JP2014234534A - 導電性及び曲げたわみ係数に優れる銅合金板 - Google Patents

導電性及び曲げたわみ係数に優れる銅合金板 Download PDF

Info

Publication number
JP2014234534A
JP2014234534A JP2013116158A JP2013116158A JP2014234534A JP 2014234534 A JP2014234534 A JP 2014234534A JP 2013116158 A JP2013116158 A JP 2013116158A JP 2013116158 A JP2013116158 A JP 2013116158A JP 2014234534 A JP2014234534 A JP 2014234534A
Authority
JP
Japan
Prior art keywords
copper alloy
mass
less
mpa
deflection coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013116158A
Other languages
English (en)
Other versions
JP6328380B2 (ja
Inventor
波多野 隆紹
Takaaki Hatano
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013116158A priority Critical patent/JP6328380B2/ja
Publication of JP2014234534A publication Critical patent/JP2014234534A/ja
Application granted granted Critical
Publication of JP6328380B2 publication Critical patent/JP6328380B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

【課題】高強度、高導電性、高い曲げたわみ係数および優れた応力緩和特性を兼ね備えた銅合金板並びにこの銅合金による大電流用電子部品及び放熱用電子部品を提供する。【解決手段】0.01〜0.5質量%のFeを含有し、さらにFeの質量%濃度に対し1/6倍〜1倍の質量%のPを含有し、残部が銅およびその不可避的不純物からなり、350MPa以上の引張強さを有し、圧延材の板幅方向(以下「TD」と称する)と直交する断面においてEBSD測定を行った際に、(122)面の法線がTDと成す角度が10度以下である結晶の面積率と、(133)面の法線がTDと成す角度が10度以下である結晶の面積率との合計が10%以上である銅合金板である。【選択図】なし

