JP6235375B2 - Auto body structure - Google Patents

Auto body structure Download PDF

Info

Publication number
JP6235375B2
JP6235375B2 JP2014037066A JP2014037066A JP6235375B2 JP 6235375 B2 JP6235375 B2 JP 6235375B2 JP 2014037066 A JP2014037066 A JP 2014037066A JP 2014037066 A JP2014037066 A JP 2014037066A JP 6235375 B2 JP6235375 B2 JP 6235375B2
Authority
JP
Japan
Prior art keywords
carbon fiber
continuous carbon
reinforcing material
fiber layer
orthogonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014037066A
Other languages
Japanese (ja)
Other versions
JP2015160524A (en
Inventor
飛田 一紀
一紀 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014037066A priority Critical patent/JP6235375B2/en
Publication of JP2015160524A publication Critical patent/JP2015160524A/en
Application granted granted Critical
Publication of JP6235375B2 publication Critical patent/JP6235375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、車体外部からの荷重の入力時に引張側となる金属製の中空フレームの壁部にCFRP製の補強材を接着する自動車の車体構造に関する。   The present invention relates to a vehicle body structure for an automobile in which a CFRP reinforcing material is bonded to a wall portion of a metal hollow frame that becomes a tension side when a load is input from the outside of the vehicle body.

金属板とCFRP板とをエポキシ系発泡樹脂で接着することで、短期間で製造が可能であり、加熱硬化後のそりの発生を抑制することができ、かつ補強効果に優れた金属樹脂複合構造体を得るものが、下記特許文献1により公知である。   A metal resin composite structure that can be manufactured in a short period of time by bonding a metal plate and a CFRP plate with an epoxy-based foamed resin, can suppress the occurrence of warpage after heat curing, and has an excellent reinforcing effect What obtains a body is known from Patent Document 1 below.

また未硬化繊維強化樹脂(プリプレグ)と鋼板とを貼り合わせたものを所定形状にプレス成形し、次いでプリプレグを挟んで鋼板に被溶接物を溶接した後にプリプレグを硬化させることで、プリプレグのプレス成形および鋼板のプレス成形を一工程で完了させるものが、下記特許文献2により公知である。   Also, press bonding of uncured fiber reinforced resin (prepreg) and steel plate is press-molded into a predetermined shape, and then the prepreg is cured after welding the work piece to the steel plate with the prepreg sandwiched between them. Patent Document 2 listed below discloses that the press forming of a steel plate is completed in one step.

特開2007−196545号公報JP 2007-196545 A 特開2009−178997号公報JP 2009-178997 A

ところで、上記特許文献1、2に記載されたものは、鋼板に貼り合わされるCFRPの連続炭素繊維の配向方向やCFRPの厚さについて開示しておらず、引張強度に優れた連続炭素繊維の特性を充分に活かしきれないだけでなく、更なる強度増加や軽量化の余地を残している。   By the way, what was described in the said patent documents 1 and 2 is not disclosing about the orientation direction of CFRP continuous carbon fiber bonded to a steel plate and the thickness of CFRP, and the characteristics of continuous carbon fiber excellent in tensile strength. As well as not being able to fully utilize, there is room for further strength increase and weight reduction.

本発明は前述の事情に鑑みてなされたもので、車体外部からの荷重の入力時に引張側となる金属製の中空フレームの壁部をCFRP製の補強材で効果的に補強することを目的とする。   The present invention has been made in view of the above circumstances, and has an object to effectively reinforce a wall portion of a metal hollow frame which becomes a tension side when a load is input from the outside of a vehicle body with a reinforcing material made of CFRP. To do.

上記目的を達成するために、請求項1に記載された発明によれば、車体外部からの荷重の入力時に引張側となる金属製の中空フレームの壁部にCFRP製の補強材を接着する自動車の車体構造であって、前記補強材は前記中空フレームの長手方向に沿って配向された厚さが0.8mm以上の連続炭素繊維層を含み、かつ前記補強材は前記中空フレームの長手方向に直交する方向に配向された直交連続炭素繊維層を含み、前記連続炭素繊維層は前記直交連続炭素繊維層より厚さを大きくし、前記連続炭素繊維層は前記直交連続炭素繊維層を挟んで厚さ方向に対称に配置されることを特徴とする自動車の車体構造が提案される In order to achieve the above object, according to the invention described in claim 1, an automobile in which a CFRP reinforcing material is bonded to a wall portion of a metal hollow frame that becomes a tension side when a load is input from the outside of the vehicle body. a body structure of the reinforcement saw including continuous carbon fiber layer is thickness oriented along the longitudinal direction of more than 0.8mm of the hollow frame, and said reinforcing member is a longitudinal direction of the hollow frame An orthogonal continuous carbon fiber layer oriented in a direction orthogonal to the continuous carbon fiber layer, the continuous carbon fiber layer being thicker than the orthogonal continuous carbon fiber layer, the continuous carbon fiber layer sandwiching the orthogonal continuous carbon fiber layer A vehicle body structure is proposed which is arranged symmetrically in the thickness direction .

