continues for a predetermined time, it is configured to detect that it is a single operation state. is there.

上述した第四及び第五の特徴構成を組み合わせることにより、少なくとも連続する3系統周期で系統周波数の挙動をチェックするとともに、系統電圧の高調波電圧変動率が所定比率を超えた状態が所定時間継続するか否かをチェックすることにより、より確実に不要検出を回避して適正に単独運転状態を検出することができるようになる。   By combining the fourth and fifth feature configurations described above, the system frequency behavior is checked at least in three consecutive system cycles, and the state where the harmonic voltage fluctuation rate of the system voltage exceeds a predetermined ratio continues for a predetermined time. By checking whether or not to do so, it becomes possible to more reliably avoid the unnecessary detection and to properly detect the single operation state.

同第七の特徴構成は、同請求項7に記載した通り、上述の第一から第六の何れかの特徴構成に加えて、前記無効電力注入量算出部は、ある時点の周波数偏差に応じて以後の周波数偏差が次第に大きくなるように無効電力注入量が定められた周波数偏差・無効電力注入量特性テーブルから無効電力注入量を算出する周波数対応無効電力注入量算出部と、ある時点の周波数偏差に変動がなく基本波電圧及び/または高調波電圧が変動する場合に電流位相が一定方向で一定量の無効電力注入量を算出するステップ無効電力注入量算出部と、を備えている点にある。   In the seventh feature configuration, as described in claim 7, in addition to any of the first to sixth feature configurations described above, the reactive power injection amount calculation unit may respond to a frequency deviation at a certain point in time. A frequency-corresponding reactive power injection amount calculation unit for calculating the reactive power injection amount from the frequency deviation / reactive power injection amount characteristic table in which the reactive power injection amount is determined so that the frequency deviation thereafter gradually increases, and a frequency at a certain time A step reactive power injection amount calculation unit that calculates a constant amount of reactive power injection in a constant direction when the fundamental wave voltage and / or the harmonic voltage fluctuates without variation in deviation. is there.

分散型電源が多数台系統電源に連系している場合であっても、ステップ無効電力注入量算出部によって各分散型電源から同一傾向の無効電力が注入されるので、各分散型電源から注入される無効電力が相殺されるような不都合な事態を招来することがないのみならず、別途の複雑な検出アルゴリズムを設けることなく不要検出を回避することができ、確実に単独運転状態であるか否かを検出することができるようになる。   Even when distributed power supplies are connected to multiple power supplies, reactive power with the same tendency is injected from each distributed power source by the step reactive power injection amount calculation unit. In addition to avoiding inconvenient situations that cancel out reactive power, it is possible to avoid unnecessary detection without providing a separate complicated detection algorithm, and to ensure that it is in an isolated operation state. It becomes possible to detect whether or not.

本発明による単独運転検出方法の第一の特徴構成は、同請求項8に記載した通り、系統電源と連系するインバータを備えた分散型電源の単独運転検出方法であって、系統電圧euwのゼロクロスタイミングに基づいて系統周波数を計測する系統周波数計測ステップと、前記系統周波数計測ステップで計測された系統周波数に基づいて得られる周波数偏差に応じて無効電力注入量を算出する無効電力注入量算出ステップと、系統電圧euwが入力され系統電圧euwの位相角度(θuw)に同期した基準系統電圧信号を生成する第1のPLL処理ステップと、逆潮流電流ispが入力され逆潮流電流ispの位相角度θspに同期した基準逆潮流電流信号を生成する第2のPLL処理ステップとを備え、両信号の位相差(θuw−θsp)に基づいて帰還信号を生成する帰還信号生成ステップと、前記無効電力注入量算出ステップで算出された無効電力注入量に対応する無効電流指令値と前記帰還信号生成ステップで生成された帰還信号とに基づいて、前記インバータから前記無効電力注入量の無効電力が注入されるように前記インバータに対する出力電流指令値を帰還制御する無効電流制御ステップと、前記インバータの出力電流値が前記出力電流指令値になるように前記インバータを制御するインバータ制御ステップと、前記無効電力注入量の無効電力が注入されたときの系統電源の電気量に基づいて単独運転状態であるか否かを検出する単独運転検出ステップと、を備えている点にある。 The first characteristic configuration of the islanding operation detection method according to the present invention is a islanding operation detection method for a distributed power source including an inverter linked to the system power source, as described in claim 8, wherein the system voltage e uw A system frequency measurement step for measuring a system frequency based on zero cross timing of the system, and a reactive power injection amount calculation for calculating a reactive power injection amount according to a frequency deviation obtained based on the system frequency measured in the system frequency measurement step A step, a first PLL processing step in which a system voltage e uw is input and a reference system voltage signal is generated in synchronization with a phase angle (θ uw ) of the system voltage e uw , and a reverse flow current i sp is input and a reverse flow current and a second PLL processing step of generating a reference reverse flow current signal synchronized with a phase angle theta sp of i sp, phase difference between the two signals (θ uwsp A feedback signal generation step for generating a feedback signal based on the reactive power injection amount calculated in the reactive power injection amount calculation step and a feedback signal generated in the feedback signal generation step. Based on the reactive current control step for feedback control of the output current command value for the inverter so that the reactive power of the reactive power injection amount is injected from the inverter, the output current value of the inverter to the output current command value An inverter control step for controlling the inverter so as to be, and an isolated operation detection step for detecting whether or not the system is in an isolated operation state based on the amount of electricity of the system power supply when the reactive power of the reactive power injection amount is injected It is in the point equipped with.

同第二の特徴構成は、同請求項9に記載した通り、上述の第一特徴構成に加えて、前記第1のPLL処理ステップのゲインが前記第2のPLL処理ステップのゲインよりも大きな値に設定されている点にある。   In the second feature configuration, as described in claim 9, in addition to the first feature configuration described above, the gain of the first PLL processing step is larger than the gain of the second PLL processing step. It is in the point set to.

同第三の特徴構成は、同請求項10に記載した通り、上述の第一または第二の特徴構成に加えて、前記単独運転検出ステップは、前記第1のPLL処理ステップで算出される運転周波数、及び前記系統周波数計測ステップで計測される系統周波数の双方の現在値、1系統周期前の値及び2系統周期前の値に基づいて双方が同じ傾向で変動すると判定した場合であって、系統電圧euwの高調波電圧変動率が所定比率を超え、その状態が所定時間継続する場合に単独運転状態であると検出する点にある。 The third feature configuration is the operation calculated in the first PLL processing step in addition to the first or second feature configuration described above, as described in claim 10. It is a case where it is determined that both fluctuate in the same tendency based on the current value of both the frequency and the system frequency measured in the system frequency measurement step, based on the value before the one system cycle and the value before the two system cycles, When the harmonic voltage fluctuation rate of the system voltage e uw exceeds a predetermined ratio and the state continues for a predetermined time, it is detected that it is in a single operation state.

以上説明した通り、本発明によれば、系統周波数の急変や系統電圧の位相の急変、或いはそれらの変化が長時間継続する場合でも、FRT機能を具備しつつ多数台連系に対応できる単独運転検出装置及び単独運転検出方法を提供することができるようになった。   As described above, according to the present invention, even when the system frequency suddenly changes, the system voltage phase suddenly changes, or even when those changes continue for a long time, the FRT function is provided and the single operation that can cope with the multi-unit interconnection is possible. A detection device and an isolated operation detection method can be provided.

本発明による単独運転検出装置が適用される分散型電源の回路ブロック構成図Circuit block diagram of a distributed power source to which an isolated operation detection device according to the present invention is applied 本発明による単独運転検出装置の機能ブロック構成図Functional block diagram of an isolated operation detection device according to the present invention 系統周波数計測部の動作説明図Operation explanatory diagram of system frequency measurement unit (a)は周波数対応無効電力注入量算出部で用いられる周波数偏差・無効電力注入量特性テーブルの説明図、(b)はステップ無効電力注入量算出部の動作説明図(A) is explanatory drawing of the frequency deviation and reactive power injection amount characteristic table used in a frequency corresponding reactive power injection amount calculation part, (b) is operation | movement explanatory drawing of a step reactive power injection amount calculation part. (a)は瞬低、且つ、位相急変時の説明図、(b)は単独運転時の運転周波数fPLLと系統周波数fgridの特性説明図(A) is an explanatory diagram at the time of a momentary drop and a sudden phase change, and (b) is a characteristic explanatory diagram of the operating frequency f PLL and the system frequency f grid at the time of single operation. (a)は運転周波数fPLLと系統周波数fgridの配列説明図、(b)は高調波実効電圧THDの配列説明図(A) is a sequence diagram of the operation frequency f PLL and the power system frequency f grid, (b) the sequence diagram of the harmonic effective voltage THD v 単独運転状態を検出するアルゴリズムの説明図Explanatory diagram of algorithm to detect islanding state 単独運転状態を検出するフローチャートFlow chart for detecting the isolated operation state 実験結果の説明図Explanatory diagram of experimental results

以下、本発明による単独運転検出装置及び単独運転検出方法を図面に基づいて説明する。
図1には、分散型電源の一例である太陽電池発電装置100が示されている。太陽電池発電装置100は太陽電池パネルSPと太陽電池パネルSPが接続されたパワーコンディショナPCを備えて構成され、連系リレーSgridを介して系統電源egridに接続されている。尚、本発明はパワーコンディショナPCに接続される発電装置が太陽電池パネルSPに限定されるものではなく、燃料電池等の他の発電装置が接続される場合でも適用可能である。
Hereinafter, an isolated operation detection device and an isolated operation detection method according to the present invention will be described with reference to the drawings.
FIG. 1 shows a solar battery power generation apparatus 100 that is an example of a distributed power source. The solar battery power generation apparatus 100 is configured to include a solar battery panel SP and a power conditioner PC to which the solar battery panel SP is connected, and is connected to the system power supply e grid via the interconnection relay Sgrid . Note that the present invention is not limited to the solar cell panel SP as the power generator connected to the power conditioner PC, and can also be applied when other power generators such as fuel cells are connected.

