JP2014238011A - 直噴式ディーゼルエンジンの燃焼室構造 - Google Patents
直噴式ディーゼルエンジンの燃焼室構造 Download PDFInfo
- Publication number
- JP2014238011A JP2014238011A JP2013119470A JP2013119470A JP2014238011A JP 2014238011 A JP2014238011 A JP 2014238011A JP 2013119470 A JP2013119470 A JP 2013119470A JP 2013119470 A JP2013119470 A JP 2013119470A JP 2014238011 A JP2014238011 A JP 2014238011A
- Authority
- JP
- Japan
- Prior art keywords
- piston
- combustion chamber
- cavity
- fuel
- diesel engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B23/00—Other engines characterised by special shape or construction of combustion chambers to improve operation
- F02B23/02—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
- F02B23/06—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
- F02B23/0696—W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B23/00—Other engines characterised by special shape or construction of combustion chambers to improve operation
- F02B23/02—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
- F02B23/06—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
- F02B23/0678—Unconventional, complex or non-rotationally symmetrical shapes of the combustion space, e.g. flower like, having special shapes related to the orientation of the fuel spray jets
- F02B23/0693—Unconventional, complex or non-rotationally symmetrical shapes of the combustion space, e.g. flower like, having special shapes related to the orientation of the fuel spray jets the combustion space consisting of step-wise widened multiple zones of different depth
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B2275/00—Other engines, components or details, not provided for in other groups of this subclass
- F02B2275/40—Squish effect
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Abstract
【課題】黒煙の発生や燃費の悪化を招くことなく排気ガスの再循環量を従来より増やして高EGR率化を実現する。
