JP2021017127A - Structure of movable body, and method of manufacturing the same - Google Patents

Structure of movable body, and method of manufacturing the same Download PDF

Info

Publication number
JP2021017127A
JP2021017127A JP2019133516A JP2019133516A JP2021017127A JP 2021017127 A JP2021017127 A JP 2021017127A JP 2019133516 A JP2019133516 A JP 2019133516A JP 2019133516 A JP2019133516 A JP 2019133516A JP 2021017127 A JP2021017127 A JP 2021017127A
Authority
JP
Japan
Prior art keywords
metal plate
moving body
composite material
aircraft
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019133516A
Other languages
Japanese (ja)
Other versions
JP7344029B2 (en
Inventor
健佑 吉村
Kensuke Yoshimura
健佑 吉村
健 袋瀬
Ken Fukurose
健 袋瀬
雅勝 安部
Masakatsu Abe
雅勝 安部
尚之 関根
Naoyuki Sekine
尚之 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2019133516A priority Critical patent/JP7344029B2/en
Publication of JP2021017127A publication Critical patent/JP2021017127A/en
Application granted granted Critical
Publication of JP7344029B2 publication Critical patent/JP7344029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Landscapes

  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

To establish compatibility between saving in weight of a structure of a movable body and an increase in strength of a region requiring reinforcement.SOLUTION: A structure 1 of a movable body comprises a metal plate 2 that is a base material for the structure 1 of the movable body, and a plurality of fiber-reinforced composite materials 3 that serve as reinforcement materials for the metal plate 2 and that are joined like a line such as a curved line to at least one surface of the metal plate 2. The fiber-reinforced composite materials 3 are arranged in accordance with stress acting on the metal plate 2 during the movement of the movable body.SELECTED DRAWING: Figure 1

Description

本発明は、移動体の構造体、および移動体の構造体の製造方法に関する。 The present invention relates to a moving body structure and a method for manufacturing the moving body structure.

自動車産業では、自動車構造材として、これまで主流であった鉄鋼材の代替として、より軽いアルミニウムやチタンなどの金属材、更には、軽量な炭素繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastic)などの複合材と組み合わせることにより、車体を軽量化するマルチマテリアル技術が注目されている。しかし、CFRPは、(1)金属に比べて加工性が低いという問題があり、また、(2)導電性が低いため、落雷などで構造材に大電流が流れたときに、大きく損傷する恐れがあるという問題もある。さらには、(3)CFRPのような脆性材料を構造材に用いた場合は、構造材同士の結合部に対して応力集中が発生し易く、強度不具合が発生する恐れがあるという問題もある。 In the automobile industry, as an alternative to steel materials, which have been the mainstream for automobile structural materials, lighter metal materials such as aluminum and titanium, and lightweight carbon fiber reinforced plastics (CFRP: Carbon Fiber Reinforced Plastic) are used. Multi-material technology that reduces the weight of the vehicle body by combining it with a composite material is drawing attention. However, CFRP has the problem of (1) lower workability than metal, and (2) lower conductivity, so there is a risk of significant damage when a large current flows through the structural material due to a lightning strike or the like. There is also the problem that there is. Further, when a brittle material such as (3) CFRP is used as the structural material, there is a problem that stress concentration is likely to occur at the joint portion between the structural materials, and a strength defect may occur.

従って、自動車等の構造材では、全ての部材をCFRPで構成するのではなく、金属とCFRPを適材適所で使用し、生産性や安全性を確保しながら、構造材の軽量化を目指すことが検討されてきた。例えば特許文献1には、アルミニウム合金からなる展伸部材とCFRP部材とを複合した構造材において、圧縮曲げ荷重の付与時に引張応力が発生する展伸部材の裏面の一部に対し、CFRP部材を接着して、補強することが開示されている。 Therefore, in structural materials such as automobiles, instead of constructing all members with CFRP, it is necessary to use metal and CFRP in the right place and aim to reduce the weight of the structural material while ensuring productivity and safety. It has been considered. For example, in Patent Document 1, in a structural material in which a stretching member made of an aluminum alloy and a CFRP member are composited, a CFRP member is provided for a part of the back surface of the stretching member in which tensile stress is generated when a compressive bending load is applied. It is disclosed to bond and reinforce.

一方、航空機産業では、CFRPは構造材として既に幅広く使用されており、CFRP構造材(母材)を金属材(補強材)で補強した技術も提案されている。例えば特許文献2には、サイズの大きな航空機の構成部品において、CRPプレプレッグ材料で形成された構成部品の力導入領域や接続領域を、金属フォイルからなる補強材料で補強する技術が開示されている。また、特許文献3には、表面仕上げ層と、繊維強化材料層と、金属箔からなる伝導層と、絶縁粘着層と、キャリアペーパー層とが積層された一体型落雷防護材料シートを製造し、CFRPからなる複合構造材である複合スキン上に、当該一体型落雷防護材料シートを帯状に貼り付ける技術が開示されている。 On the other hand, in the aircraft industry, CFRP is already widely used as a structural material, and a technique of reinforcing a CFRP structural material (base material) with a metal material (reinforcing material) has also been proposed. For example, Patent Document 2 discloses a technique for reinforcing a force introduction region and a connection region of a component formed of a CRP prepreg material with a reinforcing material made of a metal foil in a large-sized aircraft component. Further, in Patent Document 3, an integrated lightning protection material sheet in which a surface finishing layer, a fiber reinforced material layer, a conductive layer made of a metal foil, an insulating adhesive layer, and a carrier paper layer are laminated is manufactured. A technique for attaching the integrated lightning protection material sheet in a strip shape on a composite skin which is a composite structural material made of CFRP is disclosed.

特開2017−119422号公報Japanese Unexamined Patent Publication No. 2017-119422 特表2009−526670号公報Special Table 2009-526670A 特表2011−524265号公報Special Table 2011-524265

しかしながら、上記特許文献2、3に記載のように、CFRP複合材を母材とし、アルミニウムやチタン等の金属材を補強材として使用した航空機等の構造材では、構造材の軽量化と強度向上を図るためには、CFRP複合材と金属材のそれぞれの材料自体の特性を改善するしかなかった。このため、CFRP複合材(母材)と金属材(補強材)とを単純に組み合わせるだけでは、航空機の構造体全体の軽量化と、補強が必要な部位の強度向上の両立に限界があるという問題があった。さらには、CFRP複合材を構造材の母材として用いた場合には、上述したCFRPの材質的な問題点(1)〜(3)も依然として残っていた。 However, as described in Patent Documents 2 and 3, structural materials such as aircraft using a CFRP composite material as a base material and a metal material such as aluminum or titanium as a reinforcing material are lighter and stronger. In order to achieve this, there was no choice but to improve the properties of the CFRP composite material and the metal material itself. For this reason, simply combining a CFRP composite material (base material) and a metal material (reinforcing material) limits the weight reduction of the entire aircraft structure and the improvement of the strength of the parts that need reinforcement. There was a problem. Furthermore, when the CFRP composite material is used as the base material of the structural material, the above-mentioned material problems (1) to (3) of CFRP still remain.

そこで、本発明は、航空機または車両等の移動体の構造体の軽量化と、補強が必要な部位の強度向上を両立させることを目的とする。 Therefore, an object of the present invention is to achieve both weight reduction of a structure of a moving body such as an aircraft or a vehicle and improvement of strength of a portion requiring reinforcement.

上記課題を解決するために、本発明のある観点によれば、移動体の構造体の母材となる金属板と、前記金属板の補強材として、前記金属板の少なくとも一方の面に対して、曲線状を含む線状に接合された複数本の繊維強化複合材と、を備え、前記繊維強化複合材は、前記移動体の移動時に前記金属板に作用する応力に応じて配置される、移動体の構造体が提供される。 In order to solve the above problems, according to a certain viewpoint of the present invention, with respect to at least one surface of the metal plate as a base material of the structure of the moving body and as a reinforcing material of the metal plate. , A plurality of fiber-reinforced composites joined in a linear shape including a curved shape, and the fiber-reinforced composites are arranged according to the stress acting on the metal plate when the moving body moves. A moving body structure is provided.

前記繊維強化複合材は、前記移動体の移動時に前記金属板に作用する主応力方向に沿って、曲線状を含む線状に配置されるようにしてもよい。 The fiber-reinforced composite material may be arranged in a linear shape including a curved shape along the main stress direction acting on the metal plate when the moving body moves.

前記繊維強化複合材は、前記移動体の移動時に前記金属板に作用する応力が集中する応力集中部位に対して配置されるようにしてもよい。 The fiber-reinforced composite material may be arranged at a stress concentration portion where the stress acting on the metal plate is concentrated when the moving body moves.

前記移動体は航空機であり、前記応力集中部位は、前記航空機の胴体と主翼との結合部を含むようにしてもよい。 The moving body is an aircraft, and the stress concentration site may include a joint portion between the fuselage and the main wing of the aircraft.

前記移動体は航空機であり、前記移動体の構造体は、前記航空機の胴体または主翼のうちの少なくともいずれかの外装材であるようにしてもよい。 The moving body may be an aircraft, and the structure of the moving body may be an exterior material of at least one of the fuselage or main wings of the aircraft.

上記課題を解決するために、本発明の別の観点によれば、移動体の構造体の母材となる金属板の補強材として、前記金属板の少なくとも一方の面に対して、曲線状を含む線状に接合された複数本の繊維強化複合材を、前記移動体の移動時に前記金属板に作用する応力に応じて配置するステップを含む、移動体の構造体の製造方法が提供される。 In order to solve the above problems, according to another aspect of the present invention, as a reinforcing material of a metal plate as a base material of a structure of a moving body, a curved shape is formed with respect to at least one surface of the metal plate. Provided is a method for manufacturing a structure of a moving body, which comprises a step of arranging a plurality of linearly joined fiber-reinforced composite materials including a plurality of fiber-reinforced composite materials according to a stress acting on the metal plate when the moving body moves. ..