パワーコンディショナPCは、太陽電池パネルSPで発電された直流電圧を所定の直流リンク電圧Vdcに昇圧するDC/DCコンバータ1と、系統電源と連系するように所定の周波数及び電圧値の交流電圧に変換するインバータ3と、インダクタLinvとコンデンサCinvを備え高調波成分を除去するLCフィルタ4を備えている。 The power conditioner PC includes a DC / DC converter 1 that boosts a DC voltage generated by the solar panel SP to a predetermined DC link voltage V dc , and an AC having a predetermined frequency and voltage value so as to be connected to the system power supply. An inverter 3 for converting to a voltage, and an LC filter 4 that includes an inductor L inv and a capacitor C inv and removes harmonic components are provided.

インバータ3に備えたスイッチS1,S2,S3,S4は、単独運転検出装置10を含む制御ブロックによって系統電力に連系させるべく周波数や電圧を適合するようにPWM制御によってオン/オフされ、LCフィルタ4によってその出力から高調波成分が除去され、正弦波の交流電力として出力される。尚、図中、符号Cdcは直流リンク電圧の安定化用の電解コンデンサ、iinvはインバータの出力電流、Lgridは系統インピーダンス、euwはu−wの線間電圧、ispは逆潮流電流、Zは交流負荷を示す。 The switches S1, S2, S3, and S4 provided in the inverter 3 are turned on / off by PWM control so as to adapt the frequency and voltage to be linked to the system power by the control block including the isolated operation detection device 10, and the LC filter The harmonic component is removed from the output by 4 and output as sinusoidal AC power. In the figure, symbol C dc is an electrolytic capacitor for stabilizing the DC link voltage, i inv is the output current of the inverter, L grid is the system impedance, e uw is the u-w line voltage, and i sp is the reverse power flow. current, Z L denotes an AC load.

図2には、マイクロコンピュータ、メモリ及び周辺回路等を備えて構成された単独運転検出装置10の機能ブロック構成が示されている。本実施形態では、単独運転検出装置10はステップ注入付周波数フィードバック方式に対応するとともに本発明による不要検出回避アルゴリズムを含む制御プログラム等に基づいて所期の単独運転検出方法が実行されるように構成されている。   FIG. 2 shows a functional block configuration of the isolated operation detection device 10 configured with a microcomputer, a memory, a peripheral circuit, and the like. In the present embodiment, the isolated operation detection device 10 is configured to correspond to the frequency feedback method with step injection and to execute an intended isolated operation detection method based on a control program including an unnecessary detection avoidance algorithm according to the present invention. Has been.

単独運転検出装置10は、系統周波数計測部11と、無効電力注入量算出部20,21と、第1のPLL処理部12と、第2のPLL処理部13と、帰還信号生成部14と、無効電流制御部15と、有効電力生成部18と、無効電力生成部16と、インバータ制御部19と、単独運転検出部24等を備えている。   The isolated operation detection apparatus 10 includes a system frequency measurement unit 11, reactive power injection amount calculation units 20 and 21, a first PLL processing unit 12, a second PLL processing unit 13, a feedback signal generation unit 14, The reactive current control unit 15, the active power generation unit 18, the reactive power generation unit 16, the inverter control unit 19, the isolated operation detection unit 24, and the like are provided.

系統周波数計測部11は系統電圧euwのゼロクロスタイミングに基づいて系統周波数fgridを計測するブロックであり、交流電圧を分圧する分圧回路と分圧信号を二値化する二値化回路とを含むゼロクロス検出回路を備えている。 The system frequency measuring unit 11 is a block that measures the system frequency f grid based on the zero cross timing of the system voltage e uw , and includes a voltage dividing circuit that divides the AC voltage and a binarization circuit that binarizes the divided signal. Including a zero-cross detection circuit.

図3(a)に示すように、系統電圧euwを抵抗分圧した系統電圧波形(図中、破線で示されている。)を、電圧値ゼロを閾値として二値化回路で二値化することにより系統周波数に対応したデューティ比50%の方形波(図中、実線で示されている。)が得られる。方形波の立ち下りエッジと立ち上がりエッジとの中間値と、次の立ち下りエッジと立ち上がりエッジとの中間値との時間差を、2.5MHzのサンプリング周波数(0.4μs.の精度)でカウントすることにより系統電圧euwに対応する系統周波数fgridが計測される。サンプリング周波数は例示であり、この値に限定されることはない。 As shown in FIG. 3 (a), a system voltage waveform obtained by resistance-dividing the system voltage e uw (indicated by a broken line in the figure) is binarized by a binarization circuit with a voltage value of zero as a threshold value. By doing so, a square wave (indicated by a solid line in the figure) having a duty ratio of 50% corresponding to the system frequency is obtained. Counting the time difference between the intermediate value of the falling edge and rising edge of the square wave and the intermediate value of the next falling edge and rising edge with a sampling frequency of 2.5 MHz (accuracy of 0.4 μs.) Thus, the system frequency f grid corresponding to the system voltage e uw is measured. The sampling frequency is an example, and is not limited to this value.

無効電力注入量算出部は、周波数対応無効電力注入量算出部20とステップ無効電力注入量算出部21とを備えて構成されている。   The reactive power injection amount calculation unit includes a frequency-corresponding reactive power injection amount calculation unit 20 and a step reactive power injection amount calculation unit 21.

周波数対応無効電力注入量算出部20は系統周波数計測部11で計測された系統周波数fgridに基づいて得られる周波数偏差Δfgridに応じて無効電力注入量を算出するブロックで、ある時点の周波数偏差Δfgridに応じて以後の周波数偏差が次第に大きくなるように無効電力注入量が定められた周波数偏差・無効電力注入量特性テーブルから無効電力注入量Kfvarを算出する。 The frequency corresponding reactive power injection amount calculation unit 20 is a block that calculates the reactive power injection amount according to the frequency deviation Δf grid obtained based on the system frequency f grid measured by the system frequency measurement unit 11. The reactive power injection amount K fvar is calculated from a frequency deviation / reactive power injection amount characteristic table in which the reactive power injection amount is determined so that the subsequent frequency deviation gradually increases according to Δf grid .

図3(c)に示すように、系統周波数fgridは1周期毎に更新され、5ms.間隔で直近の40ms.間の移動平均が算出され、記憶部に記憶される。図3(b)に示すように、直近の移動平均算出時から200ms.前の80ms.分の移動平均から直近の40ms.間の移動平均を減算することによって周波数偏差Δfgridが算出される。 As shown in FIG. 3 (c), the system frequency fgrid is updated every cycle, and 5 ms. The latest 40 ms. The moving average is calculated and stored in the storage unit. As shown in FIG. 3B, 200 ms. Previous 80ms. 40ms from the moving average of the minute. The frequency deviation Δf grid is calculated by subtracting the moving average between them.

図4(a)には周波数偏差・無効電力特性が示されている。周波数対応無効電力注入量算出部20は周波数偏差・無効電力特性に基づいて無効電力注入量Kfvarを算出し、周波数偏差Δfgridの算出から系統周波数fgridの半サイクル以内に算出した無効電力注入量Kfvarを注入する。 FIG. 4A shows frequency deviation / reactive power characteristics. The frequency-corresponding reactive power injection amount calculation unit 20 calculates the reactive power injection amount K fvar based on the frequency deviation / reactive power characteristic, and the reactive power injection calculated within a half cycle of the system frequency f grid from the calculation of the frequency deviation Δf grid. The amount K fvar is injected.

当該周波数偏差・無効電力特性は、周波数偏差Δfgridが±0.01Hz以内の低感帯領域と、その両外側の高感帯領域で傾きが異なる無効電力注入量Kfvarが規定されている。何れも周波数偏差を増大させる方向への無効電力注入量Kfvarが規定され、周波数偏差Δfgridが低感帯領域の1段目ゲインの傾きよりも高感帯領域の2段目ゲインの傾きが大きくなるように設定されている。最大値は±0.25p.u.(per unit)に設定されている。尚、周波数偏差・無効電力特性は例示であり、この特性に限定されるものではない。 In the frequency deviation / reactive power characteristic, a reactive power injection amount K fvar having different slopes is defined in a low-sensitive band region where the frequency deviation Δf grid is within ± 0.01 Hz and a high-sensitive band region on both outer sides thereof. In any case, the reactive power injection amount K fvar in the direction of increasing the frequency deviation is defined, and the slope of the second-stage gain in the high-sensitive area is higher than the inclination of the first-stage gain in the low-sensitive area where the frequency deviation Δf grid is. It is set to be large. The maximum value is ± 0.25 p. u. (Per unit). In addition, the frequency deviation / reactive power characteristic is an example, and is not limited to this characteristic.