Description

本発明は銅合金板及び通電用又は放熱用電子部品に関し、特に、電機・電子機器、自動車等に搭載される端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の素材として使用される銅合金板、及び該銅合金板を用いた電子部品に関する。中でも、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に好適な銅合金板及び該銅合金板を用いた電子部品に関するものである。
電機・電子機器、自動車等には、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電気又は熱を伝えるための部品が組み込まれており、これら部品には銅合金が用いられている。ここで、電気伝導性と熱伝導性は比例関係にある。
近年、電子部品の小型化に伴い、曲げたわみ係数を高めることが求められている。コネクタ等が小型化すると、板ばねの変位を大きくとることが難しくなる。このため、小さな変位で高い接触力を得ることが必要になり、より高い曲げたわみ係数が求められるのである。
また、曲げたわみ係数が高いと曲げ加工の際のスプリングバックが小さくなり、プレス成型加工が容易になる。厚肉材が使用される大電流コネクタ等では、特にこのメリットは大きい。
さらに、スマートフォンやタブレットPCの液晶には、液晶フレームと呼ばれる放熱部品が用いられているが、このような放熱用途の銅合金板においても、より高い曲げたわみ係数が求められる。曲げたわみ係数を高めると外力が加わった際の放熱板の変形が軽減され、放熱板周りに配置される液晶部品、ICチップ等に対する保護性が改善されるためである。
ここで、コネクタ等の板ばね部は、通常、その長手方向が圧延方向と直交する方向(曲げ変形の際の曲げ軸が圧延方向と平行)に採取される。以下、この方向を板幅方向(TD)と称する。したがって、曲げたわみ係数の上昇は、TDにおいて特に重要である。
一方、電子部品の小型化に伴い、通電部における銅合金の断面積が小さくなる傾向にある。断面積が小さくなると、通電した際の銅合金からの発熱が増大する。また、成長著しい電気自動車やハイブリッド電気自動車で用いられる電子部品には、バッテリー部のコネクタ等の著しく高い電流が流される部品があり、通電時の銅合金の発熱が問題になっている。発熱が過大になると、銅合金は高温環境に晒されることになる。
コネクタ等の電子部品の電気接点では、銅合金板にたわみが与えられ、このたわみで発生する応力により、接点での接触力を得ている。たわみを与えた銅合金板を高温下に長時間保持すると、応力緩和現象により、応力すなわち接触力が低下し、接触電気抵抗の増大を招く。この問題に対処するため銅合金板には、発熱量が減ずるよう導電性により優れることが求められ、また発熱しても接触力が低下しないよう応力緩和特性により優れることも求められている。同様に放熱用途の銅合金板においても、外力による放熱板のクリープ変形を抑制する点から、応力緩和特性に優れることが望まれている。
比較的高い導電率と強度を有し、安価に製造できる銅合金としてCu−Fe−P系合金が知られており、例えばJIS合金番号C1921(Cu−0.1質量%Fe−0.03質量%P)、C1940(Cu−2.4質量%Fe−0.1質量%P−0.1質量%Zn)等が実用に供されている。また、Cu−Fe−P系合金の改良技術が、例えば特許文献1〜6に開示されている。
特開2004−099978号公報 特開2005−139501号公報 特開2005−206891号公報 特開2006−083465号公報 特開2007−031794号公報 特開2012−180593号公報
しかしながら、従来のCu−Fe−P系合金は、高い導電率と強度を有するものの、そのTDの曲げたわみ係数は、大電流を流す部品の用途又は大熱量を放散する部品の用途として、満足できるレベルではなかった。
また、従来のCu−Fe−P系合金は比較的良好な応力緩和特性を有するものの、その応力緩和特性のレベルは、大電流を流す部品の用途又は大熱量を放散する部品の用途として、必ずしも十分とはいえなかった。
銅合金にZr、Ti等を添加すると応力緩和特性が向上する。しかし、これら元素は極めて活性なためインゴット溶製時にその一部が酸化し、この酸化物が製品表面の傷や圧延中の材料破断の原因となり、製造コストを著しく上昇させる。したがって、安価に製造できることを特徴とするCu−Fe−P系合金において、Zr、Ti等を添加することは困難であった。
すなわち、高い曲げたわみ係数と優れた応力緩和特性を兼ね備えたCu−Fe−P系合金は、これまで報告されておらず、特許文献1〜6に開示されたCu−Fe−P系合金のいずれにも記載されていなかった。
例えば特許文献6では、Cu−Fe−P系合金において、(111)面の法線がTDと成す角度が20度以下である結晶の面積率を50%超に調整することにより、TDの曲げたわみ係数が改善されることが記載されている。しかし、その実施例によれば、この手法で曲げたわみ係数を改善した合金(TiまたはZrを含有するものを除く)の150℃で1000時間保持後の応力緩和率は31.6〜55.2%と十分といえないレベルである。さらに、上記結晶方位制御のために、通常の熱間圧延の後に、第二種高温圧延と称する特殊な工程を付加しており、これは製造コストの著しい増大を招く。
そこで、本発明は、高強度、高導電性、高い曲げたわみ係数および優れた応力緩和特性を兼ね備えた銅合金板及び大電流用途又は放熱用途に好適な電子部品を提供することを目的とする。
本発明者は鋭意検討を重ねた結果、Cu−Fe−P系合金について、TDと直交する断面における(122)面と(133)面の面積率を制御することにより、TDの曲げたわみ係数が向上することを見出した。さらに、この結晶方位制御に加え、TDのばね限界値を適正範囲に調整することにより応力緩和特性が著しく向上することをも見出した。
以上の知見を基礎として完成した本発明は一側面において、0.01〜0.5質量%のFeを含有し、さらにFeの質量%濃度に対し1/6倍〜1倍の質量%のPを含有し、残部が銅およびその不可避的不純物からなり、350MPa以上の引張強さを有し、圧延材の板幅方向(以下「TD」と称する)と直交する断面においてEBSD測定を行った際に、(122)面の法線がTDと成す角度が10度以下である結晶の面積率と、(133)面の法線がTDと成す角度が10度以下である結晶の面積率との合計が10%以上である銅合金板である。
