JP2018014835A - Overcurrent protector and power supply unit - Google Patents

Overcurrent protector and power supply unit Download PDF

Info

Publication number
JP2018014835A
JP2018014835A JP2016143350A JP2016143350A JP2018014835A JP 2018014835 A JP2018014835 A JP 2018014835A JP 2016143350 A JP2016143350 A JP 2016143350A JP 2016143350 A JP2016143350 A JP 2016143350A JP 2018014835 A JP2018014835 A JP 2018014835A
Authority
JP
Japan
Prior art keywords
current
power supply
breaker
supply unit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016143350A
Other languages
Japanese (ja)
Other versions
JP6701019B2 (en
Inventor
敏成 百瀬
Toshishige Momose
敏成 百瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2016143350A priority Critical patent/JP6701019B2/en
Publication of JP2018014835A publication Critical patent/JP2018014835A/en
Application granted granted Critical
Publication of JP6701019B2 publication Critical patent/JP6701019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an overcurrent protector capable of preventing an overcurrent from running through a secondary wiring path of a breaker with a power supply part connected.SOLUTION: The overcurrent protector includes a current detection part 10 for detecting an electric current running through a breaker 3 having a power supply part 7 connected with the secondary side; a current control part 11 for executing current limiting to decrease an output current of the power supply part 7 more as a detection current running through the breaker 3 detected by the current detection part 10 is larger.SELECTED DRAWING: Figure 2

Description

本発明は、電源部が接続されているブレーカの二次側の配線路に過電流が流れることを防止する過電流防止装置及び電源装置に関する。   The present invention relates to an overcurrent prevention device and a power supply device that prevent an overcurrent from flowing through a secondary-side wiring path of a breaker to which a power supply unit is connected.

家屋等の施設では、電力系統に接続される主幹ブレーカが分電盤に設けられ、その主幹ブレーカを経由して電力の供給を受けることができる。また、施設内では、主幹ブレーカの二次側に、複数の分岐ブレーカが主幹ブレーカから見て並列に接続され、それら分岐ブレーカの二次側に、各種の電力消費装置が接続されるような電気設備が構築されている。   In a facility such as a house, a main circuit breaker connected to the power system is provided in the distribution board, and power can be supplied via the main circuit breaker. In addition, in the facility, a plurality of branch breakers are connected in parallel to the secondary side of the main breaker as viewed from the main breaker, and various power consuming devices are connected to the secondary side of the branch breakers. Equipment is built.

太陽電池などの電源部を施設に設置する場合、特許文献1に記載のように、電源部用の専用ブレーカを分岐ブレーカと並列に主幹ブレーカの二次側に増設し、その専用ブレーカに電源部のみを接続することが行われている。   When installing a power supply unit such as a solar cell in a facility, as described in Patent Document 1, a dedicated breaker for the power supply unit is added to the secondary side of the main breaker in parallel with the branch breaker and the power supply unit is connected to the dedicated breaker Only being connected is done.

特許第3531408号公報Japanese Patent No. 3531408

上述のような専用ブレーカに電源部を接続するといった電源部の設置形態ではなく、既存の分岐ブレーカに電源部を接続するといった設置形態も有り得る。例えば、電源部を施設の屋外に設置する場合、既存の分岐ブレーカに接続された屋外コンセントに電源部を接続することもできる。   There may be an installation form in which the power supply unit is connected to an existing branch breaker instead of the installation form in which the power supply unit is connected to the dedicated breaker as described above. For example, when the power supply unit is installed outdoors in a facility, the power supply unit can be connected to an outdoor outlet connected to an existing branch breaker.

図1は、電源部7が屋外コンセント(電気コンセント4)に接続されるような電気設備の例を示す図である。図示するように、この電気設備は、電力系統1に接続される主幹ブレーカ2と、主幹ブレーカ2の二次側で分岐した配線路8に、主幹ブレーカ2から見て並列に設けられる複数の分岐ブレーカ3(3A〜3C)とを備える。各分岐ブレーカ3A〜3Cの二次側には種々の電気機器Eが接続される。電気機器Eは、電力を消費する電力消費装置6や、電源部7などである。図1では、各分岐ブレーカ3A〜3Cの二次側の配線路8に接続される電気コンセント4A〜4C(4)に対して、電源部7の電気プラグ5A(5)、及び、電力消費装置6の一例としての散水器6Aの電気プラグ5B(5)、及び、電力消費装置6の一例としての常夜灯6Bの電気プラグ5C(5)がそれぞれ接続される例を示している。   FIG. 1 is a diagram illustrating an example of electrical equipment in which the power supply unit 7 is connected to an outdoor outlet (electric outlet 4). As shown in the figure, this electrical equipment includes a main breaker 2 connected to the electric power system 1 and a plurality of branches provided in parallel on the wiring path 8 branched on the secondary side of the main breaker 2 when viewed from the main breaker 2. Breaker 3 (3A-3C). Various electrical devices E are connected to the secondary sides of the branch breakers 3A to 3C. The electric device E is a power consuming device 6 that consumes power, a power supply unit 7 or the like. In FIG. 1, the electrical plug 5A (5) of the power supply unit 7 and the power consuming device are connected to the electrical outlets 4A to 4C (4) connected to the secondary side wiring paths 8 of the branch breakers 3A to 3C. 6 shows an example in which an electric plug 5B (5) of a sprinkler 6A as an example of 6 and an electric plug 5C (5) of a nightlight 6B as an example of a power consuming device 6 are respectively connected.

図4及び図5は、分岐ブレーカ3Cの二次側の配線路8に流れ得る電流を説明する図である。この例では、分岐ブレーカ3Cの遮断電流が20Aに設定されている。そして、分岐ブレーカ3Cの二次側の配線路8は、許容電流が20A程度の物が用いられている。
図4に例示するように、分岐ブレーカ3Cの二次側の、常夜灯6Bが接続されている配線路8の途中の「×」印の箇所で被覆の損傷などの事故が発生した場合、大電流がその配線路8に流れ得る。図4に示す例では、電源部7の出力電流はゼロであり、散水器6Aに供給される電流もゼロなので、例えば20Aの電流が常夜灯6Bの方へ流れた場合、分岐ブレーカ3Cにも同じ20Aが流れる。その結果、その後に分岐ブレーカ3Cが遮断作動して、分岐ブレーカ3Cの二次側の配線路8へは電流が流れなくなる。つまり、分岐ブレーカ3Cが正常に遮断作動することで、事故が発生した常夜灯6Bの方へ、配線路8の許容電流(例えば20A)を超える過電流が流れることが防止される。
4 and 5 are diagrams for explaining the current that can flow in the secondary-side wiring path 8 of the branch breaker 3C. In this example, the breaking current of the branch breaker 3C is set to 20A. And as for the secondary side wiring path 8 of the branch breaker 3C, the thing whose allowable current is about 20A is used.
As illustrated in FIG. 4, when an accident such as damage to the coating occurs at a location indicated by “x” on the secondary side of the branch breaker 3 </ b> C in the middle of the wiring path 8 to which the nightlight 6 </ b> B is connected, Can flow through the wiring path 8. In the example shown in FIG. 4, since the output current of the power supply unit 7 is zero and the current supplied to the sprinkler 6A is also zero, for example, when a current of 20A flows toward the nightlight 6B, the same applies to the branch breaker 3C. 20A flows. As a result, the branch breaker 3C is subsequently cut off and no current flows through the secondary side wiring path 8 of the branch breaker 3C. That is, when the branch breaker 3C is normally cut off, an overcurrent exceeding the allowable current (for example, 20A) of the wiring path 8 is prevented from flowing toward the night light 6B where the accident has occurred.

