JP2014233174A - 振動波モータの駆動装置、光学機器及び振動波モータの駆動方法 - Google Patents

振動波モータの駆動装置、光学機器及び振動波モータの駆動方法 Download PDF

Info

Publication number
JP2014233174A
JP2014233174A JP2013113815A JP2013113815A JP2014233174A JP 2014233174 A JP2014233174 A JP 2014233174A JP 2013113815 A JP2013113815 A JP 2013113815A JP 2013113815 A JP2013113815 A JP 2013113815A JP 2014233174 A JP2014233174 A JP 2014233174A
Authority
JP
Japan
Prior art keywords
frequency
drive
vibration wave
wave motor
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013113815A
Other languages
English (en)
Inventor
隆利 芦沢
Takatoshi Ashizawa
隆利 芦沢
慎二 西原
Shinji Nishihara
慎二 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2013113815A priority Critical patent/JP2014233174A/ja
Publication of JP2014233174A publication Critical patent/JP2014233174A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

【課題】動画撮影時にも静寂駆動が可能な振動波モータの駆動装置を提供する。
【解決手段】本発明の振動波モータの駆動装置は、電気機械変換素子13により駆動面12aに駆動力が発生される振動子11と、前記駆動面12aに加圧接触される摺動面を有し、前記駆動力によって駆動される相対運動部材15と、を備える振動波モータ10の前記電気機械変換素子13に対して、互いに位相差を有する略同一周波数の2つの駆動信号を印加して前記相対運動部材15を第一方向へ駆動している状態から、前記駆動信号の周波数を上げて前記相対運動部材15の運動を実質的に停止させた状態で前記2つの駆動信号の前記位相差を変更し、前記駆動信号の周波数を下げることにより、前記相対運動部材15の移動方向を前記第一方向と逆の第二方向へ変更する方向転換動作を行なう振動波モータ10の駆動装置であって、前記駆動信号は、基本波と該基本波の周波数の高調波とを重ね合わせた信号であること、を特徴とする。
【選択図】図2

Description

本発明は、振動波モータの駆動装置、光学機器及び振動波モータの駆動方法に関するものである。
近年、静止画の撮影以外に動画撮影が可能な電子カメラがあり、動画撮影時には音声も取り込まれる。このような動画撮影が可能な電子カメラにおいて、振動波モータを搭載した交換レンズが着脱可能なものもある(特許文献1参照)。
特開平8−80073号号公報
しかし、振動波モータを搭載した交換レンズの場合、動画撮影時にオートフォーカス(以下AFと略す)でレンズを駆動させようとすると、振動波モータが駆動を開始する際に微小な音が発生し、この音がマイクに取り込まれる可能性がある。
本発明の課題は、動画撮影時にも静寂駆動が可能な振動波モータの駆動装置、光学機器及び振動波モータの駆動方法を提供することである。
本発明は、以下のような解決手段により前記課題を解決する。
請求項1に記載の発明は、電気機械変換素子により駆動面に駆動力が発生される振動子と、前記駆動面に加圧接触される摺動面を有し、前記駆動力によって駆動される相対運動部材と、を備える振動波モータの前記電気機械変換素子に対して、互いに位相差を有する略同一周波数の2つの駆動信号を印加して前記相対運動部材を第一方向へ駆動している状態から、前記駆動信号の周波数を上げて前記相対運動部材の運動を実質的に停止させた状態で前記2つの駆動信号の前記位相差を変更し、前記駆動信号の周波数を下げることにより、前記相対運動部材の移動方向を前記第一方向と逆の第二方向へ変更する方向転換動作を行なう振動波モータの駆動装置であって、前記駆動信号は、基本波と該基本波の周波数の高調波とを重ね合わせた信号であること、を特徴とする振動波モータの駆動装置である。
