WO2018154896A1 - Shape optimization method and shape optimization device for automotive body reinforcement - Google Patents

Shape optimization method and shape optimization device for automotive body reinforcement Download PDF

Info

Publication number
WO2018154896A1
WO2018154896A1 PCT/JP2017/042711 JP2017042711W WO2018154896A1 WO 2018154896 A1 WO2018154896 A1 WO 2018154896A1 JP 2017042711 W JP2017042711 W JP 2017042711W WO 2018154896 A1 WO2018154896 A1 WO 2018154896A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
reinforcing member
vehicle body
optimization
shape
Prior art date
Application number
PCT/JP2017/042711
Other languages
French (fr)
Japanese (ja)
Inventor
斉藤 孝信
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201780084167.2A priority Critical patent/CN110226161B/en
Priority to KR1020197018470A priority patent/KR102271649B1/en
Publication of WO2018154896A1 publication Critical patent/WO2018154896A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Body Structure For Vehicles (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)

Abstract

A shape optimization method for an automotive body reinforcement according to the present invention derives an optimal shape of a reinforcement which is joined to a portion of a structure (i.e. automotive body) and which differs from the structure in a material characteristic, said method comprising: a structure model acquisition step of acquiring a structure model in which the structure has been modeled using two-dimensional elements and/or three-dimensional elements; a reinforcement model generation step of generating a reinforcement model which is separate from the structure, is formed from three-dimensional elements, and is joined to a portion of the structure model; a material characteristic setting step of setting a material characteristic of the reinforcement model; an optimization analysis model generation step of joining the reinforcement model to the portion of the structure model and generating an optimization analysis model; and an optimization analysis step of carrying out an optimization analysis with the reinforcement model as an analysis subject, and deriving an optimal shape of the reinforcement model.

