JP2018139029A - Method and device of optimizing shape of reinforcing member for vehicle body - Google Patents

Method and device of optimizing shape of reinforcing member for vehicle body Download PDF

Info

Publication number
JP2018139029A
JP2018139029A JP2017033046A JP2017033046A JP2018139029A JP 2018139029 A JP2018139029 A JP 2018139029A JP 2017033046 A JP2017033046 A JP 2017033046A JP 2017033046 A JP2017033046 A JP 2017033046A JP 2018139029 A JP2018139029 A JP 2018139029A
Authority
JP
Japan
Prior art keywords
model
reinforcing member
vehicle body
shape
optimization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017033046A
Other languages
Japanese (ja)
Other versions
JP6583309B2 (en
Inventor
斉藤 孝信
Takanobu Saito
孝信 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017033046A priority Critical patent/JP6583309B2/en
Priority to PCT/JP2017/042711 priority patent/WO2018154896A1/en
Priority to CN201780084167.2A priority patent/CN110226161B/en
Priority to KR1020197018470A priority patent/KR102271649B1/en
Publication of JP2018139029A publication Critical patent/JP2018139029A/en
Application granted granted Critical
Publication of JP6583309B2 publication Critical patent/JP6583309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Body Structure For Vehicles (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device of optimizing the shape of a reinforcing member for a vehicle body for finding an optimum shape of the reinforcing member which reinforces the vehicle body.SOLUTION: A method of optimizing the shape of a reinforcing member for a vehicle body according to the present invention finds an optimum shape of the structure body combined to a part of a structure body which is the vehicle body and the reinforcing member having different material property. The method has: a structure body model acquisition step for acquiring a structure body model which models the structure body by using planar elements and/or stereoscopic elements; a reinforcing member model generation step which generates a reinforcing member model different from the structure body consisting of the stereoscopic element and combined with the part of the structure body model; a material property setting step which sets the material property of the reinforcing member model; an optimization analysis model generation step which combines the reinforcing member model with the part of the structure body model to generate an optimization analysis model; and an optimization analysis step which performs an optimization analysis with the reinforcing member model as an analysis object to find the optimum shape of the reinforcing member model.SELECTED DRAWING: Figure 1

Description

本発明は、自動車車体構造を補強する補強部材の最適な形状を求める車体の補強部材の形状最適化方法及び装置に関し、特に、最適化解析方法により前記補強部材の形状を最適化する車体の補強部材の形状最適化方法及び装置に関する。
なお、本発明において形状最適化とは、予め所定の形状、例えばT字形状を想定し、その所定の形状を前提として最適な形状を求めることではなく、所定の形状を想定することなく、解析条件を満たす最適な形状を求めることを意味する。
The present invention relates to a method and an apparatus for optimizing the shape of a reinforcing member for a vehicle body that seeks an optimal shape of a reinforcing member that reinforces a vehicle body structure, and more particularly, to reinforce a vehicle body that optimizes the shape of the reinforcing member by an optimization analysis method The present invention relates to a member shape optimization method and apparatus.
In the present invention, the shape optimization means that a predetermined shape, for example, a T-shape is assumed in advance, and that an optimal shape is not obtained on the basis of the predetermined shape, and an analysis is performed without assuming a predetermined shape. This means finding an optimal shape that satisfies the conditions.

近年、特に自動車産業においては環境問題に起因した車体の軽量化が進められており、車体の設計にコンピュータ支援工学による解析(以下、「CAE解析」という)は欠かせない技術となっている。
このCAE解析では数理最適化、板厚最適化、形状最適化、トポロジー最適化などの最適化技術を用いることにより、車体の軽量化や剛性の向上などといった車体性能の向上が図られることが知られており、これらの最適化技術は、例えばエンジンブロックなどの鋳物の構造最適化によく用いられている。
In recent years, especially in the automobile industry, weight reduction of vehicle bodies due to environmental problems has been promoted, and analysis by computer-aided engineering (hereinafter referred to as “CAE analysis”) has become an indispensable technique for vehicle body design.
It is known that this CAE analysis can improve vehicle performance such as weight reduction and rigidity improvement by using optimization techniques such as mathematical optimization, plate thickness optimization, shape optimization, and topology optimization. These optimization techniques are often used to optimize the structure of castings such as engine blocks.

最適化技術の中でも、特にトポロジー最適化が着目されつつある。
トポロジー最適化とは、ある程度の大きさの設計空間を設け、当該設計空間に立体要素を組み込み、与えられた条件を満たし、かつ必要最小限の立体要素の部分を残すことで、当該条件を満たす最適形状を求める方法である。そのため、トポロジー最適化は、設計空間をなす立体要素に直接拘束を行い、直接荷重を加えるという方法が用いられる。
Among optimization techniques, topology optimization is particularly attracting attention.
Topology optimization means that a design space of a certain size is provided, a solid element is incorporated in the design space, a given condition is satisfied, and the minimum necessary solid element part is left, thereby satisfying the condition. This is a method for obtaining the optimum shape. Therefore, topology optimization uses a method in which a direct load is applied by directly constraining the three-dimensional elements forming the design space.

このようなトポロジー最適化に関する技術として、複雑な構造体のコンポーネントのトポロジー最適化のための方法が特許文献1に開示されている。   As a technique relating to such topology optimization, Patent Document 1 discloses a method for topology optimization of components of a complex structure.

特開2010−250818号公報JP 2010-250818 A

弓削、他1名、「建設機械の最適設計」、成蹊大学工学研究報告、Vol.41、No.1、2004年、p.1-5Yumi, 1 other, "Optimum Design of Construction Machinery", Seikei University Engineering Research Report, Vol.41, No.1, 2004, p.1-5

自動車の車体等の構造体は主に薄板を用いて構成されており、このような薄板で構成される車体の一部位について最適化技術により形状を最適化する場合、従来は非特許文献1に記載されるように、対象となる車体の一部を取り出して、当該部分を独立させて最適化しており、その設計空間に対して車体全体からの荷重や拘束状態を反映させることは困難であり、それ故に車体の一部位に最適化技術を適用することが難しいという課題があった。また、前記一部位を車体全体の最適化解析から最適化形状を求めたとしても、最適化した部位が消滅する場合もあって、それを薄板構造に適切に反映させるにはいかにするべきかという課題もあった。   A structure such as a car body of an automobile is mainly configured by using a thin plate, and in the case of optimizing the shape of one part of the vehicle body constituted by such a thin plate by an optimization technique, conventionally, Non-Patent Document 1 As described, a part of the target vehicle body is taken out and optimized independently, and it is difficult to reflect the load and restraint state from the entire vehicle body on the design space. Therefore, there is a problem that it is difficult to apply the optimization technique to one part of the vehicle body. In addition, even if the optimized shape is obtained from optimization analysis of the whole body part, the optimized part may disappear, and how should it be reflected appropriately in the thin plate structure? There were also challenges.

特許文献1に開示されている技術は、トポロジー最適化による最適化解析に係る数学演算上の手法及び物理的システムに関するものであり、上記のような薄板構造の最適化といった課題に対しては何らの解決手段を与えるものではない。   The technique disclosed in Patent Document 1 relates to a mathematical calculation method and a physical system related to optimization analysis by topology optimization, and does not deal with the problem of optimization of the thin plate structure as described above. It does not give a solution.

さらに、近年、自動車の車体を構成する薄板に、該薄板と異なる材料特性である樹脂やFRP(Fiber-Reinforced Plastics;繊維強化樹脂)からなる補強部材を貼り付けて補強し、車体の剛性や強度を向上させることが行われているが、このような補強部材の形状や補強部材の貼り付け位置を最適化の対象とした従来技術はなく、車体を補強する補強部材の最適化形状を求める最適化技術の開発が望まれていた。   Furthermore, in recent years, reinforcing members made of resin and FRP (Fiber-Reinforced Plastics), which have different material properties from the thin plate, have been applied to the thin plate that constitutes the body of an automobile to reinforce it. However, there is no conventional technique for optimizing the shape of the reinforcing member and the attachment position of the reinforcing member, and the optimum for obtaining the optimized shape of the reinforcing member that reinforces the vehicle body Development of a new technology has been desired.

本発明は、上記のような課題を解決するためになされたものであり、車体である構造体の一部に該構造体と異なる材料特性の補強部材を結合して前記構造体を補強するに際し、前記補強部材の最適な形状を求める車体の補強部材の形状最適化方法及び装置を提供することを目的とする。   The present invention has been made to solve the above-described problems. When a reinforcing member having a material characteristic different from that of the structure is coupled to a part of the structure that is a vehicle body, the structure is reinforced. An object of the present invention is to provide a method and an apparatus for optimizing the shape of a reinforcing member of a vehicle body for obtaining the optimum shape of the reinforcing member.

(1)本発明に係る車体の補強部材の形状最適化方法は、車体である構造体の一部に結合する該構造体と材料特性の異なる補強部材の最適な形状を求めるものであり、コンピュータが以下の各ステップを行うものであって、平面要素及び/又は立体要素を用いて前記構造体をモデル化した構造体モデルを取得する構造体モデル取得ステップと、立体要素からなり前記構造体モデルの一部と結合する前記構造体とは別の補強部材モデルを生成する補強部材モデル生成ステップと、該補強部材モデルの材料特性を設定する材料特性設定ステップと、前記補強部材モデルを前記構造体モデルの一部に結合して最適化解析モデルを生成する最適化解析モデル生成ステップと、該生成した最適化解析モデルに解析条件を与え、前記補強部材モデルを最適化の解析対象として最適化解析を行い、前記補強部材モデルの最適な形状を求める最適化解析ステップと、を備えたことを特徴とするものである。 (1) A method for optimizing the shape of a reinforcing member for a vehicle body according to the present invention is to obtain an optimal shape of a reinforcing member having a material characteristic different from that of the structural body coupled to a part of the structure that is a vehicle body. Performs the following steps: a structure model acquisition step of acquiring a structure model obtained by modeling the structure using a planar element and / or a three-dimensional element, and the structure model including a three-dimensional element A reinforcing member model generating step for generating a reinforcing member model different from the structural body coupled to a part of the structural member, a material characteristic setting step for setting material characteristics of the reinforcing member model, and the reinforcing member model as the structural body An optimization analysis model generation step for generating an optimization analysis model by combining with a part of the model, an analysis condition is given to the generated optimization analysis model, and the reinforcing member model is optimized Of optimizes the analysis as an analysis object, it is characterized in that it comprises a and optimization analyzing step of determining an optimum shape of the reinforcing member model.

(2)上記(1)に記載のものにおいて、前記材料特性設定ステップは、前記補強部材モデルの材料特性として、ヤング率、ポアソン比、比重を設定することを特徴とするものである。 (2) In the above (1), the material property setting step is characterized by setting Young's modulus, Poisson's ratio, and specific gravity as material properties of the reinforcing member model.

