JP2014233999A - Vehicle body manufacturing method - Google Patents

Vehicle body manufacturing method Download PDF

Info

Publication number
JP2014233999A
JP2014233999A JP2013114889A JP2013114889A JP2014233999A JP 2014233999 A JP2014233999 A JP 2014233999A JP 2013114889 A JP2013114889 A JP 2013114889A JP 2013114889 A JP2013114889 A JP 2013114889A JP 2014233999 A JP2014233999 A JP 2014233999A
Authority
JP
Japan
Prior art keywords
patch
stress concentration
vehicle body
cfrp
concentration portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013114889A
Other languages
Japanese (ja)
Inventor
飛田 一紀
Kazunori Hida
一紀 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013114889A priority Critical patent/JP2014233999A/en
Publication of JP2014233999A publication Critical patent/JP2014233999A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively reinforce a vehicle body member made of a steel plate such as a vehicle pillar while minimizing an increase in weight.SOLUTION: In a vehicle body manufacturing method, a pillar 25 is manufactured after identifying a stress concentration section 49 where bending stress concentrates when a load is applied to the pillar 25 made of a steel plate. Then, a patch 45 made of CFRP is put on a tensile surface of the stress concentration section 49. Thus, the vehicle body manufacturing method can maximize a reinforcement effect while minimizing an increase in weight by reinforcing only the stress concentration section 49 of the pillar 25 with the light weight CFRP patch 45. In addition, because the CFRP patch 45 has higher resistance against a tensile load than a compressive load, the vehicle body manufacturing method can not only further improve the reinforcement effect by putting or bolting the CFRP patch 45 on the tensile surface of the stress concentration section 49 but also easily adjust an effectiveness level of reinforcement by simply changing the number of layers of carbon fibers of the CFRP patch 45 or a fiber orientation direction thereof.

Description

本発明は、鋼板製の車体部材をCFRP製のパッチで補強する自動車の車体製造方法に関する。   The present invention relates to a vehicle body manufacturing method for automobiles in which a steel plate body member is reinforced with a CFRP patch.

ハット状断面を有する鋼板製のアウター部材と、平板状の鋼板に平板状のCFRP(炭素繊維強化樹脂)板を積層したインナー部材とを結合して閉断面に構成した自動車のセンターピラーの内部に、帯状のCFRPを波形に成形したリンフォースメントを配置したものが、下記特許文献1により公知である。   Inside the center pillar of an automobile, which is composed of a steel plate outer member having a hat-shaped cross section and an inner member formed by laminating a flat plate-like CFRP (carbon fiber reinforced resin) plate on a flat steel plate to form a closed cross section. An arrangement in which a reinforcement in which a strip-like CFRP is formed into a waveform is arranged is known from Patent Document 1 below.

また鋼板に未硬化のCFRP板を貼り合わせて所定形状に切断した後に、オートクレーブ内で加熱してCFRP板を硬化させることで、CFRP板で補強された鋼板を得るものが、下記特許文献2により公知である。   Further, after bonding an uncured CFRP plate to a steel plate and cutting it into a predetermined shape, the CFRP plate is cured by heating in an autoclave, thereby obtaining a steel plate reinforced with a CFRP plate. It is known.

特開2010−195352号公報JP 2010-195352 A 特開2009−178997号公報JP 2009-178997 A

ところで、上記特許文献1に記載されたものは、センターピラーの下端から上端までの全域にCFRP板および波形のCFRP製リンフォースメントの二つの補強部材が配置されており、特に波形のCFRP製リンフォースメントは引き延ばしたときの実質的な全長が大きいため、車体重量増加の要因となる可能性がある。   By the way, what is described in the above-mentioned patent document 1 is that two reinforcing members, a CFRP plate and a corrugated CFRP reinforcement, are arranged in the entire region from the lower end to the upper end of the center pillar. Since the substantial total length of the force when it is extended is large, it may cause an increase in the weight of the vehicle body.

本発明は前述の事情に鑑みてなされたもので、自動車のピラーのような鋼板製の車体部材を、重量の増加を最小限に抑えながら効果的に補強することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to effectively reinforce a steel body member such as a pillar of an automobile while minimizing an increase in weight.

上記目的を達成するために、請求項1に記載された発明によれば、鋼板製の車体部材に荷重を加えたときに曲げ応力が集中する応力集中部を特定する第1工程と、前記車体部材を製造する第2工程と、前記応力集中部の引張面にCFRP製のパッチを貼着あるいはボルト止めする第3工程とを含むことを特徴とする自動車の車体製造方法が提案される。   In order to achieve the above object, according to the first aspect of the present invention, a first step of specifying a stress concentration portion where bending stress concentrates when a load is applied to a steel plate body member; A vehicle body manufacturing method is proposed, which includes a second step of manufacturing a member and a third step of attaching or bolting a CFRP patch to the tensile surface of the stress concentration portion.

また請求項2に記載された発明によれば、請求項1の構成に加えて、前記パッチの寸法は前記応力集中部の寸法よりも大きいことを特徴とする自動車の車体製造方法が提案される。   According to a second aspect of the present invention, in addition to the configuration of the first aspect, a vehicle body manufacturing method is proposed in which the size of the patch is larger than the size of the stress concentration portion. .

また請求項3に記載された発明によれば、請求項1または請求項2の構成に加えて、前記パッチは前記応力集中部の引張面の稜線を跨ぐことを特徴とする自動車の車体製造方法が提案される。   According to a third aspect of the present invention, in addition to the configuration of the first or second aspect, the patch straddles the ridge line of the tensile surface of the stress concentration portion. Is proposed.