Description

車体の補強部材の形状最適化方法及び形状最適化装置Shape optimization method and shape optimization device for reinforcing member of vehicle body
 本発明は、自動車車体構造を補強する補強部材(reinforcement)の最適な形状を求める車体(automotive body)の補強部材の形状最適化方法及び形状最適化装置に関し、特に最適化解析(optimization analysis)方法によって補強部材の形状を最適化する車体の補強部材の形状最適化方法及び形状最適化装置に関する。なお、本発明において形状最適化(shape optimization)とは、予め所定の形状、例えばT字形状を想定し、その所定の形状を前提として最適な形状を求めることではなく、所定の形状を想定することなく解析条件を満たす最適な形状を求めることを意味する。 The present invention relates to a shape optimization method and shape optimization device for a reinforcement member of an automotive body that seeks an optimum shape of a reinforcement member that reinforces a vehicle body structure, and in particular, an optimization analysis method. The present invention relates to a shape optimization method and a shape optimization device for a reinforcing member of a vehicle body that optimizes the shape of the reinforcing member. Note that in the present invention, shape optimization is assumed in advance to assume a predetermined shape, for example, a T-shape, and not to obtain an optimal shape on the basis of the predetermined shape, but to assume a predetermined shape. This means that an optimum shape satisfying the analysis condition is obtained without any problem.
 近年、特に自動車産業においては環境問題に起因した車体の軽量化(weight reduction of automotive body)が進められており、車体の設計にコンピュータ支援工学(computer aided engineering)による解析(以下、「CAE解析」という)は欠かせない技術となっている。このCAE解析では数理最適化(mathematical optimization)、板厚最適化(thickness optimization)、形状最適化(shape optimization)、及びトポロジー最適化(topology optimization)等の最適化技術を用いることにより、車体の軽量化や剛性(stiffness)の向上等といった車体性能(performance of automotive body)の向上が図られることが知られており、これらの最適化技術は例えばエンジンブロック(engine block)等の鋳物の構造最適化(structural optimization)によく用いられている。 In recent years, especially in the automobile industry, weight reduction of automotive bodies due to environmental problems has been promoted, and analysis by computer-aided engineering (hereinafter referred to as “CAE analysis”) is used for vehicle body design. Is an indispensable technology. In this CAE analysis, by using optimization techniques such as mathematical optimization, thickness optimization, shape optimization, and topology optimization, the weight of the vehicle body is reduced. It is known to improve the performance of the automotive body, such as improving the rigidity and stiffness, and these optimization techniques optimize the structure of castings such as engine blocks. Often used for (structural optimization).
 最適化技術の中でも、特にトポロジー最適化が着目されつつある。トポロジー最適化とは、ある程度の大きさの設計空間を設け、設計空間に立体要素(three-dimensional element)を組み込み、与えられた条件を満たし、且つ、必要最小限の立体要素の部分を残すことで、与えられた条件を満たす最適形状を求める方法である。そのため、トポロジー最適化では、設計空間をなす立体要素に直接拘束(constraint)を行い、直接荷重(loading)を加えるという方法が用いられる。このようなトポロジー最適化に関する技術として、複雑な構造体のコンポーネント(component)のトポロジー最適化のための方法が特許文献1に開示されている。 Among the optimization technologies, topology optimization is particularly attracting attention. Topology optimization is to create a design space of a certain size, incorporate a three-dimensional element in the design space, satisfy a given condition, and leave the minimum necessary three-dimensional element part. In this method, an optimum shape that satisfies a given condition is obtained. Therefore, topology optimization uses a method in which constraints are directly applied to the three-dimensional elements forming the design space, and a direct loading is applied. As a technique related to such topology optimization, Patent Document 1 discloses a method for topology optimization of a component of a complex structure.
特開2010-250818号公報JP 2010-250818 A
 自動車の車体等の構造体は主に薄板(sheet)を用いて構成されており、このような薄板で構成される車体の一部位について最適化技術により形状を最適化する場合、従来は非特許文献1に記載されているように、対象となる車体の一部を取り出して、取り出した部分を独立させて最適化している。このため、その設計空間に対して車体全体からの荷重や拘束状態を反映させることは困難であり、それ故に車体の一部位に最適化技術を適用することが難しいという課題があった。また、車体の一部位を車体全体の最適化解析から最適化形状を求めたとしても、最適化した部位が消滅する場合もあって、それを薄板構造に適切に反映させるにはいかにするべきかという課題もあった。 Structures such as car bodies are mainly composed of thin sheets, and when optimizing the shape of a part of a car body composed of such thin plates using optimization technology, it is not conventionally patented. As described in Document 1, a part of the target vehicle body is taken out, and the taken-out part is optimized independently. For this reason, it is difficult to reflect the load and restraint state from the entire vehicle body on the design space, and thus there is a problem that it is difficult to apply the optimization technique to one part of the vehicle body. Also, even if an optimized shape is obtained from an optimization analysis of one part of the car body, the optimized part may disappear, and how should this be reflected appropriately in the thin plate structure? There was also a problem.
 特許文献1に開示されている技術は、トポロジー最適化による最適化解析に係る数学演算上の手法及び物理的システムに関するものであり、上記のような薄板構造の最適化といった課題に対しては何らの解決手段を与えるものではない。 The technique disclosed in Patent Document 1 relates to a mathematical calculation method and a physical system related to optimization analysis by topology optimization, and does not deal with the problem of optimization of the thin plate structure as described above. It does not give a solution.
 さらに、近年、自動車の車体を構成する薄板に、薄板と異なる材料特性である樹脂(resin)やFRP(Fiber-Reinforced Plastics;繊維強化樹脂)からなる補強部材を貼り付けて補強し、車体の剛性や強度(strength)を向上させることが行われている。しかしながら、このような補強部材の形状や補強部材の貼り付け位置を最適化の対象とした従来技術はなく、車体を補強する補強部材の最適化形状を求める最適化技術の開発が望まれていた。 Furthermore, in recent years, reinforcing members made of resin (resin) or FRP (Fiber-Reinforced Plastics), which have material properties different from those of thin plates, have been applied to the thin plates that make up the body of automobiles to reinforce them. It has been done to improve strength. However, there is no conventional technique for optimizing the shape of the reinforcing member and the position where the reinforcing member is applied, and development of an optimization technique for obtaining the optimized shape of the reinforcing member that reinforces the vehicle body has been desired. .
 本発明は、上記課題に鑑みてなされたものであって、その目的は、車体である構造体の一部に構造体と異なる材料特性(material properties)の補強部材を結合して構造体を補強するに際し、補強部材の最適な形状を求めることが可能な車体の補強部材の形状最適化方法及び形状最適化装置を提供することにある。 The present invention has been made in view of the above problems, and its purpose is to reinforce the structure by coupling a reinforcing member having a material property different from that of the structure to a part of the structure that is a vehicle body. In doing so, it is an object of the present invention to provide a shape optimization method and a shape optimization device for a reinforcing member of a vehicle body capable of obtaining an optimal shape of the reinforcing member.
 本発明に係る車体の補強部材の形状最適化方法は、車体である構造体の一部に結合(joining)する該構造体と材料特性の異なる補強部材の最適な形状を求めるものであり、コンピュータが以下の各ステップを行うものであって、平面要素(two-dimensional element)及び/又は立体要素を用いて前記構造体をモデル化した構造体モデルを取得する構造体モデル取得ステップと、立体要素からなり前記構造体モデルの一部と結合する前記構造体とは別の補強部材モデルを生成する補強部材モデル生成ステップと、該補強部材モデルの材料特性を設定する材料特性設定ステップと、前記補強部材モデルを前記構造体モデルの一部に結合して最適化解析モデルを生成する最適化解析モデル生成ステップと、該生成した最適化解析モデルに解析条件を与え、前記補強部材モデルを最適化の解析対象として最適化解析を行い、前記補強部材モデルの最適な形状を求める最適化解析ステップと、を含む。 The shape optimization method for a reinforcing member of a vehicle body according to the present invention is to obtain an optimal shape of a reinforcing member having a material characteristic different from that of the structure joined to a part of the structure as a vehicle body. Performs the following steps: a structure model acquisition step of acquiring a structure model obtained by modeling the structure using a two-dimensional element and / or a three-dimensional element; and a three-dimensional element A reinforcing member model generating step for generating a reinforcing member model different from the structure coupled with a part of the structural body model, a material property setting step for setting material properties of the reinforcing member model, and the reinforcement An optimization analysis model generation step for generating an optimization analysis model by combining a member model with a part of the structure model, and providing an analysis condition to the generated optimization analysis model The performed optimization analysis reinforcing member model as an analysis for optimization, including, and optimization analyzing step of determining an optimum shape of the reinforcing member model.
 なお、前記材料特性設定ステップは、前記補強部材モデルの材料特性として、ヤング率(Young’s modulus)、ポアソン比(Poisson’s modulus)、及び比重(specific gravity)を設定することが望ましい。 In the material property setting step, it is desirable to set Young's modulus, Poisson's modulus, and specific gravity as material properties of the reinforcing member model.
 また、前記材料特性設定ステップは、前記補強部材モデルの材料特性の面内異方性(in-plane anisotropy)を与える主軸(principal axis)角度を与え、該主軸角度に対応する前記材料特性の値を設定し、複数の層からなる場合は、それぞれの主軸角度を持つ層を重ね合わせることが望ましい。 In the material property setting step, a principal axis angle giving in-plane anisotropy of the material property of the reinforcing member model is given, and a value of the material property corresponding to the principal axis angle is given. Is set, and it is desirable to superimpose layers having respective principal axis angles.
 また、前記最適化解析ステップは、トポロジー最適化による解析処理を行うことが望ましい。 Further, it is desirable that the optimization analysis step performs an analysis process by topology optimization.
 本発明に係る車体の補強部材の形状最適化装置は、車体である構造体の一部に結合する該構造体と材料特性の異なる補強部材の最適な形状を求めるものであって、平面要素及び/又は立体要素を用いて前記構造体をモデル化した構造体モデルを取得する構造体モデル取得部と、立体要素からなり前記構造体モデルの一部と結合する前記構造体とは別の補強部材モデルを生成する補強部材モデル生成部と、該補強部材モデルの材料特性を設定する材料特性設定部と、前記補強部材モデルを前記構造体モデルの一部に結合して最適化解析モデルを生成する最適化解析モデル生成部と、該生成した最適化解析モデルに解析条件を与え、前記補強部材モデルを最適化の解析対象として最適化解析を行い、前記補強部材モデルの最適な形状を求める最適化解析部と、を備える。 A shape optimization device for a reinforcing member of a vehicle body according to the present invention is for obtaining an optimal shape of a reinforcing member having a material characteristic different from that of a structural body coupled to a part of a structure that is a vehicle body. A structure model acquisition unit that acquires a structure model obtained by modeling the structure using a three-dimensional element, and a reinforcing member that is separate from the structure that is formed of a three-dimensional element and is coupled to a part of the structure model A reinforcing member model generating unit for generating a model, a material property setting unit for setting material properties of the reinforcing member model, and an optimization analysis model are generated by combining the reinforcing member model with a part of the structure model An optimization analysis model generation unit and an analysis condition are given to the generated optimization analysis model, an optimization analysis is performed on the reinforcement member model as an optimization analysis target, and an optimum shape of the reinforcement member model is obtained. And a reduction analyzer.
 なお、前記材料特性設定部は、前記補強部材モデルの材料特性として、ヤング率、ポアソン比、及び比重を設定することが望ましい。 In addition, it is desirable that the material property setting unit sets Young's modulus, Poisson's ratio, and specific gravity as material properties of the reinforcing member model.
 また、前記材料特性設定部は、前記補強部材モデルの材料特性の面内異方性を与える主軸角度を与え、該主軸角度に対応する前記材料特性の値を設定し、複数の層からなる場合は、それぞれの主軸角度を持つ層を重ね合わせることが望ましい。 In addition, the material property setting unit provides a principal axis angle that gives in-plane anisotropy of the material property of the reinforcing member model, sets a value of the material property corresponding to the principal axis angle, and includes a plurality of layers It is desirable to superimpose layers having respective principal axis angles.
 また、前記最適化解析部は、トポロジー最適化による解析処理を行うことが望ましい。 Further, it is desirable that the optimization analysis unit performs an analysis process by topology optimization.
 本発明によれば、構造体を補強する補強部材の最適な形状を精度よく求めることができ、最適な形状の補強部材を構造体に結合することにより、構造体の所定の性能を向上させたり、また、所定の性能に保持しつつ軽量化に資したりすることが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, the optimal shape of the reinforcement member which reinforces a structure can be calculated | required accurately, and the predetermined performance of a structure can be improved by couple | bonding the reinforcement member of an optimal shape with a structure. In addition, it is possible to contribute to weight reduction while maintaining a predetermined performance.
