JP2014233751A - Continuous casting method of steel - Google Patents

Continuous casting method of steel Download PDF

Info

Publication number
JP2014233751A
JP2014233751A JP2013118256A JP2013118256A JP2014233751A JP 2014233751 A JP2014233751 A JP 2014233751A JP 2013118256 A JP2013118256 A JP 2013118256A JP 2013118256 A JP2013118256 A JP 2013118256A JP 2014233751 A JP2014233751 A JP 2014233751A
Authority
JP
Japan
Prior art keywords
mold
molten steel
steel surface
electromagnetic force
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013118256A
Other languages
Japanese (ja)
Other versions
JP6107436B2 (en
Inventor
信宏 岡田
Nobuhiro Okada
信宏 岡田
井上 陽一
Yoichi Inoue
陽一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013118256A priority Critical patent/JP6107436B2/en
Publication of JP2014233751A publication Critical patent/JP2014233751A/en
Application granted granted Critical
Publication of JP6107436B2 publication Critical patent/JP6107436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To equalize a solidification starting position of molten steel of a mold corner part in a meniscus position as much as possible when electromagnetic beating by shifting a magnetic field is applied.SOLUTION: In a continuous casting method of steel, electromagnetic force acts so that difference between a position that molten steel surface is the lowest in a mold 3 and a hight of the molten steel surface of a corner part 3c of the mold 3 is not more than 20 mm when horizontal turning flow is formed on the molten steel surface in the mold 3 by triggering electromagnetic force to the molten steel 2 in the mold 3. The quality of the corner part of a continuous casted slab strand becomes good.

Description

本発明は、鋼の連続鋳造方法に関するものであり、特に鋳型内の溶鋼を電磁攪拌しつつ連続鋳造する方法に関するものである。   The present invention relates to a steel continuous casting method, and more particularly to a method of continuously casting molten steel in a mold while electromagnetically stirring.

鋼を連続鋳造して製造する例えばスラブ鋳片の表面品質を改善するには、メニスカス位置で電磁攪拌を行うことが効果的である。しかしながら、スラブ鋳片の連続鋳造において、鋳型内の溶鋼湯面(以下、メニスカスともいう。)を良好に攪拌することは困難な技術である。ここで、良好な攪拌とは、メニスカス位置において鋳型内面に沿った旋回流を形成する攪拌を意味する。以下に、この良好な攪拌が困難な技術である理由を説明する。   For example, in order to improve the surface quality of a slab slab produced by continuously casting steel, it is effective to perform electromagnetic stirring at the meniscus position. However, in continuous casting of slab slabs, it is difficult to satisfactorily stir the molten steel surface (hereinafter also referred to as meniscus) in the mold. Here, good agitation means agitation that forms a swirling flow along the inner surface of the mold at the meniscus position. The reason why this good stirring is a difficult technique will be described below.

図3は、電磁力制御を実施していない場合の鋳型内溶鋼の流動分布を説明するために、鋳型を鋳片引抜き方向に断面して示した図である。また、図4は、メニスカス位置(図3のA−A’位置)と浸漬ノズルの吐出孔位置(図3のB−B’位置)における鋳型内溶鋼の流動分布を説明するために、鋳型を鋳片引抜き方向と直角の水平方向に断面して示した図である。   FIG. 3 is a cross-sectional view of the mold in the slab drawing direction in order to explain the flow distribution of molten steel in the mold when electromagnetic force control is not performed. FIG. 4 shows the flow of the molten steel in the mold at the meniscus position (AA ′ position in FIG. 3) and the discharge hole position (BB ′ position in FIG. 3) of the immersion nozzle. It is the figure shown cut in the horizontal direction perpendicular to the slab drawing direction.

図3に示すように、浸漬ノズル1の吐出孔1aから吐出された溶鋼2は、鋳型3の短辺3aに衝突した後、メニスカス4に向かう上昇流5aと鋳片の引抜き方向へ向かう下降流5bに分かれる。このため、前記吐出された溶鋼2は、吐出孔1aの位置では浸漬ノズル1から鋳型3の短辺3aに向かう流れとなるが、メニスカス位置では鋳型3の短辺3aから浸漬ノズル1に向かう流れとなる。   As shown in FIG. 3, the molten steel 2 discharged from the discharge hole 1 a of the immersion nozzle 1 collides with the short side 3 a of the mold 3, and then the upward flow 5 a toward the meniscus 4 and the downward flow toward the slab drawing direction. Divided into 5b. Therefore, the discharged molten steel 2 flows from the immersion nozzle 1 toward the short side 3a of the mold 3 at the position of the discharge hole 1a, but flows from the short side 3a of the mold 3 toward the immersion nozzle 1 at the meniscus position. It becomes.