ステップ無効電力注入量算出部21はある時点の周波数偏差Δfgridに変動がなく基本波電圧Euw及び/または高調波電圧THDが変動する場合に電流位相が一定方向で一定量の無効電力注入量Kfstepを算出するブロックである。尚、本明細書では「周波数偏差に変動がない状態」とは変動が小さい状態、つまり上述の低感帯領域にある状態を含む概念で用いている。 The step reactive power injection amount calculation unit 21 injects a constant amount of reactive power in a constant direction in the current phase when there is no change in the frequency deviation Δf grid at a certain time and the fundamental voltage E uw and / or the harmonic voltage THD v changes. This is a block for calculating the quantity K fstep . In this specification, the “state in which there is no fluctuation in the frequency deviation” is used as a concept including a state in which the fluctuation is small, that is, a state in the above-described low-sensitive band region.

図4(b)に示すように、ステップ無効電力注入量算出部21は、周波数偏差Δfgridが低感帯領域であるときに、高調波電圧変動が以下の全ての条件式を満たすと判断すると、それから半サイクル以内に、3サイクル以下の時間で上限を0.1p.u.とする無効電力をパワーコンディショナPCから見て電流位相を遅らせる方向に、つまり周波数が低下する方向に注入する。 As shown in FIG. 4B, the step reactive power injection amount calculation unit 21 determines that the harmonic voltage fluctuation satisfies all of the following conditional expressions when the frequency deviation Δf grid is in the low sensitivity band region. Within a half cycle, the upper limit is 0.1 p. u. The reactive power is injected in the direction of delaying the current phase when viewed from the power conditioner PC, that is, in the direction of decreasing the frequency.

THD(z)−THDavr>2V
THD(z−1)−THDavr>2V
THD(z−2)−THDavr>−0.5V
│THD(z−3)−THDavr(z)│<0.5V
│THD(z−4)−THDavr(z)│<0.5V
│THD(z−5)−THDavr(z)│<0.5V
THD v (z) -THD avr > 2V
THD v (z-1) -THD avr > 2V
THD v (z-2) -THD avr > −0.5 V
│THD v (z-3) -THD avr (z) │ <0.5V
│THD v (z-4) -THD avr (z) │ <0.5V
│THD v (z-5) -THD avr (z) │ <0.5V

以下の数1に示すように、本実施形態では高調波電圧実効値THDとして2次から7次までの総合高調波電圧実効値が好ましい態様として採用されているが、さらに高次の高調波が含められていてもよい。尚、以下の説明では単に高調波電圧と表記する。また、数1のTADCはA/Dコンバータのサンプリング時間、nは高調波の次数である。
[数1]
As shown in the following formula 1, in this embodiment, the total harmonic voltage effective value from the second order to the seventh order is adopted as a preferable aspect as the harmonic voltage effective value THD v. May be included. In the following description, it is simply expressed as a harmonic voltage. Further, T ADC in Equation 1 is the sampling time of the A / D converter, and n is the harmonic order.
[Equation 1]

また、ステップ無効電力注入量算出部21は、周波数偏差Δfgridが低感帯領域であるときに、基本波電圧変動が以下の全ての条件式を満たすと判断すると、それから半サイクル以内に、3サイクル以下の時間で上限を0.1p.u.とする無効電力をパワーコンディショナPCから見て電流位相を遅らせる方向に、つまり周波数が低下する方向に注入する。 Further, when the step reactive power injection amount calculating unit 21 determines that the fundamental voltage fluctuation satisfies all the following conditional expressions when the frequency deviation Δf grid is in the low-sensitive band region, the step reactive power injection amount calculating unit 21 The upper limit is 0.1 p. u. The reactive power is injected in the direction of delaying the current phase when viewed from the power conditioner PC, that is, in the direction of decreasing the frequency.

uw.rms(z)−Euw.rms.avr(z)>2.5V
uw.rms(z−1)−Euw.rms.avr(z)>2.5V
uw.rms(z−2)−Euw.rms.avr(z)>−0.5V
│Euw.rms(z−3)−Euw.rms.avr(z)│<0.5V
│Euw.rms(z−4)−Euw.rms.avr(z)│<0.5V
│Euw.rms(z−5)−Euw.rms.avr(z)│<0.5V
E u.rms (z) −E uw.rms.avr (z)> 2.5V
E u.rms (z-1) −E u.rms.avr (z)> 2.5V
E uw.rms (z-2) −E uw.rms.avr (z)> − 0.5V
│E u.rms (z-3) -E uw.rms.avr (z) | <0.5V
│E u.rms (z-4) -E uw.rms.avr (z) | <0.5V
│E u.rms (z-5) -E uw.rms.avr (z) | <0.5V

第1のPLL処理部12は系統電圧euwが入力され系統電圧euwの位相角度θuwに同期した基準系統電圧信号を生成するブロックであり、第2のPLL処理部13は逆潮流電流ispが入力され逆潮流電流ispの位相角度θspに同期した基準逆潮流電流信号を生成するブロックである。 First PLL processing section 12 is a block for generating a reference system voltage signal synchronized with the phase angle theta uw of the system voltage e uw is input system voltage e uw, the second PLL unit 13 backward flow current i This is a block for generating a reference reverse flow current signal synchronized with the phase angle θ sp of the reverse flow current i sp when sp is input.

本実施形態では、第1のPLL処理部12のゲインG1が第2のPLL処理部13のゲインG2よりも大きな値に設定されている。具体的にG2=0.5G1に設定されており、少なくともG2≦0.5G1の関係であることが好ましい。   In the present embodiment, the gain G1 of the first PLL processing unit 12 is set to a larger value than the gain G2 of the second PLL processing unit 13. Specifically, G2 = 0.5G1 is set, and it is preferable that at least G2 ≦ 0.5G1.

帰還信号生成部14は上述した第1のPLL処理部12及び第2のPLL処理部13を含み、両信号の位相差(θuw−θsp)を算出し、その値に基づいて帰還信号を生成するブロックである。 The feedback signal generation unit 14 includes the first PLL processing unit 12 and the second PLL processing unit 13 described above, calculates the phase difference (θ uw −θ sp ) of both signals, and determines the feedback signal based on the value. This is a block to be generated.

無効電流制御部15は無効電力注入量算出部20,21で算出された無効電力注入量Kfvar,Kfstepに対応する無効電流指令値I と帰還信号生成部14で生成された帰還信号Iとに基づいて、インバータ3から系統電源へ無効電力注入量に対応する無効電力が注入されるようにインバータ3に対する出力電流指令値i invを帰還制御するブロックである。即ち、無効電流制御部15は帰還信号Iが無効電流指令値I に収束するようにPID演算を行ない、その演算値を指令値として無効電力生成部16に出力する。 The reactive current control unit 15 includes a reactive current command value I * q corresponding to the reactive power injection amounts K fvar and K fstep calculated by the reactive power injection amount calculating units 20 and 21 and a feedback signal generated by the feedback signal generating unit 14. This block performs feedback control of the output current command value i * inv for the inverter 3 so that reactive power corresponding to the reactive power injection amount is injected from the inverter 3 to the system power supply based on Iq . That is, the reactive current control unit 15 performs PID calculation so that the feedback signal I q converges to the reactive current command value I * q , and outputs the calculated value to the reactive power generation unit 16 as a command value.

数2に示すように、無効電流指令値I は、基本波有効電力2Puwを基本波電圧の振幅値Euw,max.1で除算した値に無効電力注入量Kfvar,Kfstepを乗算した値である。
[数2]
As shown in Equation 2, the reactive current command value I * q is obtained by changing the fundamental wave active power 2Puw to the amplitude value E uw, max. It is a value obtained by multiplying the value divided by 1 by the reactive power injection amounts K fvar and K fstep .
[Equation 2]

有効電力生成部18は直流電圧制御部17から出力されたバイアス直流電圧と系統電源に対応する位相角度θuwの正弦波とを乗算して有効電力成分を生成するブロックである。バイアス直流電圧はDC/DCコンバータ1から入力される直流リンク電圧Vdcを直流電圧の指令値V dcに調整して出力する直流電圧制御部17から入力され、系統電源に対応する位相角度θuwの正弦波は第1のPLL処理部12から入力される。 The active power generator 18 is a block that generates an active power component by multiplying the bias DC voltage output from the DC voltage controller 17 by a sine wave having a phase angle θ uw corresponding to the system power supply. The bias DC voltage is input from the DC voltage control unit 17 that adjusts and outputs the DC link voltage V dc input from the DC / DC converter 1 to the DC voltage command value V * dc , and the phase angle θ corresponding to the system power supply. The sine wave of uw is input from the first PLL processing unit 12.