【解決手段】ピストン9頂面に下方向きに窪むキャビティ10を備え、該キャビティ10内に気筒天井部の中心から燃料を放射状に噴射して自己着火せしめる直噴式ディーゼルエンジンの燃焼室構造に関し、キャビティ10の開口の外周部にピストン9頂面に対し所要深さ窪んで段差を成し且つ半径方向外側へ向かうにつれ徐々に上昇して凹面状に立ち上がるガイド面20aを備えた抉り部20を形成すると共に、該抉り部20の底面の内周部とキャビティ10の底面から立ち上がる燃焼室壁面部21とによりピストン9頂面から一段下がった位置に入口リップ部22を形成し、前記抉り部20の外周部に前記ピストン9頂面に対し前記抉り部20より浅く窪んで段差を成す棚部23を形成する。
【選択図】図1
【解決手段】ピストン9頂面に下方向きに窪むキャビティ10を備え、該キャビティ10内に気筒天井部の中心から燃料を放射状に噴射して自己着火せしめる直噴式ディーゼルエンジンの燃焼室構造に関し、キャビティ10の開口の外周部にピストン9頂面に対し所要深さ窪んで段差を成し且つ半径方向外側へ向かうにつれ徐々に上昇して凹面状に立ち上がるガイド面20aを備えた抉り部20を形成すると共に、該抉り部20の底面の内周部とキャビティ10の底面から立ち上がる燃焼室壁面部21とによりピストン9頂面から一段下がった位置に入口リップ部22を形成し、前記抉り部20の外周部に前記ピストン9頂面に対し前記抉り部20より浅く窪んで段差を成す棚部23を形成する。
【選択図】図1
Description
本発明は、直噴式ディーゼルエンジンの燃焼室構造に関するものである。
従来より、自動車のディーゼルエンジン等では、排気側から排気ガスの一部を抜き出して吸気側へと戻し、その吸気側に戻された排気ガスでエンジン内での燃料の燃焼を抑制させて燃焼温度を下げることによりNOxの発生を低減するようにした、いわゆる排気ガス再循環(EGR:Exhaust Gas Recirculation)を採用したものがある。
図9は排気ガスを再循環する機構を備えたディーゼルエンジンの一例を示すもので、ここに図示しているディーゼルエンジン1においては、排気ガス2が流通する排気通路3と吸気通路4との間がEGRパイプ5により接続されており、このEGRパイプ5の途中に備えたEGRバルブ6を介し排気ガス2の一部を吸入空気7と一緒に再循環してディーゼルエンジン1の気筒内に送り込み、該気筒内での燃焼温度を下げてNOxの低減化を図るようにしてある。
また、ディーゼルエンジン1の各気筒の天井部(気筒天井部11)に、燃料(軽油)を気筒内に噴射する多孔式のインジェクタ8が装備されていると共に、ピストン9の頂面には下方向きに窪むキャビティ10が形成されており、該キャビティ10の内周面に対し前記インジェクタ8の先端部から燃料が放射状に噴射されて圧縮行程終期の高い気筒内温度により自己着火するようになっている。
また、前記ディーゼルエンジン1におけるインジェクタ8の噴射作動については、エンジン制御コンピュータ(ECU:Electronic Control Unit)を成す制御装置12からの燃料噴射指令8aにより制御されるようになっており、圧縮上死点近辺で前記インジェクタ8に燃料噴射指令8aを出力して燃料を噴射せしめるようにしてある。
また、この制御装置12には、アクセル開度をディーゼルエンジン1の負荷として検出するアクセルセンサ13(負荷センサ)からのアクセル開度信号13aや、ディーゼルエンジン1の機関回転数を検出する回転センサ14からの回転数信号14a等が入力されており、各種のエンジン制御を実行するべくディーゼルエンジン1の運転状態が常に監視されるようになっている。
尚、図9中における15はクランクシャフト、16は排気ポート、17は排気弁、18は吸気ポート、19は吸気弁を示しており、該吸気弁19及び前記排気弁17は、図示しないエンジン駆動のカムシャフトに備えたカムによりプッシュロッドやロッカーアームを介して各気筒毎の行程に応じた適切なタイミングで開弁操作されるようになっている。
このような従来の直噴式ディーゼルエンジンにおいて、排気ガス2の再循環によりNOxの低減化を図ることは、気筒内での燃焼不良により黒煙を発生してしまうこととトレードオフの関係にあるので、大幅なNOxの低減化を実現するべく単純に排気ガス2の再循環量を増やしてしまうと、黒煙の発生や燃費の悪化といった問題を招いてしまうことになる。
そこで、本発明者らのうちの一部は、既存の燃焼室構造に関し、燃料噴霧の拡散状況に着目して鋭意研究を続け、低速運転時においては、燃料の噴射期間に対しピストン9の下降速度が遅いために該ピストン9が十分に下降する前に燃料噴射が終了してしまい、燃料噴霧の殆どがキャビティ10内に噴射されて留まり、ここに燃料の濃い領域が局所的に形成されて黒煙が発生し易くなっているという事実を見いだし、また、高速運転時においては、燃料の噴射期間に対しピストン9の下降速度が速いために該ピストン9が燃料噴射の前半から大きく下がり過ぎてしまい、燃料噴霧の殆どがキャビティ10内に入らずにスキッシュエリアS(キャビティ10周囲のピストン9の頂面と気筒天井部11との間の領域)へ流れてライナ壁付近(スキッシュエリアSの最外側部分)に留まり、ここに燃料の濃い領域が局所的に形成されて黒煙が発生し易くなっているという事実を見いだした。