また請求項4に記載された発明によれば、請求項1〜請求項3の何れか1項の構成に加えて、前記パッチの連続繊維は前記応力集中部の応力緩和に有利な方向に沿って整列することを特徴とする自動車の車体製造方法が提案される。   According to the invention described in claim 4, in addition to the configuration of any one of claims 1 to 3, the continuous fibers of the patch are along a direction advantageous for stress relaxation of the stress concentration portion. A vehicle body manufacturing method is proposed, characterized in that the vehicle bodies are aligned.

また請求項5に記載された発明によれば、請求項1〜請求項4の何れか1項の構成に加えて、前記パッチは連続繊維および熱硬化性マトリクス樹脂からなり、前記熱硬化性マトリクス樹脂の量は熱硬化時の収縮により前記応力集中部を変形させない量であることを特徴とする自動車の車体製造方法が提案される。   According to the invention described in claim 5, in addition to the configuration of any one of claims 1 to 4, the patch is made of continuous fibers and a thermosetting matrix resin, and the thermosetting matrix. An automobile body manufacturing method is proposed in which the amount of resin is an amount that does not deform the stress concentration portion due to shrinkage during thermosetting.

尚、実施の形態のBピラー25、サイドシル13、ドアビーム51およびフロアトンネル補強パネル22は本発明の車体部材に対応する。   The B pillar 25, the side sill 13, the door beam 51, and the floor tunnel reinforcing panel 22 of the embodiment correspond to the vehicle body member of the present invention.

請求項1の構成によれば、鋼板製の車体部材に荷重を加えたときに曲げ応力が集中する応力集中部を特定し、車体部材を製造し、応力集中部の引張面にCFRP製のパッチを貼着あるいはボルト止めするので、車体部材の応力集中部だけを軽量なCFRP製のパッチで補強し、重量の増加を最小限に抑えながら最大の補強効果を得ることができる。またCFRP製のパッチは圧縮荷重よりも引張荷重に対して強いため、それを応力集中部の引張面に貼着あるいはボルト止めすることで、補強効果を更に高めることができ、しかもCFRP製のパッチの炭素繊維の積層数や繊維配向方向を変更するだけで、補強効果の大小を容易に調整することができる。   According to the configuration of claim 1, a stress concentration portion where bending stress is concentrated when a load is applied to a steel plate body member is specified, the vehicle body member is manufactured, and a CFRP patch is formed on the tensile surface of the stress concentration portion. Is attached or bolted, so that only the stress concentration portion of the vehicle body member is reinforced with a lightweight CFRP patch, and the maximum reinforcing effect can be obtained while minimizing the increase in weight. In addition, since the CFRP patch is stronger than the compressive load against the tensile load, the reinforcing effect can be further enhanced by sticking or bolting it to the tensile surface of the stress concentration part, and the CFRP patch. The magnitude of the reinforcing effect can be easily adjusted simply by changing the number of carbon fibers laminated and the fiber orientation direction.

また請求項2の構成によれば、パッチの寸法は応力集中部の寸法よりも大きいので、応力集中部の変形を確実に防止することができる。   According to the configuration of the second aspect, since the size of the patch is larger than the size of the stress concentration portion, the deformation of the stress concentration portion can be reliably prevented.

また請求項3の構成によれば、パッチは応力集中部の引張面の稜線を跨ぐので、応力が集中し易い稜線が折れ変形するのを効果的に防止することができる。   According to the configuration of claim 3, since the patch straddles the ridge line of the tensile surface of the stress concentration portion, it is possible to effectively prevent the ridge line where the stress is easily concentrated from being bent and deformed.

また請求項4の構成によれば、パッチの連続繊維は応力集中部の応力緩和に有利な方向に沿って整列するので、パッチによる応力集中部の補強効果を有効に発揮させることができる。   According to the fourth aspect of the present invention, since the continuous fibers of the patch are aligned in a direction advantageous for stress relaxation at the stress concentration portion, the effect of reinforcing the stress concentration portion by the patch can be effectively exhibited.

また請求項5の構成によれば、パッチは連続繊維および熱硬化性マトリクス樹脂からなり、熱硬化性マトリクス樹脂の量は熱硬化時の収縮により応力集中部を変形させない量であるので、熱硬化性マトリクス樹脂が熱硬化するときの収縮量が応力集中部が熱収縮するときの収縮量よりも大きくても、車体部材に変形が発生するのを防止することができる。   According to the fifth aspect of the present invention, the patch is composed of continuous fibers and a thermosetting matrix resin, and the amount of the thermosetting matrix resin is an amount that does not deform the stress concentration portion due to shrinkage during thermosetting. Even when the shrinkage amount when the heat-curable matrix resin is thermally cured is larger than the shrinkage amount when the stress concentration portion is thermally shrunk, the deformation of the vehicle body member can be prevented.

自動車の車体フレームの斜視図。The perspective view of the vehicle body frame of a motor vehicle. 図1の2−2線拡大断面図。FIG. 2 is an enlarged sectional view taken along line 2-2 in FIG. 1. 図2の3−3線矢視図。FIG. 3 is a view taken along line 3-3 in FIG. 図2の4−4線断面図。FIG. 4 is a cross-sectional view taken along line 4-4 of FIG. 車体が横転したときの荷重の作用状態を示す図。The figure which shows the action state of the load when a vehicle body rolls over.

以下、図1〜図5に基づいて本発明の実施の形態を説明する。尚、本明細書において、前後方向、左右方向(車幅方向)、上下方向とは、運転席に着座した乗員を基準として定義される。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. In this specification, the front-rear direction, the left-right direction (vehicle width direction), and the up-down direction are defined with reference to an occupant seated in the driver's seat.