上記課題を解決するために、本発明の別の観点によれば、トポロジー最適化または複合材積層構成最適化のうち少なくともいずれかを含む構造最適化シミュレーションにより、移動体の構造体の母材となる金属板に対して補強材として接合される繊維強化複合材の骨組みモデルを設計するステップと、前記骨組みモデルに基づいて、前記金属板の少なくとも一方の面に対して、曲線状を含む線状の繊維強化複合材を複数本接合することにより、移動体の構造体を製造するステップと、を含む、移動体の構造体の製造方法が提供される。 In order to solve the above problems, according to another aspect of the present invention, a structural optimization simulation including at least one of topology optimization or composite laminated structure optimization is performed to obtain a base material of a moving body structure. Based on the step of designing a frame model of a fiber reinforced composite material to be joined as a reinforcing material to a metal plate, and the linear shape including a curved shape with respect to at least one surface of the metal plate based on the frame model. A method for manufacturing a structure of a moving body, including a step of manufacturing the structure of the moving body, is provided by joining a plurality of the fiber-reinforced composite materials of the above.

前記移動体の構造体の成立性の観点に基づいて、前記骨組みモデルを設計するステップで設計された前記骨組みモデルから、一部の繊維強化複合材を間引くステップをさらに含み、前記移動体の構造体を製造するステップでは、前記一部の繊維強化複合材が間引かれた後の前記骨組みモデルに基づいて、前記金属板の少なくとも一方の面に対して、曲線状を含む線状の繊維強化複合材を複数本接合するようにしてもよい。 Based on the viewpoint of the feasibility of the structure of the moving body, the structure of the moving body further includes a step of thinning out a part of the fiber reinforced composite material from the frame model designed in the step of designing the frame model. In the step of manufacturing the body, linear fiber reinforcement including a curve is applied to at least one surface of the metal plate based on the skeleton model after the partial fiber reinforced composite is thinned out. A plurality of composite materials may be joined.

本発明によれば、航空機または車両等の移動体の構造体の軽量化と、補強が必要な部位の強度向上を両立させることができる。 According to the present invention, it is possible to achieve both weight reduction of a structure of a moving body such as an aircraft or a vehicle and improvement of strength of a portion requiring reinforcement.

本発明の第1の実施形態に係る航空機の構造体の裏面を示す模式図である。It is a schematic diagram which shows the back surface of the structure of the aircraft which concerns on 1st Embodiment of this invention. 同実施形態に係る構造体を用いて製造された航空機を示す斜視図である。It is a perspective view which shows the aircraft manufactured using the structure which concerns on this embodiment. 同実施形態に係る航空機の構造体の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the structure of the aircraft which concerns on this embodiment. 同実施形態に係るトポロジー最適化の解析結果として、航空機の構造体のモデルを示す説明図である。It is explanatory drawing which shows the model of the structure of the aircraft as the analysis result of the topology optimization which concerns on this embodiment. 同実施形態に係る複合材積層構成最適化の解析結果として、航空機の主翼の構造体のシミュレーション結果を示す説明図である。It is explanatory drawing which shows the simulation result of the structure of the main wing of an aircraft as the analysis result of the composite material laminated composition optimization which concerns on the same embodiment. 本発明の第2の実施形態に係る航空機の主翼の構造体の金属板に作用する主応力方向を示す斜視図である。It is a perspective view which shows the direction of the principal stress acting on the metal plate of the structure of the main wing of the aircraft which concerns on 2nd Embodiment of this invention. 従来技術に係るCFRP複合材のみで構成された主翼の構造体を示す斜視図である。It is a perspective view which shows the structure of the main wing which consisted only of the CFRP composite material which concerns on the prior art. 同実施形態に係る金属板とCFRP複合材で構成された主翼の構造体を示す斜視図である。It is a perspective view which shows the structure of the main wing which was composed of the metal plate and CFRP composite material which concerns on this embodiment. 本発明の第3の実施形態に係る航空機の胴体の構造体と、胴体と主翼の結合部を示す斜視図である。It is a perspective view which shows the structure of the fuselage of the aircraft which concerns on 3rd Embodiment of this invention, and the joint part of a fuselage and a main wing. 従来技術1に係る結合部を示す斜視図である。It is a perspective view which shows the joint part which concerns on the prior art 1. 従来技術2に係る結合部を示す斜視図である。It is a perspective view which shows the joint part which concerns on the prior art 2. 同実施形態に係る結合部を示す斜視図である。It is a perspective view which shows the joint part which concerns on the same embodiment.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The dimensions, materials, other specific numerical values, etc. shown in the embodiment are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are designated by the same reference numerals to omit duplicate description, and elements not directly related to the present invention are not shown. To do.

[1.航空機の構造体の構成]
まず、図1および図2を参照して、本発明の第1の実施形態に係る航空機の構造体の構成について説明する。図1は、本実施形態に係る航空機の構造体の裏面を示す模式図である。図2は、本実施形態に係る構造体を用いて製造された航空機を示す斜視図である。
[1. Structure of the aircraft]
First, the configuration of the structure of the aircraft according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic view showing the back surface of the structure of the aircraft according to the present embodiment. FIG. 2 is a perspective view showing an aircraft manufactured by using the structure according to the present embodiment.

図1および図2に示すように、本実施形態では、移動体の構造体の一例として、航空機の構造体1であって、航空機の胴体または主翼の外装材となる構造体の例を挙げて説明するが、本発明の航空機の構造体は、かかる例に限定されない。 As shown in FIGS. 1 and 2, in the present embodiment, as an example of the structure of the moving body, an example of the structure 1 of the aircraft, which is the exterior material of the fuselage or the main wing of the aircraft, is given. As described above, the structure of the aircraft of the present invention is not limited to such an example.

図1に示すように、本実施形態に係る航空機の構造体1は、構造体1の母材となる金属板2と、当該金属板2を補強するための補強材となるCFRP複合材3とからなる。構造体1は、例えば、航空機の胴体または主翼等の外装材を構成し、航空機の機体の外殻となる機体構造材として機能する。 As shown in FIG. 1, the aircraft structure 1 according to the present embodiment includes a metal plate 2 as a base material of the structure 1 and a CFRP composite material 3 as a reinforcing material for reinforcing the metal plate 2. Consists of. The structure 1 constitutes, for example, an exterior material such as an aircraft fuselage or a main wing, and functions as an airframe structural material serving as an outer shell of the aircraft body.

金属板2は、航空機の胴体等の形状に合わせて成形される。図1では、航空機の胴体の上部側の外装材を構成する金属板2を、裏側(機体内側)から見た状態を示している。金属板2は、1枚板を加工して成形されてもよいし、同一または異なる材料からなる複数枚の金属板を接合して、成形されてもよい。金属板2の材料は、軽量化の観点から、例えば、アルミニウム、チタン、マグネシウム、またはこれら金属を主体とする合金(アルミニウム合金、チタン合金など)であることが好ましい。しかし、金属板2の材料は、鉄鋼、ステンレス鋼、その他の金属材料であってもよい。 The metal plate 2 is molded according to the shape of the fuselage of an aircraft or the like. FIG. 1 shows a state in which the metal plate 2 constituting the exterior material on the upper side of the fuselage of the aircraft is viewed from the back side (inside the fuselage). The metal plate 2 may be formed by processing a single plate, or may be formed by joining a plurality of metal plates made of the same or different materials. From the viewpoint of weight reduction, the material of the metal plate 2 is preferably, for example, aluminum, titanium, magnesium, or an alloy mainly composed of these metals (aluminum alloy, titanium alloy, etc.). However, the material of the metal plate 2 may be steel, stainless steel, or other metal material.

金属板2の厚みは、例えば、0.5〜100mmであり、好ましくは2〜10mmである。構造体1の軽量化の観点からは、金属板2の厚みは薄い方が好ましいが、構造体1の強度の維持の観点からは、金属板2の厚みは厚い方が好ましい。このため、航空機の機体で使用される構造体1の部位ごとの必要強度に応じて、金属板2を適宜変更してもよい。 The thickness of the metal plate 2 is, for example, 0.5 to 100 mm, preferably 2 to 10 mm. From the viewpoint of reducing the weight of the structure 1, the thickness of the metal plate 2 is preferably thin, but from the viewpoint of maintaining the strength of the structure 1, the thickness of the metal plate 2 is preferably thick. Therefore, the metal plate 2 may be appropriately changed according to the required strength for each part of the structure 1 used in the airframe of the aircraft.

CFRP複合材3は、本発明の繊維強化複合材の一例であり、炭素繊維強化プラスチック(CFRP)からなる複合材料で形成される。CFRPは、強化材として炭素繊維を用い、この炭素繊維を樹脂で固めた材料である。 The CFRP composite material 3 is an example of the fiber reinforced composite material of the present invention, and is formed of a composite material made of carbon fiber reinforced plastic (CFRP). CFRP is a material in which carbon fiber is used as a reinforcing material and the carbon fiber is hardened with a resin.