(3)上記(1)又は(2)に記載のものにおいて、前記材料特性設定ステップは、前記補強部材モデルの材料特性の面内異方性を与える主軸角度を与え、該主軸角度に対応する前記材料特性の値を設定し、複数の層からなる場合は、それぞれの主軸角度を持つ層を重ね合わせることを特徴とするものである。 (3) In the above (1) or (2), the material property setting step gives a principal axis angle that gives in-plane anisotropy of the material property of the reinforcing member model, and corresponds to the principal axis angle. In the case where the material property value is set and a plurality of layers are formed, layers having respective principal axis angles are overlapped.

(4)上記(1)乃至(3)のいずれかに記載のものにおいて、前記最適化解析ステップは、トポロジー最適化による解析処理を行うことを特徴とするものである。 (4) In the device according to any one of the above (1) to (3), the optimization analysis step performs an analysis process by topology optimization.

(5)本発明に係る車体の補強部材の形状最適化装置は、車体である構造体の一部に結合する該構造体と材料特性の異なる補強部材の最適な形状を求めるものであって、平面要素及び/又は立体要素を用いて前記構造体をモデル化した構造体モデルを取得する構造体モデル取得部と、立体要素からなり前記構造体モデルの一部と結合する前記構造体とは別の補強部材モデルを生成する補強部材モデル生成部と、該補強部材モデルの材料特性を設定する材料特性設定部と、前記補強部材モデルを前記構造体モデルの一部に結合して最適化解析モデルを生成する最適化解析モデル生成部と、該生成した最適化解析モデルに解析条件を与え、前記補強部材モデルを最適化の解析対象として最適化解析を行い、前記補強部材モデルの最適な形状を求める最適化解析部と、を備えたことを特徴とするものである。 (5) A shape optimization device for a reinforcing member of a vehicle body according to the present invention is for obtaining an optimal shape of a reinforcing member having a material characteristic different from that of the structure that is coupled to a part of the structure that is a vehicle body, A structure model acquisition unit that acquires a structure model obtained by modeling the structure using a planar element and / or a three-dimensional element, and the structure that includes a three-dimensional element and is coupled to a part of the structure model A reinforcing member model generating unit for generating a reinforcing member model, a material property setting unit for setting material properties of the reinforcing member model, and an optimization analysis model by combining the reinforcing member model with a part of the structure model An optimization analysis model generation unit for generating the optimization analysis model, an analysis condition is given to the generated optimization analysis model, the optimization analysis is performed with the reinforcement member model as an analysis target, and the optimal shape of the reinforcement member model is determined. Asking It is characterized in that and a optimization analysis unit.

(6)上記(5)に記載のものにおいて、前記材料特性設定部は、前記補強部材モデルの材料特性として、ヤング率、ポアソン比、比重を設定することを特徴とするものである。 (6) In the above (5), the material property setting unit sets Young's modulus, Poisson's ratio, and specific gravity as material properties of the reinforcing member model.

(7)上記(5)又は(6)に記載のものにおいて、前記材料特性設定部は、前記補強部材モデルの材料特性の面内異方性を与える主軸角度を与え、該主軸角度に対応する前記材料特性の値を設定し、複数の層からなる場合は、それぞれの主軸角度を持つ層を重ね合わせることを特徴とするものである。 (7) In the above-described (5) or (6), the material property setting unit provides a principal axis angle that gives in-plane anisotropy of the material property of the reinforcing member model, and corresponds to the principal axis angle. In the case where the material property value is set and a plurality of layers are formed, layers having respective principal axis angles are overlapped.

(8)上記(5)乃至(7)のいずれかに記載のものにおいて、前記最適化解析部は、トポロジー最適化による解析処理を行うことを特徴とするものである。 (8) In the device according to any one of (5) to (7), the optimization analysis unit performs analysis processing by topology optimization.

本発明においては、車体である構造体の一部に結合する該構造体と材料特性の異なる補強部材の最適な形状を求めるものであり、コンピュータが以下の各ステップを行うものであって、平面要素及び/又は立体要素を用いて前記構造体をモデル化した構造体モデルを取得する構造体モデル取得ステップと、立体要素からなり前記構造体モデルの一部と結合する前記構造体とは別の補強部材モデルを生成する補強部材モデル生成ステップと、該補強部材モデルの材料特性を設定する材料特性設定ステップと、前記補強部材モデルを前記構造体モデルの一部に結合して最適化解析モデルを生成する最適化解析モデル生成ステップと、該生成した最適化解析モデルに解析条件を与え、前記補強部材モデルを最適化の解析対象として最適化解析を行い、前記補強部材モデルの最適な形状を求める最適化解析ステップと、を備えたことにより、前記構造体を補強する補強部材の最適な形状を精度よく求めることができ、該最適な形状の補強部材を前記構造体に結合することにより、該構造体の所定の性能を向上したり、また、所定の性能に保持しつつ軽量化に資することが可能となる。   In the present invention, the optimal shape of the reinforcing member having a material characteristic different from that of the structural body that is coupled to a part of the structural body that is a vehicle body is obtained, and the computer performs the following steps. A structure model acquisition step for acquiring a structure model obtained by modeling the structure using an element and / or a three-dimensional element; and the structure that includes a three-dimensional element and is combined with a part of the structure model. A reinforcing member model generating step for generating a reinforcing member model, a material property setting step for setting material properties of the reinforcing member model, and an optimization analysis model by combining the reinforcing member model with a part of the structure model. An optimization analysis model generation step to be generated, an analysis condition is given to the generated optimization analysis model, and an optimization analysis is performed with the reinforcing member model as an analysis target of the optimization And an optimization analysis step for obtaining an optimum shape of the reinforcing member model, whereby the optimum shape of the reinforcing member that reinforces the structure can be obtained with high accuracy. By coupling to the structure, it is possible to improve the predetermined performance of the structure or contribute to weight reduction while maintaining the predetermined performance.

本発明の実施の形態に係る車体の補強部材の形状最適化装置のブロック図である。It is a block diagram of the shape optimization apparatus of the reinforcement member of the vehicle body which concerns on embodiment of this invention. 実施の形態で解析対象とする車体モデル、補強部材モデル及び最適化解析モデルを説明する図である。It is a figure explaining the vehicle body model, reinforcement member model, and optimization analysis model which are made into analysis object in an embodiment. 実施の形態において、立体要素を用いて生成した補強部材モデルと、該補強部材モデルと車体モデルとの結合状態及び方法を説明する図である。In embodiment, it is a figure explaining the connection state and method of the reinforcement member model produced | generated using the three-dimensional element, this reinforcement member model, and a vehicle body model. 実施の形態に係る最適化解析において最適化解析モデルに与える荷重拘束条件の一例を示す図である。It is a figure which shows an example of the load constraint conditions given to an optimization analysis model in the optimization analysis which concerns on embodiment. 実施の形態に係る最適化解析により形状最適化された最適形状補強部材モデルの一例を示す図である((a):斜視図、(b):上面図)。It is a figure which shows an example of the optimal shape reinforcement member model shape-optimized by the optimization analysis which concerns on embodiment ((a): perspective view, (b): top view). 実施の形態に係る車体の補強部材の形状最適化方法の処理の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of a process of the shape optimization method of the reinforcement member of the vehicle body which concerns on embodiment. 実施例において、車体モデルに荷重拘束条件を与えたときの車体変位の解析結果を示す図である。In an Example, it is a figure which shows the analysis result of a vehicle body displacement when a load restraint condition is given to the vehicle body model. 実施例において、形状最適化された最適形状補強部材モデルの厚み方向の形状を説明する図である((a):A−A断面、(b):上面、(c):B−B断面)。In an Example, it is a figure explaining the shape of the thickness direction of the optimal shape reinforcement member model by which the shape was optimized ((a): AA cross section, (b): Upper surface, (c): BB cross section). . 実施例において、最適化解析モデルに荷重拘束条件を与えたときの補強部材モデルに生じる応力分布を説明する図である((a):A−A断面、(b):全体、(c):B−B断面)。In an Example, it is a figure explaining the stress distribution which arises in the reinforcement member model when giving a load constraint condition to an optimization analysis model ((a): AA cross section, (b): Whole, (c): BB cross section). 実施例において、最適形状補強部材モデルを用いて車体モデルを軽量化する軽量化解析モデルを説明する図である((a):ルーフリンフォースを有する車体モデル、(b):ルーフリンフォースを除去した車体モデル、(c):最適形状補強部材モデル)。In an Example, it is a figure explaining the weight reduction analysis model which lightens a vehicle body model using an optimal shape reinforcement member model (a): Vehicle body model which has a roof reinforcement, (b): A roof reinforcement is removed (C): Optimal shape reinforcing member model). 実施例において、車体モデルのルーフ部の板厚とルーフ部の重量の関係(a)、及び、ルーフ部の板厚と車体モデルの変化重量の関係(b)を示すグラフである。In an Example, it is a graph which shows the relationship (a) of the plate | board thickness of the roof part of a vehicle body model, and the weight of a roof part, and the relationship (b) of the plate | board thickness of a roof part, and the change weight of a vehicle body model. 実施例において、最適形状補強部材モデルを結合した軽量化解析モデルのルーフ部の板厚と剛性向上率との関係を示すグラフである。In an Example, it is a graph which shows the relationship between the plate | board thickness of the roof part of a weight reduction analysis model which combined the optimal shape reinforcement member model, and the rigidity improvement rate. 実施例において、車体モデル及び軽量化解析モデルに荷重拘束条件を与えたときのルーフ部における変形を説明する図である。In an Example, it is a figure explaining the deformation | transformation in the roof part when a load constraint condition is given to the vehicle body model and the weight reduction analysis model.

本発明の実施の形態に係る車体の補強部材の形状最適化方法及び装置について説明するに先立ち、本発明で対象とする構造体モデルについて説明する。
なお、本明細書に添付する図面においては、形状及び寸法が示されている場合があるが、本発明は、これらの形状及び寸法に限定するものではない。
Prior to describing the method and apparatus for optimizing the shape of a reinforcing member for a vehicle body according to an embodiment of the present invention, a structure model targeted by the present invention will be described.
In the drawings attached to the present specification, shapes and dimensions may be shown, but the present invention is not limited to these shapes and dimensions.

<構造体モデル>
構造体モデルは、構造体の一部に該構造体と異なる材料特性の補強部材を結合するに際し、平面要素及び/又は立体要素を用いて前記構造体をモデル化したものであり、本実施の形態では、構造体モデルとして、図2(a)に示す車体モデル31を対象としている。
<Structure model>
The structure model is obtained by modeling the structure using a planar element and / or a three-dimensional element when a reinforcing member having a material characteristic different from that of the structure is coupled to a part of the structure. In the embodiment, the vehicle body model 31 shown in FIG. 2A is targeted as the structure model.

車体モデル31は、自動車の車体骨格部品やシャシー部品等といった複数の部品で構成されたものであり、車体モデル31の各部品は、平面要素及び/又は立体要素によりモデル化されている。また、車体モデル31を構成する各部品の要素(平面要素及び立体要素)や材料特性(材質)等に関する情報は、構造体モデルファイル23(図1参照)に格納されている。   The vehicle body model 31 is composed of a plurality of parts such as a car body skeleton part and a chassis part, and each part of the car body model 31 is modeled by a plane element and / or a three-dimensional element. In addition, information on elements (planar elements and solid elements), material characteristics (materials), and the like of each part constituting the vehicle body model 31 is stored in the structure model file 23 (see FIG. 1).