図1は、本発明の実施の形態に係る車体の補強部材の形状最適化装置のブロック図(block diagram)である。FIG. 1 is a block diagram of a shape optimization device for a reinforcing member of a vehicle body according to an embodiment of the present invention. 図2は、実施の形態で解析対象とする車体モデル、補強部材モデル、及び最適化解析モデルを説明する図である。FIG. 2 is a diagram for explaining a vehicle body model, a reinforcing member model, and an optimization analysis model to be analyzed in the embodiment. 図3は、実施の形態において、立体要素を用いて生成した補強部材モデルと、補強部材モデルと車体モデルとの結合状態及び方法とを説明する図である。FIG. 3 is a diagram illustrating a reinforcing member model generated using a three-dimensional element, and a coupling state and a method of the reinforcing member model and the vehicle body model in the embodiment. 図4は、実施の形態に係る最適化解析において最適化解析モデルに与える荷重拘束条件の一例を示す図である。FIG. 4 is a diagram illustrating an example of a load constraint condition given to the optimization analysis model in the optimization analysis according to the embodiment. 図5は、実施の形態に係る最適化解析により形状最適化された最適形状補強部材モデルの一例を示す図である((a):斜視図、(b):上面図)。FIG. 5 is a diagram illustrating an example of an optimum shape reinforcing member model that has been optimized by the optimization analysis according to the embodiment ((a): perspective view, (b): top view). 図6は、実施の形態に係る車体の補強部材の形状最適化方法の処理の流れを示すフローチャートである。FIG. 6 is a flowchart showing a processing flow of the shape optimization method for the reinforcing member of the vehicle body according to the embodiment. 図7は、実施例において車体モデルに荷重拘束条件を与えたときの車体変位(displacement)の解析結果を示す図である。FIG. 7 is a diagram illustrating an analysis result of the vehicle body displacement when a load constraint condition is given to the vehicle body model in the embodiment. 図8は、実施例において形状最適化された最適形状補強部材モデルの厚み方向の形状を説明する図である((a):A-A断面、(b):上面、(c):B-B断面)。FIG. 8 is a diagram for explaining the shape in the thickness direction of the optimum shape reinforcing member model optimized in the embodiment ((a): AA cross section, (b): upper surface, (c): B—). B cross section). 図9は、実施例において最適化解析モデルに荷重拘束条件を与えたときの補強部材モデルに生じる応力分布(stress distribution)を説明する図である((a):A-A断面、(b):全体、(c):B-B断面)。FIG. 9 is a diagram for explaining a stress distribution (stress distribution) generated in the reinforcing member model when load constraint conditions are given to the optimization analysis model in the embodiment ((a): AA cross section, (b) : Overall, (c): BB cross section). 図10は、実施例において最適形状補強部材モデルを用いて車体モデルを軽量化する軽量化解析モデルを説明する図である((a):ルーフリンフォース(roof reinforcement)を有する車体モデル、(b):ルーフリンフォースを除去した車体モデル、(c):最適形状補強部材モデル)。FIG. 10 is a diagram for explaining a weight reduction analysis model for reducing the weight of the vehicle body model using the optimal shape reinforcing member model in the embodiment ((a): a vehicle body model having a roof reinforcement, (b) ): Body model from which roof reinforcement is removed, (c): optimal shape reinforcing member model). 図11は、実施例において、車体モデルのルーフ部(roof portion)の板厚とルーフ部の重量との関係(a)、及びルーフ部の板厚と車体モデルの変化重量(weight change)との関係(b)を示すグラフである。FIG. 11 shows, in the embodiment, the relationship between the thickness of the roof portion of the vehicle body model and the weight of the roof portion (a), and the thickness of the roof portion and the weight change of the vehicle body model. It is a graph which shows a relationship (b). 図12は、実施例において最適形状補強部材モデルを結合した軽量化解析モデルのルーフ部の板厚と剛性向上率(improvement rate of rigidity)との関係を示すグラフである。FIG. 12 is a graph showing the relationship between the plate thickness of the roof portion and the improvement rate of rigidity (improvement rate of rigidity) of the weight reduction analysis model obtained by combining the optimum shape reinforcing member model in the example. 図13は、実施例において車体モデル及び軽量化解析モデルに荷重拘束条件を与えたときのルーフ部における変形(deformation)を説明する図である。FIG. 13 is a diagram for explaining deformation in the roof portion when load constraint conditions are given to the vehicle body model and the weight reduction analysis model in the embodiment.
 本発明の実施の形態に係る車体の補強部材の形状最適化方法及び形状最適化装置について説明するに先立ち、本発明で対象とする構造体モデルについて説明する。なお、本明細書に添付する図面においては、形状及び寸法が示されている場合があるが、本発明はこれらの形状及び寸法に限定されるものではない。 Prior to describing a shape optimization method and shape optimization device for a reinforcing member of a vehicle body according to an embodiment of the present invention, a structure model targeted by the present invention will be described. Note that shapes and dimensions may be shown in the drawings attached to this specification, but the present invention is not limited to these shapes and dimensions.
<構造体モデル>
 構造体モデルは、構造体の一部に構造体と異なる材料特性の補強部材を結合するに際し、平面要素及び/又は立体要素を用いて構造体をモデル化したものであり、本実施の形態では、構造体モデルとして、図2(a)に示す車体モデル31を対象としている。
<Structure model>
The structure model is obtained by modeling a structure using a planar element and / or a three-dimensional element when a reinforcing member having a material characteristic different from that of the structure is coupled to a part of the structure. As a structural body model, a vehicle body model 31 shown in FIG.
 車体モデル31は、自動車の車体骨格(automotive body frame)部品(part)やシャシー(chasis)部品等といった複数の部品で構成されたものであり、車体モデル31の各部品は、平面要素及び/又は立体要素によりモデル化されている。また、車体モデル31を構成する各部品の要素(平面要素及び立体要素)や材料特性(材質(material properties))等に関する情報は、構造体モデルファイル23(図1参照)に格納されている。 The car body model 31 is composed of a plurality of parts such as an automobile body frame part and a chassis part. Each part of the car body model 31 includes a plane element and / or Modeled by three-dimensional elements. In addition, information on elements (planar elements and three-dimensional elements), material properties (material properties), and the like of each part constituting the vehicle body model 31 is stored in the structure model file 23 (see FIG. 1).
 なお、本実施の形態では、車体のルーフ(図2に示す車体モデル31のルーフ部33に対応)の下面に、車体と異なる材料特性の補強部材を貼付することにより補強し、積雪(fallen snow)強度を向上する場合を対象とした例を示す。 In this embodiment, the roof of the vehicle body (corresponding to the roof portion 33 of the vehicle body model 31 shown in FIG. 2) is reinforced by sticking a reinforcing member having a material characteristic different from that of the vehicle body, so that the snow fall (fallen snow ) An example for the case of improving the strength is shown.
<車体の補強部材の形状最適化装置>
 次に、本実施の形態に係る車体の補強部材の形状最適化装置1(以下、単に「形状最適化装置1」という)の構成について、図1~5に基づいて以下に説明する。
<Shape optimization device for vehicle body reinforcement>
Next, the configuration of the vehicle body reinforcing member shape optimizing device 1 according to the present embodiment (hereinafter simply referred to as “shape optimizing device 1”) will be described with reference to FIGS.
 本実施の形態に係る形状最適化装置1は、車体である構造体の一部に該構造体の一部と異なる材料特性の補強部材を結合して構造体を補強するに際し、補強部材の最適な形状を求めるものであり、図1に示すように、PC(パーソナルコンピュータ)等によって構成され、表示装置(display device)3、入力装置(input device)5、記憶装置(memory device)7、作業用データメモリ(working data memory)9、及び演算処理部(arithmetic processing unit)11を有している。そして、表示装置3、入力装置5、記憶装置7、及び作業用データメモリ9は、演算処理部11に接続され、演算処理部11からの指令によってそれぞれの機能が実行される。以下、本実施の形態に係る形状最適化装置1の各構成について説明する。 The shape optimizing device 1 according to the present embodiment optimizes the reinforcing member when the reinforcing member having a material characteristic different from that of the part of the structure is coupled to the part of the structure that is the vehicle body to reinforce the structure. As shown in FIG. 1, it is composed of a PC (personal computer) or the like, and includes a display device 3, an input device 5, a memory device 7, and a work. It has a working data memory 9 and an arithmetic processing unit 11. The display device 3, the input device 5, the storage device 7, and the work data memory 9 are connected to the arithmetic processing unit 11, and each function is executed by a command from the arithmetic processing unit 11. Hereinafter, each structure of the shape optimization apparatus 1 which concerns on this Embodiment is demonstrated.
≪表示装置≫
 表示装置3は、解析結果の表示等に用いられ、液晶モニター等で構成される。
≪Display device≫
The display device 3 is used for displaying analysis results and the like, and includes a liquid crystal monitor or the like.
≪入力装置≫
 入力装置5は、構造体モデルファイル23の表示指示や操作者の条件入力等に用いられ、キーボードやマウス等で構成される。
≪Input device≫
The input device 5 is used for a display instruction of the structure model file 23, an operator's condition input, and the like, and includes a keyboard, a mouse, and the like.
≪記憶装置≫
 記憶装置7は、構造体モデルファイル23等の各種ファイルの記憶等に用いられ、ハードディスク等で構成される。
≪Storage device≫
The storage device 7 is used for storing various files such as the structure model file 23 and is configured by a hard disk or the like.
≪作業用データメモリ≫
 作業用データメモリ9は、演算処理部11で使用するデータの一時保存や演算に用いられ、RAM(Random Access Memory)等で構成される。
≪Work data memory≫
The work data memory 9 is used for temporary storage and calculation of data used in the arithmetic processing unit 11, and is composed of a RAM (Random Access Memory) or the like.
≪演算処理部≫
 演算処理部11は、図1に示すように、構造体モデル取得部13と、補強部材モデル生成部15と、材料特性設定部17と、最適化解析モデル生成部19と、最適化解析部21と、を有し、PC等のCPU(中央演算処理装置)によって構成される。これらの各部は、CPUが所定のプログラムを実行することによって機能する。演算処理部11における上記の各部の機能を以下に説明する。
≪Operation processing part≫
As shown in FIG. 1, the arithmetic processing unit 11 includes a structure model acquisition unit 13, a reinforcing member model generation unit 15, a material property setting unit 17, an optimization analysis model generation unit 19, and an optimization analysis unit 21. And is configured by a CPU (Central Processing Unit) such as a PC. Each of these units functions when the CPU executes a predetermined program. The function of each unit in the arithmetic processing unit 11 will be described below.
(構造体モデル取得部)
 構造体モデル取得部13は、自動車の車体を平面要素及び/又は立体要素を用いてモデル化した車体モデル31(図2(a)参照)を取得するものであり、記憶装置7に記憶された構造体モデルファイル23から車体モデル31の要素情報や材料特性情報を読み込むことにより取得することができる。但し、構造体モデル取得部13は、車体のCADデータに基づいて、車体を平面要素及び/又は立体要素によりモデル化して車体モデル31を新たに生成するものであってもよい。
(Structure model acquisition unit)
The structure model acquisition unit 13 acquires a vehicle body model 31 (see FIG. 2A) obtained by modeling a car body of a car using plane elements and / or three-dimensional elements, and is stored in the storage device 7. It can be obtained by reading element information and material property information of the vehicle body model 31 from the structure model file 23. However, the structure model acquisition unit 13 may generate a vehicle body model 31 by modeling the vehicle body by plane elements and / or solid elements based on the CAD data of the vehicle body.
(補強部材モデル生成部)
 補強部材モデル生成部15は、立体要素からなり車体モデル31(図2(a)参照)の一部と結合する車体モデル31とは別の補強部材モデル35(図2(b)参照)を生成するものである。以下、補強する車体の対象部位(portion)として、ルーフ部33を例として説明する。
(Reinforcement member model generator)
The reinforcing member model generation unit 15 generates a reinforcing member model 35 (see FIG. 2B) that is different from the vehicle body model 31 that is composed of three-dimensional elements and is coupled to a part of the vehicle body model 31 (see FIG. 2A). To do. Hereinafter, the roof portion 33 will be described as an example of the target portion (portion) of the vehicle body to be reinforced.
 補強部材モデル35は、例えば図3に示すように、車体モデル31において補強する対象となる部位であるルーフ部33の下面から下方に向かって立体要素35aを積み重ねるように生成することができる。補強部材モデル生成部15により生成される補強部材モデル35は、後述する最適化解析部21による最適化解析の対象となるものであり、最適化解析の過程において補強に不要な部位に位置する立体要素を消去し、補強に必要となる部位に位置する立体要素を残存させる。 For example, as shown in FIG. 3, the reinforcing member model 35 can be generated so that three-dimensional elements 35 a are stacked downward from the lower surface of the roof portion 33, which is a portion to be reinforced in the vehicle body model 31. The reinforcement member model 35 generated by the reinforcement member model generation unit 15 is a target of optimization analysis by the optimization analysis unit 21 to be described later, and is a three-dimensional object positioned in a portion unnecessary for reinforcement in the process of optimization analysis. The element is deleted, and the three-dimensional element located at the site necessary for reinforcement is left.
 なお、補強部材モデル生成部15は、ルーフ部33の下面から下方に所定の設計空間を設定し、設計空間を複数の立体要素に要素分割することにより、補強部材モデル35を生成するものであってもよい。 The reinforcing member model generation unit 15 generates a reinforcing member model 35 by setting a predetermined design space below the lower surface of the roof portion 33 and dividing the design space into a plurality of three-dimensional elements. May be.
(材料特性設定部)
 材料特性設定部17は、補強部材モデル生成部15が生成した補強部材モデル35の材料特性を設定するものである。材料特性設定部17が設定する補強部材モデル35の材料特性として、ヤング率、ポアソン比、及び比重等が挙げられる。
(Material property setting section)
The material property setting unit 17 sets the material property of the reinforcing member model 35 generated by the reinforcing member model generating unit 15. Examples of material properties of the reinforcing member model 35 set by the material property setting unit 17 include Young's modulus, Poisson's ratio, and specific gravity.