無効電力生成部16は無効電流制御部15で帰還制御された指令値と、第1のPLL処理部12から入力される系統電源に対応する位相角度θuwの正弦波とを乗算して無効電力成分を生成するブロックである。 The reactive power generation unit 16 multiplies the command value feedback-controlled by the reactive current control unit 15 and the sine wave of the phase angle θ uw corresponding to the system power supply input from the first PLL processing unit 12 to react with the reactive power. It is a block that generates components.

有効電力生成部18及び無効電力生成部16からの出力が加算器で加算されてインバータ3に対する電流指令値i invが生成され、その電流指令値i invがインバータ制御部19に入力される。 Outputs from the active power generation unit 18 and the reactive power generation unit 16 are added by an adder to generate a current command value i * inv for the inverter 3, and the current command value i * inv is input to the inverter control unit 19. .

インバータ3の出力電流値iinvが帰還値として入力されたインバータ制御部19は、インバータ3の出力電流値が電流指令値i invになるように例えばPID演算等を用いて帰還制御し、インバータ3に対する制御値、ここではデューティ比Dを生成する。インバータ制御部19で生成されたデューティ比DはPWM制御部22に入力されて、PWM制御部22で各スイッチS1,S2,S3,S4に対する制御信号が生成され、バッファ回路23を介してインバータ3のスイッチS1,S2,S3,S4に出力される。 The inverter control unit 19 to which the output current value i inv of the inverter 3 is input as a feedback value performs feedback control using, for example, PID calculation so that the output current value of the inverter 3 becomes the current command value i * inv. A control value for 3, here a duty ratio D, is generated. The duty ratio D generated by the inverter control unit 19 is input to the PWM control unit 22, and control signals for the switches S 1, S 2, S 3 and S 4 are generated by the PWM control unit 22, and the inverter 3 is connected via the buffer circuit 23. Are output to the switches S1, S2, S3 and S4.

単独運転検出部24は無効電力注入量の無効電力が注入されたときの系統電源の電気量、例えば系統周波数、系統電圧、総合高調波歪率等に基づいて単独運転状態であるか否かを検出するブロックである。単独運転検出部24には、第1のPLL処理部12で求められた系統電圧euwに対応する運転周波数fPLLと、系統周波数計測部11で計測された系統周波数fgridと、基本波電圧の振幅値Euw,max.1及び高調波電圧実効値THDが入力されている。 The isolated operation detection unit 24 determines whether or not the system is in the isolated operation state based on the amount of electricity of the system power source when the reactive power injection amount is injected, for example, the system frequency, the system voltage, the total harmonic distortion, etc. This is the block to detect. The isolated operation detection unit 24 includes an operation frequency f PLL corresponding to the system voltage e uw obtained by the first PLL processing unit 12, a system frequency f grid measured by the system frequency measurement unit 11, and a fundamental voltage Amplitude value E uw, max. 1 and the harmonic voltage effective value THD v are input.

単独運転検出部24の動作について詳述する。一般的に系統電圧euwが正常(202±10V)である場合に系統周波数fgridが急変すると単独運転状態であると正しく検出できるが、落雷等によって電力設備に故障が生じ、送配電網の電圧が瞬間的に低下するような現象が発生した
1389315476440_2
場合に、入力電圧の低下及び位相のずれが発生する。
The operation of the isolated operation detection unit 24 will be described in detail. In general, when the system voltage e uw is normal (202 ± 10V), if the system frequency fgrid changes suddenly, it can be correctly detected that it is in a single operation state. A phenomenon that the voltage drops momentarily occurred
1389315476440_2
In some cases, a decrease in input voltage and a phase shift occur.

図5(a)には、瞬低時の波形の一例が示されている。系統電圧euwが位相角度90°の時に瞬低が発生し、位相角度が最大+41°ずれた瞬間に系統周波数fgrid(z−4)及び運転周波数fPLL(z−4)に周波数低下が発現している。この周波数の大きな変動に起因して単独運転状態であると不要検出する虞がある。 FIG. 5A shows an example of a waveform at the time of a sag. A voltage drop occurs when the system voltage e uw is at a phase angle of 90 °, and at the moment when the phase angle is shifted by a maximum of + 41 °, the system frequency fgrid (z-4) and the operating frequency fPLL (z-4) decrease in frequency. It is expressed. Due to the large fluctuation of the frequency, there is a possibility that unnecessary detection may be made if the vehicle is in an isolated operation state.

しかし、瞬低等に起因して位相が急変した場合には、その急変時に系統周波数fgridが瞬間的に変動するが、その前後では安定しているのに対して、単独運転時には周波数の変動が増大する傾向になる。 However, when the phase suddenly changes due to a momentary drop or the like, the system frequency fgrid fluctuates instantaneously at the time of sudden change, but is stable before and after that, whereas it fluctuates at the time of independent operation. Tends to increase.

即ち、図5(b)に示すように、単独運転検出部24は第1のPLL処理部12で算出される運転周波数fPLL及び系統周波数計測部11で計測される系統周波数fgridの双方が連続する複数の系統周期で一方向に変化する場合に単独運転状態と判断するように構成されていればよく、不要検出を回避して単独運転状態を正確に検出できるようになる。 That is, as shown in FIG. 5B, the isolated operation detection unit 24 has both the operation frequency f PLL calculated by the first PLL processing unit 12 and the system frequency f grid measured by the system frequency measurement unit 11. It suffices if it is configured to determine that it is in a single operation state when it changes in one direction at a plurality of consecutive system cycles, and it becomes possible to accurately detect the single operation state while avoiding unnecessary detection.

図5(b)のように、双方の値が次第に高くなる場合もあれば、反対に双方の値が次第に低くなる場合もある。これに対して、図5(a)のように位相が急変した場合には、第1のPLL処理部12で算出される運転周波数fPLL及び系統周波数計測部11で計測される系統周波数fgridの双方が、急変時のサイクルでのみ一時的に上昇または下降し、その後定常に復帰するので、その傾向を判別することによって不要検出を回避し、単独運転状態を正確且つ迅速に検出できる。 As shown in FIG. 5B, both values may gradually increase, and conversely, both values may gradually decrease. On the other hand, when the phase changes suddenly as shown in FIG. 5A, the operating frequency f PLL calculated by the first PLL processing unit 12 and the system frequency f grid measured by the system frequency measuring unit 11 are used. Both of them rise or fall temporarily only in the cycle at the time of sudden change, and then return to the steady state, so by detecting the tendency, unnecessary detection can be avoided and the isolated operation state can be detected accurately and quickly.

単独運転検出部24は系統電圧euwの高調波電圧変動率が所定比率を超え、その状態が所定時間継続する場合に単独運転状態であると検出するように構成されていることがさらに好ましい。 It is further preferable that the isolated operation detection unit 24 is configured to detect that the system is in the isolated operation when the harmonic voltage fluctuation rate of the system voltage e uw exceeds a predetermined ratio and the state continues for a predetermined time.

系統電源に無効電力を注入した状況で、何らかの要因で系統電源の高調波電圧が変動してもその前後の系統周期で高調波電圧が大きく変動することがないのに対して、系統電源からの給電が停止して単独運転状態となる場合にはそれ以降の連続周期で高調波電圧が大きく変動する。そこで、系統電圧の高調波電圧変動率が所定比率を超えた状態が所定時間継続すると単独運転状態であると検出することにより不要検出を回避することができるようになる。   In the situation where reactive power is injected into the system power supply, even if the harmonic voltage of the system power supply fluctuates due to some reason, the harmonic voltage does not fluctuate significantly in the system cycle before and after that. When the power supply is stopped and the single operation state is entered, the harmonic voltage greatly fluctuates in subsequent continuous cycles. Therefore, when the harmonic voltage fluctuation rate of the system voltage exceeds a predetermined ratio continues for a predetermined time, it is possible to avoid unnecessary detection by detecting that the system is in an isolated operation state.

具体的に本実施形態では、単独運転検出部24は系統周波数euw及び系統周波数fPLLの双方の現在値、1系統周期前の値及び2系統周期前の値に基づいて、双方が連続する複数の系統周期で一方向に変化すると判定した場合で、且つ、系統電圧euwの高調波電圧変動率ΔTHDが所定比率を超え、その状態が所定時間継続する場合に単独運転状態であると検出し、何れか一方が満たされない場合には不要検出を回避するべく正常状態であると判断するように構成されている。 Specifically, in this embodiment, the isolated operation detection unit 24 is based on the current values of both the system frequency e uw and the system frequency f PLL , based on the values before the one system cycle and the values before the two system cycles. When it is determined that it changes in one direction in a plurality of system cycles, and when the harmonic voltage fluctuation rate ΔTHD of the system voltage e uw exceeds a predetermined ratio and the state continues for a predetermined time, it is detected as an isolated operation state However, when either one is not satisfied, it is determined to be in a normal state in order to avoid unnecessary detection.