図5に示すのは、電源部7の出力電流が12Aの場合の例である。分岐ブレーカ3Cは、少なくとも20A以下の電流が流れる状態では遮断作動しないため、分岐ブレーカ3Cを流れる20Aと電源部7が出力する12Aとの和の32Aが、事故が発生した常夜灯6Bの方の配線路8へ流れる可能性がある。つまり、分岐ブレーカ3Cの二次側の配線路8に、少なくとも一つの電源部7を含む複数の電気機器Eが接続されているような電気設備では、その電源部7から出力されている電流の大きさによっては、分岐ブレーカ3Cの動作に問題が無くても、分岐ブレーカ3Cの二次側の配線路8に許容電流(例えば20A)を超える過電流が流れ得るという問題がある。   FIG. 5 shows an example when the output current of the power supply unit 7 is 12A. Since the branch breaker 3C does not shut off when a current of at least 20A flows, the sum 32A of 20A flowing through the branch breaker 3C and 12A output from the power supply unit 7 is the wiring of the night light 6B where the accident occurred. There is a possibility of flowing to the road 8. That is, in an electrical installation in which a plurality of electrical devices E including at least one power supply unit 7 are connected to the secondary side wiring path 8 of the branch breaker 3C, the current output from the power supply unit 7 Depending on the size, there is a problem that even if there is no problem in the operation of the branch breaker 3C, an overcurrent exceeding the allowable current (for example, 20 A) may flow through the secondary side wiring path 8 of the branch breaker 3C.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、電源部が接続されているブレーカの二次側の配線路に過電流が流れることを防止できる過電流防止装置及び電源装置を提供する点にある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an overcurrent prevention device and a power supply capable of preventing an overcurrent from flowing through a secondary-side wiring path of a breaker to which a power supply unit is connected. The point is to provide a device.

上記目的を達成するための本発明に係る過電流防止装置の特徴構成は、電源部が二次側に接続されたブレーカを流れる電流を検出する電流検出部と、
前記電流検出部が検出する前記ブレーカを流れる検出電流が大きくなるほど、前記電源部の出力電流を小さくさせる電流制限処理を行う電流制御部とを備える点にある。
The characteristic configuration of the overcurrent prevention device according to the present invention for achieving the above object includes a current detection unit for detecting a current flowing through a breaker having a power supply unit connected to the secondary side,
A current control unit that performs a current limiting process for reducing the output current of the power supply unit as the detected current flowing through the breaker detected by the current detection unit increases.

上記特徴構成によれば、電流制御部は、電流検出部が検出するブレーカを流れる電流(即ち、検出電流)が大きくなるほど、電源部の出力電流を小さくさせる電流制限処理を行う。つまり、ブレーカの二次側の配線路には、ブレーカを流れる検出電流と電源部の出力電流との和の電流が流れ得るが、ブレーカを流れる検出電流が大きくなるほど、電流制限処理によって電源部の出力電流を小さくさせることで、そのブレーカの二次側の配線路を流れる電流の増大が抑制される。その結果、電源部から電流が出力されている場合でも、ブレーカの二次側の配線路に過電流が流れることを防止できる。
また、電源部から電流が出力されていないにも関わらずブレーカに大電流が流れ得る状況になっても、ブレーカがその大電流に応じて正常に遮断作動すれば、ブレーカの二次側の配線路に過電流が流れることを防止できる。
従って、電源部が接続されているブレーカの二次側の配線路に過電流が流れることを防止できる過電流防止装置を提供できる。
According to the above characteristic configuration, the current control unit performs the current limiting process for reducing the output current of the power supply unit as the current flowing through the breaker detected by the current detection unit (that is, the detection current) increases. That is, the sum of the detection current flowing through the breaker and the output current of the power supply unit can flow through the secondary side of the breaker, but as the detection current flowing through the breaker increases, the current limiting process causes By reducing the output current, an increase in current flowing through the secondary-side wiring path of the breaker is suppressed. As a result, even when a current is output from the power supply unit, it is possible to prevent an overcurrent from flowing through the secondary-side wiring path of the breaker.
Even if no current is output from the power supply, even if a large current can flow to the breaker, if the breaker operates normally in response to the large current, the wiring on the secondary side of the breaker It is possible to prevent an overcurrent from flowing through the road.
Therefore, it is possible to provide an overcurrent prevention device that can prevent an overcurrent from flowing through the secondary side wiring path of the breaker to which the power supply unit is connected.

本発明に係る過電流防止装置の別の特徴構成は、前記電流制御部は、前記電流制限処理において、前記検出電流が所定の第1基準電流より大きいとき前記電源部の出力を停止させる点にある。   Another characteristic configuration of the overcurrent prevention device according to the present invention is that the current control unit stops the output of the power supply unit when the detected current is larger than a predetermined first reference current in the current limiting process. is there.

上記特徴構成によれば、電流制御部は、電流検出部が検出する検出電流が第1基準電流より大きいとき電源部の出力を停止させる。つまり、電源部の出力が停止されると、ブレーカの二次側の配線路に流れる電流は、電流検出部が検出する検出電流、即ち、そのブレーカを流れる電流のみになる。その結果、電流検出部が検出する検出電流がブレーカが遮断作動する遮断電流を超える場合にはそのブレーカが遮断作動するので、そのブレーカの二次側の配線路に過電流が流れることを防止できる。   According to the above characteristic configuration, the current control unit stops the output of the power supply unit when the detection current detected by the current detection unit is larger than the first reference current. That is, when the output of the power supply unit is stopped, the current flowing through the secondary side wiring path of the breaker is only the detection current detected by the current detection unit, that is, the current flowing through the breaker. As a result, when the detected current detected by the current detection unit exceeds the breaking current at which the breaker is cut off, the breaker is turned off, so that overcurrent can be prevented from flowing through the secondary side of the breaker. .

本発明に係る過電流防止装置の更に別の特徴構成は、前記第1基準電流は、前記ブレーカの遮断電流又はその相当量から前記電源部の出力電流を減算して得られる値である点にある。   Still another characteristic configuration of the overcurrent prevention device according to the present invention is that the first reference current is a value obtained by subtracting the output current of the power supply unit from the breaking current of the breaker or an equivalent amount thereof. is there.