ここで、溶鋼に時計回りの旋回流を形成するよう、メニスカス位置に電磁力6を作用させると、図4(a)に示すメニスカス位置、図4(b)に示す吐出孔位置とも、電磁力による旋回流の方向が、元来の溶鋼流5cの方向と同じ方向の領域と、逆方向の領域が現れる。以下、前記同じ方向を順方向(白抜き矢印)といい、その領域を順方向領域という。また、前記逆方向(黒塗り矢印)の領域を逆方向領域という。   Here, when the electromagnetic force 6 is applied to the meniscus position so as to form a clockwise swirl flow in the molten steel, both the meniscus position shown in FIG. 4A and the discharge hole position shown in FIG. A region in which the direction of the swirling flow is the same as the original direction of the molten steel flow 5c and a region in the opposite direction appear. Hereinafter, the same direction is referred to as a forward direction (white arrow), and the region is referred to as a forward region. The reverse direction area (black arrow) is referred to as a reverse direction area.

メニスカス位置における鋳型四隅のコーナ部3cにおける溶鋼湯面を観察した場合、順方向領域では、前記上昇流5aが原因で、溶鋼湯面が高く盛り上がる。一方、逆方向領域でも、電磁力によってメニスカスを鋳型3の長辺3bに沿って流れた溶鋼流が短辺3aに衝突するため、溶鋼湯面が盛り上がる。   When the molten steel surface at the corners 3c at the four corners of the mold at the meniscus position is observed, the molten steel surface rises higher in the forward direction region due to the upward flow 5a. On the other hand, even in the reverse direction region, the molten steel flow that flows through the meniscus along the long side 3b of the mold 3 due to electromagnetic force collides with the short side 3a, so that the molten steel surface rises.

すなわち、メニスカス位置で電磁攪拌を行う場合には、鋳型3の全てのコーナ部3cにおいて、溶鋼湯面が高く盛り上がる傾向にあり、付与する電磁力が大きいほどコーナ部3cの溶鋼湯面の高さが高くなる。   That is, when electromagnetic stirring is performed at the meniscus position, the molten steel surface tends to rise at all the corner portions 3c of the mold 3, and the higher the applied electromagnetic force, the higher the molten steel surface height of the corner portion 3c. Becomes higher.

メニスカス位置における鋳型コーナ部の溶鋼湯面の高さが高くなると、溶鋼の凝固開始位置が変化するため不均一な凝固が発生し、品質が劣化するという問題がある。   When the height of the molten steel surface of the mold corner portion at the meniscus position increases, there is a problem that the solidification start position of the molten steel changes, resulting in non-uniform solidification and deterioration in quality.

そこで、特許文献1では、電磁攪拌時における鋳型内溶鋼湯面の渦や盛り上がり等を抑制するために、溶鋼流速を測定し、測定値の絶対値が0.3m/sec以下となるように制御する技術が提案されている。   Therefore, in Patent Document 1, in order to suppress vortex and swell of the molten steel surface in the mold during electromagnetic stirring, the molten steel flow velocity is measured and controlled so that the absolute value of the measured value is 0.3 m / sec or less. Techniques to do this have been proposed.

しかしながら、鋳型の長辺や短辺の長さが異なる場合は、0.3 m/secという溶鋼流速の閾値では判定が出来なくなるという問題がある。また、溶鋼流速を精度良く測定することは非常に困難である。   However, when the lengths of the long side and the short side of the mold are different, there is a problem that the determination cannot be made with the molten steel flow velocity threshold of 0.3 m / sec. Moreover, it is very difficult to accurately measure the molten steel flow rate.