本発明に係る銅合金板は一実施態様において、0.5質量%以下のSnを更に含有する。
本発明に係る銅合金板は別の一実施態様において、1質量%以下のZnを更に含有する。
本発明に係る銅合金板は更に別の一実施態様において、Ag、Co、Ni、Cr、Mn、Mg、SiおよびBのうちの一種以上を2質量%以下含有する。
本発明に係る銅合金板は更に別の一実施態様において、TDのばね限界値が200MPa以上に調整されている。
本発明に係る銅合金板は更に別の一実施態様において、導電率が65%IACS以上であり、TDの曲げたわみ係数が115GPa以上である。
本発明に係る銅合金板は更に別の一実施態様において、導電率が65%IACS以上、TDの曲げたわみ係数が115GPa以上、150℃で1000時間保持後のTDの応力緩和率が50%以下である。
本発明は別の一側面において、上記銅合金板を用いた大電流用電子部品である。
本発明は別の一側面において、上記銅合金板を用いた放熱用電子部品である。
本発明によれば、高強度、高導電性、高い曲げたわみ係数および優れた応力緩和特性を兼ね備えた銅合金板及び大電流用途又は放熱用途に好適な電子部品を提供することが可能である。この銅合金板は、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電子部品の素材として好適に使用することができ、特に大電流を通電する電子部品の素材又は大熱量を放散する電子部品の素材として有用である。
応力緩和率の測定原理を説明する図である。 応力緩和率の測定原理を説明する図である。
以下、本発明について説明する。
(目標特性)
本発明の実施の形態に係るCu−Fe−P系合金板は、65%IACS以上の導電率を有し、且つ350MPa以上の引張強さを有する。導電率が65%IASC以上であれば、通電時の発熱量が純銅と同等といえる。また、引張強さが350MPa以上であれば、大電流を通電する部品の素材又は大熱量を放散する部品の素材として必要な強度を有しているといえる。
本発明の実施の形態に係るCu−Fe−P系合金板のTDの曲げたわみ係数は115GPa以上、より好ましくは120GPa以上である。ばねたわみ係数とは、片持ち梁に弾性限界を超えない範囲で荷重をかけ、その時のたわみ量から算出される値である。銅合金板の弾性係数の指標としては引張試験により求めるヤング率もあるが、ばねたわみ係数の方がコネクタ等の板ばね接点における接触力とより良好な相関を示す。従来のCu−Fe−P系合金板の曲げたわみ係数は110GPa程度であり、これを115GPa以上、より好ましくは120GPa以上に調整することで、コネクタ等に加工した後に明らかに接触力が向上し、また、放熱板等に加工した後に外力に対して明らかに弾性変形しにくくなる。
本発明の実施の形態に係るCu−Fe−P系合金板の応力緩和特性については、TDに0.2%耐力の80%の応力を付加し、150℃で1000時間保持した時の銅合金板の応力緩和率(以下、単に応力緩和率と記す)が50%以下であり、より好ましくは40%以下、さらに好ましくは30%以下である。通常のCu−Fe−P系合金板の応力緩和率は70〜80%程度であるが、これを50%以下にすることで、コネクタに加工した後に大電流を通電しても接触力低下に伴う接触電気抵抗の増加が生じ難くなり、また、放熱板に加工した後に熱と外力が同時に加わってもクリープ変形が生じ難くなる。
(合金成分濃度)
Fe濃度は0.01〜0.5質量%とし、より好ましくは0.05〜0.4質量%とする。Feが0.5質量%を超えると、65%IACS以上の導電率を得ることが難しくなり、Feが0.01%未満になると、350MPa以上の引張強さおよび50%以下の応力緩和率を得ることが難しくなる。
本発明の銅合金には、Feに加えPを添加する。Pには合金の製造プロセスにおいて、溶湯を脱酸する効果がある。また、Feと化合物を形成することにより、合金の導電率や強度を高める効果がある。
Feの質量%濃度(%Fe)とPの質量%濃度(%P)との比(%Fe/%P)は1〜6、好ましくは2〜5に調整する。%Fe/%Pをこのように調整することで、より高い導電率が得られる。
本発明のCu−Fe−P系合金には、0.5質量%以下のSnを添加することができる。Snには圧延の際の合金の加工硬化を促進し、合金の強度を改善する効果がある。また、前述したZrやTiほどではないが、Snには応力緩和特性を改善する効果もある。
Snが0.5質量%を超えると、導電率の低下が大きくなる。Sn添加の効果を得るためには、Snの添加量を0.001質量%以上にすることが好ましい。より好ましいSn濃度の範囲は0.005〜0.3質量%、さらに好ましいSn濃度の範囲は0.01〜0.1質量%である。Snは溶銅中で酸化物を形成しにくいため、0.5質量%以下の濃度で添加する限り、Sn添加が合金の製造性や品質を悪化させることはない。
また、本発明のCu−Fe−P系合金には、Snめっきの耐熱剥離性を改善するために、1質量%以下のZnを添加することができる。Znが1質量%を超えると、導電率の低下が大きくなる。Zn添加の効果を得るためには、Znの添加量を0.001質量%以上にすることが好ましい。より好ましいZn濃度の範囲は0.01〜0.5質量%である。Znについても溶銅中で酸化物を形成しにくいため、1質量%以下の濃度で添加する限り、合金の製造性や品質を悪化させることはない。
さらに、本発明のCu−Fe−P系合金には、強度や耐熱性を改善するために、Ag、Co、Ni、Cr、Mn、Mg、SiおよびBのうちの一種以上を含有させることができる。ただし、添加量が多すぎると、導電率が低下したり、製造性が悪化したりするので、添加量は総量で2質量%以下、より好ましくは0.5質量%以下、さらに好ましくは0.1質量%以下に制限される。また、添加による効果を得るためには、添加量を総量で0.001質量%以上にすることが好ましい。
(結晶方位)
本発明の実施の形態に係る銅合金板は、(122)面の法線がTDと成す角度が10度以下である結晶の面積率と、(133)面の法線がTDと成す角度が10度以下である結晶の面積率との面積率合計(以下、A値とする)を10%以上、より好ましくは15%以上に調整する。