上記特徴構成によれば、電源部の出力電流が大きいほど、第1基準電流は小さい値に設定される。そして、電流制御部は、ブレーカを流れる検出電流が、その小さい値に設定された第1基準電流よりも大きければ、電源部の出力を停止させる。   According to the above characteristic configuration, the first reference current is set to a smaller value as the output current of the power supply unit is larger. Then, if the detected current flowing through the breaker is larger than the first reference current set to the small value, the current control unit stops the output of the power supply unit.

本発明に係る過電流防止装置の更に別の特徴構成は、前記電流制御部は、前記電流制限処理において、前記検出電流が前記第1基準電流より小さい所定の第2基準電流より大きく、且つ、前記検出電流が前記第1基準電流以下のとき、前記電源部の出力電流を、前記ブレーカの遮断電流又はその相当量から所定の余裕電流分を減算し及び前記検出電流を減算して得られる抑制時電流にさせる点にある。   Still another characteristic configuration of the overcurrent prevention device according to the present invention is that the current control unit is configured such that, in the current limiting process, the detected current is larger than a predetermined second reference current smaller than the first reference current, and When the detected current is less than or equal to the first reference current, the output current of the power supply unit is obtained by subtracting a predetermined margin current from the breaking current of the breaker or its equivalent and subtracting the detected current It is in the point to make it an electric current.

上記特徴構成によれば、電流制御部は、電流検出部が検出する検出電流が第2基準電流より大きく且つ第1基準電流以下のとき、電源部の出力電流を上記抑制時電流にさせる。この抑制時電流は、そのブレーカの遮断電流又はその相当量から所定の余裕電流分を減算し及び検出電流を減算して得られる値であるので、電源部の出力電流がこの抑制時電流になれば、ブレーカの二次側の配線路を流れる電流の大きさ、即ち、電源部の出力電流(抑制時電流)とブレーカを流れる電流(検出電流)との合計は、ブレーカの遮断電流まで所定の余裕電流分の分だけ余裕がある状態になる。従って、ブレーカの二次側の配線路に過電流が流れることを防止できる。   According to the above characteristic configuration, the current control unit causes the output current of the power supply unit to be the current at the time of suppression when the detection current detected by the current detection unit is greater than the second reference current and equal to or less than the first reference current. Since the current at the time of suppression is a value obtained by subtracting a predetermined margin current from the breaking current of the breaker or its equivalent and subtracting the detection current, the output current of the power supply unit cannot be the current at the time of suppression. For example, the magnitude of the current flowing through the secondary-side wiring path of the breaker, that is, the sum of the output current of the power supply unit (current during suppression) and the current flowing through the breaker (detection current) is a predetermined amount up to the breaking current of the breaker. There is a margin for the surplus current. Therefore, it is possible to prevent an overcurrent from flowing through the secondary side wiring path of the breaker.

本発明に係る過電流防止装置の更に別の特徴構成は、前記第2基準電流は、前記ブレーカの前記遮断電流又はその相当量から、前記電源部の出力電流を減算し及び前記余裕電流分を減算して得られる値である点にある。   Still another characteristic configuration of the overcurrent prevention device according to the present invention is that the second reference current is obtained by subtracting an output current of the power supply unit from the breaking current of the breaker or an equivalent amount thereof, and calculating the margin current. The value is obtained by subtraction.

上記特徴構成によれば、電源部の出力電流が大きいほど、第1基準電流及び第2基準電流は小さい値に設定される。その結果、電源部の出力電流が大きいほど、その電源部の出力電流は抑制される方向へと制御される。   According to the above characteristic configuration, the first reference current and the second reference current are set to smaller values as the output current of the power supply unit is larger. As a result, the output current of the power supply unit is controlled to be suppressed as the output current of the power supply unit increases.

本発明に係る電源装置の特徴構成は、上記過電流防止装置と、前記電源部とを備える点にある。   A characteristic configuration of the power supply device according to the present invention is that the overcurrent prevention device and the power supply unit are provided.

上記特徴構成によれば、ブレーカの二次側の配線路に過電流が流れることを防止できる電源装置を提供できる。   According to the above characteristic configuration, it is possible to provide a power supply device that can prevent an overcurrent from flowing in the wiring path on the secondary side of the breaker.

電源部が屋外コンセントに接続された電気設備の例を示す図である。It is a figure which shows the example of the electrical equipment with which the power supply part was connected to the outdoor outlet. 過電流防止装置の設置形態を示す図である。It is a figure which shows the installation form of an overcurrent prevention apparatus. 電流制御部が行う電流制限処理を説明するフローチャートである。It is a flowchart explaining the current limiting process which a current control part performs. 分岐ブレーカの二次側の配線路に流れ得る過電流を説明する図である。It is a figure explaining the overcurrent which can flow into the wiring path of the secondary side of a branch breaker. 分岐ブレーカの二次側の配線路に流れ得る過電流を説明する図である。It is a figure explaining the overcurrent which can flow into the wiring path of the secondary side of a branch breaker.

以下に図面を参照して本発明の実施形態に係る過電流防止装置について説明する。
図1は、電源部7が屋外コンセント(電気コンセント4)に接続された電気設備の例を示す図である。図示するように、この電気設備の例では、電力系統1に接続される主幹ブレーカ2と、主幹ブレーカ2の二次側で分岐した配線路8に、主幹ブレーカ2から見て並列に設けられる複数の分岐ブレーカ3(3A〜3C)とを備える。各分岐ブレーカ3A〜3Cの二次側には種々の電気機器Eが接続される。電気機器Eは、電力を消費する電力消費装置6や、電源部7などである。図1では、各分岐ブレーカ3A〜3Cの二次側の配線路8に接続される電気コンセント4A〜4C(4)に対して、電源部7の電気プラグ5A(5)、及び、電力消費装置6の一例としての散水器6Aの電気プラグ5B(5)、及び、電力消費装置6の一例としての常夜灯6Bの電気プラグ5C(5)がそれぞれ接続される例を示している。これらの電気コンセント4A〜4Cは、例えば施設の屋外に設置される屋外コンセントである。
An overcurrent prevention device according to an embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram illustrating an example of electrical equipment in which the power supply unit 7 is connected to an outdoor outlet (electric outlet 4). As shown in the figure, in this example of electrical equipment, a plurality of main circuit breakers 2 connected to the power system 1 and a plurality of wiring paths 8 branched in parallel on the secondary side of the main circuit breaker 2 are provided in parallel when viewed from the main circuit breaker 2. Branch breaker 3 (3A-3C). Various electrical devices E are connected to the secondary sides of the branch breakers 3A to 3C. The electric device E is a power consuming device 6 that consumes power, a power supply unit 7 or the like. In FIG. 1, the electrical plug 5A (5) of the power supply unit 7 and the power consuming device are connected to the electrical outlets 4A to 4C (4) connected to the secondary side wiring paths 8 of the branch breakers 3A to 3C. 6 shows an example in which an electric plug 5B (5) of a sprinkler 6A as an example of 6 and an electric plug 5C (5) of a nightlight 6B as an example of a power consuming device 6 are respectively connected. These electrical outlets 4A to 4C are, for example, outdoor outlets installed outside the facility.