図1に示すように、自動車の車体フレームは、車体前部に前後方向に配置された左右一対のフロントサイドフレーム11,11と、左右のフロントサイドフレーム11,11の後端に接続されて後方に延びる左右一対のフロアフレーム12,12と、左右のフロアフレーム12,12の車幅方向外側において前後方向に配置された左右一対のサイドシル13,13と、左右のサイドシル13,13の後端に接続されて後方に延びる左右一対のリヤサイドフレーム14,14とを備える。   As shown in FIG. 1, a vehicle body frame is connected to a pair of left and right front side frames 11, 11 disposed in the front-rear direction at the front of the vehicle body, and to the rear ends of the left and right front side frames 11, 11. A pair of left and right floor sills 13, 13 disposed in the front-rear direction on the outer side in the vehicle width direction of the left and right floor frames 12, 12, and rear ends of the left and right side sills 13, 13. A pair of left and right rear side frames 14, 14 connected and extending rearward are provided.

左右のフロントサイドフレーム11,11の前端間は枠状に形成されたフロントバルクヘッド15により接続され、左右のフロントサイドフレーム11,11の前後方向中間部間は車幅方向に延びる第1クロスメンバ16により接続され、左右のフロントサイドフレーム11,11の後部間は車幅方向に延びる第2クロスメンバ17により接続され、左右のサイドシル13,13の前後方向中間部間および左右のフロアフレーム12,12の後端間は車幅方向に延びる第3クロスメンバ18,18により接続され、左右のサイドシル13,13の後端間は車幅方向に延びる第4クロスメンバ19により接続され、左右のリヤサイドフレーム14,14の前端間は車幅方向に延びる第5クロスメンバ20により接続され、左右のリヤサイドフレーム14,14の後端間は車幅方向に延びる第6クロスメンバ21により接続される。前記第2クロスメンバ17は、第3クロスメンバ18の車幅方向中間部から前方に延びる板材よりなるフロアトンネル補強パネル22の前部22aと、それを左右のサイドシル13,13の前部に接続する左右一対の板材よりなるブラケット23,23とにより構成される。   A front crosshead 15 formed between the front ends of the left and right front side frames 11 and 11 is connected by a front bulkhead 15 formed in a frame shape, and a first cross member extending in the vehicle width direction between front and rear intermediate portions of the left and right front side frames 11 and 11. 16, the rear portions of the left and right front side frames 11, 11 are connected by a second cross member 17 extending in the vehicle width direction, between the front and rear intermediate portions of the left and right side sills 13, 13, and the left and right floor frames 12, 12 is connected by third cross members 18 and 18 extending in the vehicle width direction, and the rear ends of the left and right side sills 13 and 13 are connected by a fourth cross member 19 extending in the vehicle width direction. The front ends of the frames 14, 14 are connected by a fifth cross member 20 extending in the vehicle width direction. Between the rear end of the arm 14, 14 are connected by the sixth cross member 21 extending in the vehicle width direction. The second cross member 17 is connected to a front portion 22a of a floor tunnel reinforcing panel 22 made of a plate material extending forward from an intermediate portion in the vehicle width direction of the third cross member 18 and to the front portions of the left and right side sills 13 and 13. Brackets 23, 23 made of a pair of left and right plate members.

左右のサイドシル13,13の前端から左右一対のAピラー(フロントピラー)ロア24,24が起立し、左右のサイドシル13,13の前後方向中間部から左右一対のBピラー(センターピラー)25,25が起立し、左右のサイドシル13,13の後端から左右一対のCピラー(リヤピラー)26,26が起立し、左右のリヤサイドフレーム14,14の後端から左右一対のDピラー27,27が起立する。   A pair of left and right A-pillars (front pillars) lowers 24 and 24 rise from the front ends of the left and right side sills 13 and 13, and a pair of left and right B pillars (center pillars) 25 and 25 rise from the middle in the front-rear direction. Rises, a pair of left and right C pillars (rear pillars) 26, 26 stand from the rear ends of the left and right side sills 13, 13, and a pair of left and right D pillars 27, 27 stand from the rear ends of the left and right rear side frames 14, 14. To do.

フロントサイドフレーム11の前部から連結部材28が車幅方向外側に張り出しており、この連結部材28に前端を接続されて後上方に延びるロアメンバ29が、Aピラーロア24の上端に接続される。ロアメンバ29の前後方向中間部からAピラーアッパ30が後上方に延びており、このAピラーアッパ30と、ロアメンバ29の後部と、Aピラーロア24の上端とがフロントクォータパネル31で接続される。   A connecting member 28 projects outward from the front portion of the front side frame 11, and a lower member 29 connected to the connecting member 28 at the front end and extending rearward and upward is connected to the upper end of the A pillar lower 24. An A-pillar upper 30 extends rearward and upward from an intermediate portion in the front-rear direction of the lower member 29. The A-pillar upper 30, the rear portion of the lower member 29, and the upper end of the A-pillar lower 24 are connected by a front quarter panel 31.