尚、実施の形態のサイドシル11、Bピラー13およびフロントルーフアーチ16は本発明の中空フレームに対応し、実施の形態の車幅方向内壁部18bは本発明の壁部に対応する。 Note that the side sill 11, B-pillar 13 and the front roof arch 16 of the embodiment corresponds to the hollow frame of the present invention, the vehicle width direction inner wall 18b of the implementation of form corresponding to the wall portion of the present invention.

請求項1の構成によれば、車体外部からの荷重の入力時に引張側となる金属製の中空フレームの壁部に接着されるCFRP製の補強材は、中空フレームの長手方向に沿って配向された厚さが0.8mm以上の連続炭素繊維層を含むので、厚さ1.8mm、引張強度980MPaの高張力鋼と同等の耐荷重を薄くて軽量なCFRP製の補強材で得ることができるだけでなく、引張荷重が集中する場所だけに補強材を貼り付ければよいので、高価な炭素繊維の使用量を減らしてコストおよび重量の増加を最小限に抑えることができる。   According to the configuration of the first aspect, the CFRP reinforcing material bonded to the wall portion of the metal hollow frame that becomes the pull side when a load is input from the outside of the vehicle body is oriented along the longitudinal direction of the hollow frame. Since a continuous carbon fiber layer with a thickness of 0.8 mm or more is included, a load resistance equivalent to that of a high-tensile steel with a thickness of 1.8 mm and a tensile strength of 980 MPa can be obtained with a thin and lightweight CFRP reinforcing material. In addition, since it is only necessary to attach the reinforcing material only to the place where the tensile load is concentrated, the amount of expensive carbon fiber used can be reduced, and the increase in cost and weight can be minimized.

しかも補強材は中空フレームの長手方向に直交する方向に配向された直交連続炭素繊維層を含み、連続炭素繊維層は直交連続炭素繊維層より厚さを大きくし、連続炭素繊維層は直交連続炭素繊維層を挟んで厚さ方向に対称に配置されるので、直交連続炭素繊維層により中空フレームの長手方向に直交する方向の引張荷重を支持できるだけでなく、連続炭素繊維層を構成する連続繊維がばらばらにならないように拘束して強度低下を防止することができる。Moreover, the reinforcing material includes an orthogonal continuous carbon fiber layer oriented in a direction orthogonal to the longitudinal direction of the hollow frame, the continuous carbon fiber layer is thicker than the orthogonal continuous carbon fiber layer, and the continuous carbon fiber layer is orthogonal orthogonal carbon. Since the fiber layers are arranged symmetrically in the thickness direction, the continuous continuous carbon fiber layer can support not only the tensile load in the direction perpendicular to the longitudinal direction of the hollow frame but also the continuous fibers constituting the continuous carbon fiber layer. The strength can be prevented by being restrained so as not to be separated.

自動車の車体フレームの部分斜視図。(第1の実施の形態)The partial perspective view of the body frame of a car. (First embodiment) 図1の2部分解斜視図。(第1の実施の形態)The 2nd part exploded perspective view of FIG. (First embodiment) 補強材の連続炭素繊維層および直交連続炭素繊維層の積層状態の説明図。(第1の実施の形態)Explanatory drawing of the lamination | stacking state of the continuous carbon fiber layer and orthogonal continuous carbon fiber layer of a reinforcing material. (First embodiment) 図1の4−4線拡大断面図。(第1の実施の形態)FIG. 4 is an enlarged sectional view taken along line 4-4 of FIG. (First embodiment) Bピラーの曲げ強度を示すグラフ。(第1の実施の形態)The graph which shows the bending strength of B pillar. (First embodiment) 図1の6−6線断面図。(第1の実施の形態)FIG. 6 is a sectional view taken along line 6-6 in FIG. (First embodiment) 図4に対応する図。(第2の実施の形態)The figure corresponding to FIG. (Second Embodiment)

第1の実施の形態First embodiment

以下、図1〜図6に基づいて本発明の第1の実施の形態を説明する。尚、本明細書において、前後方向、左右方向(車幅方向)、上下方向とは、運転席に着座した乗員を基準として定義される。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. In the present specification, the front-rear direction, the left-right direction (vehicle width direction), and the up-down direction are defined with reference to an occupant seated in the driver's seat.