図2は、過電流防止装置の設置形態を示す図である。
図2に示すように、過電流防止装置は、電源部7が二次側に接続されたブレーカ3を流れる電流を検出する電流検出部10と、電流検出部10が検出するブレーカ3を流れる検出電流が大きくなるほど、電源部7の出力電流を小さくさせる電流制限処理を行う電流制御部11とを備える。本実施形態では、電流検出部10が、本発明のブレーカ3としての分岐ブレーカ3Cを流れる電流を検出する例を説明する。つまり、図1に示した電源設備の例では、電流検出部10は、電力系統1に接続される主幹ブレーカ2の二次側で分岐した配線路8に当該主幹ブレーカ2から見て並列に設けられる複数の分岐ブレーカ3A〜3Cのうち、少なくとも一つの電源部7を含む複数の電気機器Eを二次側に接続可能な特定の分岐ブレーカ3Cを流れる電流を検出し、電流制御部11は、電流検出部10が検出する特定の分岐ブレーカ3Cを流れる検出電流が大きくなるほど、電源部7の出力電流を小さくさせる電流制限処理を行う。
FIG. 2 is a diagram illustrating an installation form of the overcurrent prevention device.
As illustrated in FIG. 2, the overcurrent prevention device includes a current detection unit 10 that detects a current flowing through a breaker 3 connected to the secondary side of the power supply unit 7 and a detection that flows through the breaker 3 detected by the current detection unit 10. And a current control unit 11 that performs a current limiting process for reducing the output current of the power supply unit 7 as the current increases. In the present embodiment, an example will be described in which the current detection unit 10 detects a current flowing through a branch breaker 3C as the breaker 3 of the present invention. In other words, in the example of the power supply facility shown in FIG. 1, the current detection unit 10 is provided in parallel on the wiring path 8 branched on the secondary side of the main breaker 2 connected to the power system 1 as viewed from the main breaker 2. Among the plurality of branch breakers 3A to 3C, a current flowing through a specific branch breaker 3C capable of connecting a plurality of electrical devices E including at least one power supply unit 7 to the secondary side is detected. A current limiting process for reducing the output current of the power supply unit 7 is performed as the detection current flowing through the specific branch breaker 3C detected by the current detection unit 10 increases.

分岐ブレーカ3は、通常、遮断作動する遮断電流が定められており、自身にその遮断電流を超える過電流が流れた場合に回路を遮断するように動作する。例えば、分岐ブレーカ3の遮断電流は20A等の値に設定されている。そして、分岐ブレーカ3にその遮断電流より大きい電流が流れ続けると、分岐ブレーカ3は遮断作動する。また、分岐ブレーカ3Cの二次側の配線路8は許容電流が20A程度の物が用いられるというように、分岐ブレーカ3Cの遮断電流と配線路8の許容電流とは関連した値になっている。   The branch breaker 3 normally has a cut-off current for the cut-off operation, and operates so as to cut off the circuit when an overcurrent exceeding the cut-off current flows through the branch breaker 3 itself. For example, the breaking current of the branch breaker 3 is set to a value such as 20A. And if the electric current larger than the interruption | blocking current flows into the branch breaker 3, the branch breaker 3 will carry out interruption | blocking operation | movement. The secondary breaker 3C secondary wiring path 8 has a permissible current of about 20A, so that the breaking current of the branch breaker 3C and the permissible current of the wiring path 8 are related values. .

電源部7は、燃料電池や、エンジンとそのエンジンによって駆動される発電機や、電力の充放電を行うことができる充放電装置などの様々な装置によって実現される電源ユニット7aと、そのような電源ユニット7aで発生した電力を所望の電圧、周波数、位相の電力に変換する電力変換ユニット7bと、電源ユニット7a及び電力変換ユニット7bの動作を制御する制御ユニット7cとを有する。制御ユニット7cは、所定の目標出力電流を決定し、その目標出力電流が電力変換ユニット7bから電気コンセント4の方へ出力されるように、電源ユニット7a及び電力変換ユニット7bの動作を制御する。電源部7は、電力変換ユニット7bに接続される電気プラグ5を有しており、その電気プラグ5が、特定の分岐ブレーカ3Cの二次側の配線路8に接続されている電気コンセント4に接続されることで、電源部7と配線路8とが電気的に接続される。電力変換ユニット7bから電気プラグ5への出力電流(即ち、電源部7の出力電流)は、制御ユニット7cによる制御により調節される。   The power supply unit 7 includes a power supply unit 7a realized by various devices such as a fuel cell, an engine and a generator driven by the engine, and a charge / discharge device capable of charging / discharging the power. It has a power conversion unit 7b that converts power generated in the power supply unit 7a into power of a desired voltage, frequency, and phase, and a control unit 7c that controls operations of the power supply unit 7a and the power conversion unit 7b. The control unit 7c determines a predetermined target output current and controls the operations of the power supply unit 7a and the power conversion unit 7b so that the target output current is output from the power conversion unit 7b to the electrical outlet 4. The power supply unit 7 has an electrical plug 5 connected to the power conversion unit 7b. The electrical plug 5 is connected to the electrical outlet 4 connected to the secondary side wiring path 8 of the specific branch breaker 3C. By being connected, the power supply unit 7 and the wiring path 8 are electrically connected. The output current from the power conversion unit 7b to the electric plug 5 (that is, the output current of the power supply unit 7) is adjusted by control by the control unit 7c.

電流検出部10は、例えば、計器用変流器(カレントトランス)を用いて実現できる。本実施形態では、電流検出部10を分岐ブレーカ3Cの二次側に設けているが、分岐ブレーカ3Cを流れる電流を検出できるのであれば、分岐ブレーカ3Cの一次側に電流検出部10を設けてもよい。電源部7及び散水器6A及び常夜灯6Bは、分岐ブレーカ3Cの二次側の配線路8に対して、他の分岐ブレーカ3を経由せずに接続されている。電流検出部10は、そのようにして電源部7及び散水器6A及び常夜灯6Bが直接接続されている分岐ブレーカ3Cを流れる電流を検出する。電流検出部10の検出結果は電流制御部11に伝達される。   The current detection unit 10 can be realized using, for example, an instrument current transformer (current transformer). In this embodiment, the current detector 10 is provided on the secondary side of the branch breaker 3C. However, if the current flowing through the branch breaker 3C can be detected, the current detector 10 is provided on the primary side of the branch breaker 3C. Also good. The power supply unit 7, the sprinkler 6A, and the nightlight 6B are connected to the secondary-side wiring path 8 of the branch breaker 3C without passing through the other branch breaker 3. The current detection unit 10 detects the current flowing through the branch breaker 3C to which the power supply unit 7, the water sprinkler 6A, and the nightlight 6B are directly connected as described above. The detection result of the current detection unit 10 is transmitted to the current control unit 11.