Aピラーアッパ30の後端からルーフサイドレール33が後方に延びており、左右のAピラーアッパ30,30間が車幅方向に延びるダッシュボードアッパ34で接続され、左右のルーフサイドレール33,33の前部間が車幅方向に延びる第1ルーフアーチ35で接続され、左右のルーフサイドレール33,33の前後方向中間部間と、左右のBピラー25,25の上端間とが車幅方向に延びる第2ルーフアーチ36で接続され、左右のルーフサイドレール33,33の後端間と、左右のDピラー27,27の上端間とが車幅方向に延びる第3ルーフアーチ37で接続される。   A roof side rail 33 extends rearward from the rear end of the A pillar upper 30, and the left and right A pillar uppers 30, 30 are connected by a dashboard upper 34 extending in the vehicle width direction, and the front of the left and right roof side rails 33, 33 are connected. The first roof arch 35 that extends in the vehicle width direction is connected between the sections, and the middle portion between the left and right roof side rails 33 and 33 and the upper end of the left and right B pillars 25 and 25 extend in the vehicle width direction. The second roof arch 36 is connected, and the rear ends of the left and right roof side rails 33 and 33 and the upper ends of the left and right D pillars 27 and 27 are connected by a third roof arch 37 extending in the vehicle width direction.

リヤサイドフレーム14からリヤホイールハウス38が起立しており、リヤホイールハウス38の車幅方向外側がリヤフェンダーパネル39で覆われる。   A rear wheel house 38 stands up from the rear side frame 14, and an outer side in the vehicle width direction of the rear wheel house 38 is covered with a rear fender panel 39.

図2〜図4に示すように、Bピラー25は、車幅方向外向きに凸に湾曲するハット状断面に鋼板をプレス成形したアウタパネル41と、車幅方向内向きに凸に湾曲するハット状断面に鋼板をプレス成形したインナパネル42と、車幅方向外向きに凸に湾曲するハット状断面に鋼板をプレス成形したスチフナ43とを、それらの接合フランジ41a,41a,42a,42a,43a,43aにおいて3枚重ねで溶接44…した閉断面の中空部材である。スチフナ43は上下方向に延びる2本の稜線43b,43bによって折れ曲がっており、その車幅方向内面(インナパネル42に対向する面にCFRP製のパッチ45が貼着されて補強される。   As shown in FIGS. 2 to 4, the B pillar 25 includes an outer panel 41 in which a steel plate is press-formed into a hat-shaped cross section that curves outwardly in the vehicle width direction, and a hat shape that curves convex inward in the vehicle width direction. An inner panel 42 in which a steel plate is press-formed in a cross section, and a stiffener 43 in which a steel plate is press-formed in a hat-like cross-section that curves outwardly in the vehicle width direction are joined to their joint flanges 41a, 41a, 42a, 42a, 43a, 43a is a hollow member having a closed cross-section in which three sheets 44 are welded together. The stiffener 43 is bent by two ridge lines 43b and 43b extending in the vertical direction, and a CFRP patch 45 is attached to the inner surface in the vehicle width direction (the surface facing the inner panel 42) to be reinforced.

パッチ45は矩形状のCFRPシートからなるもので、炭素繊維の連続繊維46(連続炭素繊維を一方向に引き揃えてシート状にしたもの)を、熱硬化性マトリクス樹脂47内に埋設して構成される。このパッチ45は、連続繊維46の連続炭素繊維の配向方向がBピラー25の長手方向(上下方向)に沿うように、接着剤48でスチフナ43の車幅方向内面に接着される。   The patch 45 is made of a rectangular CFRP sheet, and is constituted by embedding a continuous carbon fiber 46 (a sheet formed by aligning continuous carbon fibers in one direction) in a thermosetting matrix resin 47. Is done. The patch 45 is bonded to the inner surface in the vehicle width direction of the stiffener 43 with an adhesive 48 so that the orientation direction of the continuous carbon fiber of the continuous fiber 46 is along the longitudinal direction (vertical direction) of the B pillar 25.

図5に示すように、車体が横転してルーフサイドレール33に矢印F1で示すような荷重が加わった場合を想定し、Bピラー25に作用する荷重をコンピュータで解析すると、車幅方向外側に位置するアウタパネル41およびスチフナ43に引張荷重F2が作用し、車幅方向内側に位置するインナパネル42に圧縮荷重F3が作用することが分かる。   As shown in FIG. 5, assuming that the vehicle body rolls over and a load as indicated by an arrow F1 is applied to the roof side rail 33, the load acting on the B pillar 25 is analyzed by a computer. It can be seen that the tensile load F2 acts on the outer panel 41 and the stiffener 43 positioned, and the compressive load F3 acts on the inner panel 42 positioned on the inner side in the vehicle width direction.

図3において鎖線で示す楕円は、スチフナ43に作用する引張荷重F2が所定値を超える領域である応力集中部49を示しており、パッチ45の上下方向幅W2は、応力集中部49の上下方向幅W1を超えており、従ってパッチ45は応力集中部49の上端よりも上方位置から下端よりも下方位置までを覆っている。またパッチ45の前後方向長さは、スチフナ43の稜線43b,43bを跨ぐように設定される。   In FIG. 3, an ellipse indicated by a chain line indicates the stress concentration portion 49 which is a region where the tensile load F2 acting on the stiffener 43 exceeds a predetermined value, and the vertical width W2 of the patch 45 is the vertical direction of the stress concentration portion 49. Therefore, the patch 45 covers from the position above the upper end of the stress concentration portion 49 to the position below the lower end. The length of the patch 45 in the front-rear direction is set so as to straddle the ridge lines 43 b and 43 b of the stiffener 43.

溶接工程の前段階において、パッチ45は熱硬化性マトリクス樹脂47が未硬化の状態でスチフナ43に貼着され、続く溶接工程でアウタパネル41、インナパネル42およびスチフナ43が一体に溶接される。そして次の塗装工程で車体が乾燥炉内を通過する際の熱で熱硬化性マトリクス樹脂47が加熱されて硬化し、パッチ45がスチフナ43に強固に貼着される。尚、パッチ45は、熱硬化性マトリクス樹脂47が硬化した状態で、スチフナ43に接着あるいはボルト止めしても良い。   In the previous stage of the welding process, the patch 45 is stuck to the stiffener 43 with the thermosetting matrix resin 47 uncured, and the outer panel 41, the inner panel 42, and the stiffener 43 are integrally welded in the subsequent welding process. In the next painting step, the thermosetting matrix resin 47 is heated and cured by heat generated when the vehicle body passes through the drying furnace, and the patch 45 is firmly attached to the stiffener 43. The patch 45 may be bonded or bolted to the stiffener 43 in a state where the thermosetting matrix resin 47 is cured.