請求項2に記載の発明は、請求項1記載の振動波モータの駆動装置であって、前記高調波は、2次の高調波であること、を特徴とする振動波モータの駆動装置である。
請求項3に記載の発明は、請求項1又は2記載の振動波モータの駆動装置において、前記相対運動部材の運動が停止する際の前記基本波の周波数をf0、前記相対運動部材の固有振動数をfr、前記高調波の周波数をfhとした時、f0 < fr < fhの関係を満たすこと、特徴とする振動波モータの駆動装置である。
請求項4に記載の発明は、電気機械変換素子により駆動面に駆動力が発生される振動子と、前記駆動面に加圧接触される摺動面を有し、前記駆動力によって駆動される相対運動部材と、を備える振動波モータの前記電気機械変換素子に対して、互いに位相差を有する略同一の第1の周波数の2つの駆動信号を印加して前記相対運動部材を第一方向へ駆動している状態から、前記第1の周波数を上げた第2の周波数の状態で前記2つの駆動信号の前記位相差を変更する動作を行なう振動波モータの駆動装置であって、前記駆動信号は、基本波と該基本波の周波数の高調波とを重ね合わせた信号であること、を特徴とする振動波モータの駆動装置である。
請求項5に記載の発明は、請求項4に記載の振動波モータの駆動装置において、前記第1の周波数は、前記相対運動部材の運動を実質的に停止させる周波数であることを特徴とする振動波モータの駆動装置である。
請求項6に記載の発明は、請求項1から5のいずれか1項記載の前記駆動装置と、動画撮影モードを選択可能な撮影設定部と、を備え、該撮影設定部により前記動画撮影モードが選択された場合に、前記方向転換動作により行なうこと、を特徴とする光学機器である。
請求項7に記載の発明は、電気機械変換素子により駆動面に駆動力が発生される振動子と、前記駆動面に加圧接触される摺動面を有し、前記駆動力によって駆動される相対運動部材と、を備える振動波モータの前記電気機械変換素子に対して、互いに位相差を有する略同一周波数の2つの駆動信号を印加して前記相対運動部材を第一方向へ駆動している状態から、前記駆動信号の周波数を上げて前記相対運動部材の運動を実質的に停止させた状態で、前記2つの駆動信号の前記位相差を変更し、前記駆動信号の周波数を下げることにより、前記相対運動部材の移動方向を前記第一方向と逆の第二方向へ変更する方向転換動作を行なう振動波モータの駆動方法であって、前記駆動信号は、基本波と該基本波の周波数の高調波とを重ね合わせた信号であること、を特徴とする振動波モータの駆動方法である。
請求項8に記載の発明は、電気機械変換素子により駆動面に駆動力が発生される振動子と、前記駆動面に加圧接触される摺動面を有し、前記駆動力によって駆動される相対運動部材と、を備える振動波モータの前記電気機械変換素子に対して、互いに位相差を有する略同一の第1の周波数の2つの駆動信号を印加して前記相対運動部材を第一方向へ駆動している状態から、前記第1の周波数を上げた第2の周波数の状態で前記2つの駆動信号の前記位相差を変更する動作を行なう振動波モータの駆動方法であって、前記駆動信号は、基本波と該基本波の周波数の高調波とを重ね合わせた信号であること、を特徴とする振動波モータの駆動方法である。
本発明によれば、動画撮影時にも静寂駆動が可能な振動波モータの駆動装置、光学機器及び振動波モータの駆動方法を提供することができる。
本発明の一実施形態の、振動波モータの駆動装置を備える電子カメラを説明する図である。 本実施形態の駆動装置により駆動される振動波モータを備えたレンズ鏡筒を説明する図である。 振動子及び移動子を示す斜視図である。 振動波モータの駆動装置を説明するブロック図である。 (a)は、振動波モータの駆動信号の位相差に対する回転速度の関係を示すグラフであり、(b)は、振動波モータの駆動周波数に対する回転速度の関係を示すグラフである。 本実施形態の駆動回路の駆動信号波形を説明する図である。 (a)は対称波形(矩形波)を振動子に印加し、振動子の変位(または振動速度)をFFT等で周波数分析した結果であり、(b)は図6の駆動信号を振動子に印加し、振動子の変位(または振動速度)をFFT等で周波数分析した結果である。 振動波モータの振動子の振動と、振動子の駆動面に加圧された移動子の摺動部の様子を説明する図である。 動画モードを選択された場合、駆動電圧、駆動周波数、位相差、振動波モータの回転速度、変位の関係を時系列に説明する図である。