具体的には、以下の数3に示すように、32サイクル前の運転周波数fPLL及び系統周波数fgridの平均値に対する現在値(z)、一つ前の値(z−1)及び二つ前の値(z−2)との偏差の積Δfvar(総合周波数変動値)が所定の閾値fcst以上であれば単独運転状態であり、閾値fcst未満であれば正常であると判断することができる。 Specifically, as shown in Equation 3 below, the current value (z), the previous value (z−1), and the two of the average values of the operating frequency f PLL and the system frequency f grid 32 cycles before If the product Δf var (total frequency fluctuation value) of the deviation from the previous value (z−2) is equal to or greater than a predetermined threshold value f cst , it is determined that it is in an isolated operation, and if it is less than the threshold value f cst , it is determined to be normal. be able to.

ここに、閾値fcstは基本波周波数の4〜9%の範囲の値に設定することが好ましく、例えば系統周波数が50Hzであれば、fcstは2.0〜4.5の範囲に設定することが好ましい。
[数3]
Here, the threshold value f cst is preferably set to a value in the range of 4 to 9% of the fundamental frequency. For example, if the system frequency is 50 Hz, f cst is set to a range of 2.0 to 4.5. It is preferable.
[Equation 3]

尚、本実施形態では、図6(a)に示すように、32サイクル前の運転周波数fPLL及び系統周波数fgridの平均値として、32サイクル前を基準にその前32サイクルの各系統周波数の平均値が採用されているが、平均値を求めるサイクル数は32に制限される必要はなく適宜設定することができる。 In this embodiment, as shown in FIG. 6A , the average value of the operating frequency f PLL and the system frequency f grid before 32 cycles is used as the average value of each system frequency of the previous 32 cycles based on the previous 32 cycles. Although the average value is adopted, the number of cycles for obtaining the average value need not be limited to 32 and can be set as appropriate.

また、図6(b)に示すように、高調波電圧変動率ΔTHDは32サイクル前の高調波電圧実効値THDの平均値として、32サイクル前を基準にその前32サイクルの各高調波電圧実効値THDの平均値が採用され、以下の数4により算出されている。同様に、平均値を求めるサイクル数は32に制限される必要はなく適宜設定することができる。
[数4]
In addition, as shown in FIG. 6B, the harmonic voltage fluctuation rate ΔTHD is an average value of the harmonic voltage effective value THD v 32 cycles before, and each harmonic voltage of the previous 32 cycles based on 32 cycles before. The average value of the effective value THD v is adopted, and is calculated by the following equation (4). Similarly, the number of cycles for obtaining the average value need not be limited to 32 and can be set as appropriate.
[Equation 4]

図7及び図8には、総合周波数変動値Δfvar、高調波電圧変動率ΔTHD及び変動率カウンタに基づいて不要検出を回避するための単独運転検出部24によって実行される手順の一例が示されている。 FIGS. 7 and 8 show an example of a procedure executed by the isolated operation detection unit 24 for avoiding unnecessary detection based on the total frequency fluctuation value Δf var , the harmonic voltage fluctuation rate ΔTHD, and the fluctuation rate counter. ing.

総合周波数変動値|Δfvar|が閾値0.3fcst以上の場合に、高調波電圧変動率ΔTHDをチェックし、高調波電圧変動率ΔTHDがx%以上であれば、初期値がゼロに設定された変動率カウンタを1加算し、高調波電圧変動率ΔTHDが0.5x%未満であれば変動率カウンタをリセットし、高調波電圧変動率ΔTHDがx%未満0.5x%以上であると変動率カウンタの値を維持する処理を系統周期毎に繰返す。 When the total frequency fluctuation value | Δf var | is equal to or greater than the threshold 0.3f cst , the harmonic voltage fluctuation rate ΔTHD is checked. If the harmonic voltage fluctuation rate ΔTHD is equal to or greater than x%, the initial value is set to zero. If the harmonic voltage fluctuation rate ΔTHD is less than 0.5x%, the fluctuation rate counter is reset, and if the harmonic voltage fluctuation rate ΔTHD is less than x% and greater than 0.5x% The process of maintaining the value of the rate counter is repeated every system cycle.

その結果、変動率カウンタの値がy以上になると単独運転と判断してインバータ3を停止し、連系リレーSgridを切断して解列する。また、総合周波数変動値|Δfvar|が閾値fcst以上になると変動率カウンタの値にかかわらず直ちに単独運転と判断してインバータ3を停止し、連系リレーSgridを切断して解列する。本実施形態では、好ましい値としてx=20%,y=3が例示できるが、具体的な値は適宜実験等に基づいて適切な値に設定すればよい。 As a result, when the value of the fluctuation rate counter becomes y or more, it is determined that the operation is independent and the inverter 3 is stopped, and the interconnection relay Sgrid is disconnected and disconnected. When the total frequency fluctuation value | Δf var | becomes equal to or greater than the threshold value f cst , the inverter 3 is immediately stopped regardless of the value of the fluctuation rate counter, the inverter 3 is stopped, and the interconnection relay S grid is disconnected and disconnected. . In the present embodiment, x = 20% and y = 3 can be exemplified as preferable values, but specific values may be set to appropriate values based on experiments or the like as appropriate.

総合周波数変動値|Δfvar|が閾値0.3fcst未満の場合には、単に変動率カウンタをリセットして初期値に戻す。このような処理よって、総合周波数変動値|Δfvar|が閾値0.3fcst以内の変動に起因する不要検出が確実に回避されるようになる。 When the total frequency fluctuation value | Δf var | is less than the threshold value 0.3f cst , the fluctuation rate counter is simply reset to the initial value. Such processing ensures that unnecessary detection caused by fluctuations in the total frequency fluctuation value | Δf var | within the threshold value 0.3f cst is reliably avoided.

上述した単独運転検出装置10によって、本発明による単独運転検出方法が実行される。
即ち、系統周波数計測部11によって系統電圧euwのゼロクロスタイミングに基づいて系統周波数を計測する系統周波数計測ステップが実行され、無効電力注入量算出部20,21によって系統周波数計測ステップで計測された系統周波数に基づいて得られる周波数偏差に応じて無効電力注入量を算出する無効電力注入量算出ステップが実行される。
The isolated operation detection apparatus 10 described above executes the isolated operation detection method according to the present invention.
That is, the system frequency measurement step of measuring the system frequency based on the zero cross timing of the system voltage e uw is executed by the system frequency measurement unit 11, and the system measured by the reactive power injection amount calculation units 20 and 21 in the system frequency measurement step A reactive power injection amount calculating step for calculating the reactive power injection amount according to the frequency deviation obtained based on the frequency is executed.

そして、第1のPLL処理部12で系統電圧euwが入力され系統電圧euwの位相角度(θuw)に同期した基準系統電圧信号を生成する第1のPLL処理ステップが実行され、第2のPLL処理部13で逆潮流電流ispが入力され逆潮流電流ispの位相角度θspに同期した基準逆潮流電流信号を生成する第2のPLL処理ステップが実行され、帰還信号生成部14で両信号の位相差(θuw−θsp)に基づいて帰還信号を生成する帰還信号生成ステップが実行される。 The first PLL processing step of generating a reference system voltage signal synchronized with the phase angle (theta uw) of the first PLL unit 12 in the system voltage e uw is the input system voltage e uw is performed, the second The second PLL processing step is executed in which the reverse flow current i sp is input to the PLL processing unit 13 to generate a reference reverse flow current signal synchronized with the phase angle θ sp of the reverse flow current i sp , and the feedback signal generation unit 14 Then, a feedback signal generation step for generating a feedback signal based on the phase difference (θ uw −θ sp ) between the two signals is executed.

さらに、無効電流制御部15によって、無効電力注入量算出ステップで算出された無効電力注入量に対応する無効電流指令値と帰還信号生成ステップで生成された帰還信号とに基づいて、インバータから無効電力注入量の無効電力が注入されるようにインバータの出力電流指令値を帰還制御する無効電流制御ステップが実行され、インバータ制御部19によって、インバータの出力電流値が出力電流指令値になるようにインバータを制御するインバータ制御ステップが実行され、単独運転検出部24によって、無効電力注入量の無効電力が注入されたときの系統電源の電気量に基づいて単独運転状態であるか否かを検出する単独運転検出ステップが実行される。   Further, the reactive current control unit 15 outputs the reactive power from the inverter based on the reactive current command value corresponding to the reactive power injection amount calculated in the reactive power injection amount calculating step and the feedback signal generated in the feedback signal generating step. A reactive current control step for performing feedback control of the output current command value of the inverter is executed so that the injection amount of reactive power is injected, and the inverter control unit 19 causes the inverter so that the output current value of the inverter becomes the output current command value. The inverter control step for controlling the power is executed, and the single operation detection unit 24 detects whether or not it is in the single operation state based on the amount of electricity of the system power source when the reactive power of the reactive power injection amount is injected. An operation detection step is executed.