なお、本実施の形態では、車体のルーフ(図2に示す車体モデル31のルーフ部33に対応)の下面に、該車体と異なる材料特性の補強部材を貼付することにより補強し、積雪強度を向上する場合を対象とした例を示す。   In the present embodiment, the reinforcement of the vehicle body roof (corresponding to the roof portion 33 of the vehicle body model 31 shown in FIG. 2) is reinforced by attaching a reinforcing member having a material characteristic different from that of the vehicle body, thereby increasing the snow accumulation strength. An example for the case of improvement will be shown.

<車体の補強部材の形状最適化装置>
次に、本実施の形態に係る車体の補強部材の形状最適化装置1(以下、単に「形状最適化装置1」という)の構成について、図1〜5に基づいて以下に説明する。
<Shape optimization device for vehicle body reinforcement>
Next, the configuration of the shape optimization device 1 (hereinafter simply referred to as “shape optimization device 1”) for the reinforcing member of the vehicle body according to the present embodiment will be described with reference to FIGS.

本実施の形態に係る形状最適化装置1は、車体である構造体の一部に該構造体の一部と異なる材料特性の補強部材を結合して前記構造体を補強するに際し、前記補強部材の最適な形状を求めるものであり、図1に示すように、PC(パーソナルコンピュータ)等によって構成され、表示装置3、入力装置5、記憶装置7、作業用データメモリ9及び演算処理部11を有している。
そして、表示装置3、入力装置5、記憶装置7及び作業用データメモリ9は、演算処理部11に接続され、演算処理部11からの指令によってそれぞれの機能が実行される。
以下、本実施の形態に係る形状最適化装置1の各構成について説明する。
The shape optimizing device 1 according to the present embodiment includes a reinforcing member having a material characteristic different from that of a part of the structural body to reinforce the structural body. As shown in FIG. 1, it is configured by a PC (personal computer) or the like, and includes a display device 3, an input device 5, a storage device 7, a work data memory 9, and an arithmetic processing unit 11. Have.
The display device 3, the input device 5, the storage device 7, and the work data memory 9 are connected to the arithmetic processing unit 11, and each function is executed by a command from the arithmetic processing unit 11.
Hereinafter, each structure of the shape optimization apparatus 1 which concerns on this Embodiment is demonstrated.

≪表示装置≫
表示装置3は、解析結果の表示等に用いられ、液晶モニター等で構成される。
≪Display device≫
The display device 3 is used for displaying analysis results and the like, and includes a liquid crystal monitor or the like.

≪入力装置≫
入力装置5は、構造体モデルファイル23の表示指示や操作者の条件入力等に用いられ、キーボードやマウス等で構成される。
≪Input device≫
The input device 5 is used for a display instruction of the structure model file 23, an operator's condition input, and the like, and includes a keyboard, a mouse, and the like.

≪記憶装置≫
記憶装置7は、構造体モデルファイル23等の各種ファイルの記憶等に用いられ、ハードディスク等で構成される。
≪Storage device≫
The storage device 7 is used for storing various files such as the structure model file 23 and is configured by a hard disk or the like.

≪作業用データメモリ≫
作業用データメモリ9は、演算処理部11で使用するデータの一時保存や演算に用いられ、RAM(Random Access Memory)等で構成される。
≪Work data memory≫
The work data memory 9 is used for temporary storage and calculation of data used in the arithmetic processing unit 11, and is composed of a RAM (Random Access Memory) or the like.

≪演算処理部≫
演算処理部11は、図1に示すように、構造体モデル取得部13と、補強部材モデル生成部15と、材料特性設定部17と、最適化解析モデル生成部19と、最適化解析部21を有し、PC等のCPU(中央演算処理装置)によって構成される。これらの各部は、CPUが所定のプログラムを実行することによって機能する。
演算処理部11における上記の各部の機能を以下に説明する。
≪Operation processing part≫
As shown in FIG. 1, the arithmetic processing unit 11 includes a structure model acquisition unit 13, a reinforcing member model generation unit 15, a material property setting unit 17, an optimization analysis model generation unit 19, and an optimization analysis unit 21. And is constituted by a CPU (Central Processing Unit) such as a PC. Each of these units functions when the CPU executes a predetermined program.
The function of each unit in the arithmetic processing unit 11 will be described below.

(構造体モデル取得部)
構造体モデル取得部13は、自動車の車体を平面要素及び/又は立体要素を用いてモデル化した車体モデル31(図2(a))を取得するものであり、記憶装置7に記憶された構造体モデルファイル23から車体モデル31の要素情報や材料特性情報を読み込むことにより取得することができる。
(Structure model acquisition unit)
The structure model acquisition unit 13 acquires a vehicle body model 31 (FIG. 2A) obtained by modeling a vehicle body using plane elements and / or three-dimensional elements, and the structure stored in the storage device 7. It can be obtained by reading element information and material property information of the vehicle body model 31 from the body model file 23.

ただし、構造体モデル取得部13は、車体のCADデータに基づいて、該車体を平面要素及び/又は立体要素によりモデル化して車体モデル31を新たに生成するものであってもよい。   However, the structure model acquisition unit 13 may be configured to newly generate the vehicle body model 31 by modeling the vehicle body using a planar element and / or a solid element based on the CAD data of the vehicle body.

(補強部材モデル生成部)
補強部材モデル生成部15は、立体要素からなり車体モデル31の(図2(a))一部と結合する車体モデル31とは別の補強部材モデル35(図2(b))を生成するものである。以下、補強する車体の対象部位として、ルーフ部33を例として説明する。
補強部材モデル35は、例えば図3に示すように、車体モデル31において補強する対象となる部位であるルーフ部33の下面から下方に向かって立体要素35aを積み重ねるように生成することができる。
(Reinforcement member model generator)
The reinforcing member model generation unit 15 generates a reinforcing member model 35 (FIG. 2 (b)) different from the vehicle body model 31 composed of a three-dimensional element and coupled to a part of the vehicle body model 31 (FIG. 2 (a)). It is. Hereinafter, the roof portion 33 will be described as an example of the target portion of the vehicle body to be reinforced.
For example, as shown in FIG. 3, the reinforcing member model 35 can be generated so that three-dimensional elements 35 a are stacked downward from the lower surface of the roof portion 33, which is a portion to be reinforced in the vehicle body model 31.

補強部材モデル生成部15により生成される補強部材モデル35は、後述する最適化解析部21による最適化解析の対象となるものであり、最適化解析の過程において補強に不要な部位に位置する立体要素を消去し、補強に必要となる部位に位置する立体要素を残存させる。   The reinforcement member model 35 generated by the reinforcement member model generation unit 15 is a target of optimization analysis by the optimization analysis unit 21 to be described later, and is a three-dimensional object positioned in a portion unnecessary for reinforcement in the process of optimization analysis. The element is deleted, and the three-dimensional element located at the site necessary for reinforcement is left.

なお、補強部材モデル生成部15は、ルーフ部33の下面から下方に所定の設計空間を設定し、該設計空間を複数の立体要素に要素分割することにより、補強部材モデル35を生成するものであってもよい。   The reinforcing member model generation unit 15 generates a reinforcing member model 35 by setting a predetermined design space below the lower surface of the roof portion 33 and dividing the design space into a plurality of three-dimensional elements. There may be.

(材料特性設定部)
材料特性設定部17は、補強部材モデル生成部15が生成した補強部材モデル35の材料特性を設定するものである。材料特性設定部17が設定する補強部材モデル35の材料特性として、ヤング率、ポアソン比及び比重などが挙げられる。
(Material property setting section)
The material property setting unit 17 sets the material property of the reinforcing member model 35 generated by the reinforcing member model generating unit 15. Examples of material properties of the reinforcing member model 35 set by the material property setting unit 17 include Young's modulus, Poisson's ratio, and specific gravity.

さらに、補強部材モデル35として、例えばFRP(Fiber Reinforced Plastics;繊維強化樹脂)のように、その材料特性(機械的特性)が面内異方性を有する材料を対象とする場合においては、補強部材モデル35の材料特性の面内異方性を与える主軸角度を与え、該主軸角度に対応する前記材料特性の値を設定することで、補強部材モデル35の材料特性に面内異方性を設定することができる。また、補強部材が複数の層からなる場合においては、該複数の層ごとに主軸角度を設定することも可能である。   Further, when the reinforcing member model 35 is a material whose material characteristics (mechanical characteristics) have in-plane anisotropy, such as FRP (Fiber Reinforced Plastics), for example, the reinforcing member In-plane anisotropy is set in the material characteristics of the reinforcing member model 35 by giving a principal axis angle that gives in-plane anisotropy of the material characteristics of the model 35 and setting the value of the material characteristic corresponding to the principal axis angle can do. In the case where the reinforcing member is composed of a plurality of layers, it is possible to set the principal axis angle for each of the plurality of layers.

なお、材料特性設定部17は、後述する最適化解析モデル生成部19により補強部材モデル35を車体モデル31の一部に結合して最適化解析モデル41(図2(c))生成した後、最適化解析モデル41における補強部材モデル35の材料特性を設定するものであってもよい。   The material property setting unit 17 generates an optimization analysis model 41 (FIG. 2C) by combining the reinforcing member model 35 with a part of the vehicle body model 31 by the optimization analysis model generation unit 19 described later. The material characteristic of the reinforcing member model 35 in the optimization analysis model 41 may be set.

(最適化解析モデル生成部)
最適化解析モデル生成部19は、図2に示すように、補強部材モデル生成部15が生成した補強部材モデル35を車体モデル31の一部に結合して最適化解析モデル41を生成するものである。
(Optimization analysis model generator)
As shown in FIG. 2, the optimization analysis model generation unit 19 combines the reinforcement member model 35 generated by the reinforcement member model generation unit 15 with a part of the vehicle body model 31 to generate an optimization analysis model 41. is there.

例えば、ルーフ部33と補強部材モデル35を結合する方法としては、ルーフ部33が平面要素33aでモデル化されている場合、例えば図3に示すように、補強部材モデル35の立体要素35aのノード(節点)とルーフ部33の平面要素33aのノードとを共有するものがある。   For example, as a method of connecting the roof portion 33 and the reinforcing member model 35, when the roof portion 33 is modeled by a planar element 33a, for example, as shown in FIG. Some nodes share a node and a node of the planar element 33 a of the roof portion 33.