母材となる樹脂としては、例えば、エポキシ樹脂、ポリアミド樹脂、フェノール樹脂、ベンゾオキサジン樹脂、ビスマレイミド樹脂または不飽和ポリエステルなどの熱硬化性樹脂などを用いることができる。なお、本発明の繊維強化複合材の材料は、CFRPの例に限定されず、例えば、強化材としてガラス繊維を用いたガラス繊維強化プラスチック(GFRP:Glass FRP)、ボロン繊維強化プラスチック(BFRP:Boron FRP)、アラミド、ケブラー、ダイニーマ、ザイロンなどの樹脂繊維を強化材として用いた樹脂繊維強化複合材(AFRP:Aramid FRP、KFRP:Kevlar FRP、DFRP:Dyneema FRP、ZFRP:Zylon FRPなど)、炭素とケイ素の化合物を繊維化した炭化ケイ素繊維強化複合材(SiCFRP:Silicon Carbide FRP)など、各種の繊維強化プラスチック(FRP:Fiber Reinforced Plastic)を使用することもできる。 As the base material resin, for example, a thermosetting resin such as an epoxy resin, a polyamide resin, a phenol resin, a benzoxazine resin, a bismaleimide resin or an unsaturated polyester can be used. The material of the fiber reinforced composite material of the present invention is not limited to the example of CFRP, for example, glass fiber reinforced plastic (GFRP: Glass FRP) using glass fiber as the reinforcing material, and boron fiber reinforced plastic (BFRP: Boron). FRP), aramid, Kevlar, Dyneema, Zylon and other resin fibers as reinforcing materials Resin fiber reinforced composite materials (AFRP: Aramid FRP, KFRP: Kevlar FRP, DFRP: Dyneema FRP, ZFRP: Zylon FRP, etc.), carbon Various fiber reinforced plastics (FRP: Fiber Reinforced Plastic) such as silicon carbide fiber reinforced composite material (SiCFRP: Silicon Carbide FRP) obtained by fiberizing a silicon compound can also be used.

CFRP複合材3は、例えば、厚み0.1〜100mm、好ましくは0.5〜10mmの炭素繊維シート(炭素繊維に樹脂を含浸させたシート状の部材。「プリプレグ」とも称される。)を複数枚積層することにより、形成される。炭素繊維シートは、強度に異方性があり、特定の方向(強化繊維の配向方向)に対しては高強度であるが、他の方向に対しては低強度となる。このため、複数枚の炭素繊維シートを積層する場合、複数枚の炭素繊維シートの配向が相互に異なる向きとなるように積層する必要がある。しかし、CFRP複合材全体として最適な配向となるように、炭素繊維シートを積層することは難しい。また、従来技術のように、大きな構造材の母材としてCFRP複合材を用いる場合には、板厚を得るために多数枚の炭素繊維シートを積層する必要があるので、積層作業に時間がかかってしまう。 The CFRP composite material 3 is, for example, a carbon fiber sheet having a thickness of 0.1 to 100 mm, preferably 0.5 to 10 mm (a sheet-like member in which carbon fibers are impregnated with resin. Also referred to as "prepreg"). It is formed by stacking a plurality of sheets. The carbon fiber sheet has anisotropy in strength and has high strength in a specific direction (orientation direction of reinforcing fibers), but low strength in other directions. Therefore, when laminating a plurality of carbon fiber sheets, it is necessary to laminate the plurality of carbon fiber sheets so that the orientations are different from each other. However, it is difficult to laminate the carbon fiber sheets so that the CFRP composite has the optimum orientation as a whole. Further, when a CFRP composite material is used as a base material for a large structural material as in the prior art, it takes time to laminate a large number of carbon fiber sheets in order to obtain a plate thickness. Will end up.

これに対し、本実施形態では、構造体1の母材として強度に異方性のない金属板2を使用し、CFRP複合材3をあくまでも補強材として使用する。これにより、補強材としてCFRP複合材3を設けるに当たり、炭素繊維シートの積層数や積層作業時間、コストなどを低減できるという利点がある。 On the other hand, in the present embodiment, the metal plate 2 having no anisotropic strength is used as the base material of the structure 1, and the CFRP composite material 3 is used as the reinforcing material to the last. As a result, when the CFRP composite material 3 is provided as the reinforcing material, there is an advantage that the number of laminated carbon fiber sheets, the laminating work time, the cost, and the like can be reduced.

本実施形態に係る構造体1では、CFRP複合材3は、従来一般的な面状(シート状)の部材ではなく、曲線状、直線状等を含む線状(帯状)の細長い部材として、金属板2に接合されることを特徴とする。特に、本実施形態では、広い面状の金属板2に対して、細長い帯状のCFRP複合材3を、波を打つような湾曲線状に接合することを特徴としている。帯状のCFRP複合材3の厚みは、補強部位によって異なるが、例えば、0.1〜100mmであり、好ましくは0.5〜10mmである。また、帯状のCFRP複合材3の幅は、補強部位によって異なるが、例えば、5〜1000mmであり、好ましくは10〜200mmである。 In the structure 1 according to the present embodiment, the CFRP composite material 3 is not a conventional surface-shaped (sheet-shaped) member, but a metal as a linear (strip-shaped) elongated member including a curved line, a straight line, and the like. It is characterized in that it is joined to the plate 2. In particular, the present embodiment is characterized in that an elongated strip-shaped CFRP composite material 3 is joined to a wide planar metal plate 2 in a wavy curved line shape. The thickness of the strip-shaped CFRP composite material 3 varies depending on the reinforcing portion, but is, for example, 0.1 to 100 mm, preferably 0.5 to 10 mm. The width of the strip-shaped CFRP composite material 3 varies depending on the reinforcing portion, but is, for example, 5 to 1000 mm, preferably 10 to 200 mm.

図1および図2に示すように、金属板2の少なくとも一方の面(図示の例では裏面、即ち、機体内側の面)に対して、複数本の線状のCFRP複合材3が接合される。これらCFRP複合材3は、互いに交差するように配置され、全体としては、例えばトラス構造のような網目状に配置される。なお、本明細書において、「線状」とは、曲線状、直線状、ジグザク状などの任意の形状の線状、またはこれらの組み合わせを含む。また、「金属板2に対して複数本のCFRP複合材3を線状に接合する」とは、例えば複数本の帯状のCFRP複合材3を相互に交差しないように接合することと、相互に交差するように接合すること、および円、楕円、多角形などの無端状の環状でCFRP複合材3に接合すること、などを含む。強度向上の観点からは、トラス構造のように、複数本のCFRP複合材3を相互に交差させて配置する方が好ましい。 As shown in FIGS. 1 and 2, a plurality of linear CFRP composite materials 3 are joined to at least one surface of the metal plate 2 (the back surface in the illustrated example, that is, the inner surface of the machine body). .. These CFRP composite materials 3 are arranged so as to intersect each other, and as a whole, they are arranged in a mesh shape such as a truss structure. In addition, in this specification, "linear" includes a linear shape of an arbitrary shape such as a curved line, a straight line, and a zigzag shape, or a combination thereof. Further, "joining a plurality of CFRP composite materials 3 linearly to a metal plate 2" means, for example, joining a plurality of strip-shaped CFRP composite materials 3 so as not to intersect each other. It includes joining so as to intersect, joining to the CFRP composite 3 in an endless annular shape such as a circle, an ellipse, and a polygon. From the viewpoint of improving the strength, it is preferable to arrange a plurality of CFRP composite materials 3 so as to intersect each other as in the truss structure.

金属板2に対するCFRP複合材3の接合方法としては、例えば、図1に示すように、熱融着と圧着を組み合わせる接合方法を用いることができる。例えば、レーザー加熱装置等の加熱装置21により、帯状のプリプレグ3Aと金属板2との接合部付近において、プリプレグ3Aを加熱して、プリプレグ3Aの樹脂を溶かしながら、圧着ローラー22によりプリプレグ3Aを金属板2の表面に対して押し付ける。これにより、金属板2に対してプリプレグ3Aを熱融着して、金属板2に対してCFRP複合材3を接合することができる。金属板2の同一部位に対して、複数枚のプリプレグ3Aを繰り返し積層することにより、金属板2上におけるCFRP複合材3の厚みを厚くして、CFRP複合材3の強度を高め、当該部位の補強強度を高めることができる。また、金属板2の補強対象部位に対して、幅広のプリプレグ3Aを積層することにより、金属板2上におけるCFRP複合材3の幅を太くして、CFRP複合材3の強度を高め、当該部位の補強強度を高めることもできる。 As a method of joining the CFRP composite material 3 to the metal plate 2, for example, as shown in FIG. 1, a joining method that combines heat fusion and crimping can be used. For example, the prepreg 3A is heated by a heating device 21 such as a laser heating device near the joint between the band-shaped prepreg 3A and the metal plate 2, and the resin of the prepreg 3A is melted while the prepreg 3A is metallized by the crimping roller 22. Press against the surface of the plate 2. As a result, the prepreg 3A can be heat-sealed to the metal plate 2 to join the CFRP composite material 3 to the metal plate 2. By repeatedly laminating a plurality of prepregs 3A on the same portion of the metal plate 2, the thickness of the CFRP composite material 3 on the metal plate 2 is increased, and the strength of the CFRP composite material 3 is increased. Reinforcement strength can be increased. Further, by laminating a wide prepreg 3A on the portion to be reinforced of the metal plate 2, the width of the CFRP composite material 3 on the metal plate 2 is increased to increase the strength of the CFRP composite material 3, and the portion concerned. It is also possible to increase the reinforcing strength of.

本実施形態に係る構造体1では、航空機の飛行時(本発明の「移動体の移動時」に相当する。)に、構造体1の母材である金属板2に作用する主応力方向に沿って、CFRP複合材3が曲線状に接合される。主応力方向とは、飛行時に構造体1に対して作用する各種の応力(圧縮応力、引張応力、せん断応力等)の合わさったものが最大となる主応力面の方向を意味する。この主応力方向に沿って、CFRP複合材3を金属板2に接合することにより、金属板2のうち構造上、補強が必要な部位(以下、「補強必要部位」という。)を、重点的かつ効果的、効率的に補強できる。 In the structure 1 according to the present embodiment, in the direction of the principal stress acting on the metal plate 2 which is the base material of the structure 1 during the flight of the aircraft (corresponding to the “movement of the moving body” of the present invention). Along the line, the CFRP composite material 3 is joined in a curved shape. The principal stress direction means the direction of the principal stress surface in which the sum of various stresses (compressive stress, tensile stress, shear stress, etc.) acting on the structure 1 during flight is maximized. By joining the CFRP composite material 3 to the metal plate 2 along the main stress direction, the parts of the metal plate 2 that need to be structurally reinforced (hereinafter referred to as "reinforcement required parts") are emphasized. Moreover, it can be reinforced effectively and efficiently.