図1に示すように、自動車の車体フレームは、左右一対のサイドシル11,11を備えており、サイドシル11,11の前端から左右一対のAピラーロア12,12が立ち上がるとともに、サイドシル11,11の前後方向中間部から左右一対のBピラー13,13が立ち上がる。Aピラーロア12,12の上端に接続された左右一対のAピラーアッパー14,14の後端から後方に延びる左右一対のルーフサイドレール15,15にはBピラー13,13の上端が接続され、左右のルーフサイドレール15,15の前端間が車幅方向に延びるフロントルーフアーチ16の両端に接続される。   As shown in FIG. 1, the body frame of the automobile includes a pair of left and right side sills 11, 11. A pair of left and right A pillar lowers 12, 12 rise from the front ends of the side sills 11, 11, and front and rear of the side sills 11, 11. A pair of left and right B pillars 13 and 13 rises from the middle in the direction. The upper ends of the B pillars 13 and 13 are connected to the pair of left and right roof side rails 15 and 15 extending rearward from the rear ends of the pair of left and right A pillar uppers 14 and 14 connected to the upper ends of the A pillar lowers 12 and 12, respectively. The front side of the roof side rails 15 and 15 is connected to both ends of a front roof arch 16 extending in the vehicle width direction.

図1および図2に示すように、Bピラー13はハット状断面の鋼板よりなるアウターパネル17と、ハット状断面の鋼板よりなるインナーパネル18とを、それらの接合フランジ17a,17a,18a,18aどうしを溶接Wすることで閉断面に構成される。そしてインナーパネル18の車幅方向内壁部18bにCFRP(カ−ボン繊維強化樹脂)製の補強材19がエポキシ樹脂系の発泡性接着剤20で貼り付けられる。   As shown in FIGS. 1 and 2, the B pillar 13 includes an outer panel 17 made of a steel plate having a hat-shaped cross section and an inner panel 18 made of a steel plate having a hat-shaped cross section, and their joining flanges 17a, 17a, 18a, 18a. A closed cross section is formed by welding the two together. A reinforcing material 19 made of CFRP (carbon fiber reinforced resin) is attached to the inner wall portion 18 b of the inner panel 18 with an epoxy resin-based foaming adhesive 20.

図3および図4に示すように、補強材19は、連続炭素繊維21…を一方向に引き揃えてシート状にしたUDを未硬化の熱硬化性マトリクス樹脂内に埋設したプリプレグを10層に積層して構成される。10層のプリプレグのうち、積層方向両側の各4層は連続炭素繊維21…の配向方向がBピラー13の長手方向(上下方向)に沿っており、これらの8層は連続炭素繊維層22…を構成する。積層方向中央の2層は連続炭素繊維21…の配向方向がBピラー13の長手方向(上下方向)に対して直交しており、これらの2層は直交連続炭素繊維層23,23を構成する。連続炭素繊維層22および直交連続炭素繊維層23の各層の厚さは0.1mmであり、よって補強材19のトータルの厚さは1.0mmとなり、連続炭素繊維層22…と直交連続炭素繊維層23,23との厚さの比率は4:1となる。   As shown in FIGS. 3 and 4, the reinforcing member 19 is made of 10 layers of prepregs in which UDs in which continuous carbon fibers 21 are aligned in one direction to form a sheet are embedded in an uncured thermosetting matrix resin. It is constructed by stacking. Among the 10 layers of prepreg, each of the 4 layers on both sides of the lamination direction has the orientation direction of the continuous carbon fibers 21 along the longitudinal direction (vertical direction) of the B pillar 13, and these 8 layers are the continuous carbon fiber layers 22. Configure. In the two layers at the center in the stacking direction, the orientation direction of the continuous carbon fibers 21 is orthogonal to the longitudinal direction (vertical direction) of the B pillar 13, and these two layers constitute orthogonal continuous carbon fiber layers 23, 23. . The thickness of each layer of the continuous carbon fiber layer 22 and the orthogonal continuous carbon fiber layer 23 is 0.1 mm. Therefore, the total thickness of the reinforcing material 19 is 1.0 mm, and the continuous carbon fiber layer 22. The thickness ratio between the layers 23 and 23 is 4: 1.

次に、上記構成を備えた本発明の実施の形態の作用を説明する。   Next, the operation of the embodiment of the present invention having the above configuration will be described.