A値は、圧延材のTDと直交する断面において、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)法により求める。ここでEBSDとは、SEM(Scanning Electron Microscope:走査電子顕微鏡)内で試料に電子線を照射したときに生じる反射電子菊池線回折(菊池パターン)を利用して結晶方位を解析する技術である。
A値を10%以上に調整すると、TDの曲げたわみ係数が115GPa以上になり、同時に応力緩和特性も向上する。A値の上限値はTDの曲げたわみ係数の点から制限されるものではないが、A値は60%以下の値をとることが多い。
(ばね限界値)
銅合金板のTDのばね限界値は、200MPa以上に調整することが好ましく、230MPa以上に調整することがさらに好ましい。A値を10%以上に調整することに加え、TDのばね限界値を200MPa以上に調整することにより、応力緩和率が50%以下となる。
(厚み)
製品の厚みは0.1〜2.0mmであることが好ましい。厚みが薄すぎると、通電部断面積が小さくなり通電時の発熱が増加するため大電流を流すコネクタ等の素材として不適であり、また、わずかな外力で変形するようになるため放熱板等の素材としても不適である。一方で、厚みが厚すぎると、曲げ加工が困難になる。このような観点から、より好ましい厚みは0.2〜1.5mmである。厚みが上記範囲となることにより、通電時の発熱を抑えつつ、曲げ加工性を良好なものとすることができる。
(用途)
本発明の実施の形態に係る銅合金板は、電機・電子機器、自動車等で用いられる端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の用途に好適に使用することができ、特に、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に有用である。
(製造方法)
純銅原料として電気銅等を溶解し、Fe、Pおよび必要に応じ他の合金元素を添加し、厚み30〜300mm程度のインゴットに鋳造する。このインゴットを例えば800〜1000℃の熱間圧延により厚み3〜30mm程度の板とした後、冷間圧延と再結晶焼鈍とを繰り返し、最終の冷間圧延で所定の製品厚みに仕上げ、最後に歪取り焼鈍を施す。
A値を10%以上に調整する方法は特定の方法に限定されないが、例えば熱間圧延条件の制御により可能となる。
本発明の熱間圧延では、850〜1000℃に加熱したインゴットを一対の圧延ロール間に繰り返し通過させ、目標の板厚に仕上げてゆく。A値には1パスあたりの加工度が影響を及ぼす。ここで、1パスあたりの加工度R(%)とは、圧延ロールを1回通過したときの板厚減少率であり、R=(T0−T)/T0×100(T0:圧延ロール通過前の厚み、T:圧延ロール通過後の厚み)で与えられる。
このRについて、全パスのうちの最大値(Rmax)を25%以下にし、全パスの平均値(Rave)を20%以下にすることが好ましい。これら両条件を満足することで、A値が10%以上になる。より好ましくはRaveを19%以下とする。
再結晶焼鈍では、圧延組織の一部または全てを再結晶化させる。また、適当な条件で焼鈍することにより、FeまたはFeとPとの化合物が析出し、合金の導電率が上昇する。最終冷間圧延前の再結晶焼鈍(最終再結晶焼鈍)では、銅合金板の平均結晶粒径を50μm以下に調整する。平均結晶粒径が大きすぎると、引張強さ350MPa以上に調整することが難しくなる。
最終冷間圧延前の再結晶焼鈍の条件は、目標とする焼鈍後の結晶粒径および目標とする製品の導電率に基づき決定する。具体的には、バッチ炉または連続焼鈍炉を用い、炉内温度を250〜800℃として焼鈍を行えばよい。バッチ炉では250〜600℃の炉内温度において30分から30時間の範囲で加熱時間を適宜調整すればよい。連続焼鈍炉では450〜800℃の炉内温度において5秒から10分の範囲で加熱時間を適宜調整すればよい。一般的にはより低温でより長時間の条件で焼鈍を行うと、同じ結晶粒径でより高い導電率が得られる。
最終冷間圧延では、一対の圧延ロール間に材料を繰り返し通過させ、目標の板厚に仕上げていく。最終冷間圧延の加工度は25〜99%とするのが好ましい。ここで加工度r(%)は、r=(t0−t)/t0×100(t0:圧延前の板厚、t:圧延後の板厚)で与えられる。rが小さすぎると、引張強さを350MPa以上に調整することが難しくなる。rが大きすぎると、圧延材のエッジが割れることがある。
熱間圧延条件制御によるA値の調整に加え、製品のTDのばね限界値を200MPa以上に調整することにより、応力緩和率が50%以下となる。ばね限界値を200MPa以上に調整する方法は、特定の方法に限定されないが、例えば最終圧延後に適切な条件で歪取焼鈍を行うことにより可能となる。
すなわち、歪取焼鈍後の引張強さを歪取焼鈍前(最終圧延上がり)の引張強さに対し、10〜100MPa低い値、好ましくは20〜80MPa低い値に調整することにより、ばね限界値が200MPa以上となる。引張強さの低下量が小さすぎると、ばね限界値を200MPa以上に調整することが難しくなる。引張強さの低下量が大きすぎると製品の引張強さが350MPa未満になることがある。
具体的には、バッチ炉を用いる場合には100〜500℃の炉内温度において30分から30時間の範囲で加熱時間を適宜調整することにより、また連続焼鈍炉を用いる場合には300〜700℃の炉内温度において5秒から10分の範囲で加熱時間を適宜調整することにより、引張強さの低下量を上記範囲に調整すればよい。
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
溶銅に合金元素を添加した後、厚みが200mmのインゴットに鋳造した。インゴットを950℃で3時間加熱し、熱間圧延により厚み15mmの板にした。熱間圧延後の板表面の酸化スケールを研削、除去した後、焼鈍と冷間圧延を繰り返し、最終の冷間圧延で所定の製品厚みに仕上げた。最後に歪取焼鈍を行った。
熱間圧延では、1パスあたりの加工度の最大値(Rmax)および平均値を(Rave)を種々変化させた。
最終冷間圧延前の焼鈍(最終再結晶焼鈍)は、バッチ炉を用い、加熱時間を5時間とし炉内温度を250〜700℃の範囲で調整し、焼鈍後の結晶粒径と導電率を変化させた。最終冷間圧延では、加工度(r)を種々変化させた。歪取り焼鈍では、連続焼鈍炉を用い、炉内温度を500℃として加熱時間を1秒から10分の間で調整し、引張強さの低下量を種々変化させた。なお、一部の実施例では歪取り焼鈍を行わなかった。