また、本実施形態に係る構造体1では、航空機の飛行時に、金属板2に作用する応力が集中する部位(以下、「応力集中部位」という。)に対して、CFRP複合材3が重点的に接合される。ここで、「応力集中部位」とは、構造体1のうち他の部位よりも応力値の高い応力が集中して作用する部位であり、例えば、航空機の胴体と翼の接合部や、胴体の中央の背骨部分などである。また、「応力集中部位に対して重点的に接合する」とは、応力集中部位におけるCFRP複合材3の厚みを他の部位よりも厚くすること、応力集中部位におけるCFRP複合材3の幅を他の部位よりも広くすること、応力集中部位に対して複数本のCFRP複合材3を集中的に高密度で接合すること、などを含む。 Further, in the structure 1 according to the present embodiment, the CFRP composite material 3 is prioritized with respect to the portion where the stress acting on the metal plate 2 is concentrated (hereinafter, referred to as “stress concentration portion”) during the flight of the aircraft. Is joined to. Here, the "stress concentration portion" is a portion of the structure 1 in which stress having a higher stress value than other portions acts in a concentrated manner, for example, a joint between the fuselage and wings of an aircraft, or a fuselage. Such as the central spine. Further, "joining intensively to the stress concentrated portion" means that the thickness of the CFRP composite material 3 at the stress concentrated portion is made thicker than that of other portions, and the width of the CFRP composite material 3 at the stress concentrated portion is other than that. It includes making it wider than the portion of the above, and intensively joining a plurality of CFRP composite materials 3 to the stress concentration portion at a high density.

飛行時に、金属板2の応力集中部位には、他の部位よりも大きな応力値の応力が作用するため、構造体1が破損または変形しやすい。このため、応力集中部位を集中的に補強することが好ましい。そこで、金属板2の応力集中部位に対してCFRP複合材3を重点的に接合することによって、応力集中部位を効果的かつ効率的に補強でき、構造体1の破損または変形を抑制できる。 During flight, the stress concentration portion of the metal plate 2 is subjected to a stress having a stress value larger than that of the other portions, so that the structure 1 is easily damaged or deformed. Therefore, it is preferable to intensively reinforce the stress concentration portion. Therefore, by preferentially joining the CFRP composite material 3 to the stress concentration portion of the metal plate 2, the stress concentration portion can be effectively and efficiently reinforced, and damage or deformation of the structure 1 can be suppressed.

以上のように、本実施形態では、主応力方向に沿って線状のCFRP複合材3を金属板2に接合するとともに、金属板2の応力集中部位に対して重点的に線状のCFRP複合材3を接合する。これにより、構造体1のうち高強度が求められる必要部位のみに対して、必要な方向(主応力方向に沿った方向)で、帯状のCFRP複合材3を、曲線を含む線状の軌跡で接合して補強できる。つまり、航空機の飛行時等に構造体1に作用する荷重の大きさや方向に合わせて、金属板2をCFRP複合材3で適切に補強できる。従って、航空機の構造体1の軽量化と、構造体1のうち補強必要部位の強度向上とを両立させることができる。よって、金属とCFRPからなるマルチマテリアル構造体において、生産性や安全性を確保しつつ、軽量化も実現できる有用な構造体1を提供できる。 As described above, in the present embodiment, the linear CFRP composite material 3 is joined to the metal plate 2 along the main stress direction, and the linear CFRP composite material is focused on the stress concentration portion of the metal plate 2. Join the material 3. As a result, the strip-shaped CFRP composite material 3 is formed in a linear locus including a curve in the required direction (direction along the principal stress direction) only for the necessary portion of the structure 1 where high strength is required. Can be joined and reinforced. That is, the metal plate 2 can be appropriately reinforced with the CFRP composite material 3 according to the magnitude and direction of the load acting on the structure 1 during flight of an aircraft or the like. Therefore, it is possible to achieve both the weight reduction of the aircraft structure 1 and the strength improvement of the portion of the structure 1 that requires reinforcement. Therefore, in a multi-material structure made of metal and CFRP, it is possible to provide a useful structure 1 that can realize weight reduction while ensuring productivity and safety.

[2.航空機の構造体の製造方法]
次に、図3を参照して、本実施形態に係る航空機の構造体1の製造方法について説明する。図3は、本実施形態に係る航空機の構造体1の製造方法を示すフローチャートである。
[2. Manufacturing method of aircraft structure]
Next, a method of manufacturing the aircraft structure 1 according to the present embodiment will be described with reference to FIG. FIG. 3 is a flowchart showing a manufacturing method of the aircraft structure 1 according to the present embodiment.

図3に示すように、本実施形態に係る航空機の構造体1の製造方法は、大別すると、金属板2およびCFRP複合材3を設計するステップ(S10)と、構造体1を製造するステップ(S20)とを含む。設計ステップ(S10)は、金属板の設計ステップ(S12)、トポロジー最適化ステップ(S14)と、複合材の間引きステップ(S16)と、複合材積層構成最適化ステップ(S18)とを含む。製造ステップ(S20)は、金属板2の成形ステップ(S22)と、複合材の接合(積層)ステップ(S24)とを含む。以下に各ステップについて詳述する。 As shown in FIG. 3, the manufacturing method of the aircraft structure 1 according to the present embodiment is roughly divided into a step (S10) of designing the metal plate 2 and the CFRP composite material 3 and a step of manufacturing the structure 1. (S20) and is included. The design step (S10) includes a metal plate design step (S12), a topology optimization step (S14), a composite material thinning step (S16), and a composite material laminated configuration optimization step (S18). The manufacturing step (S20) includes a molding step (S22) of the metal plate 2 and a joining (lamination) step (S24) of the composite material. Each step will be described in detail below.

(S12)金属板の設計ステップ
まず、航空機の構造体1の母材となる金属板2の構成が設計される。ここでは、構造体1が航空機の胴体および主翼の外装材であり、当該外装材を構成する金属板2を設計する例について説明する。図1および図2に示したように、航空機の胴体および主翼に求められる形状、強度、機能等の特性に応じて、金属板2の形状、大きさ、材質等が設計される。
(S12) Metal Plate Design Step First, the configuration of the metal plate 2 which is the base material of the aircraft structure 1 is designed. Here, an example in which the structure 1 is the exterior material of the fuselage and the main wing of the aircraft and the metal plate 2 constituting the exterior material is designed will be described. As shown in FIGS. 1 and 2, the shape, size, material, etc. of the metal plate 2 are designed according to the characteristics such as shape, strength, and function required for the fuselage and main wings of the aircraft.

次いで、上記S12で設計された金属板2に対する補強材として、CFRP複合材3の構成が設計される。トポロジー最適化(S14)および複合材積層構成最適化(S18)を含む構造最適化シミュレーションにより、金属板2に対して接合されるCFRP複合材3の骨組みモデルと積層構成が設計される。このCFRP複合材3の設計では、以下の3つのステップ(S14、S16、S18)を含むことが好ましい。 Next, the configuration of the CFRP composite material 3 is designed as a reinforcing material for the metal plate 2 designed in S12. The structural optimization simulation including the topology optimization (S14) and the composite material laminated structure optimization (S18) is used to design the framework model and the laminated structure of the CFRP composite material 3 to be joined to the metal plate 2. The design of the CFRP composite material 3 preferably includes the following three steps (S14, S16, S18).

(S14)トポロジー最適化ステップ
本ステップ(S14)では、トポロジー最適化シミュレーションにより、CFRP複合材3の骨組みモデルの最適解が解析、設計されて、CFRP複合材3の基本配置が決定される。
(S14) Topology optimization step In this step (S14), the optimum solution of the framework model of the CFRP composite material 3 is analyzed and designed by the topology optimization simulation, and the basic arrangement of the CFRP composite material 3 is determined.

構造材の形状を設計する際に利用される構造最適化としては、寸法最適化、形状最適化、トポロジー最適化などの解析方法がある。このうち、トポロジー最適化の基本的な考え方は、「構造体1の利用時に想定される構造的な制約、荷重・拘束条件の下で、設定した設計空間において、最も効率のよい材料の分布を見つけること」にある。トポロジー最適化は、当該条件下で不要な材料を削って最適な設計案を見出していく解析方法であり、トポロジー最適化の実行過程では、シミュレーションの繰り返しと、効率的な解探索とが行われる。 Structural optimization used when designing the shape of a structural material includes analysis methods such as dimensional optimization, shape optimization, and topology optimization. Of these, the basic idea of topology optimization is "Under the structural constraints, loads and constraints assumed when using structure 1, the most efficient material distribution in the set design space. To find it. " Topology optimization is an analysis method that finds the optimum design plan by scraping unnecessary materials under the relevant conditions. In the execution process of topology optimization, simulation is repeated and efficient solution search is performed. ..

本実施形態では、上記トポロジー最適化を実行する解析ツールを用いて、構造体1におけるCFRP複合材3の最適な骨組みモデルが設計される。図4は、本実施形態に係るトポロジー最適化の解析結果として、航空機の構造体1のモデルを示す説明図である。図4に示すように、金属板2とCFRP複合材3を合わせた構造体1の最適なモデル31から、CFRP複合材3の最適な骨組みモデル32が導出される。かかる骨組みモデル32では、複数本のCFRP複合材3が例えばトラス構造のような骨組みで配置されている。詳細には、航空機の胴体の構造体1に作用する主応力方向に沿って、複数本の曲線状のCFRP複合材3が交差するように配置されている。航空機の飛行時には、構造体1中に応力集中部位が生じるため、この応力集中部位を重点的に補強できるように、CFRP複合材3が密集して配置されている。 In the present embodiment, the optimum skeleton model of the CFRP composite material 3 in the structure 1 is designed by using the analysis tool that executes the above topology optimization. FIG. 4 is an explanatory diagram showing a model of the structure 1 of the aircraft as the analysis result of the topology optimization according to the present embodiment. As shown in FIG. 4, the optimum skeleton model 32 of the CFRP composite material 3 is derived from the optimum model 31 of the structure 1 in which the metal plate 2 and the CFRP composite material 3 are combined. In such a skeleton model 32, a plurality of CFRP composite materials 3 are arranged in a skeleton such as a truss structure. Specifically, a plurality of curved CFRP composite members 3 are arranged so as to intersect with each other along the main stress direction acting on the structure 1 of the fuselage of the aircraft. Since a stress concentration portion is generated in the structure 1 during flight of an aircraft, the CFRP composite materials 3 are densely arranged so that the stress concentration portion can be reinforced intensively.