Bピラー13のインナーパネル18の車幅方向内壁18bに、プリプレグが未硬化の状態の補強材19を発泡性接着剤20の粘着性を利用して仮止めする。このとき、未硬化のプリプレグは柔軟性を有するため、曲面よりなるインナーパネル18の車幅方向内壁18bに容易に馴染ませることができる。次に、車体を乾燥炉に入れて加熱するとプリプレグが硬化して補強材19が所定形状に成形されると同時に、発泡性接着剤20が硬化してインナーパネル18の車幅方向内壁部18bに補強材19を強固に接着する。このように、Bピラー13のインナーパネル18の車幅方向内壁部18bに接着した未硬化の補強材19を乾燥炉の熱で硬化させるので、曲面よりなるインナーパネル18の車幅方向内壁部18bに沿う形状の補強材19を特別の金型を必要とせず容易に成形することが可能となって生産性が向上する。   The reinforcing material 19 in which the prepreg is uncured is temporarily fixed to the inner wall 18b of the inner panel 18 of the B pillar 13 using the adhesiveness of the foamable adhesive 20. At this time, since the uncured prepreg has flexibility, it can be easily adapted to the inner wall 18b in the vehicle width direction of the inner panel 18 formed of a curved surface. Next, when the vehicle body is placed in a drying oven and heated, the prepreg is cured and the reinforcing material 19 is formed into a predetermined shape, and at the same time, the foamable adhesive 20 is cured and applied to the inner wall portion 18b in the vehicle width direction of the inner panel 18. The reinforcing material 19 is firmly bonded. In this way, the uncured reinforcing material 19 bonded to the inner wall portion 18b in the vehicle width direction of the inner panel 18 of the B pillar 13 is cured by the heat of the drying furnace, so the inner wall portion 18b in the vehicle width direction of the inner panel 18 formed of a curved surface. The reinforcing material 19 having a shape along the line can be easily formed without requiring a special mold, and the productivity is improved.

鋼板製のインナーパネル18の熱膨張率aは、CFRP製の補強材19の熱膨張率bよりも大きいため、温度変化に伴うインナーパネル18および補強材19の熱膨張量の差によってインナーパネル18から補強材19が剥がれ易くなるが、本実施の形態によれば、硬化後も柔軟性を失わない発泡性接着剤20によって前記熱膨張量の差を吸収することで、インナーパネル18からの補強材19の剥がれを確実に防止することができる。   Since the thermal expansion coefficient “a” of the inner panel 18 made of steel plate is larger than the thermal expansion coefficient “b” of the reinforcing material 19 made of CFRP, the inner panel 18 varies depending on the difference in thermal expansion between the inner panel 18 and the reinforcing material 19 due to temperature change. However, according to the present embodiment, the difference from the thermal expansion amount is absorbed by the foaming adhesive 20 that does not lose its flexibility even after curing, so that the reinforcement from the inner panel 18 can be achieved. Peeling of the material 19 can be reliably prevented.

さて、車両が側面衝突を受けてBピラー13に衝突荷重が入力すると、Bピラー13が車室側に湾曲するように変形するため、車幅方向外側のアウターパネル17に圧縮荷重が作用し、車幅方向内側のインナーパネル18に引張荷重が作用する。引張荷重が作用するインナーパネル18の車幅方向内壁部18bは長手方向に引き延ばされるように変形するが、その車幅方向内壁部18bに貼り付けた補強材19は連続炭素繊維21…を前記長手方向に配向した8層の連続炭素繊維層22…を備えるため、引張荷重に強い連続炭素繊維21…でインナーパネル18の伸び変形を阻止することで、衝突荷重によるBピラー13の車室側への変形を最小限に抑えることができる。   When the vehicle receives a side collision and a collision load is input to the B pillar 13, the B pillar 13 is deformed so as to bend toward the passenger compartment, so that a compression load acts on the outer panel 17 on the outer side in the vehicle width direction. A tensile load acts on the inner panel 18 on the inner side in the vehicle width direction. The inner wall portion 18b in the vehicle width direction of the inner panel 18 to which the tensile load acts is deformed so as to be extended in the longitudinal direction, but the reinforcing material 19 attached to the inner wall portion 18b in the vehicle width direction has the continuous carbon fibers 21. Since the eight continuous carbon fiber layers 22... Oriented in the longitudinal direction are provided, the inner panel 18 is prevented from being stretched and deformed by the continuous carbon fibers 21 resistant to the tensile load, so that the passenger compartment side of the B pillar 13 caused by the collision load. The deformation to can be minimized.