以下、本発明にかかる、振動波モータ10の駆動装置40の実施形態について、添付図面を参照しながら詳細に説明する。
図1は、本発明の一実施形態の振動波モータ10の駆動装置を備える電子カメラ1を説明する図である。
電子カメラ1は、撮像光学系Lと、撮像素子30と、AFE(Analog front end)回路60と、画像処理部70と、音声検出部80と、バッファメモリ110と、記録インターフェイス120と、モニタ140と、操作部材90と、メモリ130と、CPU100とから構成され、外部機器のPC150との接続が可能となっている。
撮像光学系Lは、複数の光学レンズにより構成され、被写体像を撮像素子30の受光面に結像させる。図1では光学レンズ系を簡略化して、単レンズとして図示している。また、光学レンズ群のうち、AF用の光学レンズは、振動波モータ10の駆動により駆動される。
操作部材90または画像の状況により撮像素子30への露光時間(シャッタースピード)を決める。
撮像素子30は、受光面に受光素子が2次元的に配列されたCMOSイメージセンサなどによって構成される。撮像素子30は、撮像光学系Lを通過した光束による被写体増を光電変換してアナログ画像信号を生成する。アナログ画像信号は、AFE回路60に入力される。
AFE回路60は、アナログ画像信号に対するゲイン調整(ISO感度に応じて信号増幅)行う。具体的には、CPU100からの感度設定指示に応じて、撮像感度を所定範囲内で変更する。AFE回路60は、さらに、内蔵するA/D変換回路によってアナログ処理後の画像信号をデジタルデータに変換する。そのデジタルデータは、画像処理部70に入力される。
画像処理部70は、デジタル画像データに対して、各種の画像処理を行う。
バッファメモリ110は、画像処理部70による画像処理の前工程や後工程での画像データを一時的に記録する。
音声検出部80は、マイクと信号増幅部44から構成され、主に動画撮影時に被写体方向からの音声を検出して取り込み、そのデータをCPU100へ伝達する。音声検出部80は電子カメラ1の内臓マイクの場合と、外部マイクを電子カメラ1の接点に取り付けられる場合とがあり、外部マイクが取り付けられた場合には、その取り付けをCPU100が検知するようになっている。
記録インターフェイス120は、不図示のコネクタを有し、該コネクタに記録媒体が接続され、接続された記録媒体に対して、データの書き込みや、記録媒体からのデータの読み込みを行う。
モニタ140は、液晶パネルによって構成され、CPU100からの指示に応じて画像や操作メニューなどを表示する。
操作部材90は、モードダイヤル、十字キー、決定ボタンやレリーズボタンを示し、各操作に応じた操作信号をCPU100へ送出する。静止画撮影や動画撮影の設定は、該操作部材90により設定される。
CPU100は、不図示のROMに格納されたプログラムを実行することによって電子カメラ1が行う動作を統括的に制御する。例えば、AF(オートフォーカス)動作制御、AE(自動露出)動作制御、オートホワイトバランス制御などを行う。
メモリ130は、画像処理した一連の画像データを記録する。
この様な構成の電子カメラ1において、本実施形態は、動画に対応した画像を取り込む。
図2は、本実施形態の駆動装置により駆動される振動波モータを備えたレンズ鏡筒20を説明する図であり、振動波モータ10をレンズ鏡筒20に組み込んだ状態の図である。図3は振動子11及び移動子15を示す斜視図である。
振動子11は、電気エネルギを機械エネルギに変換する圧電素子や電歪素子等を例とした電気−機械変換素子(以下、圧電体13と称する)と、圧電体13を接合した弾性体12とから構成されている。
振動子11には進行波が発生するようにされているが、本実施形態では一例として9波の進行波として説明する。
弾性体12は、共振先鋭度が大きな金属材料から成り、図3に示すように円環形状で、圧電体13が接合される反対面には溝が切ってあり、突起部12b(溝がない箇所)の先端面が駆動面12aとなり移動子15に加圧接触される。溝を切る理由は、進行波の中立面をできる限り圧電体13側に近づけ、これにより駆動面12aの進行波の振幅を増幅させるためである。
圧電体13は、円周方向に沿って2つの相(A相、B相)に分かれており、各相においては、1/2波長毎に分極が交互となった要素が並べられていて、A相とB相との間には1/4波長分間隔が空くようにしてある。