また、特許文献2では、鋳型短辺の中心位置において、渦流レベル計を鋳型長辺方向に2又は4箇所設置し、溶鋼の湯面レベル差が許容範囲を超えた時に、溶鋼湯面レベルの盛り上がりを制御する電磁力を作用させる技術が提案されている。   Further, in Patent Document 2, at the center position of the mold short side, two or four eddy current level meters are installed in the mold long side direction, and when the molten steel level difference exceeds the allowable range, A technique for applying an electromagnetic force for controlling the swell has been proposed.

しかしながら、この特許文献2で提案された技術は、鋳型短辺の中心位置における溶鋼湯面の盛り上がりを、電磁ブレーキを作用させて抑制するものであり、電磁攪拌による溶鋼湯面の盛り上がりを抑制する場合と、以下に説明するように根本的に異なる。   However, the technique proposed in Patent Document 2 suppresses the rise of the molten steel surface at the center position of the mold short side by applying an electromagnetic brake, and suppresses the rise of the molten steel surface due to electromagnetic stirring. The case is fundamentally different as described below.

図5は、連続鋳造における溶鋼の湯面高さ分布の数値シミュレーション結果の一例を示したもので、(a)図は電磁攪拌を適用した場合、(b)図は電磁ブレーキを適用した場合、(c)電磁力制御を適用しない場合である。   FIG. 5 shows an example of a numerical simulation result of the molten steel surface height distribution in continuous casting. (A) When electromagnetic stirring is applied, (b) When electromagnetic brake is applied, (C) This is a case where electromagnetic force control is not applied.

電磁力制御を適用しない場合は、図5(c)に示すように、鋳型短辺近傍の溶鋼湯面高さが高く、鋳型短辺から鋳型長辺の1/4と3/4の位置が鋳型短辺方向にほぼ均一に低くなる、二次元的な溶鋼湯面高さ分布となる。   When electromagnetic force control is not applied, as shown in FIG. 5 (c), the molten steel surface height in the vicinity of the mold short side is high, and the positions of 1/4 and 3/4 of the mold long side from the mold short side are located. It becomes a two-dimensional molten steel surface height distribution that is substantially uniformly lowered in the mold short side direction.

また、電磁ブレーキを適用した場合は、電磁ブレーキの磁束密度強度や位置により多少変化するものの、図5(b)に示すように、電磁力制御を適用しない場合と同様に鋳型短辺近傍の湯面高さが高くなる、二次元的な溶鋼湯面高さ分布となる。   In addition, when the electromagnetic brake is applied, although it varies slightly depending on the magnetic flux density strength and position of the electromagnetic brake, as shown in FIG. 5B, the hot water near the mold short side is the same as when electromagnetic force control is not applied. The surface height increases, resulting in a two-dimensional molten steel surface height distribution.

これに対して、電磁攪拌を適用した場合は、図5(a)に示すように、鋳型四隅のコーナ部において溶鋼湯面の高さが高くなり、鋳型短辺から鋳型長辺の1/4と3/4の位置付近における鋳型短辺の中心位置の溶鋼湯面高さが最も低い、鋳型短辺方向に不均一な複雑な高さ分布となる。   On the other hand, when electromagnetic stirring is applied, as shown in FIG. 5 (a), the height of the molten steel surface is increased at the corners of the four corners of the mold, and from the mold short side to the mold long side 1/4. And the molten steel surface height at the center position of the mold short side in the vicinity of the position of 3/4 is the lowest, and the height distribution is not uniform in the mold short side direction.

従って、電磁攪拌装置を適用した場合の鋳型内溶鋼の湯面高さを抑制する方法や制御方法は、特許文献2に開示された電磁ブレーキを適用した場合や、電磁力制御を適用しない場合と比べて、大きく異なる技術となる。   Therefore, the method and the control method of suppressing the molten steel surface height of the molten steel in the mold when the electromagnetic stirrer is applied are the case where the electromagnetic brake disclosed in Patent Document 2 is applied, or the case where the electromagnetic force control is not applied. Compared to this, it becomes a very different technology.