また補強材19が連続炭素繊維層22…だけを備えると、連続炭素繊維21…がばらばらになって強度が低下する可能性があるが、補強材19の厚さ中央に2層の直交連続炭素繊維層23,23を挟んだので、直交連続炭素繊維層23,23によって連続炭素繊維層22…の連続炭素繊維21…がばらばらになるのを防止して補強材19の強度を確保することができるだけでなく、Bピラー13のインナーパネル18の長手方向に直交する方河の伸び変形を直交連続炭素繊維層23,23によって効果的に阻止することができる。特に、中央の直交連続炭素繊維層23,23と、その両側の各4層の連続炭素繊維層22…とは補強材19の厚さ方向に対称に配置されるので、少ない層数の直交連続炭素繊維層23,23で連続炭素繊維層22…の連続炭素繊維21…がばらばらになるのを効果的に防止することができる。   Further, if the reinforcing material 19 includes only the continuous carbon fiber layers 22..., The continuous carbon fibers 21 may be separated and the strength may be reduced. However, two layers of orthogonal continuous carbon are provided at the center of the thickness of the reinforcing material 19. Since the fiber layers 23 and 23 are sandwiched, it is possible to prevent the continuous carbon fibers 21 of the continuous carbon fiber layers 22 from being separated by the orthogonal continuous carbon fiber layers 23 and 23 to ensure the strength of the reinforcing material 19. Not only can the elongation deformation of the square perpendicular to the longitudinal direction of the inner panel 18 of the B pillar 13 be effectively prevented by the orthogonal continuous carbon fiber layers 23 and 23. In particular, since the central orthogonal continuous carbon fiber layers 23 and 23 and the four continuous carbon fiber layers 22 on each side thereof are arranged symmetrically in the thickness direction of the reinforcing material 19, the orthogonal continuous with a small number of layers. It is possible to effectively prevent the continuous carbon fibers 21 of the continuous carbon fiber layer 22 from being separated by the carbon fiber layers 23 and 23.

図5は、補強材19の補強効果を示すグラフであり、横軸はBピラー13の変形ストローク、縦軸はBピラー13の曲げ強度である。破線は補強部材を持たない第1比較例のBピラー13に対応し、鎖線は厚さ1.8mm、引張強度980MPaの高張力鋼の補強材をインナーパネル18に貼り付けた第2比較例のBピラー13に対応し、実線は本発明の補強材19を貼り付けた実施の形態のBピラー13に対応する。   FIG. 5 is a graph showing the reinforcing effect of the reinforcing member 19, where the horizontal axis represents the deformation stroke of the B pillar 13 and the vertical axis represents the bending strength of the B pillar 13. The broken line corresponds to the B pillar 13 of the first comparative example having no reinforcing member, and the chain line of the second comparative example in which a reinforcing material of high tensile steel having a thickness of 1.8 mm and a tensile strength of 980 MPa is attached to the inner panel 18. Corresponding to the B pillar 13, the solid line corresponds to the B pillar 13 of the embodiment in which the reinforcing material 19 of the present invention is attached.

実施の形態のBピラー13の曲げ強度は、補強材を持たない第1比較例のBピラー13よりも高く、厚さ1.8mmの高張力鋼の補強材を持つ第2比較例のBピラー13と同等であることが分かる。   The bending strength of the B pillar 13 of the embodiment is higher than the B pillar 13 of the first comparative example having no reinforcing material, and the B pillar of the second comparative example having a reinforcing material of high tensile steel having a thickness of 1.8 mm. It turns out that it is equivalent to 13.

以上のように、本実施の形態によれば、厚さ0.8mm以上の連続炭素繊維層22…を含む補強材19により、厚さ1.8mm、引張強度980MPaの高張力鋼の補強材と同等の耐荷重を得ることができるので、車体重量の増加を最小限に抑えながらBピラー13を効果的に補強することができる。しかも引張荷重が集中する場所だけに補強材19を貼り付ければよいので、高価な炭素繊維の使用量を減らしてコストおよび重量の増加を最小限に抑えることができる。   As described above, according to the present embodiment, the reinforcing material 19 including the continuous carbon fiber layer 22... Having a thickness of 0.8 mm or more is used to reinforce a high-tensile steel reinforcing material having a thickness of 1.8 mm and a tensile strength of 980 MPa. Since an equivalent load capacity can be obtained, the B pillar 13 can be effectively reinforced while minimizing an increase in the weight of the vehicle body. In addition, since the reinforcing material 19 has only to be attached to the place where the tensile load is concentrated, the amount of expensive carbon fiber used can be reduced and the increase in cost and weight can be minimized.

このような構造の補強材19は、上述したBピラー13のインナーパネル18以外に、車体フレームの各部に取り付けることができる。   The reinforcing member 19 having such a structure can be attached to each part of the vehicle body frame other than the inner panel 18 of the B pillar 13 described above.