(S16)複合材の間引きステップ
本ステップ(S16)では、航空機の構造体1の成立性の観点に基づいて、上記ステップ(S14)で設計された骨組みモデル32から、一部のCFRP複合材3が間引かれる。
(S16) Thinning Step of Composite Material In this step (S16), a part of CFRP composite material 3 is obtained from the framework model 32 designed in the above step (S14) based on the viewpoint of the feasibility of the structure 1 of the aircraft. Is thinned out.

航空機の構造体1の成立性による制約によって、上記最適化された骨組みモデル32は、実際の航空機の構造体1にそのまま適用できない場合がある。ここで、構造体1の成立性とは、例えば、(1)乗り物としての成立性、(2)空力学としての成立性、(3)製造成立性などを含む。 Due to restrictions due to the feasibility of the aircraft structure 1, the optimized skeleton model 32 may not be directly applicable to the actual aircraft structure 1. Here, the feasibility of the structure 1 includes, for example, (1) feasibility as a vehicle, (2) feasibility as aerodynamics, (3) feasibility of manufacturing, and the like.

例えば、骨組みモデル32のCFRP複合材3が、航空機の出入口付近または客室内の中心に存在する場合には、航空機の実機において当該CFRP複合材3を実際に配置することはできない。つまり、上記(1)乗り物としての空間的な制約により、CFRP複合材3の配置に制約が生じる。従って、骨組みモデル32から、当該出入口付近のCFRP複合材3を取り除くことが好ましい。同様に、(2)航空機の飛行時における空力学の制約の観点や、(3)航空機の機体内の客室を横切るようなCFRP複合材3を配置できないという機体製造面での制約の観点などから、上記最適化された骨組みモデル32をそのまま使用できない場合もある。このため、上記の構造体1の成立性の観点から、必要に応じて、当該骨組みモデル32から一部のCFRP複合材3を間引く(取り除く)ことにより、実機の構造体1の成立性を確保することが好ましい。かかるCFRP複合材3の間引きにより、骨組みモデル32が、より現実的なモデルに設計変更される。 For example, when the CFRP composite material 3 of the skeleton model 32 exists near the entrance / exit of the aircraft or in the center of the cabin, the CFRP composite material 3 cannot be actually arranged in the actual aircraft. That is, due to the above (1) spatial restriction as a vehicle, the arrangement of the CFRP composite material 3 is restricted. Therefore, it is preferable to remove the CFRP composite material 3 near the doorway from the frame model 32. Similarly, from the viewpoint of (2) restrictions on aerodynamics during flight of the aircraft, and (3) restrictions on the manufacture of the aircraft that the CFRP composite material 3 that crosses the cabin inside the aircraft cannot be placed. In some cases, the optimized skeleton model 32 cannot be used as it is. Therefore, from the viewpoint of the feasibility of the structure 1 described above, the feasibility of the structure 1 of the actual machine is ensured by thinning out (removing) a part of the CFRP composite material 3 from the skeleton model 32 as necessary. It is preferable to do so. By thinning out the CFRP composite material 3, the skeleton model 32 is redesigned into a more realistic model.

(S18)複合材積層構成最適化ステップ
次いで、本ステップ(S18)では、複合材積層構成最適化シミュレーションにより、上記ステップ(S14、S16)で設計されたCFRP複合材3の骨組みモデル32に基づいて、構造体1の各部位におけるCFRP複合材3の積層構成(板厚、配向方向等)が最適化される。具体的には、CFRP複合材3の骨組みモデル32において、CFRP複合材3の厚さや幅、当該CFRP複合材3を構成する炭素繊維シート(プリプレグ3A)の積層枚数や炭素繊維の配向方向などといった積層構成が決定される。この解析処理には、複合材積層構成最適化を実行する解析ツールが用いられる。なお、上記ステップ(S16)にて一部のCFRP複合材3が間引かれた場合には、当該間引かれた後の骨組みモデル32に対して、複合材積層構成最適化が行われる。
(S18) Composite Material Laminated Structure Optimization Step Next, in this step (S18), the composite material laminated structure optimization simulation is performed based on the frame model 32 of the CFRP composite material 3 designed in the above steps (S14, S16). , The laminated structure (plate thickness, orientation direction, etc.) of the CFRP composite material 3 at each part of the structure 1 is optimized. Specifically, in the frame model 32 of the CFRP composite material 3, the thickness and width of the CFRP composite material 3, the number of laminated carbon fiber sheets (prepreg 3A) constituting the CFRP composite material 3, the orientation direction of the carbon fibers, and the like. The stacking configuration is determined. For this analysis process, an analysis tool that executes the optimization of the composite laminated structure is used. When a part of the CFRP composite material 3 is thinned out in the above step (S16), the composite material laminated composition is optimized for the frame model 32 after the thinning out.

図5は、本実施形態に係る複合材積層構成最適化の解析結果として、航空機の主翼の構造体1のシミュレーション結果を示す説明図である。図5に示すように、主翼の構造体1の各部位において、炭素繊維シートの積層構成の種類や分布が最適化されている。図5では、CFRP複合材3の厚みは、領域41で比較的厚く、領域42で比較的薄くなるように解析されている。この解析結果に基づいて、実際の主翼の構造体1の各部位におけるCFRP複合材3の積層構成(厚み、幅、配向方向等)が設計される。 FIG. 5 is an explanatory diagram showing a simulation result of the structure 1 of the main wing of an aircraft as an analysis result of the composite material laminated structure optimization according to the present embodiment. As shown in FIG. 5, the type and distribution of the laminated structure of the carbon fiber sheets are optimized at each part of the structure 1 of the main wing. In FIG. 5, the thickness of the CFRP composite material 3 is analyzed so as to be relatively thick in the region 41 and relatively thin in the region 42. Based on this analysis result, the laminated structure (thickness, width, orientation direction, etc.) of the CFRP composite material 3 at each part of the actual main wing structure 1 is designed.

以上のステップ(S14〜S18)により、金属板2に対して接合されるCFRP複合材3の骨組みモデル32と積層構成が完成する。その後、当該骨組みモデル32と積層構成に基づいて、金属板2に対して複数本の線状のCFRP複合材3が接合されて、構造体1が製造される(S20)。 By the above steps (S14 to S18), the frame model 32 of the CFRP composite material 3 joined to the metal plate 2 and the laminated structure are completed. After that, a plurality of linear CFRP composite members 3 are joined to the metal plate 2 based on the frame model 32 and the laminated structure to manufacture the structure 1 (S20).

(S22)金属板の成形ステップ
まず、上記金属板の設計ステップ(S12)で設計された金属板2が、実際に成形される。金属板2の成形方法としては、例えば、プレス加工、曲げ加工、溶接加工等の公知の加工方法を用いて、構造体1の母材となる金属板2が成形される。
(S22) Metal Plate Molding Step First, the metal plate 2 designed in the metal plate design step (S12) is actually molded. As a method for forming the metal plate 2, for example, a known processing method such as press working, bending processing, welding processing, or the like is used to form the metal plate 2 which is the base material of the structure 1.

(S24)複合材の接合(積層)ステップ
次いで、上記ステップ(S14〜S18)にて設計された骨組みモデル32と積層構成に基づいて、上記成形ステップ(S22)で成形された金属板2の片面または両面に対して、複数本の線状のCFRP複合材3が接合される(S24)。この接合方法は、図1に示したように、加熱装置21と圧着ローラー22を用いた熱融着を使用することができる。さらに、上記設計した積層構成に基づいて、複数枚のプリプレグ3Aを積層することで、構造体1の各部位におけるCFRP複合材3の厚みや幅が調整される。かかるプリプレグ3Aの積層処理は、ロボット等を用いた自動積層技術を適用することが好ましい。
(S24) Joining (Laminating) Step of Composite Material Next, one side of the metal plate 2 formed in the above forming step (S22) based on the skeleton model 32 and the laminating configuration designed in the above steps (S14 to S18). Alternatively, a plurality of linear CFRP composite materials 3 are joined to both sides (S24). As shown in FIG. 1, this joining method can use heat fusion using a heating device 21 and a crimping roller 22. Further, by laminating a plurality of prepregs 3A based on the laminated structure designed above, the thickness and width of the CFRP composite material 3 at each portion of the structure 1 are adjusted. It is preferable to apply an automatic laminating technique using a robot or the like to the laminating process of the prepreg 3A.

以上により、金属板2に対して複数本の線状のCFRP複合材3が接合されて、航空機の構造体1の製造が完了する。本実施形態に係る航空機の構造体1の製造方法によれば、航空機の構造体1の母材となる金属板2の補強材として、金属板2の少なくとも一方の面に対して、複数本の繊維強化複合材(CFRP複合材3)を、航空機の移動時に金属板2に作用する応力に応じて配置する。さらに、本実施形態に係る製造方法では、細長い帯状のプリプレグ3Aを、波を打つような湾曲線状に積層する技術を用いることで、複数本の湾曲線状のCFRP複合材3を、金属板2の応力集中部位等の必要な部位に、主応力方向に沿った適切な方向で接合する。これにより、トラス構造のように相互に交差する複数本のCFRP複合材3からなる補強材を用いて、金属板2を補強でき、当該金属板2(母材)とCFRP複合材3(補強材)からなるマルチマテリアル構造体を製造できる。 As described above, a plurality of linear CFRP composite materials 3 are joined to the metal plate 2, and the production of the aircraft structure 1 is completed. According to the method for manufacturing the aircraft structure 1 according to the present embodiment, as a reinforcing material for the metal plate 2 which is the base material of the aircraft structure 1, a plurality of the metal plate 2 is provided on at least one surface of the metal plate 2. The fiber reinforced composite material (CFRP composite material 3) is arranged according to the stress acting on the metal plate 2 when the aircraft moves. Further, in the manufacturing method according to the present embodiment, a plurality of curved linear CFRP composite materials 3 are formed on a metal plate by using a technique of laminating elongated strip-shaped prepregs 3A in a wavy curved linear shape. Join to the required part such as the stress concentration part of 2 in an appropriate direction along the main stress direction. As a result, the metal plate 2 can be reinforced by using a reinforcing material made of a plurality of CFRP composite materials 3 that intersect each other like a truss structure, and the metal plate 2 (base material) and the CFRP composite material 3 (reinforcing material) can be reinforced. ) Can be manufactured.