特開平9−168847号公報Japanese Patent Laid-Open No. 9-168847 特開平4−9255号公報Japanese Patent Laid-Open No. 4-9255

本発明が解決しようとする問題点は、特許文献1で提案された電磁攪拌における溶鋼湯面の盛り上がり抑制技術は、鋳型の長辺や短辺の長さが異なる場合は判定が出来なくなるという点である。また、特許文献2で開示された技術は、電磁ブレーキを用いて鋳型短辺の中心位置における溶鋼湯面の盛り上がりを抑制するものであり、電磁攪拌による溶鋼湯面の盛り上がりを抑制する場合と根本的に異なるという点である。   The problem to be solved by the present invention is that the technique for suppressing the rise of the molten steel surface in electromagnetic stirring proposed in Patent Document 1 cannot be determined when the long side and the short side of the mold are different. It is. Moreover, the technique disclosed in Patent Document 2 is to suppress the rise of the molten steel surface at the center position of the mold short side using an electromagnetic brake, and to suppress the rise of the molten steel surface due to electromagnetic stirring. It is a point that is different.

本発明は、
鋼の連続鋳造において、移動磁界による電磁攪拌を適用する場合に、メニスカス位置における鋳型コーナ部の溶鋼の凝固開始位置をできるだけ均一にするために、
鋼の連続鋳造において、鋳型内の溶鋼に電磁力を作用させて鋳型内の溶鋼湯面に水平な旋回流を形成させる場合に、鋳型内における最も溶鋼湯面が低い位置と、鋳型コーナ部における溶鋼湯面の高さとの差が20mm以下となるように電磁力を作用させることを最も主要な特徴としている。
The present invention
In continuous casting of steel, when applying electromagnetic stirring by a moving magnetic field, in order to make the solidification start position of the molten steel at the mold corner at the meniscus position as uniform as possible,
In continuous casting of steel, when the electromagnetic force is applied to the molten steel in the mold to form a horizontal swirling flow on the molten steel surface in the mold, the position at the lowest molten steel surface in the mold and the mold corner The main feature is that the electromagnetic force is applied so that the difference from the molten steel surface height is 20 mm or less.

本発明では、移動磁界による電磁攪拌を適用する場合に、鋳型内における最も溶鋼湯面が低い位置と、鋳型コーナ部における溶鋼湯面の高さとの差が20mm以下となるように電磁力を作用させることで、メニスカス位置における鋳型コーナ部の溶鋼の凝固開始位置をできるだけ均一にすることができる。   In the present invention, when electromagnetic stirring by a moving magnetic field is applied, an electromagnetic force is applied so that the difference between the position of the lowest molten steel surface in the mold and the height of the molten steel surface at the mold corner is 20 mm or less. By doing so, the solidification start position of the molten steel at the mold corner portion at the meniscus position can be made as uniform as possible.

本発明では、移動磁界による電磁攪拌を適用する場合に、メニスカス位置における鋳型コーナ部の溶鋼の凝固開始位置をできるだけ均一にすることができるので、連続鋳造するスラブ鋳片のコーナ部の品質を良好なものとすることができる。   In the present invention, when applying electromagnetic stirring by a moving magnetic field, the solidification start position of the molten steel at the mold corner portion at the meniscus position can be made as uniform as possible, so the quality of the corner portion of the slab slab that is continuously cast is good. Can be.

表1における条件4と条件10の数値解析シミュレーションから得られた、図5(a)におけるA−A’線上の溶鋼の湯面高さ分布を示した図である。It is the figure which showed the molten metal surface height distribution of the molten steel on the A-A 'line in Fig.5 (a) obtained from the numerical-analysis simulation of the conditions 4 and 10 in Table 1. FIG. 溶鋼湯面の電磁力を鋳型長辺方向に平均化した値と、鋳型内における最も溶鋼湯面が低い位置と、鋳型コーナ部における溶鋼湯面の高さとの差(以下、鋳型コーナ部の溶鋼湯面高さという。)との関係を示した図である。The difference between the value obtained by averaging the electromagnetic force of the molten steel surface in the mold long side direction, the position of the lowest molten steel surface in the mold, and the height of the molten steel surface at the mold corner (hereinafter referred to as molten steel at the mold corner) It is the figure which showed the relationship with hot water surface height. 電磁力制御を実施していない場合の鋳型内溶鋼の流動分布を説明するために、鋳型を鋳片引抜き方向に断面して示した図である。In order to explain the flow distribution of molten steel in the mold when electromagnetic force control is not performed, it is a diagram showing the mold in a cross section in the slab drawing direction. メニスカス位置と浸漬ノズルの吐出孔位置における鋳型内溶鋼の流動分布を説明するために、鋳型を鋳片引抜き方向と直角の水平方向に断面して示した図で、(a)はメニスカス位置、(b)は吐出孔位置を示す。In order to explain the flow distribution of the molten steel in the mold at the meniscus position and the discharge hole position of the submerged nozzle, the mold is shown in a cross-section in a horizontal direction perpendicular to the slab drawing direction. b) shows the discharge hole position. 連続鋳造における溶鋼の湯面高さ分布の数値シミュレーション結果の一例を示したもので、(a)図は電磁攪拌を適用した場合、(b)図は電磁ブレーキを適用した場合、(c)電磁力制御を適用しない場合である。It shows an example of a numerical simulation result of the molten steel surface height distribution in continuous casting. (A) Figure shows the case where electromagnetic stirring is applied, (b) Figure shows the case where electromagnetic brake is applied, (c) Electromagnetic This is a case where force control is not applied.