このように、無効電流制御部15によってインバータ3の出力電流指令値が帰還制御されるので、系統電源に目標値である無効電力注入量の無効電力が正確且つ速やかに注入されるようになり、その結果、無効電力注入に対する良好な応答性が確保でき、単独運転検出部24に不要検出のための複雑なアルゴリズムを組込まなくても、不要検出することがなく速やかに単独運転状態であるか否かを検出することができるようになる。   Thus, since the reactive current control unit 15 feedback-controls the output current command value of the inverter 3, the reactive power of the reactive power injection amount that is the target value is accurately and promptly injected into the system power supply. As a result, good responsiveness to reactive power injection can be ensured, and even if a complicated algorithm for unnecessary detection is not incorporated in the isolated operation detection unit 24, it is quickly detected that it is in an isolated operation state without unnecessary detection. Can be detected.

尚、後述の実験結果で示されているように、上述のアルゴリズムで判定に用いた総合周波数変動値|Δfvar|及び高調波電圧変動率ΔTHDの判定閾値は負荷条件により変動可能に構成されていることが好ましい。そのために、負荷条件を検出する機能ブロックを備え、当該機能ブロックで検出された負荷条件に基づいて、総合周波数変動値|Δfvar|及び高調波電圧変動率ΔTHDの判定閾値を調整する判定閾値調整部を備えていることが好ましい。 As shown in the experimental results described later, the determination threshold values of the total frequency fluctuation value | Δf var | and the harmonic voltage fluctuation rate ΔTHD used for the determination by the above algorithm are configured to be variable depending on the load condition. Preferably it is. For this purpose, a function block for detecting a load condition is provided, and a determination threshold adjustment for adjusting a determination threshold for the total frequency fluctuation value | Δf var | and the harmonic voltage fluctuation rate ΔTHD based on the load condition detected by the function block It is preferable to provide the part.

また、系統電圧euwの位相角度θuwに同期した基準系統電圧信号を得るための第1のPLL処理部12のゲインが、逆潮流電流ispの位相角度θspに同期した基準逆潮流電流信号を得るための第2のPLL処理部13のゲインよりも大きな値に設定されているので、系統電源側で生じた擾乱によって過渡的に電圧や位相等が変動する系統電圧euwを適正に反映した基準系統電圧信号が、基準逆潮流電流信号よりも感度よく得られる。 Further, the gain of the first PLL processing unit 12 for obtaining the reference system voltage signal synchronized with the phase angle θ uw of the system voltage e uw is the reference reverse current flowing in synchronization with the phase angle θ sp of the reverse power current i sp. Since it is set to a value larger than the gain of the second PLL processing unit 13 for obtaining a signal, the system voltage e uw whose voltage, phase, etc. fluctuate transiently due to disturbance generated on the system power supply side is appropriately set. The reflected reference system voltage signal can be obtained with higher sensitivity than the reference reverse flow current signal.

そのような位相差(θuw−θsp)に基づいて無効電流制御部によってインバータの出力電流指令値が適正に帰還制御されるようになるので、上述の低感帯領域で僅かな無効電力注入量Kfvarが注入される場合や、低感帯領域と高感帯領域の境界部で無効電力注入量Kfvarが変動する場合でも良好な応答特性が得られるようになる。 Based on such a phase difference (θ uw −θ sp ), the reactive current control unit appropriately performs feedback control of the output current command value of the inverter. and if the amount K fvar is injected, so that good response characteristics even when the variation is reactive power injected amount K fvar at the boundary of the low sensitivity band region and high sensitivity zones is obtained.

上述した実施形態では、単独運転検出部が、第1のPLL処理部で算出される運転周波数及び系統周波数計測部で計測される系統周波数の双方の現在値、1系統周期前の値及び2系統周期前の値に基づいて、双方が連続する複数の系統周期で一方向に変化すると判定し、且つ、系統電圧euwの高調波電圧変動率が所定比率を超え、その状態が所定時間継続する場合に単独運転状態であると検出することで不要検出を回避する例を説明したが、双方の判定基準の何れか一方に基づいて単独運転状態であると検出するように構成しても不要検出を回避することができる。 In the above-described embodiment, the isolated operation detection unit has the current value of both the operation frequency calculated by the first PLL processing unit and the system frequency measured by the system frequency measurement unit, the value before one system cycle, and two systems. Based on the value before the cycle, it is determined that both change in one direction in a plurality of continuous system cycles, and the harmonic voltage fluctuation rate of the system voltage e uw exceeds a predetermined ratio, and the state continues for a predetermined time. In this case, the example of avoiding unnecessary detection by detecting that it is in an isolated operation state has been described, but unnecessary detection is possible even if it is configured to detect that it is in an isolated operation state based on one of both judgment criteria. Can be avoided.

上述した実施形態では、本発明による単独運転検出装置にステップ注入付周波数フィードバック方式が組み込まれた態様を説明したが、本発明による単独運転検出装置は、少なくとも上述した系統周波数計測部と、無効電力注入量算出部と、第1のPLL処理部と、第2のPLL処理部と、帰還信号生成部と、無効電流制御部と、インバータ制御部と、単独運転検出部とを備えていればよく、ステップ注入付周波数フィードバック方式以外のスリップモード周波数シフト方式や無効電力変動方式等が組み込まれた態様であってもよく、能動的方式のみならず受動的方式であっても不要検出を回避することができるようになる。   In the above-described embodiment, the mode in which the frequency feedback method with step injection is incorporated in the isolated operation detection device according to the present invention has been described. However, the isolated operation detection device according to the present invention includes at least the above-described system frequency measurement unit and reactive power. The injection amount calculation unit, the first PLL processing unit, the second PLL processing unit, the feedback signal generation unit, the reactive current control unit, the inverter control unit, and the isolated operation detection unit may be provided. , Slip mode frequency shift method and reactive power fluctuation method other than frequency feedback method with step injection may be incorporated, avoid unnecessary detection not only active method but also passive method Will be able to.

上述の各実施形態は本発明による分散型電源の単独運転検出装置及び単独運転検出方法の一例に過ぎず、各構成ブロックの具体的な構成(ハードウェアやソフトウェア)や各種の数値等は本発明による作用効果が奏される範囲で適宜変更設計することも可能であることはいうまでもない。   Each of the above-described embodiments is merely an example of an isolated operation detection apparatus and an isolated operation detection method according to the present invention, and specific configurations (hardware and software), various numerical values, and the like of each component block are described in the present invention. Needless to say, it is possible to change and design appropriately within a range in which the effects of the above can be achieved.

以下に、多数台連系試験の実験結果を説明する。
有効電力5.5kWの3台のパワーコンディションナを用いて、P=+10(+10%負荷),Q=0,P=0,Q=0及びP=−10,Q=0の3ポイントの負荷条件で単独運転状態とする実験を行なった。尚、総合周波数変動値|Δfvar|の閾値fcstは3.6Hz、高調波電圧変動率ΔTHDの閾値xは20、変動率カウンタの閾値yは3として設定し、実験を行なった。
Below, the experimental results of the multi-unit interconnection test will be described.
Using three power conditioners with an active power of 5.5 kW, load at 3 points of P = + 10 (+ 10% load), Q = 0, P = 0, Q = 0 and P = −10, Q = 0 An experiment was conducted under the condition of single operation. In the experiment, the threshold f cst of the total frequency fluctuation value | Δf var | was set to 3.6 Hz, the threshold value x of the harmonic voltage fluctuation rate ΔTHD was set to 20, and the threshold value y of the fluctuation rate counter was set to 3.

図9(a)には、P=+10,Q=0の負荷条件で単独運転状態になった場合のTHD[%]、高調波電圧変動率ΔTHD及び周波数が示されている。図9(b)には、P=0,Q=0の負荷条件で単独運転状態になった場合の高調波電圧THD[%]、高調波電圧変動率ΔTHD及び周波数が示されている。図9(c)には、P=−10,Q=0の負荷条件で単独運転状態になった場合のTHD[%]、高調波電圧変動率ΔTHD及び周波数が示されている。 FIG. 9A shows the THD [%], the harmonic voltage fluctuation rate ΔTHD, and the frequency when the single operation is performed under the load conditions of P = + 10 and Q = 0. FIG. 9B shows the harmonic voltage THD V [%], the harmonic voltage fluctuation rate ΔTHD, and the frequency when the single operation is performed under the load conditions of P = 0 and Q = 0. FIG. 9C shows the THD [%], the harmonic voltage fluctuation rate ΔTHD, and the frequency when the single operation is performed under the load conditions of P = −10 and Q = 0.

図9(a)に示すように、P=+10,Q=0の負荷条件では、4サイクル目から単独運転状態になり、その後3サイクル連続で高調波電圧変動率ΔTHDが20倍以上になり、単独運転が発生してから4サイクル目(7サイクル時)で単独運転状態と判断し、運転を停止させるように動作した。図9(c)に示すように、P=−10,Q=0の負荷条件でも同様の傾向が確認された。   As shown in FIG. 9 (a), under the load condition of P = + 10, Q = 0, it becomes an independent operation state from the fourth cycle, and thereafter, the harmonic voltage fluctuation rate ΔTHD becomes 20 times or more in three consecutive cycles, In the fourth cycle (at the 7th cycle) after the occurrence of the isolated operation, it was determined as the isolated operation state, and the operation was stopped. As shown in FIG. 9C, the same tendency was confirmed even under the load condition of P = −10 and Q = 0.