[3.主応力方向に沿った複合材の配置]
次に、図6〜図8を参照して、本発明の第2の実施形態に係る線状のCFRP複合材と金属板を組み合わせた構造体について、より詳細に説明する。図6は、本発明の第2の実施形態に係る航空機の主翼の構造体5の金属板6に作用する主応力方向を示す斜視図である。図7は、従来技術に係るCFRP複合材103のみで構成された主翼の構造体105を示す斜視図である。図8は、本実施形態に係る金属板6とCFRP複合材3で構成された主翼の構造体5を示す斜視図である。
[3. Arrangement of composite material along the principal stress direction]
Next, with reference to FIGS. 6 to 8, the structure in which the linear CFRP composite material and the metal plate according to the second embodiment of the present invention are combined will be described in more detail. FIG. 6 is a perspective view showing the direction of the main stress acting on the metal plate 6 of the structure 5 of the main wing of the aircraft according to the second embodiment of the present invention. FIG. 7 is a perspective view showing a main wing structure 105 composed of only the CFRP composite material 103 according to the prior art. FIG. 8 is a perspective view showing a main wing structure 5 composed of the metal plate 6 and the CFRP composite material 3 according to the present embodiment.

図6に示すように、航空機の飛行時において、主翼を構成する構造体5の母材である金属板6に応力が作用した場合を考える。この場合、主応力方向7は、主翼の長手方向に延びつつ湾曲する曲線状となる。従って、構造体5の強度を向上させるためには、曲線状の主応力方向7に沿って、CFRP複合材の炭素繊維を配向させることが好ましい。 As shown in FIG. 6, consider a case where stress acts on a metal plate 6 which is a base material of a structure 5 constituting a main wing during flight of an aircraft. In this case, the main stress direction 7 has a curved shape that extends and curves in the longitudinal direction of the main wing. Therefore, in order to improve the strength of the structure 5, it is preferable to orient the carbon fibers of the CFRP composite material along the curved principal stress direction 7.

しかしながら、図7に示すように、従来技術に係るCFRP複合材103のみを母材として用いた構造体105では、曲線状の主応力方向7に沿った曲率を持たせるように、CFRP複合材103の炭素繊維を配向させることは、CFRP複合材103の製造上の制約により困難である。 However, as shown in FIG. 7, in the structure 105 using only the CFRP composite material 103 according to the prior art as the base material, the CFRP composite material 103 is provided with a curvature along the curved principal stress direction 7. It is difficult to orient the carbon fibers of the CFRP composite material 103 due to manufacturing restrictions.

即ち、CFRP複合材103は、複数枚の炭素繊維シートを積層して構成されるが、図7に示すように、炭素繊維の配向方向が0°、45°、90°等のように特定の方向に限定される。例えば、従来一般的なCFRP複合材103では、表面層の剥離を防ぐために、45°に配向された炭素繊維シートを最外層に積層するが、この配向方向は、主応力方向7(概ね0°方向)とは合致しない。このように、CFRP複合材103のみで構造体105を構成する場合には、CFRP複合材の製造上の制約による特定の積層構成から逸脱することはできない。この結果、CFRP複合材103は、擬似等方性の積層板となってしまい、図示のような曲線状の主応力方向7に沿って炭素繊維の配向方向を調整することは難しい。従って、従来技術に係るCFRP複合材103のみからなる構造体105では、構造体105の軽量化と、補強が必要な方向の強度確保とを両立することが困難であった。 That is, the CFRP composite material 103 is formed by laminating a plurality of carbon fiber sheets, and as shown in FIG. 7, the orientation directions of the carbon fibers are specific such as 0 °, 45 °, 90 °, and the like. Limited to directions. For example, in the conventional general CFRP composite material 103, a carbon fiber sheet oriented at 45 ° is laminated on the outermost layer in order to prevent peeling of the surface layer, and the orientation direction is the principal stress direction 7 (approximately 0 °). Direction) does not match. As described above, when the structure 105 is composed only of the CFRP composite material 103, it cannot deviate from the specific laminated structure due to the restrictions on the production of the CFRP composite material. As a result, the CFRP composite material 103 becomes a pseudo-isotropic laminated plate, and it is difficult to adjust the orientation direction of the carbon fibers along the curved principal stress direction 7 as shown in the figure. Therefore, in the structure 105 made of only the CFRP composite material 103 according to the prior art, it is difficult to achieve both weight reduction of the structure 105 and securing of strength in the direction requiring reinforcement.

これに対し、図8に示すように、本実施形態に係る構造体5では、曲線状の主応力方向7(概ね0°方向)に沿って、曲線状のCFRP複合材3を複数本配置することを、容易に実現できる。かかる曲線状のCFRP複合材3により、補強が必要な主応力方向7に沿って金属板6を効果的かつ効率的に補強できる。このように、本実施形態に係る構造体5は、構造体5の母材として強度に異方性のない金属板6を用い、曲線状のCFRP複合材3を、金属板6の必要な部位に、必要な方向で積層する構成である。これにより、主応力方向7にほぼ合致する方向の強度や、応力集中部位の強度を特に高めて、構造体5を効率良く設計、製造することができる。従って、構造体5の必要な部位や方向の強度を確保しつつ、無駄な部位にはCFRP複合材3を配置しないので、構造体5を軽量化できる。 On the other hand, as shown in FIG. 8, in the structure 5 according to the present embodiment, a plurality of curved CFRP composite members 3 are arranged along the curved principal stress direction 7 (generally 0 ° direction). That can be easily achieved. With the curved CFRP composite material 3, the metal plate 6 can be effectively and efficiently reinforced along the principal stress direction 7 that needs to be reinforced. As described above, the structure 5 according to the present embodiment uses the metal plate 6 having no anisotropy in strength as the base material of the structure 5, and the curved CFRP composite material 3 is used as a necessary portion of the metal plate 6. In addition, it is configured to be laminated in the required direction. As a result, the structure 5 can be efficiently designed and manufactured by particularly increasing the strength in the direction substantially matching the principal stress direction 7 and the strength of the stress concentration portion. Therefore, the weight of the structure 5 can be reduced because the CFRP composite material 3 is not arranged in the unnecessary part while ensuring the strength in the necessary part and the direction of the structure 5.

[4.航空機の構造体の適用例]
次に、図9〜図12を参照して、本発明の第3の実施形態に係る航空機の構造体を、航空機の胴体と主翼との結合部に適用した例について説明する。図9は、本発明の第3の実施形態に係る航空機の胴体の構造体1と、胴体と主翼の結合部10を示す斜視図である。
[4. Application example of aircraft structure]
Next, an example in which the aircraft structure according to the third embodiment of the present invention is applied to the joint portion between the fuselage and the main wing of the aircraft will be described with reference to FIGS. 9 to 12. FIG. 9 is a perspective view showing the structure 1 of the fuselage of the aircraft according to the third embodiment of the present invention and the joint portion 10 between the fuselage and the main wing.

図9に示すように、航空機の胴体の構造体1の左右方向の両端には、胴体と主翼を結合するための複数の結合部10が突設される。この結合部10は、一般的にファスナ結合部とも称される。かかる結合部10は、航空機の飛行時に応力集中部位となるので、胴体と主翼を安定的に結合するためには、結合部10が高強度を有することが求められる。 As shown in FIG. 9, a plurality of connecting portions 10 for connecting the fuselage and the main wing are projected at both ends of the structure 1 of the fuselage of the aircraft in the left-right direction. The joint portion 10 is also generally referred to as a fastener joint portion. Since the joint portion 10 becomes a stress concentration portion during flight of an aircraft, the joint portion 10 is required to have high strength in order to stably connect the fuselage and the main wing.

ここで、従来技術1に係る結合部10A(図10参照。)、および従来技術2に係る結合部10B(図11参照。)と比較しながら、本実施形態に係る結合部10(図12参照。)について説明する。 Here, the coupling portion 10 according to the present embodiment (see FIG. 12) is compared with the coupling portion 10A (see FIG. 10) according to the prior art 1 and the coupling portion 10B (see FIG. 11) according to the prior art 2. .) Will be described.

図10に示すように、従来技術1では、航空機の胴体の構造体がCFRP複合材120(母材)のみで構成され、胴体の端部の結合部10Aに金属材が用いられる構造である。従来技術1に係る結合部10Aは、上下2つの金属製金具110、111で、胴体のCFRP複合材120の端部を挟み込み、複数のファスナ113で、金属製金具110、111、CFRP複合材120を固定する。金属製金具110、111の先端部には、主翼と連結するための貫通孔112が形成されている。 As shown in FIG. 10, in the prior art 1, the structure of the fuselage of the aircraft is composed of only the CFRP composite material 120 (base material), and the metal material is used for the joint portion 10A at the end of the fuselage. In the joint portion 10A according to the prior art 1, the end portions of the CFRP composite material 120 of the fuselage are sandwiched between the upper and lower metal metal fittings 110 and 111, and the metal metal fittings 110 and 111 and the CFRP composite material 120 are formed by a plurality of fasteners 113. To fix. Through holes 112 for connecting to the main wing are formed at the tips of the metal metal fittings 110 and 111.