 さらに、補強部材モデル35として、例えばFRP(Fiber-Reinforced Plastics;繊維強化樹脂)のように、その材料特性(機械的特性(mechanical properties))が面内異方性を有する材料を対象とする場合においては、補強部材モデル35の材料特性の面内異方性を与える主軸角度を与え、主軸角度に対応する材料特性の値を設定することで、補強部材モデル35の材料特性に面内異方性を設定することができる。また、補強部材が複数の層からなる場合においては、複数の層毎に主軸角度を設定することも可能である。 Furthermore, when the reinforcing member model 35 is a material whose material properties (mechanical properties) have in-plane anisotropy, such as FRP (Fiber-Reinforced Plastics), for example. In the method, the principal axis angle that gives the in-plane anisotropy of the material characteristic of the reinforcing member model 35 is given, and the material characteristic value corresponding to the principal axis angle is set, whereby the material characteristic of the reinforcing member model 35 is anisotropic in the plane. Sex can be set. In addition, when the reinforcing member is composed of a plurality of layers, it is possible to set the main shaft angle for each of the plurality of layers.
 なお、材料特性設定部17は、後述する最適化解析モデル生成部19により補強部材モデル35を車体モデル31の一部に結合して最適化解析モデル41(図2(c)参照)を生成した後、最適化解析モデル41における補強部材モデル35の材料特性を設定するものであってもよい。 The material property setting unit 17 generates an optimization analysis model 41 (see FIG. 2C) by combining the reinforcing member model 35 with a part of the vehicle body model 31 by the optimization analysis model generation unit 19 described later. Thereafter, the material characteristics of the reinforcing member model 35 in the optimization analysis model 41 may be set.
(最適化解析モデル生成部)
 最適化解析モデル生成部19は、図2に示すように、補強部材モデル生成部15が生成した補強部材モデル35を車体モデル31の一部に結合して最適化解析モデル41を生成するものである。例えば、ルーフ部33と補強部材モデル35とを結合する方法としては、ルーフ部33が平面要素33aでモデル化されている場合、例えば図3に示すように、補強部材モデル35の立体要素35aのノード(節点(node))とルーフ部33の平面要素33aのノードとを共有するものがある。
(Optimization analysis model generator)
As shown in FIG. 2, the optimization analysis model generation unit 19 combines the reinforcement member model 35 generated by the reinforcement member model generation unit 15 with a part of the vehicle body model 31 to generate an optimization analysis model 41. is there. For example, as a method of connecting the roof portion 33 and the reinforcing member model 35, when the roof portion 33 is modeled by a planar element 33a, for example, as shown in FIG. Some nodes share a node (node) and a node of the planar element 33a of the roof portion 33.
 もっとも、最適化解析モデル生成部19は、例えば剛体要素を介して車体モデル31の一部と補強部材モデル35のノード同士を連結するものであってもよく、車体モデル31の一部と補強部材モデル35との間で荷重が伝達されるものであれば特に限定されず、はり要素(beam elements)、ロッド要素(rod elements)、剛体結合要素(rigid coupling elements)等でもよい。さらに、車体モデル31において補強部材モデル35と結合する部位が立体要素でモデル化されている場合においては、上記と同様、最適化解析モデル生成部19は、結合する部位の立体要素と補強部材モデル35の立体要素とをノード共有等により結合するものであればよい。 However, the optimization analysis model generation unit 19 may connect, for example, a part of the vehicle body model 31 and the nodes of the reinforcing member model 35 via rigid elements, and a part of the vehicle body model 31 and the reinforcing member. The load is not particularly limited as long as the load is transmitted to and from the model 35, and may be a beam element, a rod element, a rigid coupling element, or the like. Further, in the case where the part coupled to the reinforcing member model 35 in the vehicle body model 31 is modeled with a three-dimensional element, the optimization analysis model generation unit 19 similarly performs the three-dimensional element and the reinforcing member model of the part to be coupled as described above. What is necessary is just to combine 35 solid elements by node sharing or the like.
 なお、最適化解析モデル生成部19により最適化解析モデル41を生成するに際しては、車体モデル31から分離した状態にある車体モデル31の一部に補強部材モデル35を結合して一体化し、一体化した車体モデル31の一部と補強部材モデル35とを車体モデル31に結合するものであってもよい。 When the optimization analysis model 41 is generated by the optimization analysis model generation unit 19, the reinforcing member model 35 is combined and integrated with a part of the vehicle body model 31 that is separated from the vehicle body model 31. A part of the vehicle body model 31 and the reinforcing member model 35 may be coupled to the vehicle body model 31.
(最適化解析部)
 最適化解析部21は、最適化解析モデル生成部19が生成した最適化解析モデル41(図2(c)参照)に解析条件を与え、補強部材モデル35を最適化の解析処理を行う対象として最適化解析を行い、補強部材モデル35の最適形状を求めるものである。最適化解析部21による最適化解析には、例えばトポロジー最適化を適用することができる。トポロジー最適化において密度法(density method)を用いる際に、中間的な密度が多い場合には離散化(discretization)が好ましく、下式であらわされる。離散化によく用いられるペナルティ係数は2以上であり、ペナルティ係数の値は適宜設定することができる。
(Optimization analysis section)
The optimization analysis unit 21 gives analysis conditions to the optimization analysis model 41 (see FIG. 2C) generated by the optimization analysis model generation unit 19, and sets the reinforcing member model 35 as an object for performing the analysis processing for optimization. An optimization analysis is performed to obtain the optimum shape of the reinforcing member model 35. For example, topology optimization can be applied to the optimization analysis performed by the optimization analysis unit 21. When using a density method in topology optimization, discretization is preferable when the intermediate density is large, and is expressed by the following equation. The penalty coefficient often used for discretization is 2 or more, and the value of the penalty coefficient can be set as appropriate.
  K(ρ)=ρ
 ただし、
  K:要素の剛性マトリックス(stiffness matrix)にペナルティ(penalty)を課した剛性マトリックス
  K:要素の剛性マトリックス
  ρ:規格化(normalization)された密度
  p:ペナルティ係数
K (ρ) = ρ p K
However,
K: stiffness matrix that imposes a penalty on the stiffness matrix of the element K: stiffness matrix of the element ρ: normalized density p: penalty coefficient
 なお、最適化解析部21は、トポロジー最適化処理を行うものでもよいし、他の計算方式による最適化処理であってもよい。従って、最適化解析部21としては、例えば市販されている有限要素(finite element)を用いた解析ソフトを使用することもできる。 Note that the optimization analysis unit 21 may perform a topology optimization process, or may be an optimization process based on another calculation method. Therefore, as the optimization analysis unit 21, for example, commercially available analysis software using a finite element can be used.
 最適化解析を行うための解析条件としては、最適化解析モデル41に荷重を付加する位置や拘束位置を与える荷重拘束条件と、最適化解析の目的に応じて設定する目的条件と、最適化解析を行う上で課す制約条件とがある。 The analysis conditions for performing the optimization analysis include a load constraint condition for giving a load position and a constraint position to the optimization analysis model 41, a target condition set according to the purpose of the optimization analysis, and an optimization analysis. There are constraints imposed on the
 図4に、荷重拘束条件の一例を示す。図4に示す荷重拘束条件は、ルーフ部33の積雪強度を評価することを想定したものであり、最適化解析モデル41の下部にある4箇所のジャッキアップ(jack up)設置部を完全拘束とし、ルーフ部33の上面に車体高さ方向下向きの分布荷重を与えたものである。 Fig. 4 shows an example of load restraint conditions. The load restraint condition shown in FIG. 4 is based on the assumption that the snow cover strength of the roof portion 33 is evaluated, and the four jack up installation portions at the lower part of the optimization analysis model 41 are completely restrained. A distributed load downward in the vehicle body height direction is applied to the upper surface of the roof portion 33.
 目的条件としては、例えば最適化解析モデル41におけるひずみ(strain)エネルギー総和の最小化、変位の最小化、剛性の最大化等がある。さらに、制約条件としては、最適化解析の対象となる補強部材モデル35の体積制約率(volume function constraints rate)等がある。制約条件は複数設定可能である。 Examples of target conditions include minimizing the total strain energy in the optimization analysis model 41, minimizing displacement, and maximizing rigidity. Furthermore, the constraint condition includes a volume function constraint rate of the reinforcing member model 35 to be optimized. Multiple constraint conditions can be set.
 図5に、最適化解析部21にトポロジー最適化を適用して得られた最適形状補強部材モデル43の一例を示す。図5においては、最適形状補強部材モデル43を表示するためにルーフ部33を非表示にしている。最適形状補強部材モデル43は、図5に示すように、上記の解析条件(荷重拘束条件、目的条件、制約条件)を満たすように立体要素を残存及び消去することにより求められる。 FIG. 5 shows an example of the optimum shape reinforcing member model 43 obtained by applying the topology optimization to the optimization analysis unit 21. In FIG. 5, the roof portion 33 is not displayed in order to display the optimum shape reinforcing member model 43. As shown in FIG. 5, the optimum shape reinforcing member model 43 is obtained by remaining and eliminating the three-dimensional elements so as to satisfy the above analysis conditions (load constraint conditions, objective conditions, constraint conditions).
<車体の補強部材の形状最適化方法>
 次に、本実施の形態に係る車体の補強部材の形状最適化方法(以下、単に「形状最適化方法」という)について、以下に説明する。
<Method for optimizing the shape of the reinforcing member of the vehicle body>
Next, the shape optimization method (hereinafter simply referred to as “shape optimization method”) for the reinforcing member of the vehicle body according to the present embodiment will be described below.
 本実施の形態に係る形状最適化方法は、車体である構造体の一部に構造体の一部と異なる材質の補強部材を結合して構造体を補強するに際し、補強部材の最適な形状を求めるものであって、図6に示すように、構造体モデル取得ステップS1と、補強部材モデル生成ステップS3と、材料特性設定ステップS5と、最適化解析モデル生成ステップS7と、最適化解析ステップS9と、を含むものである。以下、各ステップについて説明する。なお、本実施の形態に係る形状最適化方法は、上記の各ステップをコンピュータによって構成された形状最適化装置1(図1参照)を用いて実行するものである。 In the shape optimization method according to the present embodiment, when a reinforcing member made of a material different from that of a part of the structure is coupled to a part of the structure that is a vehicle body, the optimal shape of the reinforcing member is determined. As shown in FIG. 6, as shown in FIG. 6, the structure model acquisition step S1, the reinforcing member model generation step S3, the material property setting step S5, the optimization analysis model generation step S7, and the optimization analysis step S9. And. Hereinafter, each step will be described. In the shape optimization method according to the present embodiment, the above steps are executed using a shape optimization apparatus 1 (see FIG. 1) configured by a computer.
≪構造体モデル取得ステップ≫
 構造体モデル取得ステップS1は、平面要素及び/又は立体要素を用いて構造体をモデル化した構造体モデルとして図2(a)に示す車体モデル31を取得するステップであり、形状最適化装置1においては、構造体モデル取得部13が行う。
≪Structure model acquisition step≫
The structure model acquisition step S1 is a step of acquiring a vehicle body model 31 shown in FIG. 2A as a structure model obtained by modeling a structure using a planar element and / or a three-dimensional element. The structure model acquisition unit 13 performs the process.
≪補強部材モデル生成ステップ≫
 補強部材モデル生成ステップS3は、立体要素35a(図3参照)からなり、車体モデル31の一部と結合する車体モデル31とは別の補強部材モデル35(図2(b)参照)を生成するステップであり、図1に示す形状最適化装置1においては補強部材モデル生成部15が行う。
≪Reinforcement member model generation step≫
The reinforcing member model generation step S3 includes a three-dimensional element 35a (see FIG. 3), and generates a reinforcing member model 35 (see FIG. 2B) that is different from the vehicle body model 31 coupled to a part of the vehicle body model 31. This step is performed by the reinforcing member model generation unit 15 in the shape optimization apparatus 1 shown in FIG.
≪材料特性設定ステップ≫
 材料特性設定ステップS5は、補強部材モデル生成ステップS3において生成した補強部材モデル35の材料特性を設定するステップであり、形状最適化装置1においては材料特性設定部17が行う。材料特性設定ステップS5において補強部材モデル35に設定する材料特性としては、ヤング率、ポアソン比、及び比重等が挙げられる。
≪Material property setting step≫
The material property setting step S5 is a step of setting the material property of the reinforcing member model 35 generated in the reinforcing member model generating step S3, and is performed by the material property setting unit 17 in the shape optimization device 1. Examples of the material properties set in the reinforcing member model 35 in the material property setting step S5 include Young's modulus, Poisson's ratio, and specific gravity.
 さらに、補強部材が、例えばFRPのようにその材料特性が面内異方性を有する場合においては、補強部材モデル35の材料特性の面内異方性を与える主軸角度を与え、主軸角度に対応する材料特性の値を設定することで、補強部材モデル35の材料特性の面内異方性が設定される。また、補強部材が複数の層からなる場合においては、複数の層毎に主軸角度を設定することも可能である。 Furthermore, when the reinforcing member has an in-plane anisotropy in material characteristics such as FRP, for example, a principal axis angle that gives in-plane anisotropy of the material characteristics of the reinforcing member model 35 is given and corresponds to the principal axis angle. By setting the material property value to be set, the in-plane anisotropy of the material property of the reinforcing member model 35 is set. In addition, when the reinforcing member is composed of a plurality of layers, it is possible to set the main shaft angle for each of the plurality of layers.
≪最適化解析モデル生成ステップ≫
 最適化解析モデル生成ステップS7は、補強部材モデル生成ステップS3において生成した補強部材モデル35を車体モデル31の一部に結合して最適化解析モデル41を生成するものであり、図1に示す形状最適化装置1においては最適化解析モデル生成部19が行う。
≪Optimization analysis model generation step≫
The optimization analysis model generation step S7 combines the reinforcement member model 35 generated in the reinforcement member model generation step S3 with a part of the vehicle body model 31 to generate the optimization analysis model 41. The shape shown in FIG. In the optimization apparatus 1, the optimization analysis model generation unit 19 performs this.