そして、これらの事実を勘案して図10に示す如き燃焼室構造を創案し、これを下記の特許文献1として出願している。即ち、この特許文献1においては、キャビティ10の開口の外周部にピストン9頂面に対し所要深さ窪んで段差を成し且つ半径方向外側へ向かうにつれ徐々に上昇して凹面状に立ち上がるガイド面20aを備えた抉り部20を設け、該抉り部20の底面の内周部とキャビティ10の底面から立ち上がる燃焼室壁面部21とによりピストン9頂面から一段下がった位置に入口リップ部22を形成した燃焼室構造が提案されている。
このような燃焼室構造によれば、ピストン9頂面から一段下がった位置に入口リップ部22が形成されているため、図11に示す如く、低速運転時において、噴射期間の大半で燃料噴霧Fが入口リップ部22付近に吹き付けられてキャビティ10内に向かう流れと抉り部20に向かう流れとに分配され、これにより燃料噴霧Fのキャビティ10内への偏りが改善される一方、図12に示す如く、高速運転時においては、燃料噴霧Fの大半が入口リップ部22より上側の抉り部20に吹き付けられて該抉り部20の曲面により上向きの流れが形成され、この上向きの流れを挟むようにして半径方向内側と外側に互いに逆向きの渦が発生し、この各渦によりスキッシュエリアS内での良好な燃料噴霧Fの拡散が図られることになる。
しかしながら、特許文献1の燃焼室構造の採用により燃料噴霧Fの拡散状況が改善されることが確認されたが、低速運転時におけるスキッシュエリアSへの燃料噴霧Fの拡散状況は未だ不十分であり、しかも、高速運転時におけるスキッシュエリアSのライナ壁付近で局所的に燃料の濃い領域が形成され易い傾向は依然として解消しきれていないことも確認されており、排気ガス2の再循環量を従来以上に増やして更なる高EGR率化を図るほどには燃料噴霧Fの拡散状況を改善できていないのが実情である。
即ち、いくら特許文献1の燃焼室構造を採用しても、EGR率を従来以上の高いレベルまで高めようとすると、これに伴い空気量が低減して燃焼性の低下による黒煙が発生し易くなり、一方、空気量を維持したまま高EGR率化を図ろうとすれば、過給圧及び排気マニホールド圧を上げる必要が生じることから結果的にポンピングロスが増大して燃費が悪化してしまうことになる。
本発明は上述の実情に鑑みてなしたもので、黒煙の発生や燃費の悪化を招くことなく排気ガスの再循環量を従来より増やして高EGR率化を実現し得る直噴式ディーゼルエンジンの燃焼室構造を提供することを目的としている。
本発明は、ピストン頂面に下方向きに窪むキャビティを備え、該キャビティ内に気筒天井部の中心から燃料を放射状に噴射して自己着火せしめる直噴式ディーゼルエンジンの燃焼室構造であって、キャビティの開口の外周部にピストン頂面に対し所要深さ窪んで段差を成し且つ半径方向外側へ向かうにつれ徐々に上昇して凹面状に立ち上がるガイド面を備えた抉り部を形成すると共に、該抉り部の底面の内周部とキャビティの底面から立ち上がる燃焼室壁面部とによりピストン頂面から一段下がった位置に入口リップ部を形成し、前記抉り部の外周部に前記ピストン頂面に対し前記抉り部より浅く窪んで段差を成す棚部を形成したことを特徴とするものである。
而して、このようにした場合、低速運転時においては、燃料の噴射期間に対しピストンの下降速度が遅いため、キャビティ内に気筒天井部の中心から放射状に燃料噴射を行うと、噴射期間の大半で燃料噴霧が入口リップ部付近に吹き付けられてキャビティ内に向かう流れと抉り部に向かう流れとに分配されることになるが、該抉り部に分配された燃料噴霧が半径方向外側のガイド面に乗り上げ、ここに一段下がった棚部が形成されていることで前記抉り部からスキッシュエリアへの溢流が促され、該スキッシュエリア内での良好な燃料噴霧の拡散が図られる。
即ち、ピストンの下降速度が遅い低速運転時では、燃焼室中央からスキッシュエリアに向かう逆スキッシュ流の流速が低いことから燃料噴霧の流れが支配的となるため、該燃料噴霧が棚部により抉り部を乗り越え易くなっていれば、該抉り部からスキッシュエリアへの燃料噴霧の溢流が促され、より多くの燃料噴霧をスキッシュエリアへ導いて拡散させることが可能となる。