もっとも、最適化解析モデル生成部19は、例えば、剛体要素を介して車体モデル31の一部と補強部材モデル35の前記ノード同士を連結するものであってもよく、車体モデル31の一部と補強部材モデル35との間で荷重が伝達されるものであれば特に限定されず、はり要素、ビーム要素、ロッド要素、剛体結合要素などでもよい。
さらに、車体モデル31において補強部材モデル35と結合する部位が立体要素でモデル化されている場合においては、上記と同様、最適化解析モデル生成部19は、当該部位の立体要素と補強部材モデル35の立体要素をノード共有などにより結合するものであればよい。
However, the optimization analysis model generation unit 19 may connect, for example, a part of the vehicle body model 31 and the nodes of the reinforcing member model 35 via a rigid element. There is no particular limitation as long as a load can be transmitted between the reinforcing member model 35 and a beam element, a beam element, a rod element, a rigid coupling element, or the like may be used.
Further, in the case where the part coupled to the reinforcing member model 35 in the vehicle body model 31 is modeled by a three-dimensional element, the optimization analysis model generating unit 19 similarly to the above, the optimization analysis model generating unit 19 performs the three-dimensional element of the part and the reinforcing member model 35. Any solid element may be used as long as the three-dimensional elements are coupled by sharing nodes.

なお、最適化解析モデル生成部19により最適化解析モデル41を生成するに際しては、車体モデル31から分離した状態にある車体モデル31の一部に補強部材モデル35を結合して一体化し、該一体化した車体モデル31の一部と補強部材モデル35を車体モデル31に結合するものであってもよい。   When the optimization analysis model generation unit 19 generates the optimization analysis model 41, the reinforcing member model 35 is combined and integrated with a part of the vehicle body model 31 that is separated from the vehicle body model 31, and the integration is performed. A part of the vehicle body model 31 and the reinforcing member model 35 may be coupled to the vehicle body model 31.

(最適化解析部)
最適化解析部21は、最適化解析モデル生成部19が生成した最適化解析モデル41(図2(c))に解析条件を与え、補強部材モデル35を最適化の解析処理を行う対象として最適化解析を行い、補強部材モデル35の最適形状を求めるものである。
(Optimization analysis section)
The optimization analysis unit 21 gives analysis conditions to the optimization analysis model 41 (FIG. 2C) generated by the optimization analysis model generation unit 19, and optimizes the reinforcing member model 35 as an object for performing the analysis processing for optimization. Analysis is performed to obtain the optimum shape of the reinforcing member model 35.

最適化解析部21による最適化解析には、例えば、トポロジー最適化を適用することができる。トポロジー最適化において密度法を用いる際に、中間的な密度が多い場合には離散化が好ましく、下式であらわされる。   For example, topology optimization can be applied to the optimization analysis performed by the optimization analysis unit 21. When the density method is used in the topology optimization, if there are many intermediate densities, the discretization is preferable and is expressed by the following equation.

K(ρ)=ρpK
ただし、
K:要素の剛性マトリックスにペナルティを課した剛性マトリックス
K:要素の剛性マトリックス
ρ:規格化された密度
p:ペナルティ係数
K (ρ) = ρ p K
However,
K : Stiffness matrix that penalizes the stiffness matrix of the element
K: element stiffness matrix ρ: normalized density
p: Penalty coefficient

離散化によく用いられるペナルティ係数は2以上であり、ペナルティ係数の値は適宜設定することができる。   The penalty coefficient often used for discretization is 2 or more, and the value of the penalty coefficient can be set as appropriate.

なお、最適化解析部21は、トポロジー最適化処理を行うものでもよいし、他の計算方式による最適化処理であってもよい。したがって、最適化解析部21としては、例えば市販されている有限要素を用いた解析ソフトを使用することもできる。   The optimization analysis unit 21 may perform a topology optimization process or may be an optimization process based on another calculation method. Therefore, as the optimization analysis unit 21, for example, commercially available analysis software using a finite element can be used.

最適化解析を行うための解析条件としては、最適化解析モデル41に荷重を付加する位置や拘束位置を与える荷重拘束条件と、最適化解析の目的に応じて設定する目的条件と、最適化解析を行う上で課す制約条件とがある。   The analysis conditions for performing the optimization analysis include a load constraint condition for giving a load position and a constraint position to the optimization analysis model 41, a target condition set according to the purpose of the optimization analysis, and an optimization analysis. There are constraints imposed on the

図4に、荷重拘束条件の一例を示す。図4に示す荷重拘束条件は、ルーフ部33の積雪強度を評価することを想定したものであり、最適化解析モデル41の下部にある4箇所のジャッキアップ設置部を完全拘束とし、ルーフ部33の上面に車体高さ方向下向きの分布荷重を与えたものである。   FIG. 4 shows an example of the load constraint condition. The load constraint condition shown in FIG. 4 assumes that the snow cover strength of the roof portion 33 is evaluated. The four jack-up installation portions at the lower part of the optimization analysis model 41 are completely constrained, and the roof portion 33 A downward distributed load in the vehicle body height direction is applied to the upper surface of the vehicle.

目的条件としては、例えば、最適化解析モデル41におけるひずみエネルギー総和の最小化、変位の最小化、剛性の最大化などがある。
さらに、制約条件としては、最適化解析の対象となる補強部材モデル35の体積制約率などがある。制約条件は、複数設定可能である。
Examples of the target condition include minimization of the total strain energy in the optimization analysis model 41, minimization of displacement, and maximization of rigidity.
Further, the constraint condition includes a volume constraint rate of the reinforcing member model 35 to be optimized. A plurality of constraint conditions can be set.

図5に、最適化解析部21にトポロジー最適化を適用して得られた最適形状補強部材モデル43の一例を示す。図5においては、最適形状補強部材モデル43を表示するためにルーフ部33を非表示にしている。
最適形状補強部材モデル43は、図5に示すように、上記の解析条件(荷重拘束条件、目的条件、制約条件)を満たすように立体要素が残存及び消去することにより求められる。
FIG. 5 shows an example of the optimum shape reinforcing member model 43 obtained by applying the topology optimization to the optimization analysis unit 21. In FIG. 5, the roof portion 33 is not displayed in order to display the optimum shape reinforcing member model 43.
As shown in FIG. 5, the optimal shape reinforcing member model 43 is obtained by remaining and erasing three-dimensional elements so as to satisfy the above analysis conditions (load constraint conditions, objective conditions, constraint conditions).

<車体の補強部材の形状最適化方法>
次に、本実施の形態に係る車体の補強部材の形状最適化方法(以下、単に「形状最適化方法」という)について、以下に説明する。
<Method for optimizing the shape of the reinforcing member of the vehicle body>
Next, the shape optimization method (hereinafter simply referred to as “shape optimization method”) for the reinforcing member of the vehicle body according to the present embodiment will be described below.

本実施の形態に係る形状最適化方法は、車体である構造体の一部に該構造体の一部と異なる材質の補強部材を結合して前記構造体を補強するに際し、前記補強部材の最適な形状を求めるものであって、図6に示すように、構造体モデル取得ステップS1と、補強部材モデル生成ステップS3と、材料特性設定ステップS5と、最適化解析モデル生成ステップS7と、最適化解析ステップS9と、を備えたものである。以下、各ステップについて説明する。
なお、本実施の形態に係る形状最適化方法は、上記の各ステップをコンピュータによって構成された形状最適化装置1(図1参照)を用いて実行するものである。
In the shape optimization method according to the present embodiment, when a reinforcing member made of a material different from a part of the structure is coupled to a part of the structure that is a vehicle body, the structure is optimized. As shown in FIG. 6, the structure model acquisition step S1, the reinforcing member model generation step S3, the material property setting step S5, the optimization analysis model generation step S7, and the optimization are performed. Analysis step S9. Hereinafter, each step will be described.
In the shape optimization method according to the present embodiment, the above steps are executed using a shape optimization apparatus 1 (see FIG. 1) configured by a computer.

≪構造体モデル取得ステップ≫
構造体モデル取得ステップS1は、平面要素及び/又は立体要素を用いて前記構造体をモデル化した構造体モデルとして図2(a)に示す車体モデル31を取得するステップであり、形状最適化装置1においては、構造体モデル取得部13が行う。
≪Structure model acquisition step≫
The structure model acquisition step S1 is a step of acquiring a vehicle body model 31 shown in FIG. 2A as a structure model obtained by modeling the structure using a planar element and / or a three-dimensional element. 1, the structure model acquisition unit 13 performs the processing.

≪補強部材モデル生成ステップ≫
補強部材モデル生成ステップS3は、立体要素35a(図3参照)からなり車体モデル31の一部と結合する車体モデル31とは別の補強部材モデル35(図2(b)参照)を生成するステップであり、図1に示す形状最適化装置1においては補強部材モデル生成部15が行う。
≪Reinforcement member model generation step≫
The reinforcing member model generation step S3 is a step of generating a reinforcing member model 35 (see FIG. 2B) that is different from the vehicle body model 31 that is composed of the three-dimensional element 35a (see FIG. 3) and is coupled to a part of the vehicle body model 31. In the shape optimizing apparatus 1 shown in FIG.

≪材料特性設定ステップ≫
材料特性設定ステップS5は、補強部材モデル生成ステップS3において生成した補強部材モデル35の材料特性を設定するステップであり、形状最適化装置1においては材料特性設定部17が行う。
材料特性設定ステップS5において補強部材モデル35に設定する材料特性としては、ヤング率、ポアソン比及び比重などが挙げられる。
≪Material property setting step≫
The material property setting step S5 is a step of setting the material property of the reinforcing member model 35 generated in the reinforcing member model generating step S3, and is performed by the material property setting unit 17 in the shape optimization device 1.
Examples of the material properties set in the reinforcing member model 35 in the material property setting step S5 include Young's modulus, Poisson's ratio, and specific gravity.

さらに、補強部材が、例えばFRPのようにその材料特性が面内異方性を有する場合においては、補強部材モデル35の材料特性の面内異方性を与える主軸角度を与え、該主軸角度に対応する前記材料特性の値を設定することで、補強部材モデル35の材料特性の面内異方性が設定される。また、補強部材が複数の層からなる場合においては、該複数の層ごとに主軸角度を設定することも可能である。   Furthermore, when the reinforcing member has an in-plane anisotropy in material characteristics, such as FRP, for example, a principal axis angle giving in-plane anisotropy of the material characteristics of the reinforcing member model 35 is given, and the principal axis angle The in-plane anisotropy of the material characteristic of the reinforcing member model 35 is set by setting the corresponding value of the material characteristic. In the case where the reinforcing member is composed of a plurality of layers, it is possible to set the principal axis angle for each of the plurality of layers.

≪最適化解析モデル生成ステップ≫
最適化解析モデル生成ステップS7は、補強部材モデル生成ステップS3において生成した補強部材モデル35を車体モデル31の一部に結合して最適化解析モデル41を生成するものであり、図1に示す形状最適化装置1においては最適化解析モデル生成部19が行う。
≪Optimization analysis model generation step≫
The optimization analysis model generation step S7 combines the reinforcement member model 35 generated in the reinforcement member model generation step S3 with a part of the vehicle body model 31 to generate the optimization analysis model 41. The shape shown in FIG. In the optimization apparatus 1, the optimization analysis model generation unit 19 performs this.