≪最適化解析ステップ≫
 最適化解析ステップS9は、最適化解析モデル生成ステップS5において生成した最適化解析モデル41に解析条件を与え、補強部材モデル35を最適化の解析処理を行う対象として最適化解析を行い、補強部材モデル35の最適形状を求めるステップであり、図1に示す形状最適化装置1においては最適化解析部21が行う。
≪Optimization analysis step≫
In the optimization analysis step S9, an analysis condition is given to the optimization analysis model 41 generated in the optimization analysis model generation step S5, the optimization analysis is performed with the reinforcing member model 35 as an object to be analyzed, and the reinforcing member This is a step of obtaining the optimum shape of the model 35, and is performed by the optimization analysis unit 21 in the shape optimization device 1 shown in FIG.
 最適化解析モデル41に与える解析条件としては、最適化解析モデル41に荷重を付加する位置や拘束位置を与える荷重拘束条件(図4参照)と、最適化解析の目的に応じて設定する目的条件とがある。 The analysis conditions given to the optimization analysis model 41 include a load constraint condition (see FIG. 4) that gives a position to which the load is applied to the optimization analysis model 41 and a constraint position (see FIG. 4), and a target condition set according to the purpose of the optimization analysis. There is.
 最適化解析ステップS9における最適化解析には、トポロジー最適化を適用することができる。さらに、トポロジー最適化において密度法を適用する場合、要素のペナルティ係数を3以上に設定して離散化を行うようにすることが好ましい。もっとも、最適化解析ステップS9における最適化解析には、他の計算方式により最適化の解析処理を適用することができ、最適化の解析処理を行うものとしては、例えば市販されている有限要素を用いた解析ソフトを使用することができる。 Topology optimization can be applied to the optimization analysis in the optimization analysis step S9. Further, when applying the density method in topology optimization, it is preferable to set the penalty coefficient of the element to 3 or more to perform discretization. However, the optimization analysis process in the optimization analysis step S9 can be performed by an optimization analysis process using another calculation method. For example, a commercially available finite element can be used as the optimization analysis process. The analysis software used can be used.
 以上、本実施の形態に係る車体の補強部材の形状最適化方法及び形状最適化装置によれば、車体である構造体を補強する補強部材の最適な形状を精度よく求めることができる。さらに、最適な形状の補強部材を用いることで、構造体の軽量化を図ることが可能となる。最適な形状の補強部材を用いた構造体の軽量化については、後述する実施例において具体的に説明する。 As described above, according to the shape optimization method and shape optimization device for the reinforcing member of the vehicle body according to the present embodiment, the optimal shape of the reinforcing member that reinforces the structure that is the vehicle body can be obtained with high accuracy. Furthermore, it is possible to reduce the weight of the structure by using an optimally shaped reinforcing member. The weight reduction of the structure using the optimally shaped reinforcing member will be specifically described in the embodiments described later.
 なお、上記においては、車体のルーフを補強する補強部材の形状最適化を対象として説明したが、本発明で形状最適化の対象とする部位はこれに限るものではなく、例えば車体のドアパネル(door outer panel)、トランク(trunk)、フード(hood)、及びフェンダー(fender)等を補強する補強部材の形状最適化するものであってもよい。さらに、上記の説明は、構造体として自動車の車体を対象としたものであるが、本発明は構造体の種類を限定するものではない。また、本発明の適用例として、鋼板(steel sheet)からなる構造体に、樹脂、FRP(繊維強化樹脂、GFRP、CFRP等)、アルミニウム板、マグネシウム板、チタン板等を貼付する場合等が相当する。 In the above description, the shape optimization of the reinforcing member that reinforces the roof of the vehicle body has been described as an object. However, the portion to be optimized in the present invention is not limited to this, and for example, a door panel (door door of the vehicle body) The shape of the reinforcing member that reinforces the outer panel, trunk, hood, fender, and the like may be optimized. Furthermore, although the above description is directed to the body of an automobile as a structure, the present invention does not limit the type of structure. Further, as an application example of the present invention, a case where a resin, FRP (fiber reinforced resin, GFRP, CFRP, etc.), an aluminum plate, a magnesium plate, a titanium plate or the like is attached to a structure made of a steel sheet is suitable. To do.
 本発明の効果を確認するため、実施例1では、本発明に係る車体の補強部材の形状最適化方法及び形状最適化装置により、自動車の車体のルーフを補強する補強部材の最適な形状を求める実験を行ったので、以下、これについて説明する。 In order to confirm the effect of the present invention, in Example 1, the optimum shape of the reinforcing member that reinforces the roof of the automobile body is obtained by the shape optimizing method and the shape optimizing device for the reinforcing member of the car body according to the present invention. Since an experiment was conducted, this will be described below.
 実験においては、まず、図2に示す車体モデル31を取得した。車体モデル31は、いずれも平面要素及び/又は立体要素を用いて車体をモデル化したものであり、車体モデル31の材質は鋼板とし、補強部材モデル35の材質は樹脂として、その材料特性は以下の表1に示すように設定した。 In the experiment, first, a vehicle body model 31 shown in FIG. 2 was obtained. The vehicle body model 31 is obtained by modeling a vehicle body using plane elements and / or three-dimensional elements. The material of the vehicle body model 31 is a steel plate, the material of the reinforcing member model 35 is resin, and the material characteristics are as follows. Were set as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、図2(b)に示す補強部材モデル35を生成し、補強部材モデル35の材料特性を設定した。補強部材モデル35は、図3に示すように、ルーフ部33の下面から下方に向かって立体要素35aを積み重ねるように生成した。ここで、補強部材モデル35の厚みは10mmに設定した。なお、車体モデル31のルーフ部33はシェルモデル(shell model)(平面要素)とした。さらに、補強部材モデル35の材料は樹脂とし、その材料特性として表1に示すヤング率、ポアソン比、及び比重の値を設定した。 Next, the reinforcing member model 35 shown in FIG. 2B was generated, and the material characteristics of the reinforcing member model 35 were set. As shown in FIG. 3, the reinforcing member model 35 is generated so that the three-dimensional elements 35 a are stacked from the lower surface of the roof portion 33 downward. Here, the thickness of the reinforcing member model 35 was set to 10 mm. The roof portion 33 of the vehicle body model 31 is a shell model (planar element). Further, the material of the reinforcing member model 35 is resin, and the Young's modulus, Poisson's ratio, and specific gravity values shown in Table 1 are set as the material characteristics.
 そして、材料特性を設定した補強部材モデル35を図3に示すように車体モデル31のルーフ部33の下面に結合し、図2に示す最適化解析モデル41を生成した。補強部材モデル35とルーフ部33との結合は、補強部材モデル35の立体要素35aとルーフ部33の平面要素33aそれぞれのノード(節点)を共有させることにより行った。 Then, the reinforcing member model 35 in which the material characteristics are set is coupled to the lower surface of the roof portion 33 of the vehicle body model 31 as shown in FIG. 3, and the optimization analysis model 41 shown in FIG. 2 is generated. The reinforcing member model 35 and the roof portion 33 are coupled by sharing the nodes (nodes) of the three-dimensional element 35 a of the reinforcing member model 35 and the planar element 33 a of the roof portion 33.
 最後に、生成した最適化解析モデル41に解析条件を与えてトポロジー最適化解析(topology optimization analysis)を実行し、補強部材モデル35の最適な形状を求めた。解析条件としては、図4に示す荷重拘束条件を与え、目的条件をひずみエネルギー総和の最小化、制約条件を体積制約率20%以下とした。図4に示す荷重拘束条件は、車体モデル31の4箇所のジャッキアップ設置部(図4中の△印)を完全拘束とし、ルーフ部33の上面の節点に対して車体高さ方向下向きに500Nの分布荷重を与えるものである。ここで、分布荷重を与えたルーフ部33の節点数は24248個とした。 Finally, an analysis condition was given to the generated optimization analysis model 41 and a topology optimization analysis (topology optimization analysis) was performed to obtain an optimal shape of the reinforcing member model 35. As the analysis conditions, the load constraint condition shown in FIG. 4 was given, the objective condition was minimized the total strain energy, and the constraint condition was 20% or less of the volume constraint rate. The load restraint condition shown in FIG. 4 is that the four jack-up installation portions (Δ marks in FIG. 4) of the vehicle body model 31 are completely restrained, and 500 N downward from the node on the upper surface of the roof portion 33 in the vehicle body height direction. The distributed load is given. Here, the number of nodes of the roof portion 33 to which the distributed load was applied was 24248.
 最適化解析により得られた最適形状補強部材モデル43の結果を図5に、図4に示す荷重拘束条件を車体モデル31に与えたときの車体高さ方向の車体変位の解析結果を図7に示す。 FIG. 5 shows the result of the optimum shape reinforcing member model 43 obtained by the optimization analysis, and FIG. 7 shows the analysis result of the vehicle body displacement in the vehicle body height direction when the load restraint condition shown in FIG. Show.
 図7より、ルーフ部33の中央部(図7中の破線楕円で囲った部位)に比べて、ルーフ部33の前端部81及び後端部83における変位が大きいことがわかる。図5及び図7の結果から、最適化解析の過程において、車体変位が少ない部位には立体要素35aは残存せず、車体変位が大きい部位を支持するように立体要素35aが残存し、その結果、最適形状補強部材モデル43は、図5(b)中に破線で示すように、車体の前端部及び後端部において車体幅方向に延在して車体左右のサイドレール部(side rail)37をつなぐブリッジ(bridge)形状と、ブリッジ形状とサイドレール部37とをつなぐL字形状を有するものになった。 7 that the displacement at the front end portion 81 and the rear end portion 83 of the roof portion 33 is larger than the central portion of the roof portion 33 (the portion surrounded by the dashed ellipse in FIG. 7). From the results of FIGS. 5 and 7, in the process of optimization analysis, the three-dimensional element 35a does not remain in the part where the vehicle body displacement is small, and the solid element 35a remains so as to support the part where the vehicle body displacement is large. The optimum shape reinforcing member model 43 extends in the vehicle body width direction at the front end portion and the rear end portion of the vehicle body as shown by broken lines in FIG. A bridge shape connecting the bridge shape and an L shape connecting the bridge shape and the side rail portion 37 are provided.
 図8に、最適形状補強部材モデル43の前部(図8(b)中のA-A断面)及び中央部(図8(b)中のB-B断面)における断面形状を示す。 FIG. 8 shows a cross-sectional shape at the front part (AA cross section in FIG. 8B) and the central part (BB cross section in FIG. 8B) of the optimum shape reinforcing member model 43.
 最適形状補強部材モデル43は、その前部では、図8(a)に示すように厚み方向において室外側の立体要素が残存した形状であるのに対し、中央部では、図8(c)に示すように厚み方向において室外側の立体要素が消去され、室内側の立体要素が残存した形状となっている。 The optimum shape reinforcing member model 43 has a shape in which the three-dimensional elements on the outdoor side remain in the thickness direction as shown in FIG. As shown, the outdoor three-dimensional element is erased in the thickness direction, and the indoor solid element remains.
 最適形状補強部材モデル43の前部と中央部とで、その厚み方向の形状が異なった理由としては、ルーフ部33は車体モデル31のサイドレール部37とつながっており、ルーフ部33の拘束状態がピラー39(図8(b)参照)の位置によって変わるため、最適化解析において補強部材モデル35の厚み方向に発生する応力分布の差異に起因することが考えられる。 The reason why the shape in the thickness direction is different between the front portion and the center portion of the optimum shape reinforcing member model 43 is that the roof portion 33 is connected to the side rail portion 37 of the vehicle body model 31 and the roof portion 33 is restrained. Since this varies depending on the position of the pillar 39 (see FIG. 8B), it may be caused by a difference in stress distribution generated in the thickness direction of the reinforcing member model 35 in the optimization analysis.
 図9に、最適化解析を行う前の最適化解析モデル41に図4に示す荷重拘束条件を与えたときの補強部材モデル35の応力分布の解析結果を示す。 FIG. 9 shows the analysis result of the stress distribution of the reinforcing member model 35 when the load constraint condition shown in FIG. 4 is given to the optimization analysis model 41 before performing the optimization analysis.
 補強部材モデル35の中央部は、ピラー(pillar)39(図8(b)参照)の近傍であるため、図9(d-2)に示すような固定端の梁モードに近い応力分布となるのに対し、補強部材モデル35の前部は、ピラー39から離れた位置であるため、図9(d-1)に示すような応力分布となる。そして、このような厚み方向における応力分布の違いにより、最適化解析において立体要素が残存する部位に差異が生じたと考えられる。 Since the central portion of the reinforcing member model 35 is in the vicinity of the pillar 39 (see FIG. 8B), the stress distribution is close to the beam mode of the fixed end as shown in FIG. 9D-2. On the other hand, since the front part of the reinforcing member model 35 is located away from the pillar 39, the stress distribution as shown in FIG. And it is thought that the difference generate | occur | produced in the site | part in which a solid element remains in optimization analysis by the difference in the stress distribution in the thickness direction.
 以上より、本発明に係る車体の補強部材の形状最適化方法及び形状最適化装置により、車体を補強する補強部材の最適な形状を精度よく求めることができることが示された。 From the above, it has been shown that the optimum shape of the reinforcing member for reinforcing the vehicle body can be obtained with high accuracy by the shape optimization method and the shape optimizing device for the reinforcing member of the vehicle body according to the present invention.
 実施例2では、本発明により形状最適化した補強部材を用いて車体の軽量化を検討する実験を行ったので、以下、これについて説明する。 In Example 2, an experiment was conducted to examine the weight reduction of the vehicle body using the reinforcing member optimized in shape according to the present invention. This will be described below.