しかし、図9(c)に示すように、P=0,Q=0の負荷条件では、系統電圧の周波数の変化が高調波電圧変動率ΔTHDより早く、単独運転状態を判定する要素は周波数であることが分かった。   However, as shown in FIG. 9C, under the load conditions of P = 0 and Q = 0, the change in the frequency of the system voltage is faster than the harmonic voltage fluctuation rate ΔTHD, and the element that determines the isolated operation state is the frequency. I found out.

このことから、負荷条件により単独運転状態を判別するための図8に示す閾値を変えることにより、より早く適切に単独運転状態を検出できることが確認された。   From this, it was confirmed that the isolated operation state can be detected more quickly and appropriately by changing the threshold shown in FIG. 8 for determining the isolated operation state according to the load condition.

1:DC/DCコンバータ
3:インバータ
4:LCフィルタ
10:単独運転検出装置
11:系統周波数計測部
12:第1のPLL処理部
13:第2のPLL処理部
14:帰還信号生成部
15:無効電流制御部
16:無効電力生成部
18:有効電力生成部18
20,21:無効電力注入量算出部
24:単独運転検出部
100:分散型電源(太陽電池発電装置)
PC:パワーコンディショナ
SP:太陽電池パネル
S1,S2,S3,S4:インバータブリッジに備えたスイッチ素子
1: DC / DC converter 3: Inverter 4: LC filter 10: Isolated operation detection device 11: System frequency measurement unit 12: First PLL processing unit 13: Second PLL processing unit 14: Feedback signal generation unit 15: Invalid Current control unit 16: reactive power generation unit 18: active power generation unit 18
20, 21: Reactive power injection amount calculation unit 24: Isolated operation detection unit 100: Distributed power source (solar cell power generator)
PC: Power conditioner SP: Solar cell panels S1, S2, S3, S4: Switch elements provided in the inverter bridge

Claims (10)

系統電源と連系するインバータを備えた分散型電源の単独運転検出装置であって、
系統電圧(euw)のゼロクロスタイミングに基づいて系統周波数を計測する系統周波数計測部と、
前記系統周波数計測部で計測された系統周波数に基づいて得られる周波数偏差に応じて無効電力注入量を算出する無効電力注入量算出部と、
系統電圧(euw)が入力され系統電圧(euw)の位相角度(θuw)に同期した基準系統電圧信号を生成する第1のPLL処理部と、逆潮流電流(isp)が入力され逆潮流電流(isp)の位相角度(θsp)に同期した基準逆潮流電流信号を生成する第2のPLL処理部とを備え、両信号の位相差(θuw−θsp)に基づいて帰還信号を生成する帰還信号生成部と、
前記無効電力注入量算出部で算出された無効電力注入量に対応する無効電流指令値と前記帰還信号生成部で生成された帰還信号とに基づいて、前記インバータから前記無効電力注入量の無効電力が注入されるように前記インバータに対する出力電流指令値を帰還制御する無効電流制御部と、
前記インバータの出力電流値が前記出力電流指令値になるように前記インバータを制御するインバータ制御部と、
前記無効電力注入量の無効電力が注入されたときの系統電源の電気量に基づいて単独運転状態であるか否かを検出する単独運転検出部と、
を備えている単独運転検出装置。
An isolated operation detection device for a distributed power source having an inverter connected to a system power source,
A system frequency measurement unit that measures the system frequency based on the zero-cross timing of the system voltage (e uw );
A reactive power injection amount calculating unit that calculates a reactive power injection amount according to a frequency deviation obtained based on a system frequency measured by the system frequency measuring unit;
A first PLL processing unit for generating a reference system voltage signal synchronized with the phase angle (theta uw) of the system voltage (e uw) is input system voltage (e uw), reverse flow current (i sp) is input And a second PLL processing unit that generates a reference reverse flow current signal synchronized with the phase angle (θ sp ) of the reverse flow current (i sp ), and based on the phase difference (θ uw −θ sp ) of both signals A feedback signal generator for generating a feedback signal;
Based on the reactive current command value corresponding to the reactive power injection amount calculated by the reactive power injection amount calculation unit and the feedback signal generated by the feedback signal generation unit, the reactive power of the reactive power injection amount from the inverter Reactive current control unit that feedback-controls the output current command value for the inverter so that is injected,
An inverter control unit for controlling the inverter so that the output current value of the inverter becomes the output current command value;
An isolated operation detection unit that detects whether or not the system is in an isolated operation state based on the amount of electricity of the system power supply when the reactive power of the reactive power injection amount is injected,
An isolated operation detection device.
前記第1のPLL処理部のゲインが前記第2のPLL処理部のゲインよりも大きな値に設定されている請求項1記載の単独運転検出装置。   The isolated operation detection device according to claim 1, wherein the gain of the first PLL processing unit is set to a value larger than the gain of the second PLL processing unit. 前記単独運転検出部は、前記第1のPLL処理部で算出される運転周波数及び前記系統周波数計測部で計測される系統周波数の双方が、連続する複数の系統周期で一方向に変化する場合に単独運転状態と判断するように構成されている請求項1または2記載の単独運転検出装置。   The isolated operation detection unit is configured when both the operation frequency calculated by the first PLL processing unit and the system frequency measured by the system frequency measurement unit change in one direction at a plurality of continuous system cycles. The isolated operation detection device according to claim 1, wherein the isolated operation detection device is configured to determine an isolated operation state. 前記単独運転検出部は、前記第1のPLL処理部で算出される運転周波数及び前記系統周波数計測部で計測される系統周波数の双方の少なくとも現在値、1系統周期前の値及び2系統周期前の値に基づいて単独運転状態であるか否かを検出するように構成されている請求項1から3の何れかに記載の単独運転検出装置。   The isolated operation detection unit includes at least a current value of both the operation frequency calculated by the first PLL processing unit and the system frequency measured by the system frequency measurement unit, a value before one system cycle, and two system cycles before The isolated operation detection device according to any one of claims 1 to 3, wherein the isolated operation detection device is configured to detect whether or not the vehicle is in an isolated operation state based on the value of. 前記単独運転検出部は、系統電圧(euw)の高調波電圧変動率が所定比率を超え、その状態が所定時間継続する場合に単独運転状態であると検出するように構成されている請求項1または2記載の単独運転検出装置。 The said independent operation detection part is comprised so that it may detect that it is an independent operation state, when the harmonic voltage fluctuation rate of system voltage ( euw ) exceeds a predetermined ratio, and the state continues for the predetermined time. The isolated operation detection device according to 1 or 2. 前記単独運転検出部は、前記第1のPLL処理部で算出される運転周波数及び前記系統周波数計測部で計測される系統周波数の双方の現在値、1系統周期前の値及び2系統周期前の値に基づいて、双方が連続する複数の系統周期で一方向に変化すると判定した場合であって、系統電圧(euw)の高調波電圧変動率が所定比率を超え、その状態が所定時間継続する場合に単独運転状態であると検出するように構成されている請求項1または2記載の単独運転検出装置。 The islanding operation detection unit includes a current value of both the operation frequency calculated by the first PLL processing unit and the system frequency measured by the system frequency measurement unit, a value before one system cycle, and a value before two system cycles. Based on the value, when it is determined that both change in one direction in a plurality of continuous system cycles, the harmonic voltage fluctuation rate of the system voltage (e uw ) exceeds a predetermined ratio, and the state continues for a predetermined time The isolated operation detection device according to claim 1, wherein the isolated operation detection device is configured to detect that it is in an isolated operation state. 前記無効電力注入量算出部は、ある時点の周波数偏差に応じて以後の周波数偏差が次第に大きくなるように無効電力注入量が定められた周波数偏差・無効電力注入量特性テーブルから無効電力注入量を算出する周波数対応無効電力注入量算出部と、ある時点の周波数偏差に変動がなく基本波電圧及び/または高調波電圧が変動する場合に電流位相が一定方向で一定量の無効電力注入量を算出するステップ無効電力注入量算出部と、を備えている請求項1から6の何れかに記載の単独運転検出装置。   The reactive power injection amount calculation unit calculates a reactive power injection amount from a frequency deviation / reactive power injection amount characteristic table in which a reactive power injection amount is determined so that a subsequent frequency deviation gradually increases according to a frequency deviation at a certain time. Reactive power injection amount calculation unit for frequency to be calculated and a constant amount of reactive power injection in a constant direction when the fundamental voltage and / or harmonic voltage fluctuates without fluctuation at a certain time. An isolated operation detecting device according to any one of claims 1 to 6, further comprising: a step reactive power injection amount calculating unit. 系統電源と連系するインバータを備えた分散型電源の単独運転検出方法であって、
系統電圧(euw)のゼロクロスタイミングに基づいて系統周波数を計測する系統周波数計測ステップと、
前記系統周波数計測ステップで計測された系統周波数に基づいて得られる周波数偏差に応じて無効電力注入量を算出する無効電力注入量算出ステップと、
系統電圧(euw)が入力され系統電圧(euw)の位相角度(θuw)に同期した基準系統電圧信号を生成する第1のPLL処理ステップと、逆潮流電流(isp)が入力され逆潮流電流(isp)の位相角度(θsp)に同期した基準逆潮流電流信号を生成する第2のPLL処理ステップとを備え、両信号の位相差(θuw−θsp)に基づいて帰還信号を生成する帰還信号生成ステップと、
前記無効電力注入量算出ステップで算出された無効電力注入量に対応する無効電流指令値と前記帰還信号生成ステップで生成された帰還信号とに基づいて、前記インバータから前記無効電力注入量の無効電力が注入されるように前記インバータに対する出力電流指令値を帰還制御する無効電流制御ステップと、
前記インバータの出力電流値が前記出力電流指令値になるように前記インバータを制御するインバータ制御ステップと、
前記無効電力注入量の無効電力が注入されたときの系統電源の電気量に基づいて単独運転状態であるか否かを検出する単独運転検出ステップと、
を備えている単独運転検出方法。
A method for detecting an isolated operation of a distributed power source including an inverter connected to a system power source,
A system frequency measurement step for measuring the system frequency based on the zero cross timing of the system voltage (e uw );
A reactive power injection amount calculating step for calculating a reactive power injection amount according to a frequency deviation obtained based on the system frequency measured in the system frequency measuring step;
A first PLL processing step of generating a reference system voltage signal synchronized with the phase angle (theta uw) of the system voltage (e uw) is input system voltage (e uw), reverse flow current (i sp) is input And a second PLL processing step for generating a reference reverse flow current signal synchronized with the phase angle (θ sp ) of the reverse flow current (i sp ), and based on the phase difference (θ uw −θ sp ) of both signals A feedback signal generation step for generating a feedback signal;
Based on the reactive current command value corresponding to the reactive power injection amount calculated in the reactive power injection amount calculation step and the feedback signal generated in the feedback signal generation step, the reactive power of the reactive power injection amount from the inverter Reactive current control step for feedback control of the output current command value for the inverter so that is injected,
An inverter control step of controlling the inverter so that the output current value of the inverter becomes the output current command value;
An isolated operation detection step for detecting whether or not the system is in an isolated operation state based on the amount of electricity of the system power supply when the reactive power of the reactive power injection amount is injected,
An isolated operation detection method.
前記第1のPLL処理ステップのゲインが前記第2のPLL処理ステップのゲインよりも大きな値に設定されている請求項8記載の単独運転検出方法。   The islanding operation detection method according to claim 8, wherein the gain of the first PLL processing step is set to a value larger than the gain of the second PLL processing step. 前記単独運転検出ステップは、前記第1のPLL処理ステップで算出される運転周波数、及び前記系統周波数計測ステップで計測される系統周波数の双方の現在値、1系統周期前の値及び2系統周期前の値に基づいて双方が同じ傾向で変動すると判定した場合であって、系統電圧euwの高調波電圧変動率が所定比率を超え、その状態が所定時間継続する場合に単独運転状態であると検出する請求項8または記載の単独運転検出方法。 The isolated operation detection step includes a current value of both the operation frequency calculated in the first PLL processing step and the system frequency measured in the system frequency measurement step, a value before one system cycle, and two system cycles before If the harmonic voltage fluctuation rate of the system voltage e uw exceeds a predetermined ratio and the state continues for a predetermined time, it is determined that both are in the single operation state. The islanding operation detection method according to claim 8 or 9 , wherein the islanding operation is detected.
JP2014002836A 2014-01-10 2014-01-10 Isolated operation detection device and isolated operation detection method Active JP5893057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014002836A JP5893057B2 (en) 2014-01-10 2014-01-10 Isolated operation detection device and isolated operation detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014002836A JP5893057B2 (en) 2014-01-10 2014-01-10 Isolated operation detection device and isolated operation detection method