≪最適化解析ステップ≫
最適化解析ステップS9は、最適化解析モデル生成ステップS5において生成した最適化解析モデル41に解析条件を与え、補強部材モデル35を最適化の解析処理を行う対象として最適化解析を行い、補強部材モデル35の最適形状を求めるステップであり、図1に示す形状最適化装置1においては最適化解析部21が行う。
≪Optimization analysis step≫
In the optimization analysis step S9, an analysis condition is given to the optimization analysis model 41 generated in the optimization analysis model generation step S5, the optimization analysis is performed with the reinforcing member model 35 as an object to be analyzed, and the reinforcing member This is a step of obtaining the optimum shape of the model 35, and is performed by the optimization analysis unit 21 in the shape optimization device 1 shown in FIG.

最適化解析モデル41に与える解析条件としては、最適化解析モデル41に荷重を付加する位置や拘束位置を与える荷重拘束条件(図4参照)と、最適化解析の目的に応じて設定する目的条件がある。   The analysis conditions given to the optimization analysis model 41 include a load constraint condition (see FIG. 4) that gives a position to which the load is applied to the optimization analysis model 41 and a constraint position (see FIG. 4), and a target condition set according to the purpose of the optimization analysis. There is.

最適化解析ステップS9における最適化解析には、トポロジー最適化を適用することができる。さらに、トポロジー最適化において密度法を適用する場合、要素のペナルティ係数を2以上に設定して離散化を行うようにすることが好ましい。
もっとも、最適化解析ステップS9における最適化解析には、他の計算方式により最適化の解析処理を適用することができ、最適化の解析処理を行うものとしては、例えば、市販されている有限要素を用いた解析ソフトを使用することができる。
Topology optimization can be applied to the optimization analysis in the optimization analysis step S9. Further, when applying the density method in topology optimization, it is preferable to set the penalty coefficient of the element to 2 or more to perform discretization.
However, for the optimization analysis in the optimization analysis step S9, optimization analysis processing can be applied by other calculation methods. Examples of the optimization analysis processing include commercially available finite elements. Analysis software using can be used.

以上、本実施の形態に係る車体の補強部材の形状最適化方法及び装置によれば、車体である構造体を補強する補強部材の最適な形状を精度よく求めることができる。さらに、該最適な形状の補強部材を用いることで、構造体の軽量化を図ることが可能となる。最適な形状の補強部材を用いた構造体の軽量化については、後述する実施例において具体的に説明する。   As mentioned above, according to the shape optimization method and apparatus of the reinforcement member of the vehicle body which concerns on this Embodiment, the optimal shape of the reinforcement member which reinforces the structure which is a vehicle body can be calculated | required accurately. Furthermore, it is possible to reduce the weight of the structure by using the optimally shaped reinforcing member. The weight reduction of the structure using the optimally shaped reinforcing member will be specifically described in the embodiments described later.

なお、上記においては、車体のルーフを補強する補強部材の形状最適化を対象として説明したが、本発明で形状最適化の対象とする部位はこれに限るものではなく、例えば、車体のドアパネル、トランク、フード、フェンダーなどを補強する補強部材の形状最適化するものであってもよい。さらに、上記の説明は、構造体として自動車の車体を対象としたものであるが、本発明は、構造体の種類を限定するものではない。また、本発明の適用例として、鋼板からなる構造体に、樹脂、FRP(繊維強化樹脂、GFRP、CFRPなど)、アルミニウム板、マグネシウム板、チタン板などを貼付する場合などが相当する。   In the above description, the shape optimization of the reinforcing member that reinforces the roof of the vehicle body has been described as an object.However, the portion that is the object of shape optimization in the present invention is not limited to this, for example, the door panel of the vehicle body, The shape of the reinforcing member that reinforces the trunk, the hood, the fender, and the like may be optimized. Furthermore, although the above description is directed to the body of an automobile as the structure, the present invention does not limit the type of structure. Further, as an application example of the present invention, a case where a resin, FRP (fiber reinforced resin, GFRP, CFRP, etc.), an aluminum plate, a magnesium plate, a titanium plate, or the like is attached to a structure made of a steel plate corresponds.

本発明の効果を確認するため、実施例1では、本発明に係る車体の補強部材の形状最適化方法及び装置により、自動車の車体のルーフを補強する補強部材の最適な形状を求める実験を行ったので、以下、これについて説明する。   In order to confirm the effect of the present invention, in Example 1, an experiment for determining the optimum shape of a reinforcing member that reinforces the roof of a car body of an automobile is performed by the method and apparatus for optimizing the shape of the reinforcing member of the car body according to the present invention. Therefore, this will be described below.

実験においては、まず、図2に示す車体モデル31を取得した。車体モデル31は、いずれも平面要素及び/又は立体要素を用いて車体をモデル化したものであり、車体モデル31の材質は鋼板とし、補強部材モデル35の材質は樹脂として、その材料特性は表1に示すように設定した。   In the experiment, first, a vehicle body model 31 shown in FIG. 2 was obtained. The vehicle body model 31 is obtained by modeling a vehicle body using plane elements and / or three-dimensional elements. The vehicle body model 31 is made of a steel plate, the reinforcing member model 35 is made of a resin, and the material characteristics thereof are expressed. 1 was set.

次に、図2(b)に示す補強部材モデル35を生成し、補強部材モデル35の材料特性を設定した。
補強部材モデル35は、図3に示すように、ルーフ部33の下面から下方に向かって立体要素35aを積み重ねるように生成した。ここで、補強部材モデル35の厚みは10mmに設定した。なお、車体モデル31のルーフ部33はシェルモデル(平面要素)とした。
さらに、補強部材モデル35の材料は樹脂とし、その材料特性として、表1に示すヤング率、ポアソン比及び比重の値を設定した。
Next, the reinforcing member model 35 shown in FIG. 2B was generated, and the material characteristics of the reinforcing member model 35 were set.
As shown in FIG. 3, the reinforcing member model 35 is generated so that the three-dimensional elements 35 a are stacked from the lower surface of the roof portion 33 downward. Here, the thickness of the reinforcing member model 35 was set to 10 mm. The roof portion 33 of the vehicle body model 31 is a shell model (planar element).
Further, the material of the reinforcing member model 35 is resin, and the values of Young's modulus, Poisson's ratio and specific gravity shown in Table 1 are set as the material characteristics.

そして、材料特性を設定した補強部材モデル35を図3に示すように車体モデル31のルーフ部33の下面に結合し、図2に示す最適化解析モデル41を生成した。補強部材モデル35とルーフ部33との結合は、補強部材モデル35の立体要素35aとルーフ部33の平面要素33aそれぞれのノード(節点)を共有させることにより行った。   Then, the reinforcing member model 35 in which the material characteristics are set is coupled to the lower surface of the roof portion 33 of the vehicle body model 31 as shown in FIG. 3 to generate an optimization analysis model 41 shown in FIG. The reinforcing member model 35 and the roof portion 33 are coupled by sharing the nodes (nodes) of the three-dimensional element 35 a of the reinforcing member model 35 and the planar element 33 a of the roof portion 33.

最後に、生成した最適化解析モデル41に解析条件を与えてトポロジー最適化を実行し、補強部材モデル35の最適な形状を求めた。
解析条件としては、図4に示す荷重拘束条件を与え、目的条件をひずみエネルギー総和の最小化、制約条件を体積制約率20%以下とした。図4に示す荷重拘束条件は、車体モデル31の4箇所のジャッキアップ設置部(図4中の△印)を完全拘束とし、ルーフ部33の上面の節点に対して車体高さ方向下向きに500Nの分布荷重を与えるものである。ここで、分布荷重を与えたルーフ部33の節点数は、24248個とした。
Finally, topology optimization was performed by giving analysis conditions to the generated optimization analysis model 41, and the optimum shape of the reinforcing member model 35 was obtained.
As the analysis conditions, the load constraint condition shown in FIG. 4 was given, the objective condition was minimized the total strain energy, and the constraint condition was 20% or less of the volume constraint rate. The load restraint condition shown in FIG. 4 is that the four jack-up installation portions (Δ mark in FIG. 4) of the vehicle body model 31 are completely restrained, and 500 N downward from the node on the upper surface of the roof portion 33 in the vehicle body height direction. The distributed load is given. Here, the number of nodes of the roof portion 33 to which the distributed load was applied was 24248.

最適化解析により得られた最適形状補強部材モデル43の結果を図5に、図4に示す荷重拘束条件を車体モデル31に与えたときの車体高さ方向の車体変位の解析結果を図7に示す。   FIG. 5 shows the result of the optimum shape reinforcing member model 43 obtained by the optimization analysis, and FIG. 7 shows the analysis result of the vehicle body displacement in the vehicle body height direction when the load restraint condition shown in FIG. Show.

図7より、ルーフ部33の中央部(図7中の破線楕円で囲った部位)に比べて、ルーフ部33の前端部81及び後端部83における変位が大きいことがわかる。
図5及び図7の結果から、最適化解析の過程において、車体変位が少ない部位には立体要素35aは残存せず、車体変位が大きい部位を支持するように立体要素35aが残存し、その結果、最適形状補強部材モデル43は、図5(b)中に破線で示すように、車体の前端部および後端部において車体幅方向に延在して車体左右のサイドレール部37をつなぐブリッジ形状と、該ブリッジ形状とサイドレール部37とをつなぐL字形状を有するものになった。
7 that the displacement at the front end portion 81 and the rear end portion 83 of the roof portion 33 is larger than the central portion of the roof portion 33 (the portion surrounded by the broken line ellipse in FIG. 7).
From the results of FIGS. 5 and 7, in the process of optimization analysis, the three-dimensional element 35a does not remain in the part where the vehicle body displacement is small, and the solid element 35a remains so as to support the part where the vehicle body displacement is large. The optimum shape reinforcing member model 43 has a bridge shape that extends in the vehicle body width direction at the front end portion and the rear end portion of the vehicle body and connects the left and right side rail portions 37 as shown by broken lines in FIG. And, it has an L-shape connecting the bridge shape and the side rail portion 37.

図8に、最適形状補強部材モデル43の前部(図8(b)中のA−A断面)及び中央部(図8(b)中のB−B断面)における断面形状を示す。である。   FIG. 8 shows a cross-sectional shape at the front part (cross section AA in FIG. 8B) and the central part (BB cross section in FIG. 8B) of the optimum shape reinforcing member model 43. It is.

最適形状補強部材モデル43は、その前部では、図8(a)に示すように厚み方向において室外側の立体要素が残存した形状であるのに対し、中央部では、(図8(c))に示すように厚み方向において室外側の立体要素が消去し、室内側の立体要素が残存した形状となっている。   The optimum shape reinforcing member model 43 has a shape in which the three-dimensional elements on the outdoor side remain in the thickness direction as shown in FIG. 8A in the front part, whereas in the center part (FIG. 8C). ), The three-dimensional elements on the outdoor side are eliminated in the thickness direction, and the three-dimensional elements on the indoor side remain.