熱硬化性マトリクス樹脂47が硬化するときの熱収縮量は、鋼板が加熱後に冷却されたときの熱収縮量よりも大きいため、熱硬化性マトリクス樹脂47の量(例えば、パッチ45の厚さや面積)が過大であると、熱硬化性マトリクス樹脂47の熱収縮によってスチフナ43が変形する虞がある。従って、パッチ45の熱硬化性マトリクス樹脂47の量は、スチフナ43の変形を発生させない量に制限される。   Since the amount of heat shrinkage when the thermosetting matrix resin 47 is cured is larger than the amount of heat shrinkage when the steel plate is cooled after being heated, the amount of the thermosetting matrix resin 47 (for example, the thickness or area of the patch 45). ) Is excessively large, the stiffener 43 may be deformed by heat shrinkage of the thermosetting matrix resin 47. Therefore, the amount of the thermosetting matrix resin 47 of the patch 45 is limited to an amount that does not cause the deformation of the stiffener 43.

次に、上記構成を備えた本発明の実施の形態の作用を説明する。   Next, the operation of the embodiment of the present invention having the above configuration will be described.

車体が横転したような場合、ルーフサイドレール33に入力した荷重F1により、引張面となるBピラー25のアウタパネル41およびスチフナ43に引張荷重F2が作用し、圧縮面となるインナパネル42に圧縮荷重F3が作用する。スチフナ43に作用する引張荷重F2が所定値を超える領域である応力集中部49が予め特定されており、この応力集中部49にCFRP製のパッチ45を貼着して補強することで、Bピラー25の強度が高められて横転時に車室空間を確保することができる。即ち、引張荷重が入力したときの伸び率は、鋼板製のスチフナ43よりもCFRP製のパッチ45の方が小さいため、パッチ45によりスチフナ43の延び変形が抑制されてBピラー25の強度が高められる。   When the vehicle body rolls over, the tensile load F2 acts on the outer panel 41 and the stiffener 43 of the B pillar 25 serving as the tensile surface by the load F1 input to the roof side rail 33, and the compressive load is applied to the inner panel 42 serving as the compression surface. F3 acts. A stress concentration portion 49, which is a region where the tensile load F2 acting on the stiffener 43 exceeds a predetermined value, is specified in advance, and a CFRP patch 45 is attached to the stress concentration portion 49 to reinforce it, thereby providing a B pillar. As a result, the vehicle interior space can be secured during rollover. That is, since the elongation rate when the tensile load is input is smaller in the CFRP patch 45 than in the steel plate stiffener 43, the extension deformation of the stiffener 43 is suppressed by the patch 45 and the strength of the B pillar 25 is increased. It is done.

このように、曲げ応力が集中する応力集中部49を特定し、応力集中部49の引張面にCFRP製のパッチ45を貼着するので、スチフナ43の全体でなく応力集中部49だけを軽量なCFRP製のパッチ45で補強することで、重量の増加を最小限に抑えながら最大の補強効果を得ることができる。またCFRP製のパッチ45は圧縮荷重よりも引張荷重に対して強いため、それを応力集中部49の引張面に貼着することで、補強効果を更に高めることができる。しかもCFRP製のパッチ45の連続繊維46の積層数や繊維配向方向を変更するだけで、補強効果の大小を容易に調整することができる。   In this way, the stress concentration portion 49 where the bending stress is concentrated is specified, and the CFRP patch 45 is adhered to the tensile surface of the stress concentration portion 49. Therefore, not the entire stiffener 43 but only the stress concentration portion 49 is reduced in weight. By reinforcing with the CFRP patch 45, the maximum reinforcing effect can be obtained while minimizing the increase in weight. In addition, since the CFRP patch 45 is stronger than the compressive load against the tensile load, the reinforcing effect can be further enhanced by sticking it to the tensile surface of the stress concentration portion 49. Moreover, the magnitude of the reinforcing effect can be easily adjusted simply by changing the number of laminated continuous fibers 46 of the CFRP patch 45 and the fiber orientation direction.

またパッチ45の上下方向幅W2は、応力集中部49の上下方向幅W1を超えており、かつパッチ45の前後方向長さは、スチフナ43の稜線43b,43bを跨ぐように設定されるので、パッチ45で応力集中部49を確実に覆って補強効果を高めるとともに、応力が集中し易いスチフナ43の稜線43b,43bを補強して変形を防止することができる。   Further, the vertical width W2 of the patch 45 exceeds the vertical width W1 of the stress concentration portion 49, and the length of the patch 45 in the front-rear direction is set so as to straddle the ridge lines 43b and 43b of the stiffener 43. The patch 45 can surely cover the stress concentration portion 49 to enhance the reinforcement effect, and the ridge lines 43b and 43b of the stiffener 43 where the stress tends to concentrate can be reinforced to prevent deformation.