CFRP複合材120のような脆性材料は、ファスナ113による結合部10Aにおいて応力集中が発生しやすく、脆性破壊されやすい。このため、上記構造の結合部10Aでは、領域114におけるCFRP複合材120の板厚を厚くする必要がある。このため、厚くした分だけ結合部10Aの重量が増加してしまい、結合部10Aの軽量化が阻害される。 A brittle material such as the CFRP composite material 120 is prone to stress concentration at the joint portion 10A formed by the fastener 113 and is prone to brittle fracture. Therefore, in the joint portion 10A having the above structure, it is necessary to increase the plate thickness of the CFRP composite material 120 in the region 114. Therefore, the weight of the connecting portion 10A increases by the amount of the thickening, and the weight reduction of the connecting portion 10A is hindered.

また、図11に示すように、従来技術2では、航空機の胴体の構造体がCFRP複合材210(母材)のみで構成され、当該胴体の端部の結合部10Bも、当該CFRP複合材210で一体形成される構造である。結合部10BをなすCFRP複合材210の先端部210aには、主翼と連結するための貫通孔212が形成されている。 Further, as shown in FIG. 11, in the prior art 2, the structure of the fuselage of the aircraft is composed of only the CFRP composite material 210 (base material), and the joint portion 10B at the end of the fuselage is also the CFRP composite material 210. It is a structure integrally formed with. A through hole 212 for connecting to the main wing is formed in the tip portion 210a of the CFRP composite material 210 forming the connecting portion 10B.

かかる構造の結合部10Bでも、CFRP複合材210は脆性材料であり、その先端部210aの貫通孔212の周辺部位は脆性破壊されやすい。このため、貫通孔212の周囲の面圧強度を確保するために、領域214における先端部210aの板厚を基部210bよりも厚くする必要がある。このため、厚くした分だけ結合部10Bの重量が増加してしまい、結合部10Bの軽量化が阻害される。 Even in the joint portion 10B having such a structure, the CFRP composite material 210 is a brittle material, and the peripheral portion of the through hole 212 of the tip portion 210a is easily broken. Therefore, in order to secure the surface pressure strength around the through hole 212, it is necessary to make the plate thickness of the tip portion 210a in the region 214 thicker than that of the base portion 210b. Therefore, the weight of the connecting portion 10B increases by the amount of the thickening, and the weight reduction of the connecting portion 10B is hindered.

これに対し、図12に示すように、本実施形態に係る結合部10では、航空機の胴体の構造体が、金属板11(母材)と線状のCFRP複合材3(補強材)のハイブリッド部材で構成され、当該胴体の端部の結合部10も、当該ハイブリッド部材で構成される構造である。結合部10における金属板11の先端には、主翼と連結するための貫通孔12が形成されている。金属板11上には、貫通孔12の周囲に沿って曲線状のCFRP複合材3が配置されており、貫通孔12の周囲の金属板11が補強されている。 On the other hand, as shown in FIG. 12, in the joint portion 10 according to the present embodiment, the structure of the fuselage of the aircraft is a hybrid of a metal plate 11 (base material) and a linear CFRP composite material 3 (reinforcing material). It is composed of members, and the joint portion 10 at the end of the body is also composed of the hybrid member. A through hole 12 for connecting to the main wing is formed at the tip of the metal plate 11 in the connecting portion 10. A curved CFRP composite material 3 is arranged on the metal plate 11 along the periphery of the through hole 12, and the metal plate 11 around the through hole 12 is reinforced.

かかる構造により、補強材であるCFRP複合材3に対しては応力集中部位が生じないので、CFRP複合材3が脆性破壊されることはない。そして、CFRP複合材3により補強された金属板11の強度が高まるので、金属板11の貫通孔12の周囲に応力集中が生じたとしても、金属板11が破壊または変形することを抑制できる。さらに、貫通孔12の周囲の部材を金属板11で構成することにより、貫通孔12の周囲の面圧強度を確保できる。従って、金属板11の板厚を薄くすることができるとともに、CFRP複合材3も必要な部位のみに限定して配置すればよく、その厚みも薄くできる。よって、上記従来技術1、2と比べて、結合部10の重量を軽減できる。 With such a structure, no stress concentration portion is generated on the CFRP composite material 3 which is a reinforcing material, so that the CFRP composite material 3 is not brittlely fractured. Then, since the strength of the metal plate 11 reinforced by the CFRP composite material 3 is increased, even if stress concentration occurs around the through hole 12 of the metal plate 11, it is possible to suppress the metal plate 11 from being broken or deformed. Further, by forming the member around the through hole 12 with the metal plate 11, the surface pressure strength around the through hole 12 can be secured. Therefore, the thickness of the metal plate 11 can be reduced, and the CFRP composite material 3 may be arranged only in the required portion, and the thickness can be reduced. Therefore, the weight of the joint portion 10 can be reduced as compared with the prior arts 1 and 2.

[4.まとめ]
以上、本実施形態に係る航空機の構造体1、5とその製造方法について詳細に説明した。本実施形態によれば、構造体1、5の母材を金属板2、6、11で構成し、当該金属板2、6、11の面上に、湾曲線状または直線状の複数本のCFRP複合材3を積層し、補強材として機能させる。これにより、航空機の構造体1、5の軽量化と、補強必要部位の強度向上とを両立させることができる。
[4. Summary]
The aircraft structures 1 and 5 and the manufacturing method thereof according to the present embodiment have been described in detail above. According to the present embodiment, the base material of the structures 1 and 5 is composed of metal plates 2, 6 and 11, and a plurality of curved linear or linear lines are formed on the surfaces of the metal plates 2, 6 and 11. The CFRP composite material 3 is laminated to function as a reinforcing material. As a result, it is possible to achieve both weight reduction of the aircraft structures 1 and 5 and improvement of the strength of the portion requiring reinforcement.

また、構造体1、5に作用する応力の方向(主応力方向)に沿って、曲線状のCFRP複合材3を配置することで、金属板2、6、11を効率的に補強しつつ、軽量化を実現できる。さらに、構造体1、5に作用する応力の大きさ(応力値)に応じて、線状のCFRP複合材3の厚みや幅を増減することによっても、金属板2、6、11を効率的に補強しつつ、軽量化を実現できる。 Further, by arranging the curved CFRP composite material 3 along the direction of the stress acting on the structures 1 and 5 (main stress direction), the metal plates 2, 6 and 11 are efficiently reinforced while being efficiently reinforced. Weight reduction can be achieved. Further, the metal plates 2, 6 and 11 can be efficiently made by increasing or decreasing the thickness and width of the linear CFRP composite material 3 according to the magnitude (stress value) of the stress acting on the structures 1 and 5. It is possible to reduce the weight while reinforcing the weight.

また、CFRP複合材3を母材とするのではなく、母材となる金属板2、6、11の面上に、CFRP複合材3を積層するので、炭素繊維シートの積層数が少なくて済み、生産性が良い。さらに、金属板2、6、11を母材とすることで、耐雷性も良い。 Further, since the CFRP composite material 3 is laminated on the surfaces of the metal plates 2, 6 and 11 which are the base materials instead of using the CFRP composite material 3 as the base material, the number of carbon fiber sheets laminated can be reduced. , Productivity is good. Further, by using the metal plates 2, 6 and 11 as the base material, the lightning resistance is also good.

また、航空機の胴体と主翼の結合部10等の応力集中部位には、CFRPのような脆性材料ではなく、金属材料からなる金属板11を適用することで、応力集中部位の強度不具合の抑制と、軽量化が実現できる。 Further, by applying a metal plate 11 made of a metal material instead of a brittle material such as CFRP to the stress concentration part such as the joint portion 10 between the fuselage and the main wing of the aircraft, the strength defect of the stress concentration part can be suppressed. , Weight reduction can be realized.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiment of the present invention has been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such an embodiment. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the claims, and it is understood that these also naturally belong to the technical scope of the present invention. Will be done.

例えば、上記実施形態では、移動体として、航空機の例を挙げて説明したが、本発明は、かかる例に限定されない。本発明の移動体の構造体は、例えば、各種の航空機(旅客機、貨物輸送用航空機、軍用機、無人機、実験機、研究機、ヘリコプタ等)、車両(乗用車、バス、トラック、オートバイ、三輪自動車、農耕作業用車両、貨物運搬用車両、建設土木作業用車両、軍事用車両等)、鉄道用車両(電車、汽車、貨物車、リニアモーターカー等)、船舶または宇宙船等にも適用できる。 For example, in the above embodiment, an example of an aircraft has been described as a moving body, but the present invention is not limited to such an example. The structure of the moving body of the present invention includes, for example, various aircraft (passenger aircraft, freight transport aircraft, military aircraft, unmanned aircraft, experimental aircraft, research aircraft, helicopters, etc.), vehicles (passenger vehicles, buses, trucks, motorcycles, three wheels, etc.). Applicable to automobiles, agricultural work vehicles, freight transport vehicles, construction civil engineering vehicles, military vehicles, etc.), railroad vehicles (trains, trains, freight vehicles, linear motor cars, etc.), ships or spacecraft, etc. ..

本発明は、航空機、自動車等の移動体の構造体に利用することができる。 The present invention can be used for structures of moving bodies such as aircraft and automobiles.