圧電体13は、一般的には通称PZTと呼ばれるチタン酸ジルコン酸鉛といった材料から構成されているが、近年では環境問題から鉛フリーの材料であるニオブ酸カリウムナトリウム、ニオブ酸カリウム、ニオブ酸ナトリウム、チタン酸バリウム、チタン酸ビスマスナトリウム、チタン酸ビスマスカリウム等から構成されることもある。
圧電体13の下には、不織布16、加圧板17、加圧部材18が配置されている。
不織布16は、フェルトを例としたものであり、圧電体13の下に配置されていて、振動子11の振動を加圧板17や加圧部に伝えないようにしてある。
加圧板17は、加圧部材18の加圧を受けるようにされている。
加圧部材18は、加圧板17の下に配置されていて、加圧力を発生させるものである。本実施形態では、加圧部材18を皿バネとしたが、皿バネでなくともコイルバネやウェーブバネでも良い。加圧部材18は、押さえ環19は固定部材14に固定されることで、保持される。
移動子15は、アルミニウムといった軽金属からなり、摺動面15aの表面には耐摩耗性向上のための摺動材料が設けられている(図3参照)。
移動子15の上には、移動子15の縦方向の振動を吸収するために、ゴムの様な振動吸収部材23が配置され、その上には出力伝達部24が配置されている。
出力伝達部24は、固定部材14に設けられたベアリング25により、加圧方向と径方向とを規制し、これにより移動子15の加圧方向と径方向とが規制されるようにされている。
出力伝達部24は、突起部24aがあり、そこからカム環36に接続されたフォーク35がかん合しており、出力伝達部24の回転とともに、カム環36が回転される。
カム環36には、キー溝37がカム環36に斜めに切られており、AF環34に設けられた固定ピン38が、キー溝37にかん合していて、カム環36が回転駆動することにより、光軸方向に直進方向にAF環34が駆動され、所望の位置に停止できる様にされている。
固定部材14は、押さえ環19がネジにより取り付けられ、これを取り付けることで、出力伝達部24から移動子15、振動子11、バネまでを一つのモータユニットとして構成できるようになる。
図4は、実施形態の振動波モータの駆動装置40を説明するブロック図である。
まず、振動波モータ10の駆動/制御部41について説明する。
発振部42は、制御部41の指令により所望の周波数の駆動信号を発生する。
移相部43は、該発振部42で発生した駆動信号を位相の異なる2つの駆動信号に分ける。
増幅部44は、移相部43によって分けられた2つの駆動信号をそれぞれ所望の電圧に昇圧する。
増幅部44からの駆動信号は、振動波モータ10に伝達され、この駆動信号の印加により振動子11に進行波が発生し、移動子15が駆動される。
回転検出部45は、光学式エンコーダや磁気エンコ−ダ等により構成され、移動子15の駆動によって駆動された駆動物の位置や速度を検出し、検出値を電気信号として制御部41に伝達する。
制御部41は、レンズ鏡筒20内またはカメラ本体のCPU46(100)からの駆動指令を基に振動波モータ10の駆動を制御する。制御部41は、回転検出部45からの検出信号を受け、その値を基に、位置情報と速度情報を得て、目標位置に位置決めされるように発振部42の周波数、移相部43の位相差や増幅部44の電圧を制御する。
また、制御部41は、レンズ鏡筒20やカメラ20Aより撮影情報(静止画モード/動画モード等)が伝達されるようになっている。このレンズ鏡筒20やカメラ20Aより撮影情報を基に、駆動信号の周波数や位相差をきめ細かに制御する。
本実施形態の構成によれば、振動波モータの駆動装置は以下の様にして動作する。
まず、制御部41に目標位置が伝達される。
そうすると、発振部42からは駆動信号が発生され、その信号は位相部により90度位相の異なる2つの駆動信号に分割され、増幅部44により所望の電圧に増幅される。
駆動信号は、振動波モータ10の圧電体13に印加され、圧電体13は励振され、その励振によって弾性体12には9次の曲げ振動が発生する。圧電体13はA相とB相とに分けられており、駆動信号はそれぞれA相とB相に印加される。
A相から発生する9次曲げ振動とB相から発生する9次曲げ振動とは位置的な位相が1/4波長ずれるようになっている。また、A相駆動信号とB相駆動信号とは90度位相がずれているため、2つの曲げ振動は合成され、9波の進行波となる。