一方、高速運転時においては、燃料の噴射期間に対しピストンの下降速度が速いため、キャビティ内に気筒天井部の中心から放射状に燃料噴射を行うと、噴射期間の初期に燃料噴霧が入口リップ部付近に吹き付けられてキャビティ内に向かう流れと抉り部に向かう流れとに分配された後、燃料噴霧の大半が入口リップ部より上側の抉り部に吹き付けられて該抉り部のガイド面により上向きの流れが形成され、この上向きの流れを挟むようにして半径方向内側と外側に互に逆向きの渦が発生し、これら各渦によりスキッシュエリア内での燃料噴霧の拡散が図られるが、この際、燃焼室中央からスキッシュエリアに向かう流路断面積が棚部の形成により増加されているので、逆スキッシュ流の流速が従来の高速運転時における流速よりも低下することになり、この逆スキッシュ流の流速低下によりスキッシュエリアに引き込まれる燃料噴霧の割合が低減され、スキッシュエリアのライナ壁付近で局所的に燃料の濃い領域が形成され易くなる傾向が是正されることになる。
即ち、ピストンの下降速度が早い高速運転時では、燃焼室中央からスキッシュエリアに向かう逆スキッシュ流の流速が高いことから該逆スキッシュ流が支配的となるため、燃料噴霧が逆スキッシュ流によりスキッシュエリアに引き込まれ易い傾向にあるが、燃焼室中央からスキッシュエリアに向かう流路断面積が棚部により増加するようになっていれば、逆スキッシュ流の流速が従来より低下して該逆スキッシュ流によりスキッシュエリアに引き込まれる燃料噴霧の割合が下がって燃料の濃い領域が生じ難くなる。
また、本発明においては、燃料噴射のノズルコーン角を140゜〜160゜の範囲とし、ピストン頂面に対する棚部の深さ寸法が入口リップ部の口径の1%以上で且つ4%以下となるように構成することが好ましく、また、棚部の半径方向の幅寸法が入口リップ部の口径の3%以上で且つ9%以下となるように構成すると良い。
上記した本発明の直噴式ディーゼルエンジンの燃焼室構造によれば、低速運転時におけるスキッシュエリアへの燃料噴霧の拡散状況を大幅に改善することができると共に、高速運転時におけるスキッシュエリアのライナ壁付近で局所的に燃料の濃い領域が形成され易い傾向を是正することもできるので、黒煙の発生や燃費の悪化を招くことなく排気ガスの再循環量を従来より増やして高EGR率化を実現することができるという優れた効果を奏し得る。
以下本発明の実施の形態を図面を参照しつつ説明する。
図1〜図8は本発明を実施する形態の一例を示すもので、図9及び図10と同一の符号を付した部分は同一物を表わしている。
先に図9で説明した直噴式のディーゼルエンジン1に関し、本形態例においては、図1及び図2に示す如く、ピストン9の頂面に形成されたキャビティ10の開口の外周部に、ピストン9の頂面に対し所要深さ窪んで段差を成し且つ半径方向外側へ向かうにつれ徐々に上昇して凹面状に立ち上がるガイド面20aを備えた抉り部20を形成すると共に、該抉り部20の底面の内周部とキャビティ10の底面から立ち上がる燃焼室壁面部21とによりピストン9の頂面から一段下がった位置に入口リップ部22を形成し、前記抉り部20の外周部に前記ピストン9の頂面に対し前記抉り部20より浅く窪んで段差を成す棚部23を形成している。
また、燃料(軽油)を気筒内に噴射する気筒天井部11のインジェクタ8(図9参照)から噴射される燃料噴射のノズルコーン角を140゜〜160゜の範囲に規定した場合、ピストン9の頂面に対する棚部23の深さ寸法hが入口リップ部22の口径dの1%以上で且つ4%以下となるようにしてあり、しかも、棚部23の半径方向の幅寸法Lが入口リップ部22の口径dの3%以上で且つ9%以下となるようにしてある。
尚、棚部23を形成したことによるキャビティ10内の容積増加分は、該キャビティ10の底部外周の曲面部分の位置を上側へオフセットさせるなど、入口リップ部22より下方のキャビティ10の形状変更により調整し、圧縮比が変わらないようにしておくことは勿論である。
而して、このように燃焼室構造を構成した場合、低速運転時においては、燃料の噴射期間に対しピストン9の下降速度が遅いため、図3に示す如く、キャビティ10内に気筒天井部11の中心から放射状に燃料噴射を行うと、噴射期間の大半で燃料噴霧Fが入口リップ部22付近に吹き付けられてキャビティ10内に向かう流れと抉り部20に向かう流れとに分配(図3では燃料噴霧Fの流れを示す矢印を省略しているが図11の燃料噴霧Fの流れを示す矢印を参照)されることになるが、該抉り部20に分配された燃料噴霧Fが半径方向外側のガイド面20aに乗り上げ、ここに一段下がった棚部23が形成されていることで前記抉り部20からスキッシュエリアSへの溢流が促され、該スキッシュエリアS内での良好な燃料噴霧Fの拡散が図られる。