最適形状補強部材モデル43の前部と中央部とで、その厚み方向の形状が異なった理由としては、ルーフ部33は車体モデル31のサイドレール部37とつながっており、ルーフ部33の拘束状態がピラー39(図8(b)参照)の位置によって変わるため、最適化解析において補強部材モデル35の厚み方向に発生する応力分布の差異に起因することが考えられる。   The reason why the shape in the thickness direction is different between the front portion and the center portion of the optimum shape reinforcing member model 43 is that the roof portion 33 is connected to the side rail portion 37 of the vehicle body model 31 and the roof portion 33 is restrained. Since this varies depending on the position of the pillar 39 (see FIG. 8B), it may be caused by a difference in stress distribution generated in the thickness direction of the reinforcing member model 35 in the optimization analysis.

図9に、最適化解析を行う前の最適化解析モデル41に図4に示す荷重拘束条件を与えたときの補強部材モデル35の応力分布の解析結果を示す。   FIG. 9 shows an analysis result of the stress distribution of the reinforcing member model 35 when the load constraint condition shown in FIG. 4 is given to the optimization analysis model 41 before performing the optimization analysis.

補強部材モデル35の中央部は、ピラー39(図8(b)参照)の近傍であるため、図9(d−2)に示すような固定端の梁モードに近い応力分布となるのに対し、補強部材モデル35の前部は、ピラー39から離れた位置であるため、図9(d−1)に示すような応力分布となる。そして、このような厚み方向における応力分布の違いにより、最適化解析において立体要素が残存する部位に差異が生じたと考えられる。   Since the central part of the reinforcing member model 35 is in the vicinity of the pillar 39 (see FIG. 8B), the stress distribution is close to the beam mode of the fixed end as shown in FIG. 9D-2. Since the front part of the reinforcing member model 35 is located away from the pillar 39, the stress distribution as shown in FIG. And it is thought that the difference generate | occur | produced in the site | part in which a solid element remains in optimization analysis by the difference in the stress distribution in the thickness direction.

以上より、本発明に係るに車体の補強部材の形状最適化方法及び装置により、車体を補強する補強部材の最適な形状を精度よく求めることができることが示された。   From the above, it has been shown that the optimum shape of the reinforcing member for reinforcing the vehicle body can be obtained with high accuracy by the method and apparatus for optimizing the shape of the reinforcing member for the vehicle body according to the present invention.

実施例2では、本発明により形状最適化した補強部材を用いて車体の軽量化を検討する実験を行ったので、以下、これについて説明する。   In Example 2, an experiment was conducted to examine the weight reduction of the vehicle body using the reinforcing member optimized in shape according to the present invention. This will be described below.

実験では、本発明に係る車体の補強部材の形状最適化方法及び装置により求めた最適形状補強部材モデルを用い、図10に示すような、車体左右のサイドレール部57をつなぐルーフリンフォース55をルーフ部53の下面に配設した車体モデル51を対象として、車体の軽量化を検討した。   In the experiment, the roof reinforcement 55 connecting the left and right side rail portions 57 as shown in FIG. 10 is used by using the optimum shape reinforcing member model obtained by the method and apparatus for optimizing the shape of the reinforcing member of the vehicle body according to the present invention. The weight reduction of the vehicle body was examined for the vehicle body model 51 disposed on the lower surface of the roof portion 53.

まず、車体モデル51からルーフリンフォース55を除去した車体モデル61を対象とし、本実施の形態に係る形状最適化装置1又は形状最適化方法により、図10(c)に示す最適形状補強部材モデル65を求め、最適形状補強部材モデル65を車体モデル61のルーフ部63に結合して軽量化解析モデル(図5(a)に示す最適化解析を実行した後の最適化解析モデル41に相当)生成する。
ここで、最適形状補強部材モデル65は、前述の実施例1で用いた最適化解析と同一の解析条件を与えて求めたものであり、その重量は5.3kgであった。
First, an optimal shape reinforcing member model shown in FIG. 10 (c) is targeted for the vehicle body model 61 from which the roof reinforcement 55 is removed from the vehicle body model 51, using the shape optimization device 1 or the shape optimization method according to the present embodiment. 65, and the optimum shape reinforcing member model 65 is coupled to the roof portion 63 of the vehicle body model 61 to reduce the weight analysis model (corresponding to the optimization analysis model 41 after performing the optimization analysis shown in FIG. 5A). Generate.
Here, the optimum shape reinforcing member model 65 was obtained by giving the same analysis conditions as the optimization analysis used in Example 1 described above, and its weight was 5.3 kg.

次に、ルーフリンフォース55を有する車体モデル51(図10(a))に、図4に示す荷重拘束条件を与えて構造解析を行い、性能維持の目標となる車体特性の目標値を取得する。本実施例では、車体特性としてはルーフ部53における車体高さ方向の最大変位を用いた。   Next, the vehicle body model 51 having the roof reinforcement 55 (FIG. 10A) is subjected to the structural analysis by giving the load constraint condition shown in FIG. 4 to obtain the target value of the vehicle body characteristic that is the target of maintaining the performance. . In this embodiment, the maximum displacement in the vehicle body height direction at the roof 53 is used as the vehicle body characteristic.

同様に、最適形状補強部材モデル65を結合した軽量化解析モデルについても、図4に示す荷重拘束条件を与えて構造解析を行い、該軽量化解析モデルに係る車体特性の解析値として、ルーフ部63(図10(b))における車体高さ方向の最大変位を取得した。   Similarly, with respect to the weight reduction analysis model combined with the optimum shape reinforcing member model 65, the structural analysis is performed by giving the load constraint condition shown in FIG. The maximum displacement in the vehicle body height direction at 63 (FIG. 10B) was acquired.

さらに、軽量化解析モデルのルーフ部63における最大変位(解析値)と、車体モデル51のルーフ部53における最大変位(目標値)とを比較し、軽量化最適化モデルの最大変位が車体モデル51の最大変位よりも小さい場合、軽量化解析モデルのルーフ部63の板厚をさらに減少して構造解析を行い、ルーフ部63の最大変位を車体特性の解析値として再び取得した。   Further, the maximum displacement (analytical value) in the roof portion 63 of the light weight analysis model is compared with the maximum displacement (target value) in the roof portion 53 of the vehicle body model 51, and the maximum displacement of the light weight optimization model is the vehicle body model 51. When the displacement is smaller than the maximum displacement, the structural analysis is performed by further reducing the plate thickness of the roof portion 63 of the weight reduction analysis model, and the maximum displacement of the roof portion 63 is obtained again as the analysis value of the vehicle body characteristics.

このように、軽量化解析モデルの最大変位が、車体モデル51の最大変位と等しく(等価剛性)なるまで、軽量化解析モデルのルーフ部63の板厚を減少してルーフ部63の最大変位を取得した。   In this way, until the maximum displacement of the light weight analysis model becomes equal to the maximum displacement of the vehicle body model 51 (equivalent rigidity), the plate thickness of the roof portion 63 of the light weight analysis model is reduced to reduce the maximum displacement of the roof portion 63. I got it.

図11に、ルーフ部63の板厚とその重量の関係と、ルーフ部63の板厚と車体の変化重量の関係を示す。   FIG. 11 shows the relationship between the plate thickness of the roof portion 63 and its weight, and the relationship between the plate thickness of the roof portion 63 and the weight change of the vehicle body.

図11(b)に示す車体の変化重量は、ルーフリンフォース55が設けられ、かつルーフ部53の板厚が1.2mmである車体モデル51の重量を基準とし、ルーフ部63の板厚が変化したときの軽量化解析モデルの変化重量であり、最適形状補強部材モデル65の重量からルーフリンフォース55の重量と及びルーフ部63の板厚減少によって変化した重量を減じたものである。   The changed weight of the vehicle body shown in FIG. 11B is based on the weight of the vehicle body model 51 in which the roof reinforcement 55 is provided and the plate thickness of the roof portion 53 is 1.2 mm. The weight change of the weight reduction analysis model is obtained by subtracting the weight of the roof reinforcement 55 from the weight of the optimum shape reinforcing member model 65 and the weight changed by the reduction in the plate thickness of the roof portion 63.

例えば、ルーフ部63が初期板厚1.2mmの場合における車体の変化重量は、ルーフ部63の板厚減少によって変化する重量が0kgであるため、最適形状補強部材モデル65の重量(=5.3kg)からルーフリンフォース55の重量(=1.7kg)を減じた値(5.3kg-1.7kg=+3.6kg)となる。   For example, when the roof portion 63 has an initial plate thickness of 1.2 mm, the weight of the vehicle body that changes due to the reduction in the plate thickness of the roof portion 63 is 0 kg, so the weight of the optimum shape reinforcing member model 65 (= 5.3 kg) The value obtained by subtracting the weight of the roof reinforcement 55 (= 1.7 kg) (5.3 kg-1.7 kg = + 3.6 kg).

実施例2で対象とした軽量化解析モデルのルーフ部63は、初期の板厚が1.2mm、重量が15.6kgであり、図11(a)に示すように、ルーフ部63の重量は、その板厚との相関係数RがR2=1となることから、その板厚の減少とともに直線的に減少する。 The roof part 63 of the weight reduction analysis model targeted in Example 2 has an initial plate thickness of 1.2 mm and a weight of 15.6 kg. As shown in FIG. Since the correlation coefficient R with the plate thickness is R 2 = 1, it decreases linearly as the plate thickness decreases.

そして、図11(b)に示すように、ルーフ部63の板厚減少に伴って車体の変化重量は減少し、ルーフ部63の板厚が0.93mmのとき、車体の変化重量は0kgとなる。すなわち、ルーフ部63の板厚を0.93mm以下に減少することにより、軽量化解析モデルは車体モデル51よりも軽量化できることがわかる。   As shown in FIG. 11B, the weight change of the vehicle body decreases as the plate thickness of the roof portion 63 decreases, and when the plate thickness of the roof portion 63 is 0.93 mm, the weight change of the vehicle body becomes 0 kg. . That is, it can be seen that the weight reduction analysis model can be lighter than the vehicle body model 51 by reducing the thickness of the roof portion 63 to 0.93 mm or less.

図12に、ルーフ部63の板厚を変更したときの軽量化解析モデルの剛性向上率を示す。ここで、剛性向上率は、ルーフリンフォース55が設けられている車体モデル51の剛性と、最適形状補強部材モデル65を結合した軽量化解析モデルの剛性との比であり、車体モデル51及び軽量化解析モデルの剛性は、ルーフ部53及びルーフ部63それぞれに与えられた荷重の総和を最大変位で除した値である。   FIG. 12 shows the rigidity improvement rate of the weight reduction analysis model when the thickness of the roof portion 63 is changed. Here, the rigidity improvement rate is a ratio between the rigidity of the vehicle body model 51 provided with the roof reinforcement 55 and the rigidity of the light weight analysis model combined with the optimum shape reinforcing member model 65. The rigidity of the chemical analysis model is a value obtained by dividing the total load applied to the roof portion 53 and the roof portion 63 by the maximum displacement.