分岐ブレーカ3の二次側に対して少なくとも一つの電源部7を含む複数の電気機器Eが接続されている場合、図5に示したように、分岐ブレーカ3Cの一次側から二次側に流入する電流(例えば20A)と電源部7の出力電流(例えば12A)との和の電流(32A)が、分岐ブレーカ3の二次側の配線路8で流れる可能性がある。つまり、分岐ブレーカ3Cには、配線路8の許容電流を超える過電流が流れていなくても、分岐ブレーカ3Cの二次側の配線路8にはその許容電流を超える過電流が流れている可能性がある。   When a plurality of electrical devices E including at least one power supply unit 7 are connected to the secondary side of the branch breaker 3, as shown in FIG. 5, the flow flows from the primary side to the secondary side of the branch breaker 3C. Current (32 A) of the current (for example, 20 A) and the output current (for example, 12 A) of the power supply unit 7 may flow in the wiring line 8 on the secondary side of the branch breaker 3. That is, even if an overcurrent exceeding the allowable current of the wiring path 8 does not flow through the branch breaker 3C, an overcurrent exceeding the allowable current may flow through the secondary wiring path 8 of the branch breaker 3C. There is sex.

分岐ブレーカ3Cが、電源部7のみが接続される専用ブレーカではなく、電源部7と電力消費装置6とが併せて接続されるようなブレーカであること、及び、分岐ブレーカ3Cの二次側の配線路8には、分岐ブレーカ3Cを流れる電流と電源部7の出力電流との合計電流が流れ得るためにこのような問題が生じ得ると言える。従って、分岐ブレーカ3Cの二次側の配線路8に流れる電流を、配線路8の許容電流以下に抑制したいならば、必要に応じて電源部7の出力電流を抑制すればよい。このような考えの下で行われるのが、図3に示す電流制限処理である。即ち、電流制御部11は、電流検出部10が検出する特定の分岐ブレーカ3Cを流れる電流(検出電流)が大きくなるほど、電源部7の出力電流を小さくさせる電流制限処理を行う。   The branch breaker 3C is not a dedicated breaker to which only the power supply unit 7 is connected, but is a breaker in which the power supply unit 7 and the power consuming device 6 are connected together, and the branch breaker 3C on the secondary side It can be said that such a problem may occur in the wiring path 8 because the total current of the current flowing through the branch breaker 3C and the output current of the power supply unit 7 can flow. Therefore, if it is desired to suppress the current flowing in the secondary side wiring path 8 of the branch breaker 3C to be equal to or less than the allowable current of the wiring path 8, the output current of the power supply unit 7 may be suppressed as necessary. The current limiting process shown in FIG. 3 is performed under such an idea. That is, the current control unit 11 performs a current limiting process for reducing the output current of the power supply unit 7 as the current (detection current) flowing through the specific branch breaker 3C detected by the current detection unit 10 increases.

図3は、電流制御部11が行う電流制限処理を説明するフローチャートである。この電流制限処理の概要は以下の表1に示す通りである。表1に示すように、分岐ブレーカ3Cを流れる電流(検出電流)が大きくなるほど、電源部7の出力電流を小さくさせる電流制限処理が行われる。   FIG. 3 is a flowchart for explaining the current limiting process performed by the current control unit 11. The outline of the current limiting process is as shown in Table 1 below. As shown in Table 1, a current limiting process for reducing the output current of the power supply unit 7 is performed as the current (detection current) flowing through the branch breaker 3C increases.

Figure 2018014835
Figure 2018014835

以下に電流制限処理の内容について詳細に説明する。
工程#1において電流制御部11は、電流検出部10が検出する検出電流(分岐ブレーカ3Cを流れる電流)が、第2基準電流以下であるか否かを判定する。第2基準電流は、分岐ブレーカ3Cの二次側の配線路8に流れる電流を、配線路8の許容電流以下に抑制することを目的として設定され、その目的を達成するために電源部7の出力電流を抑制する必要があるか否かを判定する指標となる電流である。
そして、電流制御部11は、分岐ブレーカ3Cを流れる検出電流が第2基準電流以下の場合には(工程#1において「Yes」の場合)、工程#2に移行する。これに対して、電流制御部11は、分岐ブレーカ3Cを流れる検出電流が第2基準電流より大きい場合には(工程#1において「No」の場合)、工程#3に移行する。
The contents of the current limiting process will be described in detail below.
In step # 1, the current control unit 11 determines whether or not the detection current (current flowing through the branch breaker 3C) detected by the current detection unit 10 is equal to or less than the second reference current. The second reference current is set for the purpose of suppressing the current flowing in the secondary side wiring path 8 of the branch breaker 3C to be equal to or less than the allowable current of the wiring path 8, and in order to achieve the purpose, This current is an index for determining whether or not the output current needs to be suppressed.
Then, when the detected current flowing through the branch breaker 3C is equal to or less than the second reference current (in the case of “Yes” in step # 1), the current control unit 11 proceeds to step # 2. On the other hand, when the detected current flowing through the branch breaker 3C is larger than the second reference current (in the case of “No” in step # 1), the current control unit 11 proceeds to step # 3.

具体的には、第2基準電流は、特定の分岐ブレーカ3Cの遮断電流又はその相当量から、電源部7の出力電流を減算し及び所定の余裕電流分を減算して得られる値である。電流制御部11は、電源部7の出力電流についての情報を、電源部7の制御ユニット7cから取得できる。分岐ブレーカ3Cの遮断電流の相当量とは、例えば、分岐ブレーカ3Cの二次側に接続される配線路8の許容電流である。つまり、分岐ブレーカ3Cの遮断電流が20Aに設定されている場合、分岐ブレーカ3Cの二次側の配線路8は許容電流が20A程度の物が用いられるというように、分岐ブレーカ3Cの遮断電流と配線路8の許容電流とは関連した値になっている。余裕電流分は、遮断電流又はその相当量よりも小さい値である。例えば、分岐ブレーカ3Cの遮断電流は20Aであり、余裕電流分は5Aである。従って、電源部7の出力電流が12Aであれば、第2基準電流は3A(=20A−12A−5A)になる。   Specifically, the second reference current is a value obtained by subtracting the output current of the power supply unit 7 and subtracting a predetermined margin current from the cutoff current of the specific branch breaker 3C or its equivalent amount. The current control unit 11 can acquire information about the output current of the power supply unit 7 from the control unit 7 c of the power supply unit 7. The equivalent amount of the breaking current of the branch breaker 3C is, for example, the allowable current of the wiring path 8 connected to the secondary side of the branch breaker 3C. In other words, when the breaking current of the branch breaker 3C is set to 20A, the secondary breaker 3C secondary current wiring path 8 uses a current having an allowable current of about 20A. The allowable current of the wiring path 8 is a related value. The margin current is a value smaller than the cutoff current or its equivalent amount. For example, the breaking current of the branch breaker 3C is 20A, and the surplus current is 5A. Therefore, if the output current of the power supply unit 7 is 12A, the second reference current is 3A (= 20A-12A-5A).