即ち、ピストン9の下降速度が遅い低速運転時では、燃焼室中央からスキッシュエリアSに向かう逆スキッシュ流R(ピストン9の下降に伴いスキッシュエリアSの容積が急速に増大して起こる吸込み作用による流れ)の流速が低いことから燃料噴霧Fの流れが支配的となるため、該燃料噴霧Fが棚部23により抉り部20を乗り越え易くなっていれば、該抉り部20からスキッシュエリアSへの燃料噴霧Fの溢流が促され、より多くの燃料噴霧FをスキッシュエリアSへ導いて拡散させることが可能となる。
一方、高速運転時においては、燃料の噴射期間に対しピストン9の下降速度が速いため、図4に示す如く、キャビティ10内に気筒天井部11の中心から放射状に燃料噴射を行うと、噴射期間の初期に燃料噴霧Fが入口リップ部22付近に吹き付けられてキャビティ10内に向かう流れと抉り部20に向かう流れとに分配(図4では燃料噴霧Fの流れを示す矢印を省略しているが図12の燃料噴霧Fの流れを示す矢印を参照)された後、燃料噴霧Fの大半が入口リップ部22より上側の抉り部20に吹き付けられて該抉り部20のガイド面20aにより上向きの流れが形成され、この上向きの流れを挟むようにして半径方向内側と外側に互に逆向きの渦が発生し、これら各渦によりスキッシュエリアS内での燃料噴霧Fの拡散が図られるが、この際、燃焼室中央からスキッシュエリアSに向かう流路断面積が棚部23の形成により増加されているので、逆スキッシュ流Rの流速が従来における高速運転時の流速よりも低下することになり、この逆スキッシュ流RによりスキッシュエリアSに引き込まれる燃料噴霧Fの割合が低減され、スキッシュエリアSのライナ壁付近で局所的に燃料の濃い領域が形成され易くなる傾向が是正されることになる。
即ち、ピストン9の下降速度が早い高速運転時では、燃焼室中央からスキッシュエリアSに向かう逆スキッシュ流Rの流速が高いことから該逆スキッシュ流Rが支配的となるため、燃料噴霧Fが逆スキッシュ流RによりスキッシュエリアSに引き込まれ易い傾向にあるが、燃焼室中央からスキッシュエリアSに向かう流路断面積が棚部23により増加するようになっていれば、逆スキッシュ流Rの流速が従来より低下して該逆スキッシュ流RによりスキッシュエリアSに引き込まれる燃料噴霧Fの割合が下がって燃料の濃い領域が生じ難くなる。
従って、上記形態例によれば、低速運転時におけるスキッシュエリアSへの燃料噴霧Fの拡散状況を大幅に改善することができると共に、高速運転時におけるスキッシュエリアSのライナ壁付近で局所的に燃料の濃い領域が形成され易い傾向を是正することもできるので、黒煙の発生や燃費の悪化を招くことなく排気ガスの再循環量を従来より増やして高EGR率化を実現することができる。
事実、本発明者らによる検証実験によれば、図5及び図6に低速運転の場合と高速運転の場合とをグラフで夫々示している通り、従来の燃焼室構造を採用した場合よりも、本形態例の燃焼室構造を採用した場合の方が、低速運転時と高速運転時の何れについても黒煙発生の改善が認められた。
更に、本形態例において、燃料噴射のノズルコーン角を140゜〜160゜の範囲に規定し、ピストン9の頂面に対する棚部23の深さ寸法hが入口リップ部22の口径dの1%以上で且つ4%以下となるようにし、棚部23の半径方向の幅寸法Lが入口リップ部22の口径dの3%以上で且つ9%以下となるようにしている意義につき以下に詳述する。
図7にグラフで示す如く、燃料噴射のノズルコーン角を140゜〜160゜の範囲に規定した条件下で深さ寸法hの口径dに対する割合を0%から大きくしていくと、低速運転と中速運転と高速運転の何れにおいても約1〜4%の間では良好な黒煙低減効果が得られることが確認された。
ここで、下限値を1%としているのは、1%を下まわる範囲では、棚部23を形成しない場合(0%)と比較して有意差が確認できなかったためであり、上限値を4%としているのは、これを上まわると特に高速運転で顕著に黒煙が増加してしまうからである(低速運転では更なる改善が認められるが全ての運転領域で改善されることにはならない)。
而して、このような実験結果を総合的に勘案すると、ピストン9の頂面に対する棚部23の深さ寸法hは、入口リップ部22の口径dの1%以上で且つ4%以下となるように範囲規定するのが最適であると結論づけられ、この範囲であれば、全ての運転領域で良好な黒煙低減効果が得られることになる。