図12より、ルーフ部63が初期板厚1.2mmであるとき、軽量化解析モデルの剛性は、車体モデル51に比べて約33%高い値である。そして、ルーフ部63の板厚を減少させると、軽量化解析モデルの剛性向上率は減少し、板厚0.53mmのときに剛性向上率はほぼ0%、すなわち、ルーフリンフォース55を有する車体モデル51の剛性とほぼ等しくなる(等価剛性)。   From FIG. 12, when the roof portion 63 has an initial plate thickness of 1.2 mm, the rigidity of the weight reduction analysis model is about 33% higher than that of the vehicle body model 51. When the plate thickness of the roof portion 63 is decreased, the rigidity improvement rate of the weight reduction analysis model decreases. When the plate thickness is 0.53 mm, the rigidity improvement rate is almost 0%, that is, the vehicle body model having the roof reinforcement 55. It becomes substantially equal to the rigidity of 51 (equivalent rigidity).

図13に、車体モデル51(最適形状補強部材モデル65(図10(c))なし)と、ルーフ部63に最適形状補強部材モデル65を結合した軽量化解析モデル71(ルーフ部63の板厚1.2mm及び0.53mm)における車体変位の解析結果を示す。   FIG. 13 shows a vehicle body model 51 (without the optimum shape reinforcing member model 65 (FIG. 10C)) and a weight reduction analysis model 71 (the plate thickness of the roof portion 63) in which the optimum shape reinforcing member model 65 is coupled to the roof portion 63. The analysis results of body displacement at 1.2mm and 0.53mm) are shown.

軽量化解析モデル71のルーフ部63の板厚が1.2mmの場合(図13(b))、軽量化解析モデル71の車体変位は、車体モデル51の車体変位に比べて全体的に小さく、ルーフ部63における最大変位(-0.21mm)は、車体モデル51のルーフ部53における最大変位(-0.28mm)よりも小さい値である。   When the plate thickness of the roof portion 63 of the lightening analysis model 71 is 1.2 mm (FIG. 13B), the vehicle body displacement of the lightening analysis model 71 is generally smaller than the vehicle body displacement of the vehicle body model 51, and the roof The maximum displacement (−0.21 mm) in the portion 63 is a value smaller than the maximum displacement (−0.28 mm) in the roof portion 53 of the vehicle body model 51.

一方、軽量化解析モデル71のルーフ部63の板厚が0.53mmの場合(図13(c))、ルーフ部63における最大変位(-0.28mm)を示す部位は、車体モデル51のルーフ部53における最大変位(-0.28mm)を示す部位と異なっているものの、両者の最大変位は等しい値である。   On the other hand, when the plate thickness of the roof portion 63 of the weight reduction analysis model 71 is 0.53 mm (FIG. 13C), the portion showing the maximum displacement (−0.28 mm) in the roof portion 63 is the roof portion 53 of the vehicle body model 51. Although the maximum displacement (-0.28mm) is different from that of the part, the maximum displacement of both is the same value.

よって、図11〜図13の結果から、ルーフリンフォース55の替わりに最適形状補強部材モデル65を用いた場合、ルーフ部63の板厚を1.2mmから0.53mmに減少することで、図11(b)の点線矢印から、ルーフ部63の板厚0.53mmは車体の変化重量-5.2kgに対応することから、ルーフリンフォース55が設けられている車体モデル51と同等の剛性を保ったまま、ルーフリンフォース55の削減とルーフ部63の板厚減少によって車体重量を5.2kg軽量化できることが示された。   Therefore, from the results of FIGS. 11 to 13, when the optimum shape reinforcing member model 65 is used instead of the roof reinforcement 55, the plate thickness of the roof portion 63 is reduced from 1.2 mm to 0.53 mm, so that FIG. From the dotted arrow in b), the plate thickness of 0.53 mm of the roof portion 63 corresponds to the change weight of the vehicle body of -5.2 kg, so that the rigidity equivalent to that of the vehicle body model 51 provided with the roof reinforcement 55 is maintained. It was shown that the weight of the vehicle body can be reduced by 5.2 kg by reducing the roof reinforcement 55 and reducing the thickness of the roof portion 63.

以上、本発明に係る車体の補強部材の形状最適化方法及び装置により、車体を補強する補強部材の最適な形状を求め、該最適形状の補強部材を車体に結合することで、車体の性能を維持したまま該車体を軽量化できることが実証された。   As described above, the optimum shape of the reinforcing member for reinforcing the vehicle body is obtained by the method and apparatus for optimizing the shape of the reinforcing member for the vehicle body according to the present invention, and the performance of the vehicle body is improved by coupling the reinforcing member having the optimal shape to the vehicle body. It has been demonstrated that the vehicle body can be reduced in weight while being maintained.

1 形状最適化装置
3 表示装置
5 入力装置
7 記憶装置
9 作業用データメモリ
11 演算処理部
13 構造体モデル取得部
15 補強部材モデル生成部
17 材料特性設定部
19 最適化解析モデル生成部
21 最適化解析部
23 構造体モデルファイル
31 車体モデル
33 ルーフ部
33a 平面要素
35 補強部材モデル
35a 立体要素
37 サイドレール部
39 ピラー
41 最適化解析モデル
43 最適形状補強部材モデル
51 車体モデル
53 ルーフ部
55 ルーフリンフォース
57 サイドレール部
61 車体モデル
63 ルーフ部
65 最適形状補強部材モデル
71 軽量化解析モデル
81 ルーフ部前端部
83 ルーフ部後端部
DESCRIPTION OF SYMBOLS 1 Shape optimization apparatus 3 Display apparatus 5 Input apparatus 7 Memory | storage device 9 Work data memory 11 Arithmetic processing part 13 Structure model acquisition part 15 Reinforcement member model generation part 17 Material characteristic setting part 19 Optimization analysis model generation part 21 Optimization Analysis unit 23 Structure model file 31 Car body model 33 Roof part 33a Plane element 35 Reinforcement member model 35a Solid element 37 Side rail part 39 Pillar 41 Optimization analysis model 43 Optimal shape reinforcement member model 51 Car body model 53 Roof part 55 Roof reinforcement 57 Side rail part 61 Car body model 63 Roof part 65 Optimal shape reinforcement member model 71 Lightweight analysis model 81 Roof part front end part 83 Roof part rear end part

Claims (8)

車体である構造体の一部に結合する該構造体と材料特性の異なる補強部材の最適な形状を求める車体の補強部材の形状最適化方法であり、コンピュータが以下の各ステップを行うものであって、
平面要素及び/又は立体要素を用いて前記構造体をモデル化した構造体モデルを取得する構造体モデル取得ステップと、
立体要素からなり前記構造体モデルの一部と結合する前記構造体とは別の補強部材モデルを生成する補強部材モデル生成ステップと、
該補強部材モデルの材料特性を設定する材料特性設定ステップと、
前記補強部材モデルを前記構造体モデルの一部に結合して最適化解析モデルを生成する最適化解析モデル生成ステップと、
該生成した最適化解析モデルに解析条件を与え、前記補強部材モデルを最適化の解析対象として最適化解析を行い、前記補強部材モデルの最適な形状を求める最適化解析ステップと、を備えたことを特徴とする車体の補強部材の形状最適化方法。
This is a method for optimizing the shape of a reinforcing member of a vehicle body that obtains the optimal shape of the reinforcing member having different material characteristics from that of the structural body that is coupled to a part of the structure that is a vehicle body. The computer performs the following steps. And
A structure model acquisition step of acquiring a structure model obtained by modeling the structure using a planar element and / or a three-dimensional element;
A reinforcing member model generating step for generating a reinforcing member model different from the structure that is composed of a three-dimensional element and is coupled to a part of the structure model;
A material property setting step for setting material properties of the reinforcing member model;
An optimization analysis model generation step of generating an optimization analysis model by combining the reinforcing member model with a part of the structure model;
An optimization analysis step for giving an analysis condition to the generated optimization analysis model, performing an optimization analysis with the reinforcement member model as an analysis object, and obtaining an optimum shape of the reinforcement member model; A method for optimizing the shape of a reinforcing member for a vehicle body.
前記材料特性設定ステップは、前記補強部材モデルの材料特性として、ヤング率、ポアソン比、比重を設定することを特徴とする請求項1に記載の車体の補強部材の形状最適化方法。   The method for optimizing the shape of a reinforcing member for a vehicle body according to claim 1, wherein the material property setting step sets Young's modulus, Poisson's ratio, and specific gravity as material properties of the reinforcing member model. 前記材料特性設定ステップは、前記補強部材モデルの材料特性の面内異方性を与える主軸角度を与え、該主軸角度に対応する前記材料特性の値を設定し、複数の層からなる場合は、それぞれの主軸角度を持つ層を重ね合わせることを特徴とする請求項1又は2に記載の車体の補強部材の形状最適化方法。   The material property setting step gives a principal axis angle that gives in-plane anisotropy of the material property of the reinforcing member model, sets a value of the material property corresponding to the principal axis angle, and consists of a plurality of layers. The method for optimizing the shape of a reinforcing member for a vehicle body according to claim 1 or 2, wherein layers having respective principal axis angles are overlapped. 前記最適化解析ステップは、トポロジー最適化による解析処理を行うことを特徴とする請求項1乃至3のいずれか一項に記載の車体の補強部材の形状最適化方法。   The method for optimizing the shape of a reinforcing member of a vehicle body according to any one of claims 1 to 3, wherein the optimization analysis step performs an analysis process by topology optimization. 車体である構造体の一部に結合する該構造体と材料特性の異なる補強部材の最適な形状を求める車体の補強部材の形状最適化装置であって、
平面要素及び/又は立体要素を用いて前記構造体をモデル化した構造体モデルを取得する構造体モデル取得部と、
立体要素からなり前記構造体モデルの一部と結合する前記構造体とは別の補強部材モデルを生成する補強部材モデル生成部と、
該補強部材モデルの材料特性を設定する材料特性設定部と、
前記補強部材モデルを前記構造体モデルの一部に結合して最適化解析モデルを生成する最適化解析モデル生成部と、
該生成した最適化解析モデルに解析条件を与え、前記補強部材モデルを最適化の解析対象として最適化解析を行い、前記補強部材モデルの最適な形状を求める最適化解析部と、を備えたことを特徴とする車体の補強部材の形状最適化装置。
A shape optimization device for a reinforcing member of a vehicle body for obtaining an optimal shape of a reinforcing member having a material characteristic different from that of the structure coupled to a part of the structure that is a vehicle body,
A structure model acquisition unit that acquires a structure model obtained by modeling the structure using a planar element and / or a three-dimensional element;
A reinforcing member model generating unit that generates a reinforcing member model different from the structure that is composed of a three-dimensional element and is coupled to a part of the structure model;
A material property setting unit for setting material properties of the reinforcing member model;
An optimization analysis model generation unit that generates an optimization analysis model by combining the reinforcing member model with a part of the structure model;
An optimization analysis unit that gives analysis conditions to the generated optimization analysis model, performs an optimization analysis using the reinforcing member model as an optimization analysis target, and obtains an optimal shape of the reinforcing member model; An apparatus for optimizing the shape of a reinforcing member for a vehicle body.
前記材料特性設定部は、前記補強部材モデルの材料特性として、ヤング率、ポアソン比、比重を設定することを特徴とする請求項5に記載の車体の補強部材の形状最適化装置。   6. The shape optimization device for a reinforcing member of a vehicle body according to claim 5, wherein the material property setting unit sets Young's modulus, Poisson's ratio, and specific gravity as material properties of the reinforcing member model. 前記材料特性設定部は、前記補強部材モデルの材料特性の面内異方性を与える主軸角度を与え、該主軸角度に対応する前記材料特性の値を設定し、複数の層からなる場合は、それぞれの主軸角度を持つ層を重ね合わせることを特徴とする請求項5又は6に記載の車体の補強部材の形状最適化装置。   The material property setting unit provides a principal axis angle that gives in-plane anisotropy of the material property of the reinforcing member model, sets a value of the material property corresponding to the principal axis angle, and includes a plurality of layers. The shape optimization device for a reinforcing member of a vehicle body according to claim 5 or 6, wherein layers having respective principal axis angles are overlapped. 前記最適化解析部は、トポロジー最適化による解析処理を行うことを特徴とする請求項5乃至7のいずれか一項に記載の車体の補強部材の形状最適化装置。   The shape optimization device for a reinforcing member of a vehicle body according to any one of claims 5 to 7, wherein the optimization analysis unit performs an analysis process by topology optimization.
JP2017033046A 2017-02-24 2017-02-24 Method and apparatus for optimizing shape of reinforcing member of vehicle body Active JP6583309B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017033046A JP6583309B2 (en) 2017-02-24 2017-02-24 Method and apparatus for optimizing shape of reinforcing member of vehicle body
PCT/JP2017/042711 WO2018154896A1 (en) 2017-02-24 2017-11-29 Shape optimization method and shape optimization device for automotive body reinforcement
CN201780084167.2A CN110226161B (en) 2017-02-24 2017-11-29 Shape optimizing method and shape optimizing device for vehicle body reinforcing member
KR1020197018470A KR102271649B1 (en) 2017-02-24 2017-11-29 Shape optimization method and shape optimization device of reinforcing member of vehicle body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017033046A JP6583309B2 (en) 2017-02-24 2017-02-24 Method and apparatus for optimizing shape of reinforcing member of vehicle body