このように、分岐ブレーカ3Cを流れる検出電流が第2基準電流以下であれば、その検出電流に電源部7の出力電流が加算されても、合計の電流(即ち、配線路8に流れる可能性の有る電流)が、配線路8の許容電流を大幅に上回らないことが確保される。例えば、第2基準電流が3Aになっているとき、電流検出部10が検出する、分岐ブレーカ3Cを流れる検出電流が3Aであれば(即ち、検出電流が第2基準電流以下であれば)、電源部7の出力電流が12Aであったとしても、分岐ブレーカ3Cの二次側の配線路8に流れる電流は15A程度であり、その配線路8の許容電流(20A程度)を上回らないことが確保される。   As described above, if the detected current flowing through the branch breaker 3C is equal to or smaller than the second reference current, even if the output current of the power supply unit 7 is added to the detected current, the total current (that is, the possibility of flowing through the wiring path 8). It is ensured that the current with no current significantly exceeds the allowable current of the wiring line 8. For example, when the second reference current is 3A, if the detected current flowing through the branch breaker 3C detected by the current detector 10 is 3A (that is, if the detected current is equal to or less than the second reference current), Even if the output current of the power supply unit 7 is 12 A, the current flowing in the secondary side wiring path 8 of the branch breaker 3 C is about 15 A, and may not exceed the allowable current (about 20 A) of the wiring path 8. Secured.

電流制御部11は、分岐ブレーカ3Cを流れる検出電流が第2基準電流以下の場合には(工程#1において「Yes」の場合)、工程#2に移行して、電源部7の出力電流を抑制せずにそのままの状態での動作を行わせる。つまり、電源部7の制御ユニット7cは自身が決定する目標出力電流を電力変換ユニット7bから電気コンセント4の方へと出力させる。
その後、電流制御部11は、工程#6に移行して所定期間待機した後、この電流制限処理のフローチャートの最初にリターンする。
When the detected current flowing through the branch breaker 3C is equal to or lower than the second reference current (“Yes” in step # 1), the current control unit 11 proceeds to step # 2 and outputs the output current of the power supply unit 7 The operation is performed as it is without being suppressed. That is, the control unit 7c of the power supply unit 7 outputs the target output current determined by itself from the power conversion unit 7b to the electric outlet 4.
Thereafter, the current control unit 11 proceeds to step # 6 and waits for a predetermined period, and then returns to the beginning of the flowchart of the current limiting process.

これに対して、電流制御部11は、分岐ブレーカ3Cを流れる検出電流が第2基準電流より大きい場合には(工程#1において「No」の場合)、工程#3に移行する。例えば、電流制御部11は、電流検出部10が検出する検出電流が5Aであり、第2基準電流(例えば3A)より大きければ、工程#3に移行する。そして、工程#3において電流制御部11は、電流検出部10が検出する検出電流が第1基準電流以下であるか否かを判定する。第1基準電流は、特定の分岐ブレーカ3Cの遮断電流又はその相当量から電源部7の出力電流を減算して得られる値である。例えば、分岐ブレーカ3Cの遮断電流が20Aであり、電源部7の出力電流が12Aであれば、第1基準電流は8A(=20A−12A)になる。   On the other hand, when the detected current flowing through the branch breaker 3C is larger than the second reference current (in the case of “No” in step # 1), the current control unit 11 proceeds to step # 3. For example, if the detected current detected by the current detection unit 10 is 5A and is larger than the second reference current (for example, 3A), the current control unit 11 proceeds to step # 3. In step # 3, the current control unit 11 determines whether the detected current detected by the current detection unit 10 is equal to or less than the first reference current. The first reference current is a value obtained by subtracting the output current of the power supply unit 7 from the cutoff current of the specific branch breaker 3C or its equivalent amount. For example, if the breaking current of the branch breaker 3C is 20A and the output current of the power supply unit 7 is 12A, the first reference current is 8A (= 20A-12A).

電流制御部11は、工程#3において検出電流が第1基準電流以下であると判定した場合には、工程#4に移行して、電源部7の出力電流を、所定の抑制時電流に制御させる。例えば、電流制御部11は、電流検出部10が検出する検出電流が5Aであり、第1基準電流(例えば8A)以下であれば、工程#4に移行する。そして、電源部7の制御ユニット7cは、電流制御部11から指示される抑制時電流を、自身の目標出力電流として電力変換ユニット7bから電気コンセント4の方へと出力させる。   If the current control unit 11 determines in step # 3 that the detected current is less than or equal to the first reference current, the current control unit 11 proceeds to step # 4 and controls the output current of the power supply unit 7 to a predetermined current during suppression. Let For example, if the detected current detected by the current detection unit 10 is 5A and is equal to or less than the first reference current (for example, 8A), the current control unit 11 proceeds to step # 4. And the control unit 7c of the power supply part 7 outputs the electric current at the time of suppression instruct | indicated from the current control part 11 to the direction of the electrical outlet 4 from the power conversion unit 7b as its own target output current.

この抑制時電流は、特定の分岐ブレーカ3の遮断電流又はその相当量から、所定の余裕電流分を減算し、及び、電流検出部10が検出する検出電流を減算して得られる値である。従って、電源部7の出力電流がこの抑制時電流になれば、分岐ブレーカ3Cの二次側の配線路8を流れる電流の大きさ、即ち、電源部7の出力電流(抑制時電流)と分岐ブレーカ3Cを流れる電流(検出電流)との合計は、分岐ブレーカ3Cの遮断電流まで所定の余裕電流分の分だけ余裕がある状態になる。そして、電流制御部11が決定した抑制時電流は電源部7に伝達され、電源部7の制御ユニット7cは、その抑制時電流を自身の目標出力電流として電力変換ユニット7bから電気コンセント4の方へと出力するように、電源ユニット7a及び電力変換ユニット7bの動作を制御する。例えば、分岐ブレーカ3Cの遮断電流が20Aであり、余裕電流分が5Aであり、電流検出部10による検出電流が5Aであれば、電流制御部11は、抑制時電流を10A(=20A−5A−5A)に決定する。つまり、電流制御部11は、電源部7の当初の出力電流が例えば12Aであったものを、10Aに変更させる。
その後、電流制御部11は、工程#6に移行する。
This current at the time of suppression is a value obtained by subtracting a predetermined margin current from the cutoff current of the specific branch breaker 3 or its equivalent, and subtracting the detection current detected by the current detection unit 10. Therefore, if the output current of the power supply unit 7 becomes the current at the time of suppression, the magnitude of the current flowing through the secondary side wiring path 8 of the branch breaker 3C, that is, the output current of the power source unit 7 (current at the time of suppression) and the branching. The total of the current (detection current) flowing through the breaker 3C is in a state where there is a margin for a predetermined margin current until the breaking current of the branch breaker 3C. Then, the suppression current determined by the current control unit 11 is transmitted to the power supply unit 7, and the control unit 7 c of the power supply unit 7 uses the suppression current as its target output current from the power conversion unit 7 b to the electrical outlet 4. The operation of the power supply unit 7a and the power conversion unit 7b is controlled so as to output to For example, if the breaking current of the branch breaker 3C is 20A, the margin current is 5A, and the current detected by the current detection unit 10 is 5A, the current control unit 11 sets the suppression current to 10A (= 20A-5A). -5A). That is, the current control unit 11 changes the initial output current of the power supply unit 7 from, for example, 12A to 10A.
Thereafter, the current control unit 11 proceeds to step # 6.