製造途中の材料および歪取焼鈍後の材料(製品)につき、次の測定を行った。
(成分)
歪取焼鈍後の材料の合金元素濃度をICP−質量分析法で分析した。
(最終再結晶焼鈍後の平均結晶粒径)
圧延方向と直交する断面を機械研磨により鏡面に仕上げた後、エッチングにより結晶粒界を現出させた。この金属組織上において、JIS H 0501(1999年)の切断法に従い測定し、平均結晶粒径を求めた。
(製品の結晶方位)
TDと直交する断面(厚み方向と圧延方向にそれぞれ平行な断面)に電子線を照射しEBSD測定を行った。測定面積は0.1mm2とし、2μmのステップでスキャンし、方位を解析した。そして、(122)面の法線がTDと成す角度が10度以下である結晶の面積率および(133)面の法線がTDと成す角度が10度以下である結晶の面積率を求め、両面積率の合計(A値)を算出した。また、(111)面の法線がTDと成す角度が10度以下である結晶の面積率についても求めた。
(引張強さ)
最終冷間圧延後および歪取焼鈍後の材料につき、JIS Z2241に規定する13B号試験片を引張方向が圧延方向と平行になるように採取し、JIS Z2241に準拠して圧延方向と平行に引張試験を行い、引張強さを求めた。
(ばね限界値)
歪取焼鈍後の材料から、幅が10mmの短冊形状の試験片を、試験片の長手方向が圧延方向と直交するように採取し、JIS H3130に規定されているモーメント式試験により、TDのばね限界値を測定した。
(導電率)
歪取焼鈍後の材料から、試験片の長手方向が圧延方向と平行になるように試験片を採取し、JIS H0505に準拠し四端子法により20℃での導電率を測定した。
(曲げたわみ係数)
TDの曲げたわみ係数を日本伸銅協会(JACBA)技術標準「銅及び銅合金板条の片持ち梁による曲げたわみ係数測定方法」に準じて測定した。
板厚t、幅w(=10mm)の短冊形状の試験片を、試験片の長手方向が圧延方向と直交するように採取した。この試料の片端を固定し、固定端からL(=100t)の位置にP(=0.15N)の荷重を加え、このときのたわみdから、次式を用いてTDの曲げたわみ係数Eを求めた。
E=4・P・(L/t)3/(w・d)
(応力緩和率)
歪取焼鈍後の材料から、幅10mm、長さ100mmの短冊形状の試験片を、試験片の長手方向が圧延方向と直交するように採取した。図1のように、l=50mmの位置を作用点として、試験片にy0のたわみを与え、TDの0.2%耐力(JIS Z2241に準拠して測定)の80%に相当する応力(s)を負荷した。y0は次式により求めた。
0=(2/3)・l2・s / (E・t)
ここで、EはTDの曲げたわみ係数であり、tは試料の厚みである。150℃にて1000時間加熱後に除荷し、図2のように永久変形量(高さ)yを測定し、応力緩和率{[y(mm)/y0(mm)]×100(%)}を算出した。
表1に評価結果を示す。表1の最終再結晶焼鈍後の結晶粒径における「<10μm」の表記は、圧延組織の全てが再結晶化しその平均結晶粒径が10μm未満であった場合、および圧延組織の一部のみが再結晶化した場合の双方を含んでいる。
また表2には、熱間圧延の各パスにおける材料の仕上げ厚みおよび1パスあたりの加工度として、表1の発明例1、発明例4、比較例1および比較例3のものを例示した。
Figure 2014234534
Figure 2014234534
発明例1〜28の銅合金板では、Fe濃度を0.01〜0.5質量%、P濃度をFe濃度の1/6倍〜1倍に調整し、熱間圧延においてRmaxを25%以下、Raveを20%以下とし、最終再結晶焼鈍において結晶粒径を50μm以下に調整し、最終冷間圧延において加工度を25〜99%とした。その結果、A値が10%以上となり、65%IACS以上の導電率、350MPa以上の引張強さ、115GPa以上の曲げたわみ係数が得られた。
さらに発明例1〜25では、最終圧延後の歪取焼鈍において引張強さを10〜100MPa低下させたため、ばね限界値が200MPa以上となり、その結果50%以下の応力緩和率も得られた。一方、発明例26、27は歪取焼鈍での引張強さ低下量が10MPaに満たなかったため、また発明例28は歪取焼鈍を実施しなかったため、ばね限界値が200MPa未満となり、その結果応力緩和率が50%を超えた。
比較例1〜4では、RmaxまたはRaveが本発明の規定から外れたため、A値が10%未満になった。その結果、曲げたわみ係数が115GPaに満たなかった。さらに、引張強さを10〜100MPa低下させる条件で歪取焼鈍を行うことによりばね限界値を200MPa以上に調整したにもかかわらず、応力緩和率が50%を超えた。
比較例5では、Fe濃度0.01質量%未満だったため、歪取焼鈍後の引張強さが350MPaに満たなかった。比較例6ではFe濃度が0.5質量%を超えたため、比較例7、8ではP濃度がFe濃度の1/6倍〜1倍の範囲から外れたため、導電率が65%IACSに満たなかった。
比較例9では、最終冷間圧延における加工度が25%に満たなかったため、また比較例10では最終冷間圧延前の再結晶焼鈍上がりの結晶粒径が50μmを超えたため、歪取焼鈍後の引張強さが350MPaに満たなかった。
比較例11は、特許文献6に開示された工程に従い、インゴットを厚さ15mmまで加工したものである。950℃で3時間加熱(均質化熱処理)した厚さ200mmのインゴットを、700〜1000℃の加工温度にて厚さ100mmまで圧延(第1種高温圧延、加工度50%)した後、5〜100℃/秒で室温まで冷却した。その後、550℃ に再加熱し、400〜550℃の加工温度にて厚さ15mmまで圧延(第2種高温圧延、加工度70%)した。ここで、表1のRmaxとRaveは第1種高温圧延時のものである。なお、厚さ15mm以後の工程は、他の実施例と同様に行った。
その結果、比較例11ではTDと直交する断面において(111)面が増加し、(111)面の法線がTDと成す角度が10度以下である結晶の面積率が50%を超えた。そして、曲げたわみ係数が115GPa以上となった。しかし、比較例11では引張強さを10〜100MPa低下させる条件で歪取焼鈍を行うことによりばね限界値を200MPa以上に調整したにもかかわらず、応力緩和率が50%を超えた。