他方、図8にグラフで示す如く、燃料噴射のノズルコーン角を140゜〜160゜の範囲に規定した条件下で幅寸法Lの口径dに対する割合を0%から大きくしていくと、低速運転と中速運転と高速運転の何れにおいても約3〜9%の間では良好な黒煙低減効果が得られることが確認された。
ここで、下限値を3%としているのは、3%を下まわる範囲では、棚部23を形成しない場合(0%)と比較して有意差が確認できなかったためであり、上限値を9%としているのは、これを上まわると特に低速運転で黒煙が顕著に増加してしまうからである(高速運転では更なる改善が認められるが全ての運転領域で改善されることにはならない)。
而して、このような実験結果を総合的に勘案すると、ピストン9の頂面に対する棚部23の半径方向の幅寸法Lは、入口リップ部22の口径dの3%以上で且つ9%以下となるように範囲規定するのが最適であると結論づけられ、この範囲であれば、全ての運転領域で良好な黒煙低減効果が得られることになる。
更に、付言しておくと、燃料噴射のノズルコーン角を140゜〜160゜の範囲に条件付けした上で、幅寸法Lの口径dに対する割合と、深さ寸法hの口径dに対する割合とを範囲規定しているのは、現状のディーゼルエンジン1における一般的なノズルコーン角が約155゜程度であることに鑑み、将来的にも140゜〜160゜の範囲でノズルコーン角を変更することが有り得るからである。
特に、近年においては、NOx発生を抑制する観点から燃料の噴射時期を遅らせる傾向にあり、このように燃料の噴射時期を遅らせれば、ピストン9の下降による圧力降下により燃焼温度が抑制されてNOx発生が抑制されることになるが、燃料の吹き終わりがクランク角で見て遅くなり、特に高速運転時に燃料噴射がライナ壁に直撃してオイル膜の希釈等の不具合を起こし易くなるため、斯かる燃料噴射のライナ壁への直撃を回避し得るようノズルコーン角を従来より小さく絞ることが考えられており、140゜付近までは絞り込まれる可能性があると想定されている。
また、このように燃料噴射のノズルコーン角を現状より小さく絞り込んだ場合に、抉り部20や棚部23の無い既存の燃焼室構造を採用したままでは、その低速運転時における燃料噴霧Fの殆どがキャビティ10内に偏る傾向が益々顕著となることが明らかであり、NOx低減のために燃料噴射のノズルコーン角を現状より小さく絞り込む場合に、本形態例の如き燃焼室構造を採用する意義が更に高くなることは言うまでもない。
尚、本発明の直噴式ディーゼルエンジンの燃焼室構造は、上述の形態例にのみ限定されるものではなく、図示している例では、リエントラント型のキャビティの場合を例示しているが、トロイダル型のキャビティであっても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
1 ディーゼルエンジン
9 ピストン
10 キャビティ
11 気筒天井部
20 抉り部
20a ガイド面
21 燃焼室壁面部
22 入口リップ部
23 棚部
L 棚部の半径方向の幅寸法
d 入口リップ部の口径
h ピストン頂面に対する棚部の深さ寸法
9 ピストン
10 キャビティ
11 気筒天井部
20 抉り部
20a ガイド面
21 燃焼室壁面部
22 入口リップ部
23 棚部
L 棚部の半径方向の幅寸法
d 入口リップ部の口径
h ピストン頂面に対する棚部の深さ寸法
Claims (3)
- ピストン頂面に下方向きに窪むキャビティを備え、該キャビティ内に気筒天井部の中心から燃料を放射状に噴射して自己着火せしめる直噴式ディーゼルエンジンの燃焼室構造であって、キャビティの開口の外周部にピストン頂面に対し所要深さ窪んで段差を成し且つ半径方向外側へ向かうにつれ徐々に上昇して凹面状に立ち上がるガイド面を備えた抉り部を形成すると共に、該抉り部の底面の内周部とキャビティの底面から立ち上がる燃焼室壁面部とによりピストン頂面から一段下がった位置に入口リップ部を形成し、前記抉り部の外周部に前記ピストン頂面に対し前記抉り部より浅く窪んで段差を成す棚部を形成したことを特徴とする直噴式ディーゼルエンジンの燃焼室構造。
- 燃料噴射のノズルコーン角を140゜〜160゜の範囲とし、ピストン頂面に対する棚部の深さ寸法が入口リップ部の口径の1%以上で且つ4%以下となるように構成したことを特徴とする請求項1に記載の直噴式ディーゼルエンジンの燃焼室構造。