Publications (2)

Publication Number Publication Date
JP2015133785A JP2015133785A (en) 2015-07-23
JP5893057B2 true JP5893057B2 (en) 2016-03-23

Family

ID=53900609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014002836A Active JP5893057B2 (en) 2014-01-10 2014-01-10 Isolated operation detection device and isolated operation detection method

Country Status (1)

Country Link
JP (1) JP5893057B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547528B2 (en) * 2015-09-04 2019-07-24 富士電機株式会社 Islanding operation detection system of distributed power source
CN105552962B (en) * 2016-02-01 2018-10-19 易事特集团股份有限公司 Micro-grid system and its control method
CN105591393B (en) * 2016-02-04 2018-06-22 重庆大学 Power system reactive power degree of coupling discrimination method based on branch reactive power flow betweenness
JP5985775B1 (en) * 2016-03-18 2016-09-06 田淵電機株式会社 Isolated operation detection device and isolated operation detection method
KR101762708B1 (en) * 2016-03-24 2017-08-18 금비전자(주) Islanding detection method for grid-connected PV inverter under parallel operation
CN106026114B (en) * 2016-05-30 2018-08-21 重庆大学 Reactive voltage partition method based on reactive source-lotus betweenness and community mining
CN105958835B (en) * 2016-06-28 2018-07-13 国电南京自动化股份有限公司 A kind of high-voltage frequency converter dead electricity crossing method based on instantaneous power control
CN110754034B (en) * 2017-07-18 2021-07-16 东芝三菱电机产业系统株式会社 Ground fault detector and power conditioner
JP6940770B2 (en) * 2017-12-08 2021-09-29 シンフォニアテクノロジー株式会社 A method for detecting the independent operating state of the distributed power supply unit and the distributed power supply when the frequency fluctuates.
JP7081201B2 (en) * 2018-02-22 2022-06-07 株式会社アイシン Independent operation detector
CN110391675B (en) * 2019-07-24 2020-07-14 广东电网有限责任公司 Output current closed-loop control method of modular multilevel converter
CN111146809B (en) * 2020-01-19 2023-03-24 重庆大学 Grid-connected inverter transient stability control method based on improved phase-locked loop
CN114374216B (en) * 2021-11-23 2024-01-05 深圳供电局有限公司 Droop control method, droop control device, server, storage medium and computer program product

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2904023B2 (en) * 1994-08-24 1999-06-14 日新電機株式会社 Inverter for distributed power supply
JP4835587B2 (en) * 2007-11-30 2011-12-14 オムロン株式会社 Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP5577042B2 (en) * 2009-02-26 2014-08-20 株式会社東芝 Inverter control device
JP5418079B2 (en) * 2009-09-04 2014-02-19 オムロン株式会社 Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
US8334618B2 (en) * 2009-11-13 2012-12-18 Eaton Corporation Method and area electric power system detecting islanding by employing controlled reactive power injection by a number of inverters
JP2012085384A (en) * 2010-10-07 2012-04-26 Tabuchi Electric Co Ltd Individual operation detection method, power conditioner, and distributed power supply system
JP5645622B2 (en) * 2010-11-30 2014-12-24 東芝Itコントロールシステム株式会社 Isolated operation detection device and isolated operation detection method
JP6031266B2 (en) * 2012-06-15 2016-11-24 東芝Itコントロールシステム株式会社 Isolated operation detection method and isolated operation detection device

Also Published As

Publication number Publication date
JP2015133785A (en) 2015-07-23

Similar Documents

Publication Publication Date Title
JP5893057B2 (en) Isolated operation detection device and isolated operation detection method
JP5985775B1 (en) Isolated operation detection device and isolated operation detection method
JP6374213B2 (en) Power converter
JP6200196B2 (en) Inverter device
JP5969059B2 (en) Power conditioner variable control device and control method for power conditioner
JP6065273B2 (en) Isolated operation detection device and detection method
JP6059757B2 (en) System voltage suppression control device and system voltage suppression control method
JP6031266B2 (en) Isolated operation detection method and isolated operation detection device
US20100327822A1 (en) Distributed power supply system
US10892623B2 (en) Method for detecting islanding condition for a DC/AC converter apparatus and a DC/AC converter apparatus thereof
JP5398233B2 (en) Independent operation detection device for inverter and isolated operation detection method
JP6189372B2 (en) Isolated operation detection device, isolated operation detection method, and grid interconnection system
JP2012044815A (en) Individual operation detector and individual operation detection method
JP6228854B2 (en) Power converter, load device, and control method
CN103515981B (en) Grid-connected photovoltaic power generation system and self-action phase shift island phenomenon detection method thereof
JP2017121149A (en) Electric power conversion device
JP7392885B1 (en) power converter
JP2012231606A (en) System interconnection power conversion device
JP2011188690A (en) Islanding detection device of inverter and method of detecting islanding
JP6825243B2 (en) Grid interconnection controller
JP4983471B2 (en) Grid-connected inverter device
JP6574725B2 (en) Power converter and isolated operation detection method
JP6399892B2 (en) Control device for isolated operation detection and isolated operation detection device
JP2021035125A (en) Independent operation detection method
JP4618222B2 (en) Grid-connected inverter device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160223

R150 Certificate of patent or registration of utility model

Ref document number: 5893057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250