例えば、図1において、サイドシル11の前後方向中央部の車幅方向内壁部に、連続炭素繊維21…を前後方向に配向した連続炭素繊維層22…を有する補強材19を貼り付ければ、サイドシル11に側面衝突の衝突荷重が入力して車幅方向内壁部に引張荷重が作用したときに、その引張荷重を補強材19で支持してサイドシル11の変形を最小限に抑えることができる。   For example, in FIG. 1, if the reinforcing material 19 having the continuous carbon fiber layers 22 with the continuous carbon fibers 21 oriented in the front-rear direction is attached to the inner wall of the side sill 11 in the vehicle width direction central portion, the side sill 11 When the impact load of the side impact is input to the inner wall portion in the vehicle width direction and the tensile load acts on the inner wall, the tensile load is supported by the reinforcing member 19 and the deformation of the side sill 11 can be minimized.

またフロントルーフアーチ16の車幅方向両端部の下壁部に、連続炭素繊維21…を車幅方向に配向した連続炭素繊維層22…を有する補強材19を貼り付ければ、車両が横転して車体上部から入力する荷重によりフロントルーフアーチ16の下壁部に引張荷重が作用したときに、その引張荷重を補強材19で支持してフロントルーフアーチ16の変形を最小限に抑えることができる。   Further, if the reinforcing material 19 having the continuous carbon fiber layers 22 with the continuous carbon fibers 21 oriented in the vehicle width direction is attached to the lower wall portions of both ends of the front roof arch 16 in the vehicle width direction, the vehicle rolls over. When a tensile load acts on the lower wall portion of the front roof arch 16 due to a load input from the upper part of the vehicle body, the tensile load can be supported by the reinforcing material 19 to minimize deformation of the front roof arch 16.

また図1および図6から明らかなように、フロントルーフアーチ16の車幅方向外端およびAピラーアッパー14の後端に接続されるルーフサイドレール15は、アウターパネル24およびインナーパネル25をスチフナ26を挟んで溶接した閉断面に構成され、インナーパネル25の内壁部に連続炭素繊維層22…を前後方向に配向した補強材19が貼り付けられる。これにより、車両が横転して車体上部から入力する荷重によりルーフサイドレール15の内壁部に引張荷重が作用したときに、その引張荷重を補強材19で支持することで、Aピラーアッパー14の後端から後方に延びるルーフサイドレール15の変形を最小限に抑えることができる。   As apparent from FIGS. 1 and 6, the roof side rail 15 connected to the outer end in the vehicle width direction of the front roof arch 16 and the rear end of the A pillar upper 14 connects the outer panel 24 and the inner panel 25 to the stiffener 26. The reinforcing material 19 is bonded to the inner wall of the inner panel 25 with the continuous carbon fiber layers 22 oriented in the front-rear direction. Thus, when a tensile load is applied to the inner wall portion of the roof side rail 15 due to the vehicle rolling over and input from the upper part of the vehicle body, the tensile load is supported by the reinforcing member 19, thereby The deformation of the roof side rail 15 extending rearward from the end can be minimized.

第2の実施の形態Second embodiment

次に、図7に基づいて本発明の第2の実施の形態を説明する。   Next, a second embodiment of the present invention will be described with reference to FIG.

第1の実施の形態では、Bピラー13のインナーパネル18と補強材19とを発泡性接着剤20を介して接着しているが、第2の実施の形態は、補強材19の10層のプリプレグのうち、Bピラー13のインナーパネル18に近い側の任意数のプリプレグの連続炭素繊維21…に対する含浸樹脂(マトリクス樹脂)の比率を高くし、この含浸樹脂が熱硬化する際の接着力でインナーパネル18に接着するものである。このように、プリプレグの含浸樹脂を接着剤として利用することで、特別の接着剤が不要になって製造コストが削減される。   In the first embodiment, the inner panel 18 of the B-pillar 13 and the reinforcing material 19 are bonded via the foamable adhesive 20, but the second embodiment has ten layers of the reinforcing material 19. Among the prepregs, the ratio of the impregnating resin (matrix resin) to the continuous carbon fibers 21 of any number of prepregs on the side close to the inner panel 18 of the B pillar 13 is increased, and the adhesive strength when the impregnating resin is thermally cured It adheres to the inner panel 18. In this way, by using the prepreg impregnated resin as an adhesive, a special adhesive is not required and the manufacturing cost is reduced.

以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、実施の形態の補強材19は8層の連続炭素繊維層22…および2層の直交連続炭素繊維層23,23を備えているが、連続炭素繊維層22…および直交連続炭素繊維層23,23の層数は実施の形態に限定されず、連続炭素繊維層22…のトータルの厚さが0.8mm以上であれば高張力鋼の補強材と同等以上の補強効果を得ることができる。   For example, although the reinforcing material 19 of the embodiment includes eight continuous carbon fiber layers 22 and two orthogonal continuous carbon fiber layers 23 and 23, the continuous carbon fiber layers 22 and the orthogonal continuous carbon fiber layers 23 are provided. , 23 is not limited to the embodiment, and if the total thickness of the continuous carbon fiber layers 22 is 0.8 mm or more, a reinforcing effect equivalent to or higher than that of a high-strength steel reinforcing material can be obtained. .