 実験では、本発明に係る車体の補強部材の形状最適化方法及び形状最適化装置により求めた最適形状補強部材モデルを用い、図10に示すような、車体左右のサイドレール部57をつなぐルーフリンフォース55をルーフ部53の下面に配設した車体モデル51を対象として、車体の軽量化を検討した。 In the experiment, the roofline connecting the left and right side rail parts 57 as shown in FIG. 10 using the optimum shape reinforcing member model obtained by the shape optimizing method and the shape optimizing device for the reinforcing member of the car body according to the present invention. The weight reduction of the vehicle body was examined for the vehicle body model 51 in which the force 55 is disposed on the lower surface of the roof portion 53.
 まず、車体モデル51からルーフリンフォース55を除去した車体モデル61を対象とし、本実施の形態に係る形状最適化装置1又は形状最適化方法により、図10(c)に示す最適形状補強部材モデル65を求め、最適形状補強部材モデル65を車体モデル61のルーフ部63に結合して軽量化解析モデル(図5(a)に示す最適化解析を実行した後の最適化解析モデル41に相当)を生成する。ここで、最適形状補強部材モデル65は、前述の実施例1で用いた最適化解析と同一の解析条件を与えて求めたものであり、その重量は5.3kgであった。 First, an optimal shape reinforcing member model shown in FIG. 10 (c) is targeted for the vehicle body model 61 from which the roof reinforcement 55 is removed from the vehicle body model 51, using the shape optimization device 1 or the shape optimization method according to the present embodiment. 65, and the optimum shape reinforcing member model 65 is coupled to the roof portion 63 of the vehicle body model 61 to reduce the weight analysis model (corresponding to the optimization analysis model 41 after performing the optimization analysis shown in FIG. 5A). Is generated. Here, the optimum shape reinforcing member model 65 was obtained by giving the same analysis conditions as the optimization analysis used in Example 1 described above, and its weight was 5.3 kg.
 次に、ルーフリンフォース55を有する車体モデル51(図10(a)参照)に、図4に示す荷重拘束条件を与えて構造解析(structural analysis)を行い、性能維持の目標となる車体特性の目標値を取得した。本実施例では、車体特性としてはルーフ部53における車体高さ方向の最大変位を用いた。 Next, the vehicle body model 51 having the roof reinforcement 55 (see FIG. 10A) is subjected to the structural analysis by giving the load constraint condition shown in FIG. The target value was acquired. In this embodiment, the maximum displacement in the vehicle body height direction at the roof 53 is used as the vehicle body characteristic.
 同様に、最適形状補強部材モデル65を結合した軽量化解析モデルについても、図4に示す荷重拘束条件を与えて構造解析を行い、軽量化解析モデルに係る車体特性の解析値として、ルーフ部63(図10(b)参照)における車体高さ方向の最大変位を取得した。 Similarly, with respect to the weight reduction analysis model combined with the optimum shape reinforcing member model 65, the structural analysis is performed by giving the load constraint condition shown in FIG. The maximum displacement in the vehicle body height direction in (see FIG. 10B) was obtained.
 さらに、軽量化解析モデルのルーフ部63における最大変位(解析値)と、車体モデル51のルーフ部53における最大変位(目標値)とを比較し、軽量化最適化モデルの最大変位が車体モデル51の最大変位よりも小さい場合、軽量化解析モデルのルーフ部63の板厚をさらに減少して構造解析を行い、ルーフ部63の最大変位を車体特性の解析値として再び取得した。 Further, the maximum displacement (analytical value) in the roof portion 63 of the light weight analysis model is compared with the maximum displacement (target value) in the roof portion 53 of the vehicle body model 51, and the maximum displacement of the light weight optimization model is the vehicle body model 51. When the displacement is smaller than the maximum displacement, the structural analysis is performed by further reducing the plate thickness of the roof portion 63 of the weight reduction analysis model, and the maximum displacement of the roof portion 63 is obtained again as the analysis value of the vehicle body characteristics.
 このように、軽量化解析モデルの最大変位が車体モデル51の最大変位と等しく(等価剛性(equivalent stiffness))なるまで、軽量化解析モデルのルーフ部63の板厚を減少してルーフ部63の最大変位を取得した。 As described above, the thickness of the roof portion 63 of the light weight analysis model is reduced until the maximum displacement of the light weight analysis model becomes equal to the maximum displacement of the vehicle body model 51 (equivalent stiffness). The maximum displacement was obtained.
 図11に、ルーフ部63の板厚とその重量との関係と、ルーフ部63の板厚と車体の変化重量との関係を示す。 FIG. 11 shows the relationship between the plate thickness of the roof portion 63 and its weight, and the relationship between the plate thickness of the roof portion 63 and the weight change of the vehicle body.
 図11(b)に示す車体の変化重量は、ルーフリンフォース55が設けられ、且つ、ルーフ部53の板厚が1.2mmである車体モデル51の重量を基準とし、ルーフ部63の板厚が変化したときの軽量化解析モデルの変化重量であり、最適形状補強部材モデル65の重量からルーフリンフォース55の重量とルーフ部63の板厚減少によって変化した重量とを減じたものである。 The change weight of the vehicle body shown in FIG. 11B is based on the weight of the vehicle body model 51 in which the roof reinforcement 55 is provided and the roof portion 53 has a plate thickness of 1.2 mm. Is a change weight of the weight reduction analysis model when the change is made, and is obtained by subtracting the weight of the roof reinforcement 55 from the weight of the optimum shape reinforcing member model 65 and the weight changed by the reduction in the plate thickness of the roof portion 63.
 例えば、ルーフ部63が初期板厚1.2mmの場合における車体の変化重量は、ルーフ部63の板厚減少によって変化する重量が0kgであるため、最適形状補強部材モデル65の重量(=5.3kg)からルーフリンフォース55の重量(=1.7kg)を減じた値(5.3kg-1.7kg=+3.6kg)となる。 For example, when the roof portion 63 has an initial plate thickness of 1.2 mm, the weight change of the vehicle body due to the reduction in the plate thickness of the roof portion 63 is 0 kg, so the weight of the optimum shape reinforcing member model 65 (= 5. 3 kg) is obtained by subtracting the weight of the roof reinforcement 55 (= 1.7 kg) (5.3 kg−1.7 kg = + 3.6 kg).
 実施例2で対象とした軽量化解析モデルのルーフ部63は、初期の板厚が1.2mm、重量が15.6kgであり、図11(a)に示すように、ルーフ部63の重量は、その板厚との相関係数(correlation coefficient)RがR=1となることから、その板厚の減少と共に直線的に減少する。 The roof portion 63 of the weight reduction analysis model targeted in Example 2 has an initial plate thickness of 1.2 mm and a weight of 15.6 kg. As shown in FIG. Since the correlation coefficient R with the plate thickness is R 2 = 1, it decreases linearly as the plate thickness decreases.
 そして、図11(b)に示すように、ルーフ部63の板厚減少に伴って車体の変化重量は減少し、ルーフ部63の板厚が0.93mmのとき、車体の変化重量は0kgとなる。すなわち、ルーフ部63の板厚を0.93mm以下に減少することにより、軽量化解析モデルは車体モデル51よりも軽量化できることがわかる。 As shown in FIG. 11 (b), the weight change of the vehicle body decreases as the plate thickness of the roof portion 63 decreases, and when the plate thickness of the roof portion 63 is 0.93 mm, the weight change of the vehicle body is 0 kg. Become. That is, it can be seen that the weight reduction analysis model can be made lighter than the vehicle body model 51 by reducing the thickness of the roof portion 63 to 0.93 mm or less.
 図12に、ルーフ部63の板厚を変更したときの軽量化解析モデルの剛性向上率を示す。ここで、剛性向上率は、ルーフリンフォース55が設けられている車体モデル51の剛性と、最適形状補強部材モデル65を結合した軽量化解析モデルの剛性との比であり、車体モデル51及び軽量化解析モデルの剛性は、ルーフ部53及びルーフ部63それぞれに与えられた荷重の総和を最大変位で除した値である。 FIG. 12 shows the rigidity improvement rate of the weight reduction analysis model when the thickness of the roof portion 63 is changed. Here, the rigidity improvement rate is a ratio between the rigidity of the vehicle body model 51 provided with the roof reinforcement 55 and the rigidity of the light weight analysis model combined with the optimum shape reinforcing member model 65. The rigidity of the chemical analysis model is a value obtained by dividing the total load applied to the roof portion 53 and the roof portion 63 by the maximum displacement.
 図12より、ルーフ部63が初期板厚1.2mmであるとき、軽量化解析モデルの剛性は、車体モデル51に比べて約33%高い値である。そして、ルーフ部63の板厚を減少させると、軽量化解析モデルの剛性向上率は減少し、板厚0.53mmのときに剛性向上率はほぼ0%、すなわち、ルーフリンフォース55を有する車体モデル51の剛性とほぼ等しくなる(等価剛性)。 12, when the roof portion 63 has an initial plate thickness of 1.2 mm, the rigidity of the weight reduction analysis model is about 33% higher than that of the vehicle body model 51. When the plate thickness of the roof portion 63 is reduced, the rigidity improvement rate of the weight reduction analysis model is reduced. When the plate thickness is 0.53 mm, the rigidity improvement rate is almost 0%, that is, the vehicle body having the roof reinforcement 55. It becomes almost equal to the rigidity of the model 51 (equivalent rigidity).
 図13に、車体モデル51(最適形状補強部材モデル65(図10(c)参照)なし)と、ルーフ部63に最適形状補強部材モデル65を結合した軽量化解析モデル71(ルーフ部63の板厚1.2mm及び0.53mm)とにおける車体変位の解析結果を示す。 FIG. 13 shows a vehicle body model 51 (without an optimum shape reinforcing member model 65 (see FIG. 10C)) and a weight reduction analysis model 71 (the plate of the roof portion 63) in which the optimum shape reinforcing member model 65 is coupled to the roof portion 63. Analysis results of vehicle body displacement at thicknesses of 1.2 mm and 0.53 mm) are shown.
 軽量化解析モデル71のルーフ部63の板厚が1.2mmの場合(図13(b)参照)、軽量化解析モデル71の車体変位は、車体モデル51の車体変位に比べて全体的に小さく、ルーフ部63における最大変位(-0.21mm)は、車体モデル51のルーフ部53における最大変位(-0.28mm)よりも小さい値である。 When the plate thickness of the roof portion 63 of the lightening analysis model 71 is 1.2 mm (see FIG. 13B), the vehicle body displacement of the lightening analysis model 71 is generally smaller than the vehicle body displacement of the vehicle body model 51. The maximum displacement (−0.21 mm) in the roof portion 63 is a value smaller than the maximum displacement (−0.28 mm) in the roof portion 53 of the vehicle body model 51.
 一方、軽量化解析モデル71のルーフ部63の板厚が0.53mmの場合(図13(c)参照)、ルーフ部63における最大変位(-0.28mm)を示す部位は、車体モデル51のルーフ部53における最大変位(-0.28mm)を示す部位と異なっているものの、両者の最大変位は等しい値である。 On the other hand, when the plate thickness of the roof portion 63 of the weight reduction analysis model 71 is 0.53 mm (see FIG. 13C), the portion showing the maximum displacement (−0.28 mm) in the roof portion 63 is the body model 51. Although different from the portion showing the maximum displacement (−0.28 mm) in the roof portion 53, the maximum displacement of both is equal.
 よって、図11~図13の結果から、ルーフリンフォース55の替わりに最適形状補強部材モデル65を用いた場合、ルーフ部63の板厚を1.2mmから0.53mmに減少することで、図11(b)の点線矢印から、ルーフ部63の板厚0.53mmは車体の変化重量-5.2kgに対応することから、ルーフリンフォース55が設けられている車体モデル51と同等の剛性を保ったまま、ルーフリンフォース55の削減とルーフ部63の板厚減少によって車体重量を5.2kg軽量化できることが示された。 Therefore, from the results of FIGS. 11 to 13, when the optimum shape reinforcing member model 65 is used instead of the roof reinforcement 55, the thickness of the roof portion 63 is reduced from 1.2 mm to 0.53 mm. 11 (b) indicates that the thickness of the roof portion 63 of 0.53 mm corresponds to the change weight of the vehicle body of -5.2 kg. Therefore, the rigidity equivalent to that of the vehicle body model 51 provided with the roof reinforcement 55 is obtained. It was shown that the weight of the vehicle body can be reduced by 5.2 kg by reducing the roof reinforcement 55 and reducing the plate thickness of the roof portion 63 while keeping the same.
 以上、本発明に係る車体の補強部材の形状最適化方法及び形状最適化装置により、車体を補強する補強部材の最適な形状を求め、最適形状の補強部材を車体に結合することで、車体の性能を維持したまま車体を軽量化できることが実証された。 As described above, the optimal shape of the reinforcing member that reinforces the vehicle body is obtained by the shape optimization method and the shape optimization device of the reinforcing member of the vehicle body according to the present invention, and the optimally shaped reinforcing member is coupled to the vehicle body. It was proved that the weight of the car body can be reduced while maintaining the performance.
 本発明によれば、車体である構造体の一部に構造体と異なる材料特性の補強部材を結合して構造体を補強するに際し、補強部材の最適な形状を求めることが可能な車体の補強部材の形状最適化方法及び形状最適化装置を提供することができる。 According to the present invention, when a reinforcing member having a material characteristic different from that of a structural body is coupled to a part of the structural body that is a vehicle body to reinforce the structural body, it is possible to obtain the optimal shape of the reinforcing member. A member shape optimization method and a shape optimization device can be provided.
 1 形状最適化装置
 3 表示装置
 5 入力装置
 7 記憶装置
 9 作業用データメモリ
 11 演算処理部
 13 構造体モデル取得部
 15 補強部材モデル生成部
 17 材料特性設定部
 19 最適化解析モデル生成部
 21 最適化解析部
 23 構造体モデルファイル
 31 車体モデル
 33 ルーフ部
 33a 平面要素
 35 補強部材モデル
 35a 立体要素
 37 サイドレール部
 39 ピラー
 41 最適化解析モデル
 43 最適形状補強部材モデル
 51 車体モデル
 53 ルーフ部
 55 ルーフリンフォース
 57 サイドレール部
 61 車体モデル
 63 ルーフ部
 65 最適形状補強部材モデル
 71 軽量化解析モデル
 81 前端部
 83 後端部
DESCRIPTION OF SYMBOLS 1 Shape optimization apparatus 3 Display apparatus 5 Input apparatus 7 Memory | storage device 9 Work data memory 11 Arithmetic processing part 13 Structure model acquisition part 15 Reinforcement member model generation part 17 Material characteristic setting part 19 Optimization analysis model generation part 21 Optimization Analysis unit 23 Structure model file 31 Car body model 33 Roof part 33a Plane element 35 Reinforcement member model 35a Solid element 37 Side rail part 39 Pillar 41 Optimization analysis model 43 Optimal shape reinforcement member model 51 Car body model 53 Roof part 55 Roof reinforcement 57 Side rail part 61 Car body model 63 Roof part 65 Optimal shape reinforcing member model 71 Lightweight analysis model 81 Front end part 83 Rear end part