Publications (2)

Publication Number Publication Date
JP2018139029A true JP2018139029A (en) 2018-09-06
JP6583309B2 JP6583309B2 (en) 2019-10-02

Family

ID=63253210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017033046A Active JP6583309B2 (en) 2017-02-24 2017-02-24 Method and apparatus for optimizing shape of reinforcing member of vehicle body

Country Status (4)

Country Link
JP (1) JP6583309B2 (en)
KR (1) KR102271649B1 (en)
CN (1) CN110226161B (en)
WO (1) WO2018154896A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020075656A (en) * 2018-11-09 2020-05-21 Jfeスチール株式会社 Sub-frame structure of automobile
JP2021017127A (en) * 2019-07-19 2021-02-15 株式会社Subaru Structure of movable body, and method of manufacturing the same
CN112673375A (en) * 2018-09-14 2021-04-16 杰富意钢铁株式会社 Method and device for rationalizing and analyzing vibration characteristics of vehicle body

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798595B1 (en) * 2019-09-19 2020-12-09 Jfeスチール株式会社 Vibration noise reduction analysis method and analysis equipment for automobile panel parts
CN111143944B (en) * 2019-12-25 2023-09-05 中国航空工业集团公司西安飞机设计研究所 Wing beam rigidity configuration method of double-beam wing
CN111324980B (en) * 2020-01-21 2022-08-09 重庆长安汽车股份有限公司 Lightweight hierarchical optimization design method for automobile structure
CN112100747B (en) * 2020-09-21 2022-11-01 湖南大学 Vehicle body framework topology optimization method, device, equipment and medium
CN113312701B (en) * 2021-04-30 2024-03-19 中铝材料应用研究院有限公司 Topology and size optimization-based all-aluminum passenger car body door column structure design method
CN115092290A (en) * 2022-06-23 2022-09-23 江铃汽车股份有限公司 New energy automobile rear overhang automobile body design method and automobile body structure based on method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128273A (en) * 1980-03-11 1981-10-07 Dainippon Ink & Chem Inc Reinforcing method for outer metallic plate of automobile
JPS57121974A (en) * 1980-12-26 1982-07-29 Dainippon Ink & Chem Inc Reinforcing method of car body for automobile
JP2005222178A (en) * 2004-02-03 2005-08-18 Toyota Central Res & Dev Lab Inc Optimum design device for structure, and program
JP2010067022A (en) * 2008-09-11 2010-03-25 Toyota Central R&D Labs Inc Method for designing structure, and program
JP2013025533A (en) * 2011-07-20 2013-02-04 Jfe Steel Corp Shape optimization analysis method and device
JP2013097521A (en) * 2011-10-31 2013-05-20 Toray Ind Inc Strength analysis method for composite material
WO2014119167A1 (en) * 2013-02-01 2014-08-07 Jfeスチール株式会社 Method and device for analysis of shape optimization
JP2014233999A (en) * 2013-05-31 2014-12-15 本田技研工業株式会社 Vehicle body manufacturing method
JP2015160524A (en) * 2014-02-27 2015-09-07 本田技研工業株式会社 Vehicle body structure
JP2015174607A (en) * 2014-03-18 2015-10-05 本田技研工業株式会社 Vehicle body structure
JP2016124436A (en) * 2015-01-05 2016-07-11 マツダ株式会社 Vehicle floor undercover
WO2016129360A1 (en) * 2015-02-12 2016-08-18 本田技研工業株式会社 Resin-reinforced metal component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2559307Y2 (en) * 1993-06-21 1998-01-14 池田物産株式会社 Automotive molded ceiling
KR20040006286A (en) * 2002-07-11 2004-01-24 현대자동차주식회사 Panel bids design method in vehicle
US8126684B2 (en) 2009-04-10 2012-02-28 Livermore Software Technology Corporation Topology optimization for designing engineering product
WO2014073018A1 (en) * 2012-11-06 2014-05-15 Jfeスチール株式会社 Method and apparatus for optimization analysis of bonding positions on structure

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128273A (en) * 1980-03-11 1981-10-07 Dainippon Ink & Chem Inc Reinforcing method for outer metallic plate of automobile
JPS57121974A (en) * 1980-12-26 1982-07-29 Dainippon Ink & Chem Inc Reinforcing method of car body for automobile
JP2005222178A (en) * 2004-02-03 2005-08-18 Toyota Central Res & Dev Lab Inc Optimum design device for structure, and program
JP2010067022A (en) * 2008-09-11 2010-03-25 Toyota Central R&D Labs Inc Method for designing structure, and program
JP2013025533A (en) * 2011-07-20 2013-02-04 Jfe Steel Corp Shape optimization analysis method and device
JP2013097521A (en) * 2011-10-31 2013-05-20 Toray Ind Inc Strength analysis method for composite material
WO2014119167A1 (en) * 2013-02-01 2014-08-07 Jfeスチール株式会社 Method and device for analysis of shape optimization
JP2014233999A (en) * 2013-05-31 2014-12-15 本田技研工業株式会社 Vehicle body manufacturing method
JP2015160524A (en) * 2014-02-27 2015-09-07 本田技研工業株式会社 Vehicle body structure
JP2015174607A (en) * 2014-03-18 2015-10-05 本田技研工業株式会社 Vehicle body structure
JP2016124436A (en) * 2015-01-05 2016-07-11 マツダ株式会社 Vehicle floor undercover
WO2016129360A1 (en) * 2015-02-12 2016-08-18 本田技研工業株式会社 Resin-reinforced metal component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112673375A (en) * 2018-09-14 2021-04-16 杰富意钢铁株式会社 Method and device for rationalizing and analyzing vibration characteristics of vehicle body
CN112673375B (en) * 2018-09-14 2024-03-29 杰富意钢铁株式会社 Method and device for rationalizing and analyzing vibration characteristics of vehicle body
JP2020075656A (en) * 2018-11-09 2020-05-21 Jfeスチール株式会社 Sub-frame structure of automobile
JP2021017127A (en) * 2019-07-19 2021-02-15 株式会社Subaru Structure of movable body, and method of manufacturing the same
JP7344029B2 (en) 2019-07-19 2023-09-13 株式会社Subaru Mobile body structure and method for manufacturing the mobile body structure

Also Published As

Publication number Publication date
WO2018154896A1 (en) 2018-08-30
KR20190085126A (en) 2019-07-17
CN110226161A (en) 2019-09-10
JP6583309B2 (en) 2019-10-02
CN110226161B (en) 2023-06-06
KR102271649B1 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
JP6583309B2 (en) Method and apparatus for optimizing shape of reinforcing member of vehicle body
US11494534B2 (en) Layered-composite-member shape optimization analysis method and optimization analysis device
KR101612690B1 (en) Method and device for analysis of shape optimization
Grover et al. Analytical and finite element modeling of laminated composite and sandwich plates: An assessment of a new shear deformation theory for free vibration response
Smith et al. Application of layout optimization to the design of additively manufactured metallic components
KR102473091B1 (en) Method and apparatus for analyzing sensitivity of automotive body parts and method for determining material property of automotive body parts
JP6614301B1 (en) Method and apparatus for optimization of vibration characteristics of vehicle body
Dalpadulo et al. Integrated CAD platform approach for Design for Additive Manufacturing of high performance automotive components
Fiebig et al. Future challenges for topology optimization for the usage in automotive lightweight design technologies
JP5445529B2 (en) Method and apparatus for optimizing analysis of joint position of structure
Yuan et al. An equivalent modeling method for honeycomb sandwich structure based on orthogonal anisotropic solid element
Shojaeefard et al. Investigation on the optimal simplified model of BIW structure using FEM
JP2019128868A (en) Shape optimization analysis method for stiffening member of car body component and device therefor
Kim et al. Development of a lightweight frame for a 40-foot flatbed trailer by using CAE-based structural optimization
Gonçalves et al. An evolutionary structural optimization algorithm for the analysis of light automobile parts using a meshless technique
Jrad Multidisciplinary optimization and damage tolerance of stiffened structures
Bodke et al. Investigations on Computational Meshing Techniques of FSAE Space Frame Chassis
Xie et al. Topology optimization for fiber-reinforced plastic (FRP) composite for frequency responses
Merewether et al. Sierra/SolidMechanics 4.58. Capabilities In Development
Vlahopoulos et al. Design of Rotorcraft Gearbox Foundation for Reduced Vibration and Increased Crashworthiness Characteristics
JP2022114543A (en) Method and device for determining divide position and integration of vehicle body components
Schmelcher et al. Integrating the ability for topology optimization in a commercial cad-system
JP2023170246A (en) Design support method and design support device
JP2021166011A (en) Method and apparatus for model conversion, program and record medium
Lesiv Integrated modeling and analysis methodologies for architecture-level vehicle design

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190617

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R150 Certificate of patent or registration of utility model

Ref document number: 6583309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250