本発明では、移動磁界による電磁攪拌を適用する場合に、メニスカス位置における鋳型コーナ部の溶鋼の凝固開始位置をできるだけ均一にするという目的を、鋳型コーナ部の溶鋼湯面高さを20mm以下とすることで実現した。   In the present invention, when applying electromagnetic stirring by a moving magnetic field, the molten steel surface height of the mold corner is set to 20 mm or less for the purpose of making the solidification start position of the molten steel at the mold corner at the meniscus position as uniform as possible. That was realized.

以下、本発明を成すに至った数値解析シミュレーション及び数値解析シミュレーションと同じ条件で行った鋳造試験について説明する。   Hereinafter, the numerical analysis simulation and the casting test performed under the same conditions as those of the numerical analysis simulation will be described.

発明者らは、以下の条件における数値解析シミュレーションにより、鋳型コーナ部の溶鋼湯面高さの評価を行い、その数値解析シミュレーションと同じ条件の鋳造試験から、鋳型コーナ部の鋳片品質と鋳型長辺部の鋳片品質を評価した。その結果の一例を下記表1〜表3に示す。   The inventors evaluated the molten steel surface height of the mold corner part by numerical analysis simulation under the following conditions.From the casting test under the same conditions as the numerical analysis simulation, the slab quality and mold length of the mold corner part were evaluated. The side slab quality was evaluated. Examples of the results are shown in Tables 1 to 3 below.

(鋳造条件)
鋳型寸法:長辺は900mm〜2300mm、短辺は250mm〜280mm
鋳造速度:0.8m/min〜1.8m/min
浸漬ノズル:最下端の深さは300mm〜435mm、吐出角度は下向き25°〜下向き45°
(Casting conditions)
Mold dimension: Long side is 900mm ~ 2300mm, short side is 250mm ~ 280mm
Casting speed: 0.8m / min to 1.8m / min
Immersion nozzle: bottom end depth is 300mm to 435mm, discharge angle is downward 25 ° to downward 45 °

表1〜表3中の、「平均電磁力」は、溶鋼湯面において鋳型長辺方向に平均化した、電磁場シミュレーションから算出した電磁力(N/m3)をいう。また、「鋳型コーナ部の品質」において、「×」は厳格材として適用不可能なもの、「△」は手入れ実施により厳格材として適用可能なもの、「○」は無手入れで厳格材として適用可能なものを意味する。「鋳型長辺部の品質」において、「×」は電磁力制御装置を適用しない場合と同等、「△」は電磁ブレーキを適用した場合と同等、「○」は良好な電磁攪拌適用材と同程度であることを意味する。なお、厳格材とは、最終製品の薄板コイルまで加工したときの表面疵を皆無とすることを目標としたスラブのことをいう。 In Tables 1 to 3, “average electromagnetic force” refers to an electromagnetic force (N / m 3 ) calculated from electromagnetic field simulation averaged in the mold long side direction on the surface of molten steel. In “Quality of mold corner”, “×” is not applicable as strict material, “△” is applicable as strict material by maintenance, “○” is applied as strict material without maintenance. It means what is possible. In “Quality of mold long side”, “×” is the same as the case where the electromagnetic force control device is not applied, “△” is the same as the case where the electromagnetic brake is applied, and “○” is the same as the material with good electromagnetic stirring. Means about. The strict material is a slab whose goal is to eliminate any surface defects when processing the thin coil of the final product.