これに対して、電流制御部11は、工程#3において検出電流が第1基準電流より大きいと判定した場合には、工程#5に移行して、電源部7の出力を停止させる。例えば、電流制御部11は、電流検出部10が検出する検出電流が14Aであり、第1基準電流(例えば8A)より大きければ、工程#5に移行して、電源部7に対して、出力の停止を指令する。このようにして、電源部7が出力を停止すると、分岐ブレーカ3Cの二次側の配線路8に流れる電流は、電流検出部10が検出する検出電流、即ち、その分岐ブレーカ3Cを流れる電流のみになる。その結果、電流検出部10が検出する検出電流が、分岐ブレーカ3Cが遮断作動する遮断電流を超える場合には分岐ブレーカ3Cが遮断作動するので、分岐ブレーカ3Cの二次側の配線路8に過電流が流れることを防止できる。   In contrast, if the current control unit 11 determines in step # 3 that the detected current is larger than the first reference current, the current control unit 11 proceeds to step # 5 and stops the output of the power supply unit 7. For example, if the detected current detected by the current detection unit 10 is 14A and is larger than the first reference current (for example, 8A), the current control unit 11 proceeds to step # 5 and outputs to the power supply unit 7 Command to stop. Thus, when the power supply unit 7 stops outputting, the current flowing through the secondary side wiring path 8 of the branch breaker 3C is only the detection current detected by the current detection unit 10, that is, the current flowing through the branch breaker 3C. become. As a result, when the detected current detected by the current detection unit 10 exceeds the breaking current at which the branch breaker 3C is cut off, the branch breaker 3C is cut off, so that the excess current is connected to the wiring line 8 on the secondary side of the branch breaker 3C. Current can be prevented from flowing.

ここで、電源部7が出力を停止する手法は適宜設定可能である。例えば、電源ユニット7aの動作を停止させることで電源部7の出力を停止させる手法や、電源ユニット7aとしての発電装置は運転を継続しつつ、その発電電力を電気コンセント4の方へ出力することのみを停止する手法などがある。
その後、電流制御部11は、工程#6に移行する。
Here, the method by which the power supply unit 7 stops the output can be set as appropriate. For example, the method of stopping the output of the power supply unit 7 by stopping the operation of the power supply unit 7a or the power generation device as the power supply unit 7a outputs the generated power to the electrical outlet 4 while continuing the operation. There is a technique to stop only.
Thereafter, the current control unit 11 proceeds to step # 6.

以上のように、電流制御部11は、電流検出部10が検出する特定のブレーカ3を流れる電流(即ち、検出電流)が大きくなるほど、電源部7の出力電流を小さくさせる電流制限処理を行う。つまり、ブレーカ3の二次側の配線路8には、ブレーカ3を流れる検出電流と電源部7の出力電流との和の電流が流れ得るが、ブレーカ3を流れる検出電流が大きくなるほど、電流制限処理によって電源部7の出力電流を小さくさせることで、そのブレーカ3の二次側の配線路8を流れる電流の増大が抑制される。その結果、電源部7から電流が出力されている場合でも、ブレーカ3の二次側の配線路8に過電流が流れることを防止できる。また、電源部7から電流が出力されていないにも関わらずブレーカ3に大電流が流れ得る状況になっても、ブレーカ3がその大電流に応じて正常に遮断作動すれば、ブレーカ3の二次側の配線路8に過電流が流れることを防止できる。   As described above, the current control unit 11 performs the current limiting process for reducing the output current of the power supply unit 7 as the current flowing through the specific breaker 3 detected by the current detection unit 10 (that is, the detection current) increases. That is, the sum of the detection current flowing through the breaker 3 and the output current of the power supply unit 7 can flow through the secondary side wiring path 8 of the breaker 3, but the current limit increases as the detection current flowing through the breaker 3 increases. By reducing the output current of the power supply unit 7 by the processing, an increase in the current flowing through the wiring path 8 on the secondary side of the breaker 3 is suppressed. As a result, even when a current is output from the power supply unit 7, it is possible to prevent an overcurrent from flowing through the secondary side wiring path 8 of the breaker 3. In addition, even if no current is output from the power supply unit 7, even if a current can flow through the breaker 3, if the breaker 3 operates normally in response to the large current, the breaker 3 It is possible to prevent an overcurrent from flowing through the secondary wiring path 8.

尚、上記説明では、過電流防止装置が電流検出部10と電流制御部11とを備える例を説明したが、上記過電流防止装置(電流検出部10及び電流制御部11)と電源部7とを備える電源装置を構築してもよい。   In the above description, the example in which the overcurrent prevention device includes the current detection unit 10 and the current control unit 11 has been described. However, the overcurrent prevention device (the current detection unit 10 and the current control unit 11), the power supply unit 7, You may construct | assemble a power supply device provided with.

<別実施形態>
<1>
上記実施形態では、本発明の過電流防止装置及び電源装置の構成について具体例を挙げて説明したが、その構成は適宜変更可能である。例えば、分岐ブレーカ3の二次側の配線路8に接続される電気機器Eの種類や数などは適宜変更可能である。また、主幹ブレーカ2及び分岐ブレーカ3の接続例は単に例示目的で記載したものであり、それらの接続形態は適宜変更可能である。
更に、上記実施形態では電流の値について具体的な数値を挙げて説明したが、それらの数値は例示目的で記載したものであり、適宜変更可能である。
<Another embodiment>
<1>
In the said embodiment, although the specific example was given and demonstrated about the structure of the overcurrent prevention apparatus and power supply device of this invention, the structure can be changed suitably. For example, the type and number of electrical devices E connected to the secondary side wiring path 8 of the branch breaker 3 can be changed as appropriate. Moreover, the connection example of the main breaker 2 and the branch breaker 3 is described for the purpose of illustration only, and their connection form can be changed as appropriate.
Furthermore, in the above-described embodiment, the current values have been described with specific numerical values. However, these numerical values are described for the purpose of illustration and can be appropriately changed.

<2>
上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用でき、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変できる。
<2>
The configurations disclosed in the above-described embodiments (including the other embodiments, the same applies hereinafter) can be applied in combination with the configurations disclosed in the other embodiments as long as no contradiction arises, and are disclosed in this specification. The embodiment is an exemplification, and the embodiment of the present invention is not limited to this, and can be appropriately modified without departing from the object of the present invention.

本発明の過電流防止装置及び電源装置は、電源部が接続されているブレーカの二次側の配線路に過電流が流れることを防止するために利用できる。   INDUSTRIAL APPLICABILITY The overcurrent prevention device and the power supply device of the present invention can be used to prevent an overcurrent from flowing through the secondary wiring path of the breaker to which the power supply unit is connected.