- 燃料噴射のノズルコーン角を140゜〜160゜の範囲とし、棚部の半径方向の幅寸法が入口リップ部の口径の3%以上で且つ9%以下となるように構成したことを特徴とする請求項1又は2に記載の直噴式ディーゼルエンジンの燃焼室構造。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013119470A JP2014238011A (ja) | 2013-06-06 | 2013-06-06 | 直噴式ディーゼルエンジンの燃焼室構造 |
PCT/JP2014/064056 WO2014196423A1 (ja) | 2013-06-06 | 2014-05-28 | 直噴式ディーゼルエンジンの燃焼室構造 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013119470A JP2014238011A (ja) | 2013-06-06 | 2013-06-06 | 直噴式ディーゼルエンジンの燃焼室構造 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014238011A true JP2014238011A (ja) | 2014-12-18 |
Family
ID=52008072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013119470A Pending JP2014238011A (ja) | 2013-06-06 | 2013-06-06 | 直噴式ディーゼルエンジンの燃焼室構造 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014238011A (ja) |
WO (1) | WO2014196423A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016180360A (ja) * | 2015-03-24 | 2016-10-13 | 株式会社豊田中央研究所 | ディーゼルエンジン |
JP2019167834A (ja) * | 2018-03-22 | 2019-10-03 | 三菱重工業株式会社 | 燃料噴射制御装置及び燃料噴射制御方法 |
US10619594B2 (en) | 2017-03-31 | 2020-04-14 | Caterpillar Inc. | Combustion system for an internal combustion engine |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105134370B (zh) * | 2015-07-23 | 2017-12-19 | 北京理工大学 | 一种分卷流燃烧系统 |
US10184388B1 (en) * | 2015-11-30 | 2019-01-22 | Caterpillar Inc. | Engine piston |
US10113503B2 (en) | 2016-10-11 | 2018-10-30 | Caterpillar Inc. | Combustion bowl of a piston for an engine |
US10731600B2 (en) | 2017-11-07 | 2020-08-04 | Deere & Company | Piston with soot reducing piston bowl |
DE102017127291A1 (de) | 2017-11-20 | 2019-05-23 | Man Truck & Bus Ag | Kolben, insbesondere für eine HPDI-Diesel-Gasbrennkraftmaschine |
JP7124731B2 (ja) * | 2019-01-29 | 2022-08-24 | マツダ株式会社 | 圧縮着火エンジンの制御装置 |
JP7545795B2 (ja) * | 2019-07-05 | 2024-09-05 | 三菱重工エンジン&ターボチャージャ株式会社 | 内燃機関のピストンおよび内燃機関 |
US11047293B1 (en) * | 2020-09-28 | 2021-06-29 | Caterpillar Inc. | Engine operating method and piston having non-reentrant combustion bowl and anti-sooting ramp |