またパッチ45の骨材は炭素繊維の連続繊維46を積層したものからなり、その連続繊維46は応力集中部49の応力を緩和するのに有利な方向(例えば、引張荷重の方向)に沿って整列するので、パッチ45による応力集中部49の補強効果を有効に発揮させることができる。   The aggregate of the patch 45 is formed by laminating continuous fibers 46 of carbon fibers, and the continuous fibers 46 extend along a direction (for example, a direction of tensile load) advantageous for relaxing the stress of the stress concentration portion 49. Since they are aligned, the reinforcing effect of the stress concentration portion 49 by the patch 45 can be effectively exhibited.

このような構造のパッチ45は、上述したBピラー25以外に、車体フレームの各部に取り付けることができる。以下、その例を図1に基づいて説明する。   The patch 45 having such a structure can be attached to each part of the body frame other than the B pillar 25 described above. Hereinafter, the example is demonstrated based on FIG.

サイドシル13は、車幅方向外側に位置するサイドシルアウタ13aと、車幅方向内側に位置するサイドシルインナ13bとを結合して閉断面に構成される。サイドシル13に側面衝突の衝突荷重が入力すると、サイドシルインナ13の車幅方向内面、特にBピラーの近傍の車幅方向内面に強い引張荷重が作用するため、そこにCFRP製のパッチ45を貼着することで側面衝突に対するサイドシル13の強度を高めることができる。   The side sill 13 is configured in a closed cross-section by connecting a side sill outer 13a located on the outer side in the vehicle width direction and a side sill inner 13b located on the inner side in the vehicle width direction. When a side impact collision load is input to the side sill 13, a strong tensile load acts on the inner surface in the vehicle width direction of the side sill inner 13, particularly the inner surface in the vehicle width direction near the B pillar, so a CFRP patch 45 is attached thereto. By doing so, the strength of the side sill 13 against side collision can be increased.

またドア50の内部に配置されるドアビーム51は車幅方向内側に向かって開放するハット状断面の部材であり、側面衝突の衝突荷重が入力したときに引張荷重の応力集中部となるドアビーム51の開口部が、CFRP製のパッチ45で閉塞されて閉断面に構成される。この場合、パッチ45はドアビーム51の開口部を構成するフランジにボルト止めすることが望ましい。これにより、側面衝突時にドアビーム51に加わる引張荷重をパッチ45で支持し、ドアビーム51の変形を抑制することができる。   The door beam 51 disposed inside the door 50 is a member having a hat-shaped cross section that opens toward the inner side in the vehicle width direction. The door beam 51 is a stress concentration portion of the tensile load when a collision load of a side collision is input. The opening is closed with a CFRP patch 45 to form a closed section. In this case, it is desirable that the patch 45 is bolted to the flange that forms the opening of the door beam 51. Thereby, the tensile load applied to the door beam 51 at the time of a side collision can be supported by the patch 45, and the deformation of the door beam 51 can be suppressed.

またフロアトンネル補強パネル22は下方に向かって開放するハット状断面の部材であり、走行時に車体に加わる荷重により引張応力が集中するフロアトンネル補強パネル22の開口部が、CFRP製のパッチ45で閉塞されて閉断面に構成される。この場合もパッチ45はフロアトンネル補強パネル22の開口部を構成するフランジにボルト止めされる。これにより、走行時にフロアトンネル補強パネル22の開口部に加わる引張荷重をパッチ45で支持し、車体剛性を高めることができる。   The floor tunnel reinforcement panel 22 is a member having a hat-shaped cross section that opens downward, and the opening of the floor tunnel reinforcement panel 22 where tensile stress is concentrated by a load applied to the vehicle body during traveling is blocked by a CFRP patch 45. And configured in a closed cross section. Also in this case, the patch 45 is bolted to the flange that forms the opening of the floor tunnel reinforcing panel 22. Thereby, the tensile load applied to the opening part of the floor tunnel reinforcement panel 22 at the time of driving | running | working is supported by the patch 45, and vehicle body rigidity can be improved.

以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、本発明の第1工程および第2工程の順序は逆であっても良く、車体部材を製造した後に応力集中部を特定することができる。即ち、車体部材を製造する度に当該車体部材について第1工程を行っても良い。しかしながら、実施の形態の如く同一仕様の車体部材を複数個製造する場合には、1個の車体部材について得た特定結果を他の車体部材に適用することができる。   For example, the order of the first step and the second step of the present invention may be reversed, and the stress concentration portion can be specified after manufacturing the vehicle body member. That is, the first step may be performed on the vehicle body member every time the vehicle body member is manufactured. However, when a plurality of vehicle body members having the same specifications are manufactured as in the embodiment, the specific result obtained for one vehicle body member can be applied to other vehicle body members.

また応力集中部29の特定は、コンピュータによるシミュレーションに限定されず、実験により行うことも可能である。   The specification of the stress concentration portion 29 is not limited to computer simulation, and can be performed by experiment.

また実施の形態ではパッチ45を接着剤48で貼着しているが、熱硬化性マトリクス樹脂47自体の接着力により貼着しても良い。   In the embodiment, the patch 45 is attached with the adhesive 48, but it may be attached with the adhesive force of the thermosetting matrix resin 47 itself.

またパッチ45の骨材は実施の形態の連続繊維46に限定されず、連続繊維を編んだ織布であっても良い。その場合、縦横一方向の連続繊維の配向方向を応力集中部49の引張方向に整列させることが望ましい。このとき、引張方向を縦方向とすれば、横方向の応力に対してパッチ45の破断が抑制される。   The aggregate of the patch 45 is not limited to the continuous fiber 46 of the embodiment, and may be a woven fabric knitted with continuous fibers. In that case, it is desirable to align the orientation direction of the continuous fibers in one longitudinal and transverse directions with the tensile direction of the stress concentration portion 49. At this time, if the tensile direction is the longitudinal direction, the breakage of the patch 45 is suppressed against the stress in the lateral direction.