図1は、表1における条件4と条件10の数値解析シミュレーションから得られた溶鋼の湯面高さ分布を示した図である。図1は、図5(a)におけるA−A’線上の溶鋼の湯面高さ分布を示しており、溶鋼湯面の最も低い位置を0として鋳型長辺方向における溶鋼湯面高さ分布を示している。図1から、電磁攪拌を適用した場合は、条件が変化しても、鋳型コーナ部における溶鋼の湯面高さが最大となることが分かる。   FIG. 1 is a view showing a molten steel surface height distribution obtained from numerical analysis simulations under conditions 4 and 10 in Table 1. FIG. 1 shows the molten steel surface height distribution on the line AA ′ in FIG. 5 (a). The molten steel surface height distribution in the mold long side direction is defined with 0 as the lowest position of the molten steel surface. Show. As can be seen from FIG. 1, when electromagnetic stirring is applied, the molten steel surface height of the molten steel at the mold corner is maximized even if the conditions change.

表1に示した条件1〜14において、鋳型コーナ部の溶鋼湯面高さが21mmになると、鋳型コーナ部に不均一な凝固形状が確認されるようになって、厳格材として適用するためには、鋳片の手入れを行うことが必要となる(条件4参照)。   In the conditions 1 to 14 shown in Table 1, when the molten steel surface height of the mold corner portion becomes 21 mm, a non-uniform solidification shape is confirmed in the mold corner portion, so that it can be applied as a strict material. Requires care for the slab (see Condition 4).

また、鋳型コーナ部の溶鋼湯面高さが24mm以上になると、最終製品の表面疵の原因となる不均一な凝固形状が鋳型コーナ部に明確に現れるようになって、厳格材に使用することは不可能であった(条件1〜3参照)。特に鋳型コーナ部の溶鋼湯面高さが26mm以上の場合には、鋳型長辺部の品質も悪化する(条件1,2参照)。これは攪拌流速が速くなりすぎたために、溶鋼湯面のモールドパウダーを巻き込んだことが原因である。   In addition, when the molten steel surface height at the mold corner is 24 mm or more, a non-uniform solidified shape that causes surface flaws in the final product will clearly appear in the mold corner and should be used for strict materials. Was impossible (see Conditions 1 to 3). In particular, when the molten steel surface height of the mold corner portion is 26 mm or more, the quality of the mold long side portion is also deteriorated (see Conditions 1 and 2). This is because the mold powder on the surface of the molten steel was entrained because the stirring flow rate became too fast.

これに対して、鋳型コーナ部の溶鋼湯面高さが5mmから20mmの場合は、鋳型コーナ部及び鋳型長辺部の両方とも鋳片の品質は良好であった(条件5〜13参照)。但し、鋳型コーナ部の溶鋼湯面高さが3mm以下の場合には、鋳型コーナ部の鋳片品質は良好であったが、鋳型長辺部に電磁力制御を適用しない場合と同程度のピンホール性の欠陥が発生した(条件14参照)。   On the other hand, when the molten steel surface height of the mold corner portion was 5 mm to 20 mm, the quality of the slab was good in both the mold corner portion and the mold long side portion (see Conditions 5 to 13). However, when the molten steel surface height of the mold corner is 3 mm or less, the slab quality of the mold corner was good, but the same level of pins as when the electromagnetic force control was not applied to the long side of the mold A hole defect occurred (see Condition 14).

以上の結果より、電磁攪拌を適用した場合における、スラブ鋳片のコーナ部の品質を良好なものとするためには、鋳型コーナ部の溶鋼湯面高さが20mm以下となるように電磁力を作用させる必要があることが明らかとなった。これが第1の本発明の鋼の連続鋳造方法である。この第1の本発明方法において、鋳型長辺部におけるピンホール性欠陥の発生もない、より適切な鋳型コーナ部の溶鋼湯面高さは、5mm以上、20mm以下の範囲である。   From the above results, in order to improve the quality of the corner portion of the slab slab when electromagnetic stirring is applied, the electromagnetic force is set so that the molten steel surface height of the mold corner portion is 20 mm or less. It became clear that it was necessary to act. This is the steel continuous casting method of the first invention. In this first method according to the present invention, the molten steel surface height of the mold corner portion, which is free from the occurrence of pinhole defects in the long side portion of the mold, is in the range of 5 mm or more and 20 mm or less.