Claims (9)

  1. 0.01〜0.5質量%のFeを含有し、さらにFeの質量%濃度に対し1/6倍〜1倍の質量%のPを含有し、残部が銅およびその不可避的不純物からなり、350MPa以上の引張強さを有し、圧延材の板幅方向(以下「TD」と称する)と直交する断面においてEBSD測定を行った際に、(122)面の法線がTDと成す角度が10度以下である結晶の面積率と、(133)面の法線がTDと成す角度が10度以下である結晶の面積率との合計が10%以上であることを特徴とする銅合金板。
  2. 0.5質量%以下のSnを更に含有することを特徴とする請求項1に記載の銅合金板。
  3. 1質量%以下のZnを更に含有することを特徴とする請求項1又は2に記載の銅合金板。
  4. Ag、Co、Ni、Cr、Mn、Mg、SiおよびBのうちの一種以上を2質量%以下含有することを特徴とする請求項1〜3のいずれか1項に記載の銅合金板。
  5. TDのばね限界値が200MPa以上に調整されたことを特徴とする、請求項1〜4のいずれか1項に記載の銅合金板。
  6. 導電率が65%IACS以上であり、TDの曲げたわみ係数が115GPa以上であることを特徴とする、請求項1〜4のいずれか1項に記載の銅合金板。
  7. 導電率が65%IACS以上、TDの曲げたわみ係数が115GPa以上、150℃で1000時間保持後のTDの応力緩和率が50%以下であることを特徴とする、請求項5に記載の銅合金板。
  8. 請求項1〜7の何れか1項に記載の銅合金板を用いた大電流用電子部品。
  9. 請求項1〜7の何れか1項に記載の銅合金板を用いた放熱用電子部品。
JP2013116158A 2013-05-31 2013-05-31 導電性及び曲げたわみ係数に優れる銅合金板 Active JP6328380B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013116158A JP6328380B2 (ja) 2013-05-31 2013-05-31 導電性及び曲げたわみ係数に優れる銅合金板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013116158A JP6328380B2 (ja) 2013-05-31 2013-05-31 導電性及び曲げたわみ係数に優れる銅合金板