また本発明が適用可能な中空フレームは、実施の形態のBピラー13、サイドシル11およびフロントルーフアーチ16に限定されるものではない。   Further, the hollow frame to which the present invention is applicable is not limited to the B pillar 13, the side sill 11, and the front roof arch 16 of the embodiment.

また実施の形態では補強材19を中空フレームの車幅方向内壁部の外面(閉断面の外側面)に貼り付けているが、それを内面(閉断面の内側面)に貼り付けても良い In the embodiment, the reinforcing member 19 is attached to the outer surface (the outer surface of the closed section) of the inner wall portion in the vehicle width direction of the hollow frame, but it may be attached to the inner surface (the inner surface of the closed section) .

11 サイドシル(中空フレーム)
13 Bピラー(中空フレーム)
16 フロントルーフアーチ(中空フレーム)
18b 車幅方向内壁部(壁部)
19 補強材
20 発泡性接着剤
22 連続炭素繊維層
23 直交連続炭素繊維層
11 Side sill (hollow frame)
13 B pillar (hollow frame)
16 front roof arch (medium empty frame)
18b Vehicle width direction inner wall (wall)
19 Reinforcing Material 20 Foamable Adhesive 22 Continuous Carbon Fiber Layer 23 Orthogonal Continuous Carbon Fiber Layer

Claims (1)

車体外部からの荷重の入力時に引張側となる金属製の中空フレーム(11,13,16)の壁部(18b)にCFRP製の補強材(19)を接着する自動車の車体構造であって、
前記補強材(19)は前記中空フレーム(11,13,16)の長手方向に沿って配向された厚さが0.8mm以上の連続炭素繊維層(22)を含み、かつ前記補強材(19)は前記中空フレーム(11,13,16)の長手方向に直交する方向に配向された直交連続炭素繊維層(23)を含み、前記連続炭素繊維層(22)は前記直交連続炭素繊維層より厚さを大きくし、前記連続炭素繊維層(22)は前記直交連続炭素繊維層(23)を挟んで厚さ方向に対称に配置されることを特徴とする自動車の車体構造
A vehicle body structure for an automobile in which a CFRP reinforcing material (19) is bonded to a wall portion (18b) of a metal hollow frame (11, 13, 16) which becomes a tension side when a load is input from the outside of the vehicle body,
The reinforcing member (19) is longitudinally thickness oriented along the of the saw including 0.8mm or more continuous carbon fiber layer (22), and the reinforcing material of the hollow frame (11,13,16) ( 19) includes an orthogonal continuous carbon fiber layer (23) oriented in a direction orthogonal to the longitudinal direction of the hollow frame (11, 13, 16), and the continuous carbon fiber layer (22) is the orthogonal continuous carbon fiber layer. A vehicle body structure for an automobile , wherein the thickness of the continuous carbon fiber layer (22) is symmetrically arranged in the thickness direction with the orthogonal continuous carbon fiber layer (23) interposed therebetween .
JP2014037066A 2014-02-27 2014-02-27 Auto body structure Active JP6235375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014037066A JP6235375B2 (en) 2014-02-27 2014-02-27 Auto body structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014037066A JP6235375B2 (en) 2014-02-27 2014-02-27 Auto body structure

Publications (2)

Publication Number Publication Date
JP2015160524A JP2015160524A (en) 2015-09-07
JP6235375B2 true JP6235375B2 (en) 2017-11-22

Family

ID=54183914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014037066A Active JP6235375B2 (en) 2014-02-27 2014-02-27 Auto body structure

Country Status (1)

Country Link
JP (1) JP6235375B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109606479A (en) * 2018-12-05 2019-04-12 北京新能源汽车股份有限公司 Body structure and vehicle with it