Claims (8)

  1.  車体である構造体の一部に結合する該構造体と材料特性の異なる補強部材の最適な形状を求める車体の補強部材の形状最適化方法であり、コンピュータが以下の各ステップを行うものであって、
     平面要素及び/又は立体要素を用いて前記構造体をモデル化した構造体モデルを取得する構造体モデル取得ステップと、
     立体要素からなり前記構造体モデルの一部と結合する前記構造体とは別の補強部材モデルを生成する補強部材モデル生成ステップと、
     該補強部材モデルの材料特性を設定する材料特性設定ステップと、
     前記補強部材モデルを前記構造体モデルの一部に結合して最適化解析モデルを生成する最適化解析モデル生成ステップと、
     該生成した最適化解析モデルに解析条件を与え、前記補強部材モデルを最適化の解析対象として最適化解析を行い、前記補強部材モデルの最適な形状を求める最適化解析ステップと、
     を含むことを特徴とする車体の補強部材の形状最適化方法。
    This is a method for optimizing the shape of a reinforcing member of a vehicle body that obtains the optimal shape of the reinforcing member having different material characteristics from that of the structural body that is coupled to a part of the structure that is a vehicle body. The computer performs the following steps. And
    A structure model acquisition step of acquiring a structure model obtained by modeling the structure using a planar element and / or a three-dimensional element;
    A reinforcing member model generating step for generating a reinforcing member model different from the structure that is composed of a three-dimensional element and is coupled to a part of the structure model;
    A material property setting step for setting material properties of the reinforcing member model;
    An optimization analysis model generation step of generating an optimization analysis model by combining the reinforcing member model with a part of the structure model;
    An analysis condition is given to the generated optimization analysis model, an optimization analysis is performed with the reinforcing member model as an optimization analysis target, and an optimal analysis step for obtaining an optimal shape of the reinforcing member model;
    A method for optimizing the shape of a reinforcing member for a vehicle body, comprising:
  2.  前記材料特性設定ステップは、前記補強部材モデルの材料特性として、ヤング率、ポアソン比、及び比重を設定することを特徴とする請求項1に記載の車体の補強部材の形状最適化方法。 The method for optimizing the shape of a reinforcing member for a vehicle body according to claim 1, wherein the material property setting step sets Young's modulus, Poisson's ratio, and specific gravity as material properties of the reinforcing member model.
  3.  前記材料特性設定ステップは、前記補強部材モデルの材料特性の面内異方性を与える主軸角度を与え、該主軸角度に対応する前記材料特性の値を設定し、複数の層からなる場合は、それぞれの主軸角度を持つ層を重ね合わせることを特徴とする請求項1又は2に記載の車体の補強部材の形状最適化方法。 The material property setting step gives a principal axis angle that gives in-plane anisotropy of the material property of the reinforcing member model, sets a value of the material property corresponding to the principal axis angle, and consists of a plurality of layers. The method for optimizing the shape of a reinforcing member for a vehicle body according to claim 1 or 2, wherein layers having respective principal axis angles are overlapped.
  4.  前記最適化解析ステップは、トポロジー最適化による解析処理を行うことを特徴とする請求項1乃至3のいずれか一項に記載の車体の補強部材の形状最適化方法。 4. The method for optimizing a shape of a reinforcing member for a vehicle body according to claim 1, wherein the optimization analysis step performs an analysis process by topology optimization.
  5.  車体である構造体の一部に結合する該構造体と材料特性の異なる補強部材の最適な形状を求める車体の補強部材の形状最適化装置であって、
     平面要素及び/又は立体要素を用いて前記構造体をモデル化した構造体モデルを取得する構造体モデル取得部と、
     立体要素からなり前記構造体モデルの一部と結合する前記構造体とは別の補強部材モデルを生成する補強部材モデル生成部と、
     該補強部材モデルの材料特性を設定する材料特性設定部と、
     前記補強部材モデルを前記構造体モデルの一部に結合して最適化解析モデルを生成する最適化解析モデル生成部と、
     該生成した最適化解析モデルに解析条件を与え、前記補強部材モデルを最適化の解析対象として最適化解析を行い、前記補強部材モデルの最適な形状を求める最適化解析部と、
     を備えることを特徴とする車体の補強部材の形状最適化装置。
    A shape optimization device for a reinforcing member of a vehicle body for obtaining an optimal shape of a reinforcing member having a material characteristic different from that of the structure coupled to a part of the structure that is a vehicle body,
    A structure model acquisition unit that acquires a structure model obtained by modeling the structure using a planar element and / or a three-dimensional element;
    A reinforcing member model generating unit that generates a reinforcing member model different from the structure that is composed of a three-dimensional element and is coupled to a part of the structure model;
    A material property setting unit for setting material properties of the reinforcing member model;
    An optimization analysis model generation unit that generates an optimization analysis model by combining the reinforcing member model with a part of the structure model;
    An analysis condition is given to the generated optimization analysis model, an optimization analysis is performed with the reinforcing member model as an optimization analysis target, and an optimal analysis unit for obtaining an optimal shape of the reinforcing member model;
    An apparatus for optimizing the shape of a reinforcing member for a vehicle body, comprising:
  6.  前記材料特性設定部は、前記補強部材モデルの材料特性として、ヤング率、ポアソン比、及び比重を設定することを特徴とする請求項5に記載の車体の補強部材の形状最適化装置。 6. The shape optimization device for a reinforcing member of a vehicle body according to claim 5, wherein the material property setting unit sets Young's modulus, Poisson's ratio and specific gravity as material properties of the reinforcing member model.
  7.  前記材料特性設定部は、前記補強部材モデルの材料特性の面内異方性を与える主軸角度を与え、該主軸角度に対応する前記材料特性の値を設定し、複数の層からなる場合は、それぞれの主軸角度を持つ層を重ね合わせることを特徴とする請求項5又は6に記載の車体の補強部材の形状最適化装置。 The material property setting unit provides a principal axis angle that gives in-plane anisotropy of the material property of the reinforcing member model, sets a value of the material property corresponding to the principal axis angle, and includes a plurality of layers. The shape optimization device for a reinforcing member of a vehicle body according to claim 5 or 6, wherein layers having respective principal axis angles are overlapped.
  8.  前記最適化解析部は、トポロジー最適化による解析処理を行うことを特徴とする請求項5乃至7のいずれか一項に記載の車体の補強部材の形状最適化装置。 The shape optimization device for a reinforcing member of a vehicle body according to any one of claims 5 to 7, wherein the optimization analysis unit performs analysis processing by topology optimization.
PCT/JP2017/042711 2017-02-24 2017-11-29 Shape optimization method and shape optimization device for automotive body reinforcement WO2018154896A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780084167.2A CN110226161B (en) 2017-02-24 2017-11-29 Shape optimizing method and shape optimizing device for vehicle body reinforcing member
KR1020197018470A KR102271649B1 (en) 2017-02-24 2017-11-29 Shape optimization method and shape optimization device of reinforcing member of vehicle body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-033046 2017-02-24
JP2017033046A JP6583309B2 (en) 2017-02-24 2017-02-24 Method and apparatus for optimizing shape of reinforcing member of vehicle body