Publications (2)

Publication Number Publication Date
JP2014234534A true JP2014234534A (ja) 2014-12-15
JP6328380B2 JP6328380B2 (ja) 2018-05-23

Family

ID=52137460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013116158A Active JP6328380B2 (ja) 2013-05-31 2013-05-31 導電性及び曲げたわみ係数に優れる銅合金板

Country Status (1)

Country Link
JP (1) JP6328380B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000990A (ja) * 2013-06-13 2015-01-05 Jx日鉱日石金属株式会社 導電性及び曲げたわみ係数に優れる銅合金板
JP2015048521A (ja) * 2013-09-03 2015-03-16 Jx日鉱日石金属株式会社 導電性及び曲げたわみ係数に優れる銅合金板
JP2015048519A (ja) * 2013-09-03 2015-03-16 Jx日鉱日石金属株式会社 導電性及び曲げたわみ係数に優れる銅合金板
JP2017166044A (ja) * 2016-03-17 2017-09-21 株式会社神戸製鋼所 放熱部品用銅合金板
CN108285988A (zh) * 2018-01-31 2018-07-17 宁波博威合金材料股份有限公司 析出强化型铜合金及其应用
CN113293323A (zh) * 2021-05-27 2021-08-24 宁波金田铜业(集团)股份有限公司 一种硅青铜棒材及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673474A (ja) * 1992-08-27 1994-03-15 Kobe Steel Ltd 強度、導電率及び耐マイグレーション性が優れた銅合金
JP2000328158A (ja) * 1999-05-13 2000-11-28 Kobe Steel Ltd プレス打抜き性が優れた銅合金板
JP2006037216A (ja) * 2004-06-23 2006-02-09 Hitachi Cable Ltd 端子・コネクタ用銅合金
JP2006200036A (ja) * 2004-12-24 2006-08-03 Kobe Steel Ltd 曲げ加工性及び耐応力緩和特性を備えた銅合金
JP2008031525A (ja) * 2006-07-28 2008-02-14 Kobe Steel Ltd 高強度および耐熱性を備えた銅合金
JP2008088499A (ja) * 2006-10-02 2008-04-17 Kobe Steel Ltd プレス打ち抜き性に優れた電気電子部品用銅合金板
JP2012167310A (ja) * 2011-02-11 2012-09-06 Kobe Steel Ltd 電気・電子部品用銅合金及びSnめっき付き銅合金材
JP2012180593A (ja) * 2010-08-27 2012-09-20 Furukawa Electric Co Ltd:The 銅合金板材およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673474A (ja) * 1992-08-27 1994-03-15 Kobe Steel Ltd 強度、導電率及び耐マイグレーション性が優れた銅合金
JP2000328158A (ja) * 1999-05-13 2000-11-28 Kobe Steel Ltd プレス打抜き性が優れた銅合金板
JP2006037216A (ja) * 2004-06-23 2006-02-09 Hitachi Cable Ltd 端子・コネクタ用銅合金
JP2006200036A (ja) * 2004-12-24 2006-08-03 Kobe Steel Ltd 曲げ加工性及び耐応力緩和特性を備えた銅合金
JP2008031525A (ja) * 2006-07-28 2008-02-14 Kobe Steel Ltd 高強度および耐熱性を備えた銅合金
JP2008088499A (ja) * 2006-10-02 2008-04-17 Kobe Steel Ltd プレス打ち抜き性に優れた電気電子部品用銅合金板
JP2012180593A (ja) * 2010-08-27 2012-09-20 Furukawa Electric Co Ltd:The 銅合金板材およびその製造方法
JP2012167310A (ja) * 2011-02-11 2012-09-06 Kobe Steel Ltd 電気・電子部品用銅合金及びSnめっき付き銅合金材