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6317313B2 (en) * 2015-12-02 2018-04-25 本田技研工業株式会社 Bonding structure of metal member and FRP member
KR101751921B1 (en) * 2015-12-11 2017-06-30 주식회사 신영 Method of manufacturing side outer complete, and side outer complete manufactured thereby
JP6624032B2 (en) 2016-12-09 2019-12-25 トヨタ自動車株式会社 Body structure
JP6583309B2 (en) * 2017-02-24 2019-10-02 Jfeスチール株式会社 Method and apparatus for optimizing shape of reinforcing member of vehicle body
JP6662331B2 (en) 2017-03-07 2020-03-11 トヨタ自動車株式会社 Body structure
KR20200071072A (en) 2017-10-20 2020-06-18 도레이 카부시키가이샤 Method for manufacturing fiber reinforced plastic composite
JP6852659B2 (en) * 2017-11-24 2021-03-31 トヨタ自動車株式会社 Vehicle pillar structure
JP6981322B2 (en) 2018-03-19 2021-12-15 トヨタ自動車株式会社 Vehicle skeleton structure
JP7035743B2 (en) * 2018-04-09 2022-03-15 日本製鉄株式会社 Center pillar inner and center pillar
WO2019198729A1 (en) 2018-04-09 2019-10-17 日本製鉄株式会社 Automobile structural member
JP7248936B2 (en) * 2018-06-08 2023-03-30 日本製鉄株式会社 curved panel member
JP2019209661A (en) * 2018-06-08 2019-12-12 日本製鉄株式会社 Flat panel structure
JP2019209660A (en) * 2018-06-08 2019-12-12 日本製鉄株式会社 Curved surface panel member
JP7020333B2 (en) * 2018-07-30 2022-02-16 トヨタ自動車株式会社 Vehicle components and their manufacturing methods
JP7129858B2 (en) * 2018-09-18 2022-09-02 株式会社Subaru center pillar for vehicle
EP3950279B1 (en) * 2019-03-26 2024-01-03 NISSAN MOTOR Co., Ltd. Method for manufacturing closed cross-section structural member
CN114401883A (en) * 2019-09-11 2022-04-26 日本制铁株式会社 Center pillar inner and center pillar
WO2021064872A1 (en) 2019-10-01 2021-04-08 日本製鉄株式会社 Panel structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101732A (en) * 1992-09-17 1994-04-12 Kobe Steel Ltd Shock absorbing member for composite structure
JP2003129611A (en) * 2001-08-01 2003-05-08 Kobe Steel Ltd Flexural strength member
JP4583775B2 (en) * 2004-02-13 2010-11-17 本田技研工業株式会社 Shock absorber for automobile
JP2007196545A (en) * 2006-01-27 2007-08-09 Nissan Motor Co Ltd Metal-resin composite structure and its manufacturing method
JP2009014175A (en) * 2007-07-09 2009-01-22 Honda Motor Co Ltd Plate-like energy absorption material
JP2009178997A (en) * 2008-01-31 2009-08-13 Honda Motor Co Ltd Manufacturing process of steel plate reinforced with fiber-reinforced resin and steel plate reinforced with fiber-reinforced resin
JP4918567B2 (en) * 2009-04-20 2012-04-18 三菱重工業株式会社 Shock absorbing structure and manufacturing method thereof
JP2014233999A (en) * 2013-05-31 2014-12-15 本田技研工業株式会社 Vehicle body manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109606479A (en) * 2018-12-05 2019-04-12 北京新能源汽车股份有限公司 Body structure and vehicle with it

Also Published As

Publication number Publication date
JP2015160524A (en) 2015-09-07

Similar Documents

Publication Publication Date Title
JP6235375B2 (en) Auto body structure
JP6981322B2 (en) Vehicle skeleton structure
KR101797460B1 (en) High strength resin cowl cross member and manufacturing method of the same
JP6276230B2 (en) Method for improving strength and rigidity of automobile body
US6843525B2 (en) Reinforced composite vehicle load floor of the cellular core sandwich-type
JP6172695B2 (en) Auto body structure
US10272951B2 (en) Impact-absorbing reinforcement structure for center pillars
JP2014233999A (en) Vehicle body manufacturing method
US9975578B2 (en) Light weight hybrid B-pillar
CN108081926B (en) Vehicle door stiffening beam
WO2015025572A1 (en) Center pillar structure for automobile
KR101714809B1 (en) Vehicle chassis
JP6308427B2 (en) Body structure
JP2014169003A (en) Side panel
WO2016129360A1 (en) Resin-reinforced metal component
JP4853315B2 (en) Body frame structure
GB2521937A (en) Body component for a vehicle and method for manufacturing a body component for a vehicle
JP2006200702A (en) Shock absorbing member
JP2018127225A (en) Vehicle body structure
US10822040B2 (en) Roof panel assembly of vehicle
JP2021054106A (en) Fiber-reinforced resin composite material and method for manufacturing fiber-reinforced resin composite material
JP6700122B2 (en) Side sill structure made of fiber reinforced resin
KR102383484B1 (en) Structure member of vehicle using composite material
WO2013103081A1 (en) Vehicle body structure for automobile
US20170165904A1 (en) Composite steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170823

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171026

R150 Certificate of patent or registration of utility model

Ref document number: 6235375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150