Publications (1)

Publication Number Publication Date
WO2018154896A1 true WO2018154896A1 (en) 2018-08-30

Family

ID=63253210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042711 WO2018154896A1 (en) 2017-02-24 2017-11-29 Shape optimization method and shape optimization device for automotive body reinforcement

Country Status (4)

Country Link
JP (1) JP6583309B2 (en)
KR (1) KR102271649B1 (en)
CN (1) CN110226161B (en)
WO (1) WO2018154896A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111143944A (en) * 2019-12-25 2020-05-12 中国航空工业集团公司西安飞机设计研究所 Wing beam rigidity configuration method of double-beam wing
CN111324980A (en) * 2020-01-21 2020-06-23 重庆长安汽车股份有限公司 Lightweight hierarchical optimization design method for automobile structure
CN112100747A (en) * 2020-09-21 2020-12-18 湖南大学 Vehicle body framework topology optimization method, device, equipment and medium
CN113312701A (en) * 2021-04-30 2021-08-27 中铝材料应用研究院有限公司 Method for designing all-aluminum passenger car body door upright post structure based on topology and size optimization
CN115092290A (en) * 2022-06-23 2022-09-23 江铃汽车股份有限公司 New energy automobile rear overhang automobile body design method and automobile body structure based on method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6614301B1 (en) * 2018-09-14 2019-12-04 Jfeスチール株式会社 Method and apparatus for optimization of vibration characteristics of vehicle body
JP6922877B2 (en) * 2018-11-09 2021-08-18 Jfeスチール株式会社 Automobile subframe structure
JP7344029B2 (en) * 2019-07-19 2023-09-13 株式会社Subaru Mobile body structure and method for manufacturing the mobile body structure
JP6798595B1 (en) * 2019-09-19 2020-12-09 Jfeスチール株式会社 Vibration noise reduction analysis method and analysis equipment for automobile panel parts

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128273A (en) * 1980-03-11 1981-10-07 Dainippon Ink & Chem Inc Reinforcing method for outer metallic plate of automobile
JPS57121974A (en) * 1980-12-26 1982-07-29 Dainippon Ink & Chem Inc Reinforcing method of car body for automobile
JP2005222178A (en) * 2004-02-03 2005-08-18 Toyota Central Res & Dev Lab Inc Optimum design device for structure, and program
JP2010067022A (en) * 2008-09-11 2010-03-25 Toyota Central R&D Labs Inc Method for designing structure, and program
JP2013025533A (en) * 2011-07-20 2013-02-04 Jfe Steel Corp Shape optimization analysis method and device
WO2014119167A1 (en) * 2013-02-01 2014-08-07 Jfeスチール株式会社 Method and device for analysis of shape optimization
JP2016124436A (en) * 2015-01-05 2016-07-11 マツダ株式会社 Vehicle floor undercover

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2559307Y2 (en) * 1993-06-21 1998-01-14 池田物産株式会社 Automotive molded ceiling
KR20040006286A (en) * 2002-07-11 2004-01-24 현대자동차주식회사 Panel bids design method in vehicle
US8126684B2 (en) 2009-04-10 2012-02-28 Livermore Software Technology Corporation Topology optimization for designing engineering product
JP2013097521A (en) * 2011-10-31 2013-05-20 Toray Ind Inc Strength analysis method for composite material
WO2014073018A1 (en) * 2012-11-06 2014-05-15 Jfeスチール株式会社 Method and apparatus for optimization analysis of bonding positions on structure
JP2014233999A (en) * 2013-05-31 2014-12-15 本田技研工業株式会社 Vehicle body manufacturing method
JP6235375B2 (en) * 2014-02-27 2017-11-22 本田技研工業株式会社 Auto body structure
JP6235384B2 (en) * 2014-03-18 2017-11-22 本田技研工業株式会社 Auto body structure
WO2016129360A1 (en) * 2015-02-12 2016-08-18 本田技研工業株式会社 Resin-reinforced metal component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128273A (en) * 1980-03-11 1981-10-07 Dainippon Ink & Chem Inc Reinforcing method for outer metallic plate of automobile
JPS57121974A (en) * 1980-12-26 1982-07-29 Dainippon Ink & Chem Inc Reinforcing method of car body for automobile
JP2005222178A (en) * 2004-02-03 2005-08-18 Toyota Central Res & Dev Lab Inc Optimum design device for structure, and program
JP2010067022A (en) * 2008-09-11 2010-03-25 Toyota Central R&D Labs Inc Method for designing structure, and program
JP2013025533A (en) * 2011-07-20 2013-02-04 Jfe Steel Corp Shape optimization analysis method and device
WO2014119167A1 (en) * 2013-02-01 2014-08-07 Jfeスチール株式会社 Method and device for analysis of shape optimization
JP2016124436A (en) * 2015-01-05 2016-07-11 マツダ株式会社 Vehicle floor undercover

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111143944A (en) * 2019-12-25 2020-05-12 中国航空工业集团公司西安飞机设计研究所 Wing beam rigidity configuration method of double-beam wing
CN111143944B (en) * 2019-12-25 2023-09-05 中国航空工业集团公司西安飞机设计研究所 Wing beam rigidity configuration method of double-beam wing
CN111324980A (en) * 2020-01-21 2020-06-23 重庆长安汽车股份有限公司 Lightweight hierarchical optimization design method for automobile structure
CN111324980B (en) * 2020-01-21 2022-08-09 重庆长安汽车股份有限公司 Lightweight hierarchical optimization design method for automobile structure
CN112100747A (en) * 2020-09-21 2020-12-18 湖南大学 Vehicle body framework topology optimization method, device, equipment and medium
CN112100747B (en) * 2020-09-21 2022-11-01 湖南大学 Vehicle body framework topology optimization method, device, equipment and medium
CN113312701A (en) * 2021-04-30 2021-08-27 中铝材料应用研究院有限公司 Method for designing all-aluminum passenger car body door upright post structure based on topology and size optimization
CN113312701B (en) * 2021-04-30 2024-03-19 中铝材料应用研究院有限公司 Topology and size optimization-based all-aluminum passenger car body door column structure design method
CN115092290A (en) * 2022-06-23 2022-09-23 江铃汽车股份有限公司 New energy automobile rear overhang automobile body design method and automobile body structure based on method

Also Published As

Publication number Publication date
KR20190085126A (en) 2019-07-17
KR102271649B1 (en) 2021-06-30
CN110226161B (en) 2023-06-06
JP2018139029A (en) 2018-09-06
CN110226161A (en) 2019-09-10
JP6583309B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
WO2018154896A1 (en) Shape optimization method and shape optimization device for automotive body reinforcement
EP3699786A1 (en) Layered composite member shape optimization analyzing method and shape optimization analyzing device
US10169497B2 (en) Method and apparatus for analysis of shape optimization
US10073928B2 (en) Method and device for analysis of shape optimization
KR102473091B1 (en) Method and apparatus for analyzing sensitivity of automotive body parts and method for determining material property of automotive body parts
JP6614301B1 (en) Method and apparatus for optimization of vibration characteristics of vehicle body
WO2014073017A1 (en) Shape optimization analyzing method and apparatus therefor
JP5810702B2 (en) Shape optimization analysis method and apparatus
Fiebig et al. Future challenges for topology optimization for the usage in automotive lightweight design technologies
EP4148408A1 (en) Automotive-body-adhesion-position optimization-analysis method and device
JP5440415B2 (en) Structure design support device
JP2019128868A (en) Shape optimization analysis method for stiffening member of car body component and device therefor
Shojaeefard et al. Investigation on the optimal simplified model of BIW structure using FEM
Kim et al. Development of a lightweight frame for a 40-foot flatbed trailer by using CAE-based structural optimization
JP6414138B2 (en) Body design support apparatus and method
Marzuki et al. Design optimization of automotive component through numerical investigation for additive manufacturing
WO2022163021A1 (en) Method and device for determining dividing position and integration of automotive component
JP6387661B2 (en) Structure evaluation method, apparatus, program, and computer-readable storage medium
Koca Design, analysis and optimization of chassis for an electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197018470

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897674

Country of ref document: EP

Kind code of ref document: A1