位相の値±90度は、理想的な値であり、その中間値でも進行波の形状は乱れているが、進行波は生じている。
進行波の波頭には楕円運動が生じている。従って、駆動面12aに加圧接触された移動子15は、この楕円運動によって摩擦的に駆動される。
移動子15の駆動により駆動された駆動体には、光学式エンコ−ダが配置されていて、そこから、電気パルスが発生し、制御部41に伝達される。
制御部41は、この信号を基に、現在の位置と現在の速度を得ることが可能となり、これらの位置情報、速度情報及び目標位置情報を基に、発振部42の駆動周波数は制御される。
また、正方向に駆動する場合には、移相部43での2つの駆動信号(周波電圧信号)の位相差を+値、例えば+90度にし、逆方向に駆動する場合には、移相部43での2つの駆動信号(周波電圧信号)の位相差を−値、例えば−90度にすれば良い。
一方、制御部41は、現在の撮影モードが静止画モード/動画モードであるかの情報を基に、静止画モードの場合には、発振部42の駆動周波数を制御し、動画モードの場合には、発振部42の駆動周波数および移相部43の位相差を制御する。特に、小刻みにAFレンズを前後させるウォブリング動作については、駆動周波数および位相差を変更して、位置や速度を制御する。
図5(a)は、振動波モータの駆動信号の位相差に対する回転速度の関係を示すグラフであり、図5(b)は、振動波モータの駆動周波数に対する回転速度の関係を示すグラフである。
図5(a)に示すように、回転速度は、2つの駆動信号の位相差が+90度では正回転の最大速度、2つの駆動信号の位相差が−90度では逆回転の最大速度となり、その中間の位相差は、中間的な速度値を示す。
また、図5(b)に示すように、駆動周波数は、小さくしていくと回転速度が大きくなり、周波数を大きくすると回転速度は低下していき、0となる。
例えば、位相差+90度とした時、駆動周波数が小さい方が、回転速度は高くなる。
図6は、本実施形態の駆動回路の駆動信号波形を説明する図である。
振動波モータ10を駆動する信号波形は、一般的には正弦波が用いられる。なぜなら、振動は一般的に時間とともに正弦波的な変位や速度変化を伴うように運動するからである。
しかし、本実施形態では、図6で示すように、+方向−方向で非対称形状の波形を有し、互いに位相が90度異なる2つの信号を駆動信号として入力する。
図7(b)は、図6の駆動信号を振動子11に印加し、振動子11の変位(または振動速度)をFFT等で周波数分析した結果である。図示するように、振動子11には、駆動信号の周波数以外に、2次高調波の周波数、3次高調波の周波数・・・と全ての次数の高調波周波数と一致した振動モードも励起されている。
次に上記した高調波を含んだ駆動信号にした理由を説明する。
図8は、振動波モータ10の振動子11の振動と、振動子11の駆動面12aに加圧された移動子15の摺動部の様子を説明する図である。
図8(a)は、駆動している状態を示している。駆動周波数を低くしていき、振動子11の振動振幅を大きくした状態で(例えば図5の周波数f2、f3等)、この場合、移動子15は、振動子11の駆動面12aの進行波の波頭のみに接触するため、駆動面12aの楕円運動により移動子15は楕円運動の方向に駆動する。なお、駆動信号は正弦波としている。
移動子15は、移動子15に対して加圧されているため、振動子11の曲げ変形に沿った様な形状で変形している。例えば振動子11が9次の曲げ振動モードを利用している場合、移動子15も9次の曲げ変位が生じている。
しかし、移動子15の変位は、ステータの振動の振動変位よりも小さいため振動子11の進行波の波底には接触せず、進行波の波頭の楕円運動の方向に駆動されている。波底の楕円運動の方向は、波頭とは逆であるので、移動子15の駆動面12aが波底に接触すると、駆動できないか、不安定な駆動状態となる。
図8(b)は、停止している状態を示している。駆動周波数を高くしていき、振動子11の振動振幅を小さくした状態で(例えば図5の周波数f0)、この場合、移動子15は、振動子11駆動面12aの進行波の波頭および波底に接触している。振動振幅が小さい状態でも、移動子15は、移動子15に対して加圧されているため、振動子11の曲げ変形に沿った様な形状で変形している。それは、(a)の場合と同様である。
(b)の場合、移動子15は、波頭だけではなく波底にも接触しているため、お互い反対方向の楕円運動をうけるため、停止した状態となる。