この電磁攪拌を適用した場合の適切な鋳型コーナ部の溶鋼湯面高さは、上記表1に示した、鋳型寸法が、長辺は1625mm、短辺は270mm、鋳造速度は1.4m/min、浸漬ノズルの最下端の深さは320mm、吐出角度は下向き30°の条件に限らないことは、上記表2及び表3の結果から明らかである。   When this electromagnetic stirring is applied, the molten steel surface height of the appropriate mold corner is as shown in Table 1 above. The mold dimensions are 1625 mm for the long side, 270 mm for the short side, and the casting speed is 1.4 m / min. It is apparent from the results of Tables 2 and 3 that the depth of the lowermost end of the immersion nozzle is not limited to 320 mm and the discharge angle is 30 ° downward.

また、発明者らが、上記数値解析シミュレーションと鋳造試験により得たデータを検討した結果、鋳型コーナ部の溶鋼湯面高さと最も相関があったのは、溶鋼湯面の電磁力を鋳型長辺方向に平均化した値であることが判明した。   In addition, as a result of examining the data obtained by the numerical analysis simulation and the casting test, the inventors found that the electromagnetic force of the molten steel surface was the longest side of the mold, which was most correlated with the molten steel surface height of the mold corner. It was found that the values were averaged in the direction.

図2は、溶鋼湯面の電磁力を鋳型長辺方向に平均化した値(以降、平均電磁力という。)Fと、鋳型コーナ部の溶鋼湯面高さHとの関係を示した図である。図2から、鋳型コーナ部の溶鋼湯面高さHと平均電磁力Fの関係は、
H=3.081×10−3F …(1)
として評価することができる。
FIG. 2 is a diagram showing the relationship between the value obtained by averaging the electromagnetic force of the molten steel surface in the mold long side direction (hereinafter referred to as average electromagnetic force) F and the molten steel surface height H of the mold corner. is there. From FIG. 2, the relationship between the molten steel surface height H of the mold corner and the average electromagnetic force F is
H = 3.081 × 10 −3 F (1)
Can be evaluated as

上記(1)式から、鋳型コーナ部の溶鋼湯面高さHを20mm以下とする平均電磁力Fは、
3.081×10−3F≦20 …(2)
となる。これが第2の本発明の連続鋳造方法である。なお、この場合の平均電磁力は6491N/m3以下である。
From the above equation (1), the average electromagnetic force F that makes the molten steel surface height H of the mold corner portion 20 mm or less is:
3.081 × 10 −3 F ≦ 20 (2)
It becomes. This is the continuous casting method of the second invention. In this case, the average electromagnetic force is 6491 N / m 3 or less.

この第2の本発明方法において、鋳型長辺部におけるピンホール性欠陥の発生もない、より適切な鋳型コーナ部の溶鋼湯面高さ(5mm以上、20mm以下)とする場合は、平均電磁力Fの範囲を、
5≦3.081×10−3F≦20 …(3)
となるようにすれば良い。この場合の平均電磁力は1622N/m3以上、6491N/m3以下である。
In the second method of the present invention, when the molten steel surface height (5 mm or more and 20 mm or less) of the mold corner part is appropriate and no pinhole defect is generated in the long side part of the mold, the average electromagnetic force The range of F is
5 ≦ 3.081 × 10 −3 F ≦ 20 (3)
It should be so that. In this case, the average electromagnetic force is 1622 N / m 3 or more and 6491 N / m 3 or less.

本発明は上記の例に限らず、各請求項に記載された技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。   The present invention is not limited to the above example, and it goes without saying that the embodiments may be changed as appropriate within the scope of the technical idea described in each claim.