CN115324722A (zh) * | 2022-10-14 | 2022-11-11 | 潍柴动力股份有限公司 | 一种燃烧系统以及气体发动机 |
CN116006347A (zh) * | 2023-03-28 | 2023-04-25 | 潍柴动力股份有限公司 | 一种活塞、发动机及车辆 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS599734B2 (ja) * | 1978-12-05 | 1984-03-05 | 日野自動車株式会社 | 直接噴射式デイ−ゼルエンジンのピストン |
JP4002823B2 (ja) * | 2002-12-11 | 2007-11-07 | ヤンマー株式会社 | エンジンの燃焼室 |
JP4906055B2 (ja) * | 2006-02-08 | 2012-03-28 | 日野自動車株式会社 | 直噴式ディーゼルエンジンの燃焼室構造 |
JP5196637B2 (ja) * | 2007-09-21 | 2013-05-15 | ヤンマー株式会社 | ディーゼルエンジン |
-
2013
- 2013-06-06 JP JP2013119470A patent/JP2014238011A/ja active Pending
-
2014
- 2014-05-28 WO PCT/JP2014/064056 patent/WO2014196423A1/ja active Application Filing
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016180360A (ja) * | 2015-03-24 | 2016-10-13 | 株式会社豊田中央研究所 | ディーゼルエンジン |
US10619594B2 (en) | 2017-03-31 | 2020-04-14 | Caterpillar Inc. | Combustion system for an internal combustion engine |
JP2019167834A (ja) * | 2018-03-22 | 2019-10-03 | 三菱重工業株式会社 | 燃料噴射制御装置及び燃料噴射制御方法 |
JP7224765B2 (ja) | 2018-03-22 | 2023-02-20 | 三菱重工業株式会社 | 燃料噴射制御装置及び燃料噴射制御方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2014196423A1 (ja) | 2014-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014196423A1 (ja) | 直噴式ディーゼルエンジンの燃焼室構造 | |
JP4906055B2 (ja) | 直噴式ディーゼルエンジンの燃焼室構造 | |
US10041395B2 (en) | Combustion chamber structure for diesel engine | |
JP2011236821A (ja) | 自動車搭載用ディーゼルエンジン | |
US11215136B2 (en) | Engine system | |
JP2020002861A (ja) | ディーゼルエンジンの燃料噴射制御装置 | |
JP5667478B2 (ja) | ディーゼルエンジン | |
JP2020118039A (ja) | 圧縮着火エンジン | |
US11230991B2 (en) | Engine system | |
JP4552660B2 (ja) | 圧縮着火内燃機関 | |
US11078828B2 (en) | Engine system | |
CN111051663B (zh) | 发动机的燃烧室结构 | |
JP5523998B2 (ja) | 直噴式ディーゼルエンジンの燃焼室構造 | |
JP2007051591A (ja) | 直噴式ディーゼルエンジンの燃焼室構造 | |
JP6519633B2 (ja) | エンジンの燃焼室構造 | |
US10815927B2 (en) | Engine system | |
JP4333564B2 (ja) | 可変気筒内燃機関の制御装置 | |
JP4416680B2 (ja) | 直噴式ディーゼルエンジンの燃焼室構造 | |
US10844805B2 (en) | Engine system | |
JP2020002864A (ja) | ディーゼルエンジンの燃料噴射制御装置 |