また実施の形態ではBピラー25のスチフナ43にパッチ45を貼着しているが、アウタパネル41にパッチ45を貼着しても良い。   In the embodiment, the patch 45 is attached to the stiffener 43 of the B pillar 25, but the patch 45 may be attached to the outer panel 41.

また本発明の車体部材は実施の形態のBピラー25、サイドシル13、ドアビーム51あるいはフロアトンネル補強パネル22に限定されるものではない。   The vehicle body member of the present invention is not limited to the B pillar 25, the side sill 13, the door beam 51, or the floor tunnel reinforcing panel 22 of the embodiment.

13 サイドシル(車体部材)
22 フロアトンネル補強パネル(車体部材)
25 Bピラー(車体部材)
43a 稜線
45 パッチ
46 連続繊維
47 熱硬化性マトリクス樹脂
49 応力集中部
51 ドアビーム(車体部材)
13 Side sills (body parts)
22 Floor tunnel reinforcement panel (body parts)
25 B pillar (body member)
43a Ridge line 45 Patch 46 Continuous fiber 47 Thermosetting matrix resin 49 Stress concentration part 51 Door beam (vehicle body member)

Claims (5)

鋼板製の車体部材(13,22,25,51)に荷重を加えたときに曲げ応力が集中する応力集中部(49)を特定する第1工程と、
前記車体部材(13,22,25,51)を製造する第2工程と、
前記応力集中部(49)の引張面にCFRP製のパッチ(45)を貼着あるいはボルト止めする第3工程とを含むことを特徴とする自動車の車体製造方法。
A first step of identifying a stress concentration portion (49) where bending stress is concentrated when a load is applied to the steel body member (13, 22, 25, 51);
A second step of manufacturing the vehicle body member (13, 22, 25, 51);
And a third step of attaching or bolting a CFRP patch (45) to the tension surface of the stress concentration portion (49).
前記パッチ(45)の寸法は前記応力集中部(49)の寸法よりも大きいことを特徴とする、請求項1に記載の自動車の車体製造方法。   The method of manufacturing a vehicle body for an automobile according to claim 1, wherein the size of the patch (45) is larger than the size of the stress concentration portion (49). 前記パッチ(45)は前記応力集中部(49)の引張面の稜線(43b)を跨ぐことを特徴とする、請求項1または請求項2に記載の自動車の車体製造方法。   The vehicle body manufacturing method according to claim 1 or 2, wherein the patch (45) straddles a ridge line (43b) of a tensile surface of the stress concentration portion (49). 前記パッチ(45)の連続繊維は前記応力集中部(49)の応力緩和に有利な方向に沿って整列することを特徴とする、請求項1〜請求項3の何れか1項に記載の自動車の車体製造方法。   The automobile according to any one of claims 1 to 3, characterized in that the continuous fibers of the patch (45) are aligned along a direction advantageous for stress relaxation of the stress concentration portion (49). Car body manufacturing method. 前記パッチ(45)は連続繊維(46)および熱硬化性マトリクス樹脂(47)からなり、前記熱硬化性マトリクス樹脂(47)の量は熱硬化時の収縮により前記応力集中部(49)を変形させない量であることを特徴とする、請求項1〜請求項4の何れか1項に記載の自動車の車体製造方法。   The patch (45) is composed of continuous fibers (46) and a thermosetting matrix resin (47), and the amount of the thermosetting matrix resin (47) deforms the stress concentration portion (49) by shrinkage during thermosetting. The method of manufacturing a vehicle body for an automobile according to any one of claims 1 to 4, wherein the amount is not allowed to occur.
JP2013114889A 2013-05-31 2013-05-31 Vehicle body manufacturing method Pending JP2014233999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013114889A JP2014233999A (en) 2013-05-31 2013-05-31 Vehicle body manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013114889A JP2014233999A (en) 2013-05-31 2013-05-31 Vehicle body manufacturing method

Publications (1)

Publication Number Publication Date
JP2014233999A true JP2014233999A (en) 2014-12-15

Family

ID=52137038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013114889A Pending JP2014233999A (en) 2013-05-31 2013-05-31 Vehicle body manufacturing method

Country Status (1)

Country Link
JP (1) JP2014233999A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160524A (en) * 2014-02-27 2015-09-07 本田技研工業株式会社 Vehicle body structure
JP2017061068A (en) * 2015-09-24 2017-03-30 本田技研工業株式会社 Metal-CFRP composite member
JP2017087925A (en) * 2015-11-09 2017-05-25 アイシン精機株式会社 Radiator support member
JP2017100375A (en) * 2015-12-02 2017-06-08 本田技研工業株式会社 Bonded structure of metallic member and frp member
KR20180069444A (en) * 2016-12-15 2018-06-25 현대자동차주식회사 Folded metal plate structure reinforced by fiber reinforced plastic and manufacturing method for the same
US20180208330A1 (en) * 2015-07-23 2018-07-26 Sikorsky Aircraft Corporation Structure reinforcement with polymer matrix composite
JP2018139029A (en) * 2017-02-24 2018-09-06 Jfeスチール株式会社 Method and device of optimizing shape of reinforcing member for vehicle body
US10328660B2 (en) * 2014-03-13 2019-06-25 Aisin Takaoka Co., Ltd. Composite structure and manufacturing method thereof
WO2019198729A1 (en) 2018-04-09 2019-10-17 日本製鉄株式会社 Automobile structural member
JP2019209661A (en) * 2018-06-08 2019-12-12 日本製鉄株式会社 Flat panel structure
JPWO2020194008A1 (en) * 2019-03-26 2020-10-01
WO2022089223A1 (en) * 2020-10-26 2022-05-05 Ningbo Geely Automobile Research & Development Co., Ltd. Adjustable safety cell
EP4023535A4 (en) * 2019-09-11 2022-08-10 Nippon Steel Corporation Center pillar inner and center pillar
US11851105B2 (en) 2019-05-07 2023-12-26 Autotech Engineering S.L. Corner patch