2 溶鋼
3 鋳型
3c コーナ部
5c 溶鋼流
6 電磁力
2 Molten Steel 3 Mold 3c Corner 5c Molten Steel Flow 6 Electromagnetic Force

Claims (2)

鋼の連続鋳造において、鋳型内の溶鋼に電磁力を作用させて鋳型内の溶鋼湯面に水平な旋回流を形成させる場合に、鋳型内における最も溶鋼湯面が低い位置と、鋳型コーナ部における溶鋼湯面の高さとの差が20mm以下となるように電磁力を作用させることを特徴とする鋼の連続鋳造方法。   In continuous casting of steel, when the electromagnetic force is applied to the molten steel in the mold to form a horizontal swirling flow on the molten steel surface in the mold, the position at the lowest molten steel surface in the mold and the mold corner A continuous casting method of steel, wherein an electromagnetic force is applied so that a difference from a molten steel surface height is 20 mm or less. 前記電磁力は、鋳型内の溶鋼湯面位置における電磁力を鋳型長辺方向に平均化した電磁力で、当該平均化した電磁力Fが下記式を満たすことを特徴とする請求項1に記載の鋼の連続鋳造方法。
3.081×10−3F≦20
The electromagnetic force is an electromagnetic force obtained by averaging the electromagnetic force at the molten steel surface position in the mold in the mold long side direction, and the averaged electromagnetic force F satisfies the following expression. Steel continuous casting method.
3.081 × 10 −3 F ≦ 20
JP2013118256A 2013-06-04 2013-06-04 Steel continuous casting method Active JP6107436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013118256A JP6107436B2 (en) 2013-06-04 2013-06-04 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013118256A JP6107436B2 (en) 2013-06-04 2013-06-04 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2014233751A true JP2014233751A (en) 2014-12-15
JP6107436B2 JP6107436B2 (en) 2017-04-05

Family

ID=52136855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013118256A Active JP6107436B2 (en) 2013-06-04 2013-06-04 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP6107436B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484650A (en) * 1990-07-27 1992-03-17 Kawasaki Steel Corp Method for restraining drift of molten steel in continuous casting mold
JPH11285795A (en) * 1998-03-31 1999-10-19 Nippon Steel Corp Production of continuously casting slab having high cleanliness
JP2004322120A (en) * 2003-04-22 2004-11-18 Jfe Steel Kk Continuous casting method of steel
JP2010240687A (en) * 2009-04-06 2010-10-28 Nippon Steel Corp Method for controlling flow of molten steel in casting mold in continuous casting equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484650A (en) * 1990-07-27 1992-03-17 Kawasaki Steel Corp Method for restraining drift of molten steel in continuous casting mold
JPH11285795A (en) * 1998-03-31 1999-10-19 Nippon Steel Corp Production of continuously casting slab having high cleanliness
JP2004322120A (en) * 2003-04-22 2004-11-18 Jfe Steel Kk Continuous casting method of steel
JP2010240687A (en) * 2009-04-06 2010-10-28 Nippon Steel Corp Method for controlling flow of molten steel in casting mold in continuous casting equipment

Also Published As

Publication number Publication date
JP6107436B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
EP2500120B1 (en) Method of continuous casting of steel
JP5014934B2 (en) Steel continuous casting method
JP5321528B2 (en) Equipment for continuous casting of steel
JP6428923B2 (en) Steel continuous casting method
WO2017047058A1 (en) Continuous casting method for slab casting piece
JP6107436B2 (en) Steel continuous casting method
WO2019235615A1 (en) Continuous casting equipment and continuous casting method used in thin slab casting of steel
JP5772767B2 (en) Steel continuous casting method
JP6331810B2 (en) Metal continuous casting method
JP6331757B2 (en) Equipment for continuous casting of steel
JP2018051598A (en) Bottom pouring ingot-making equipment
JP4553639B2 (en) Continuous casting method
JP5413277B2 (en) Continuous casting method for steel slabs
JP6451380B2 (en) Steel continuous casting method
RU2763994C1 (en) Apparatus and method for controlling continuous casting
JP5710448B2 (en) Control method of electromagnetic stirring device in mold at the end of casting
JP6287901B2 (en) Steel continuous casting method
WO2018159821A1 (en) Continuous casting method and continuous casting device
JP4492333B2 (en) Steel continuous casting method
JP2017077563A (en) Operation method of intermediate container for molten steel
JP4705515B2 (en) Continuous casting method
JP2019177409A (en) Ingot, method for producing same and method for producing steel plate
JP5266154B2 (en) Rectifying structure that suppresses drift caused by opening and closing of slide plate
JP4432263B2 (en) Steel continuous casting method
JP5018144B2 (en) Steel continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R151 Written notification of patent or utility model registration

Ref document number: 6107436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350