1 電力系統
2 主幹ブレーカ
3 分岐ブレーカ
6 電力消費装置(電気機器)
6A 散水器(電力消費装置)
6B 常夜灯(電力消費装置)
7 電源部(電気機器)
8 配線路
10 電流検出部
11 電流制御部
E 電気機器
1 Power System 2 Main Breaker 3 Branch Breaker 6 Power Consumption Device (Electrical Equipment)
6A sprinkler (power consumption device)
6B Nightlight (power consumption device)
7 Power supply (electric equipment)
8 Wiring path 10 Current detection unit 11 Current control unit E Electrical equipment

Claims (6)

電源部が二次側に接続されたブレーカを流れる電流を検出する電流検出部と、
前記電流検出部が検出する前記ブレーカを流れる検出電流が大きくなるほど、前記電源部の出力電流を小さくさせる電流制限処理を行う電流制御部とを備える過電流防止装置。
A current detection unit for detecting a current flowing through a breaker connected to the secondary side of the power supply unit;
An overcurrent prevention apparatus comprising: a current control unit that performs a current limiting process for reducing an output current of the power supply unit as a detection current flowing through the breaker detected by the current detection unit increases.
前記電流制御部は、前記電流制限処理において、前記検出電流が所定の第1基準電流より大きいとき前記電源部の出力を停止させる請求項1に記載の過電流防止装置。   The overcurrent prevention device according to claim 1, wherein the current control unit stops the output of the power supply unit when the detected current is larger than a predetermined first reference current in the current limiting process. 前記第1基準電流は、前記ブレーカの遮断電流又はその相当量から前記電源部の出力電流を減算して得られる値である請求項2に記載の過電流防止装置。   3. The overcurrent prevention device according to claim 2, wherein the first reference current is a value obtained by subtracting an output current of the power supply unit from a breaking current of the breaker or an equivalent amount thereof. 前記電流制御部は、前記電流制限処理において、前記検出電流が前記第1基準電流より小さい所定の第2基準電流より大きく、且つ、前記検出電流が前記第1基準電流以下のとき、前記電源部の出力電流を、前記ブレーカの遮断電流又はその相当量から所定の余裕電流分を減算し及び前記検出電流を減算して得られる抑制時電流にさせる請求項2又は3に記載の過電流防止装置。   In the current limiting process, when the detected current is larger than a predetermined second reference current smaller than the first reference current and the detected current is equal to or less than the first reference current, the current control unit 4. The overcurrent prevention device according to claim 2, wherein the output current is reduced to a current at the time of suppression obtained by subtracting a predetermined margin current from the breaking current of the breaker or an equivalent amount thereof and subtracting the detection current. . 前記第2基準電流は、前記ブレーカの前記遮断電流又はその相当量から、前記電源部の出力電流を減算し及び前記余裕電流分を減算して得られる値である請求項4に記載の過電流防止装置。   5. The overcurrent according to claim 4, wherein the second reference current is a value obtained by subtracting the output current of the power supply unit and subtracting the margin current from the breaking current of the breaker or an equivalent amount thereof. Prevention device. 請求項1〜5の何れか一項に記載の過電流防止装置と、前記電源部とを備える電源装置。   A power supply apparatus provided with the overcurrent prevention apparatus as described in any one of Claims 1-5, and the said power supply part.
JP2016143350A 2016-07-21 2016-07-21 Overcurrent prevention device and power supply device Active JP6701019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016143350A JP6701019B2 (en) 2016-07-21 2016-07-21 Overcurrent prevention device and power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016143350A JP6701019B2 (en) 2016-07-21 2016-07-21 Overcurrent prevention device and power supply device

Publications (2)

Publication Number Publication Date
JP2018014835A true JP2018014835A (en) 2018-01-25
JP6701019B2 JP6701019B2 (en) 2020-05-27

Family

ID=61020476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016143350A Active JP6701019B2 (en) 2016-07-21 2016-07-21 Overcurrent prevention device and power supply device

Country Status (1)

Country Link
JP (1) JP6701019B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019176664A (en) * 2018-03-29 2019-10-10 東京瓦斯株式会社 Power system
JP2020202723A (en) * 2019-06-13 2020-12-17 大阪瓦斯株式会社 Power supply device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303706A (en) * 1993-04-13 1994-10-28 Toshiba Corp Power distribution apparatus
JP2002315116A (en) * 2001-04-06 2002-10-25 Mineo Yamauchi Distribution board for housing for preventing power failure of all apparatuses caused by overload
JP2015136199A (en) * 2014-01-16 2015-07-27 日産自動車株式会社 Power supply device, mobile body, and electricity distribution system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303706A (en) * 1993-04-13 1994-10-28 Toshiba Corp Power distribution apparatus
JP2002315116A (en) * 2001-04-06 2002-10-25 Mineo Yamauchi Distribution board for housing for preventing power failure of all apparatuses caused by overload
JP2015136199A (en) * 2014-01-16 2015-07-27 日産自動車株式会社 Power supply device, mobile body, and electricity distribution system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019176664A (en) * 2018-03-29 2019-10-10 東京瓦斯株式会社 Power system
JP7082510B2 (en) 2018-03-29 2022-06-08 東京瓦斯株式会社 Power system
JP2020202723A (en) * 2019-06-13 2020-12-17 大阪瓦斯株式会社 Power supply device
JP7257887B2 (en) 2019-06-13 2023-04-14 大阪瓦斯株式会社 power supply

Also Published As

Publication number Publication date
JP6701019B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
KR101052471B1 (en) Neutral wire replacement device in power system and method
US20150092311A1 (en) Methods, systems, and computer readable media for protection of direct current building electrical systems
Varma et al. Technique for fast detection of short circuit current in PV distributed generator
JP2011067078A (en) Method and device for controlling power supply system
KR102128442B1 (en) Apparatus for protecting OLTC of main transformer
Carminati et al. Ground fault analysis of low voltage DC micro-grids with active front-end converter
JP2017093127A (en) Power controller
JP2015220791A (en) Power supply control device
JP6701019B2 (en) Overcurrent prevention device and power supply device
KR101417940B1 (en) Cabinet panel for prevention disaster of abnormal voltage protection and method thereof
JP5368915B2 (en) Relay and power supply system
KR101314123B1 (en) Switchgear for controling peak using distributed generation of grid connected
CN104377809A (en) Intelligent control device of communication station low-voltage distribution system
Hotchkiss Surge protection of automatic transfer switches—Application note
CN104466923A (en) Power distribution network protection circuit and system connected into microgrid
KR20190055544A (en) Energy storage system
Xue et al. Development of an advanced LCC-HVDC model for transmission system
KR101365290B1 (en) Eco-friendly energy-saving power quality recovery equipment equipped switchboards
JP6797073B2 (en) Operation control device and power generation equipment
JP2009043455A (en) Limiter
JP2020191741A (en) Protection device of dc power transmission system
AU2015285887B2 (en) Residual current protection device and residual current protection system
KR20140121586A (en) Switchboard to recover the reversed- phase and power quality
JP7072082B2 (en) Power supply system, control device, and power supply method
US20210305806A1 (en) Power supply system and power supply method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200501

R150 Certificate of patent or registration of utility model

Ref document number: 6701019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250