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225364A (en) * 2004-02-13 2005-08-25 Honda Motor Co Ltd Impact absorbing member for automobile
JP2013513502A (en) * 2009-12-10 2013-04-22 ダイムラー・アクチェンゲゼルシャフト Method for manufacturing automobile body shell and automobile body shell
JP2013095417A (en) * 2011-10-28 2013-05-20 Benteler Automobiltechnik Gmbh Method for manufacturing automobile member, and automobile member manufactured by the method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225364A (en) * 2004-02-13 2005-08-25 Honda Motor Co Ltd Impact absorbing member for automobile
JP2013513502A (en) * 2009-12-10 2013-04-22 ダイムラー・アクチェンゲゼルシャフト Method for manufacturing automobile body shell and automobile body shell
JP2013095417A (en) * 2011-10-28 2013-05-20 Benteler Automobiltechnik Gmbh Method for manufacturing automobile member, and automobile member manufactured by the method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160524A (en) * 2014-02-27 2015-09-07 本田技研工業株式会社 Vehicle body structure
US10328660B2 (en) * 2014-03-13 2019-06-25 Aisin Takaoka Co., Ltd. Composite structure and manufacturing method thereof
US20180208330A1 (en) * 2015-07-23 2018-07-26 Sikorsky Aircraft Corporation Structure reinforcement with polymer matrix composite
JP2017061068A (en) * 2015-09-24 2017-03-30 本田技研工業株式会社 Metal-CFRP composite member
JP2017087925A (en) * 2015-11-09 2017-05-25 アイシン精機株式会社 Radiator support member
JP2017100375A (en) * 2015-12-02 2017-06-08 本田技研工業株式会社 Bonded structure of metallic member and frp member
KR20180069444A (en) * 2016-12-15 2018-06-25 현대자동차주식회사 Folded metal plate structure reinforced by fiber reinforced plastic and manufacturing method for the same
KR102429167B1 (en) * 2016-12-15 2022-08-03 현대자동차주식회사 Folded metal plate structure reinforced by fiber reinforced plastic and manufacturing method for the same
JP2018139029A (en) * 2017-02-24 2018-09-06 Jfeスチール株式会社 Method and device of optimizing shape of reinforcing member for vehicle body
WO2019198729A1 (en) 2018-04-09 2019-10-17 日本製鉄株式会社 Automobile structural member
US11541933B2 (en) 2018-04-09 2023-01-03 Nippon Steel Corporation Automotive structural member
JP2019209661A (en) * 2018-06-08 2019-12-12 日本製鉄株式会社 Flat panel structure
JP7389378B2 (en) 2018-06-08 2023-11-30 日本製鉄株式会社 Automotive flat panel structure
JP2022103254A (en) * 2018-06-08 2022-07-07 日本製鉄株式会社 Flat panel structure
JPWO2020194008A1 (en) * 2019-03-26 2020-10-01
US20220250337A1 (en) * 2019-03-26 2022-08-11 Nissan Motor Co., Ltd. Method of manufacturing closed cross-section structural member
EP3950279A4 (en) * 2019-03-26 2022-12-21 NISSAN MOTOR Co., Ltd. Method for manufacturing closed cross-section structural member
JP7095799B2 (en) 2019-03-26 2022-07-05 日産自動車株式会社 Method of manufacturing a closed cross-section structural member
US11826967B2 (en) * 2019-03-26 2023-11-28 Nissan Motor Co., Ltd. Method of manufacturing closed cross-section structural member
US11851105B2 (en) 2019-05-07 2023-12-26 Autotech Engineering S.L. Corner patch
EP4023535A4 (en) * 2019-09-11 2022-08-10 Nippon Steel Corporation Center pillar inner and center pillar
WO2022089223A1 (en) * 2020-10-26 2022-05-05 Ningbo Geely Automobile Research & Development Co., Ltd. Adjustable safety cell

Similar Documents

Publication Publication Date Title
JP2014233999A (en) Vehicle body manufacturing method
JP6235375B2 (en) Auto body structure
US9616935B2 (en) Vehicle structures and methods of assembling the same
JP6332250B2 (en) Vehicle floor structure
KR101730998B1 (en) Cabin front structure of automobile
US9764766B2 (en) Vehicle frame structure
US7735902B2 (en) Front structure of a motor vehicle
JP4636799B2 (en) Support structure made of hollow steel long section material for automobile
JP6172695B2 (en) Auto body structure
JP4384206B2 (en) Auto body structure
KR101756078B1 (en) A-pillar for a vehicle
US10300874B2 (en) Passenger vehicle having a front-end carrier
CN108081926B (en) Vehicle door stiffening beam
US20170267290A1 (en) Automobile vehicle body and automobile vehicle body manufacturing method
JP6032629B2 (en) Automobile center pillar structure
JP2005532207A5 (en)
JP2017024698A (en) Vehicle body coupling structure
JP6128558B2 (en) Body superstructure
JP6235384B2 (en) Auto body structure
JP2014024394A (en) Vehicle bumper beam
JP6161038B2 (en) Auto body structure
US10822040B2 (en) Roof panel assembly of vehicle
JP6080218B2 (en) Auto body structure
JP6441631B2 (en) Body structure
JP7168459B2 (en) Vehicle pillar structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160907