1、5 構造体
2、6、11 金属板
3 CFRP複合材
3A プリプレグ
7 主応力方向
10 結合部
12 貫通孔
32 骨組みモデル
1, 5 Structure 2, 6, 11 Metal plate 3 CFRP composite material 3A prepreg 7 Principal stress direction 10 Joint 12 Through hole 32 Frame model

Claims (8)

移動体の構造体の母材となる金属板と、
前記金属板の補強材として、前記金属板の少なくとも一方の面に対して、曲線状を含む線状に接合された複数本の繊維強化複合材と、
を備え、
前記繊維強化複合材は、前記移動体の移動時に前記金属板に作用する応力に応じて配置される、移動体の構造体。
The metal plate that is the base material of the structure of the moving body and
As the reinforcing material of the metal plate, a plurality of fiber-reinforced composite materials joined in a linear shape including a curved shape with respect to at least one surface of the metal plate.
With
The fiber-reinforced composite material is a structure of a moving body, which is arranged according to the stress acting on the metal plate when the moving body moves.
前記繊維強化複合材は、前記移動体の移動時に前記金属板に作用する主応力方向に沿って、曲線状を含む線状に配置される、請求項1に記載の移動体の構造体。 The structure of the moving body according to claim 1, wherein the fiber-reinforced composite material is arranged in a linear shape including a curved shape along the main stress direction acting on the metal plate when the moving body moves. 前記繊維強化複合材は、前記移動体の移動時に前記金属板に作用する応力が集中する応力集中部位に対して配置される、請求項1または2に記載の移動体の構造体。 The structure of the moving body according to claim 1 or 2, wherein the fiber-reinforced composite material is arranged with respect to a stress concentration portion where stress acting on the metal plate is concentrated when the moving body moves. 前記移動体は航空機であり、
前記応力集中部位は、前記航空機の胴体と主翼との結合部を含む、請求項3に記載の移動体の構造体。
The moving body is an aircraft
The moving body structure according to claim 3, wherein the stress concentration portion includes a joint portion between the fuselage of the aircraft and the main wing.
前記移動体は航空機であり、
前記移動体の構造体は、前記航空機の胴体または主翼のうちの少なくともいずれかの外装材である、請求項1〜4のいずれか1項に記載の移動体の構造体。
The moving body is an aircraft
The structure of the moving body according to any one of claims 1 to 4, wherein the structure of the moving body is an exterior material of at least one of the fuselage or the main wing of the aircraft.
移動体の構造体の母材となる金属板の補強材として、前記金属板の少なくとも一方の面に対して、曲線状を含む線状に接合された複数本の繊維強化複合材を、前記移動体の移動時に前記金属板に作用する応力に応じて配置するステップ、
を含む、移動体の構造体の製造方法。
As a reinforcing material for a metal plate that is a base material of a structure of a moving body, a plurality of fiber-reinforced composite materials that are linearly joined to at least one surface of the metal plate, including a curved shape, are moved. A step of arranging according to the stress acting on the metal plate when the body moves,
A method for manufacturing a structure of a mobile body, including.
トポロジー最適化または複合材積層構成最適化のうち少なくともいずれかを含む構造最適化シミュレーションにより、移動体の構造体の母材となる金属板に対して補強材として接合される繊維強化複合材の骨組みモデルを設計するステップと、
前記骨組みモデルに基づいて、前記金属板の少なくとも一方の面に対して、曲線状を含む線状の繊維強化複合材を複数本接合することにより、移動体の構造体を製造するステップと、
を含む、移動体の構造体の製造方法。
A fiber-reinforced composite skeleton that is joined as a reinforcing material to a metal plate that is the base material of a moving body structure by a structural optimization simulation that includes at least one of topology optimization or composite laminated configuration optimization. Steps to design a model and
Based on the skeleton model, a step of manufacturing a structure of a moving body by joining a plurality of linear fiber reinforced composite materials including a curved shape to at least one surface of the metal plate.
A method for manufacturing a structure of a mobile body, including.
前記移動体の構造体の成立性の観点に基づいて、前記骨組みモデルを設計するステップで設計された前記骨組みモデルから、一部の繊維強化複合材を間引くステップ
をさらに含み、
前記移動体の構造体を製造するステップでは、
前記一部の繊維強化複合材が間引かれた後の前記骨組みモデルに基づいて、前記金属板の少なくとも一方の面に対して、曲線状を含む線状の繊維強化複合材を複数本接合する、請求項7に記載の移動体の構造体の製造方法。
Further including a step of thinning out a part of the fiber reinforced composite material from the skeleton model designed in the step of designing the skeleton model based on the viewpoint of the feasibility of the structure of the moving body.
In the step of manufacturing the structure of the moving body,
Based on the skeleton model after the partial fiber-reinforced composite is thinned out, a plurality of linear fiber-reinforced composites including curved lines are joined to at least one surface of the metal plate. , The method for manufacturing a moving body structure according to claim 7.
JP2019133516A 2019-07-19 2019-07-19 Mobile body structure and method for manufacturing the mobile body structure Active JP7344029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019133516A JP7344029B2 (en) 2019-07-19 2019-07-19 Mobile body structure and method for manufacturing the mobile body structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019133516A JP7344029B2 (en) 2019-07-19 2019-07-19 Mobile body structure and method for manufacturing the mobile body structure

Publications (2)

Publication Number Publication Date
JP2021017127A true JP2021017127A (en) 2021-02-15
JP7344029B2 JP7344029B2 (en) 2023-09-13

Family

ID=74565743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019133516A Active JP7344029B2 (en) 2019-07-19 2019-07-19 Mobile body structure and method for manufacturing the mobile body structure

Country Status (1)

Country Link
JP (1) JP7344029B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010524770A (en) * 2007-04-26 2010-07-22 エアバス・オペレーションズ・ゲーエムベーハー Aircraft wing-fuselage assembly
JP2014506854A (en) * 2011-03-04 2014-03-20 ザ・ボーイング・カンパニー Diamond-shaped window of composite and / or metal fuselage
EP3124375A1 (en) * 2015-07-29 2017-02-01 Airbus Operations GmbH Panel member
US20170129856A1 (en) * 2010-01-11 2017-05-11 Isp Investments Llc Compositions comprising a reactive monomer and with a urea or urethane functional group
JP2017134819A (en) * 2015-11-30 2017-08-03 エアバス オペレーションズ ゲーエムベーハーAirbus Operations GmbH Space frame construction kit and space frame
JP2018139029A (en) * 2017-02-24 2018-09-06 Jfeスチール株式会社 Method and device of optimizing shape of reinforcing member for vehicle body
JP2018199442A (en) * 2017-05-29 2018-12-20 Jfeスチール株式会社 Vehicle body roof reinforcement structure
JP6485560B1 (en) * 2017-09-29 2019-03-20 Jfeスチール株式会社 Automotive frame parts
JP6493615B1 (en) * 2017-11-01 2019-04-03 Jfeスチール株式会社 Stiffening structure and stiffening method for automotive door panel parts

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010524770A (en) * 2007-04-26 2010-07-22 エアバス・オペレーションズ・ゲーエムベーハー Aircraft wing-fuselage assembly
US20170129856A1 (en) * 2010-01-11 2017-05-11 Isp Investments Llc Compositions comprising a reactive monomer and with a urea or urethane functional group
JP2014506854A (en) * 2011-03-04 2014-03-20 ザ・ボーイング・カンパニー Diamond-shaped window of composite and / or metal fuselage
EP3124375A1 (en) * 2015-07-29 2017-02-01 Airbus Operations GmbH Panel member
JP2017134819A (en) * 2015-11-30 2017-08-03 エアバス オペレーションズ ゲーエムベーハーAirbus Operations GmbH Space frame construction kit and space frame
JP2018139029A (en) * 2017-02-24 2018-09-06 Jfeスチール株式会社 Method and device of optimizing shape of reinforcing member for vehicle body
JP2018199442A (en) * 2017-05-29 2018-12-20 Jfeスチール株式会社 Vehicle body roof reinforcement structure
JP6485560B1 (en) * 2017-09-29 2019-03-20 Jfeスチール株式会社 Automotive frame parts
JP6493615B1 (en) * 2017-11-01 2019-04-03 Jfeスチール株式会社 Stiffening structure and stiffening method for automotive door panel parts

Also Published As

Publication number Publication date
JP7344029B2 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
US8490920B2 (en) Composite bulkhead and skin construction
KR102047554B1 (en) Composite hat stiffener, composite hat-stiffened pressure webs, and methods of making the same
US8104714B2 (en) Apparatuses and methods for joining composite members and other structural members in aircraft wing boxes and other structures
EP2307271B1 (en) Monolithic integrated structural panels especially useful for aircraft structures and methods of making the same
KR102197337B1 (en) Composite structure having a stabilizing element
JP6628955B2 (en) Vertically integrated stringer
US20130149501A1 (en) Method for connecting a fibre composite component to a structural component of an aircraft and spacecraft and a corresponding arrangement
EP1801428B1 (en) Metallic local reinforcement for heavy loaded joints of composite components
EP2671794B1 (en) Composite material structure, and aircraft wing and fuselage provided therewith
US20100025532A1 (en) Shell element as part of an aircrfaft fuselage
US20130139961A1 (en) Dual-skin structures
EP2862795B1 (en) Method of joining panels for an airframe
CN101652240B (en) Method for hybrid composite panel systems
EP2487106A1 (en) Composite material structure, as well as aircraft wing and fuselage provided therewith
US9931809B2 (en) Composite material structure and method of manufacturing composite material structure
US10005267B1 (en) Formation of complex composite structures using laminate templates
US8722201B2 (en) Connections between a monolithic metal component and a continuous-fiber reinforced laminate component, and method for production of the same
JP2012035442A (en) Fiber-reinforced resin member, and fastening structure
EP2080612A1 (en) Distribution of point loads in honeycomb panels
JP5875147B2 (en) Composite structure and aircraft fuselage
JP2944967B2 (en) High-speed vehicle outer wall structure and high-speed vehicle outer wall manufacturing method
JPH08197668A (en) Lamination structure of fiber reinforced resin
JP2920370B2 (en) Bird-resistant structure at the head of high-speed vehicles
JP7344029B2 (en) Mobile body structure and method for manufacturing the mobile body structure
US20100243804A1 (en) Joint arrangement for composite-material structural members

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230901

R150 Certificate of patent or registration of utility model

Ref document number: 7344029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150