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000990A (ja) * 2013-06-13 2015-01-05 Jx日鉱日石金属株式会社 導電性及び曲げたわみ係数に優れる銅合金板
JP2015048521A (ja) * 2013-09-03 2015-03-16 Jx日鉱日石金属株式会社 導電性及び曲げたわみ係数に優れる銅合金板
JP2015048519A (ja) * 2013-09-03 2015-03-16 Jx日鉱日石金属株式会社 導電性及び曲げたわみ係数に優れる銅合金板
JP2017166044A (ja) * 2016-03-17 2017-09-21 株式会社神戸製鋼所 放熱部品用銅合金板
WO2017159749A1 (ja) * 2016-03-17 2017-09-21 株式会社神戸製鋼所 放熱部品用銅合金板
CN108285988A (zh) * 2018-01-31 2018-07-17 宁波博威合金材料股份有限公司 析出强化型铜合金及其应用
CN113293323A (zh) * 2021-05-27 2021-08-24 宁波金田铜业(集团)股份有限公司 一种硅青铜棒材及其制备方法

Also Published As

Publication number Publication date
JP6328380B2 (ja) 2018-05-23

Similar Documents

Publication Publication Date Title
JP5427971B1 (ja) 導電性及び曲げたわみ係数に優れる銅合金板
JP5380621B1 (ja) 導電性及び応力緩和特性に優れる銅合金板
WO2015022789A1 (ja) 導電性及び曲げたわみ係数に優れる銅合金板
JP6270417B2 (ja) 導電性及び応力緩和特性に優れる銅合金板
JP6328380B2 (ja) 導電性及び曲げたわみ係数に優れる銅合金板
JP5470483B1 (ja) 導電性及び応力緩和特性に優れる銅合金板
JP6296728B2 (ja) 導電性及び曲げたわみ係数に優れる銅合金板
JP2017155340A (ja) 導電性及び応力緩和特性に優れる銅合金板
JP6246502B2 (ja) 導電性及び曲げたわみ係数に優れる銅合金板
JP5449595B1 (ja) 導電性及び曲げたわみ係数に優れる銅合金板
JP6047466B2 (ja) 導電性及び曲げたわみ係数に優れる銅合金板
JP6207539B2 (ja) 銅合金条およびそれを備える大電流用電子部品及び放熱用電子部品
JP2017066532A (ja) 導電性及び応力緩和特性に優れる銅合金板
JP2017002407A (ja) 導電性及び応力緩和特性に優れる銅合金板
JP5453565B1 (ja) 導電性及び曲げたわみ係数に優れる銅合金板
WO2014041865A1 (ja) 導電性及び応力緩和特性に優れる銅合金板
JP5352750B1 (ja) 導電性及び曲げたわみ係数に優れる銅合金板
JP5620025B2 (ja) 導電性及び応力緩和特性に優れる銅合金板
JP2017082335A (ja) 導電性及び曲げたわみ係数に優れる銅合金板
JP2017089011A (ja) 導電性及び曲げたわみ係数に優れる銅合金板
JP2014205864A (ja) 導電性及び応力緩和特性に優れる銅合金板
JP2014055347A (ja) 導電性及び応力緩和特性に優れる銅合金板
JP2017115249A (ja) 導電性及び曲げたわみ係数に優れる銅合金板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180205

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180418

R150 Certificate of patent or registration of utility model

Ref document number: 6328380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250