この(b)の状態(正弦波の駆動信号を用いて駆動周波数を高くして、移動子15を停止させる)で、十秒以上保持すると、振動子11駆動面12aと移動子15摺動面15aが過剰な密着状態となる。
過剰な密着状態とは、この後に駆動させようとして駆動周波数を下げていき、例えば図5のf2、f3の周波数にしても振動子11と移動子15との密着状態が解消せず、駆動できない状態と定義している。
この原因としては、(b)の状態で、振動子11を振動させながら、移動子15とを密着させると、振動による面圧力で、振動子11駆動面12aと移動子15摺動面15aと間の空気が押し出され、ミクロ的に真空状態が発生し、その結果、過剰な密着状態になるものと見られる。特に、振動波モータ10は、移動子15駆動面12aおよび振動子11摺動面15aに対して高精度の面精度が要求されるため、この現象を引き起こしやすくなっているものと考えられる。
ここで、本発明の振動波モータ10は、
停止状態(図8(b)時)の駆動信号周波数:f0
駆動に用いる振動子11の振動モードと同じ移動子15の摺動面15aの振動モードの固有振動数:fr
駆動信号の2次高調波の周波数:fh
と定義した場合、
f0 < fr < fh
となる。
このように、振動子11の駆動周波数f0に対して、移動子15の摺動面15aの固有振動数frが大きいため、振動子11の駆動面12aの振動変位に対して、移動子15の摺動面15aが追従できてしまうため、(b)の様な密着状態が発生する可能性がある。
しかし、本実施形態の駆動信号は、正弦波駆動信号Sにその2次高調波の駆動信号を重ね合わせたものである。そうすると、図8(c)の様に振動子11の駆動面12aは、正弦波的な変位ではなく、凸凹した変位を有する信号S1となる。
この凸凹の変位は2次高調波の変形で、周波数がfhで振動している。
振動子11の2次高調波周波数fhに対して、移動子15の摺動面15aの固有振動数frが小さいため、振動子11の駆動面12aの2次高調波振動変位に対して、移動子15の摺動部15aが追従できない現象が生じる。
実際に、図8(d)の様に、駆動面12aに移動子15を加圧したとき、基本駆動信号を停止状態の周波数に設定しても(例えば図5のf0)、2次高調波の周波数fhが移動子15の摺動面15aの固有振動数frが高い。このため、移動子15の摺動部面15aは2次高調波の振動に追従できなく、振動子11駆動面12aと移動子15摺動面15aとの間にギャップが生じる。
それにより振動子11と移動子15との密着が解消され、駆動しようと駆動周波数を下げていった場合の起動性が確保されることとなる。
高調波は、振幅エネルギが大きい2次高調波を含んだ波形が好適である(1次基本波+2次高調波)。
図7(a)に示す矩形波では、高調波は、3次、5次と奇数倍となるが、3次高調波でも、本課題の過剰な密着状態に対してある程度効果が有るが、2次高調波を含んだ駆動波形の方が効果が大きい。
図9は、動画モードが操作部材90より選択された場合の、駆動電圧、駆動周波数、位相差、振動波モータ10の回転速度及び変位の関係を時系列に説明する図である。
動画モードの場合には、小刻みにAFレンズを前後させるウォブリング動作を行う。本実施形態では、実際にウォブリング動作をしながらコントラスト検出をして被写体の位置を追尾していくことを説明する。
まず、駆動電圧はV0(最小電圧)、駆動周波数はf0(最大周波数)、位相差0と設定:t0
駆動動電圧の増加を開始(徐々に増加):t1
駆動電圧を定格電圧V1に設定し、位相差の変更(0→90度)を開始:t2
位相差を90度に設定、駆動周波数を最大周波数f0より挿引開始:t3
駆動周波数の挿引途中で、振動波モータ10が正方向に駆動開始:t4
周波数f1に設定:t5
周波数f1からf0への変更が開始:t6(t5〜t6間は、移動子15は一定速度)
駆動周波数が挿引途中で、振動波モータ10が停止:t7
周波数f0に設定、位相差の変更(90→−90度)が開始。同時にレンズ位置Wbe位置でコントラストが検出:t8
位相差が−90度に設定され、駆動周波数が最大周波数f0より挿引開始:t9
駆動周波数が挿引されている途中で、振動波モータ10が逆方向に駆動開始:t10
周波数f2に設定:t11
周波数f2からf0への変更開始:t12(t11〜t12間は、移動子15一定速度。周波数f2(f1よりやや低い周波数)に設定しているのは、位置変位Wbe→Waf≒2×(Wo→Wbe)と、2倍の位置変位が必要なため。)
駆動周波数の挿引途中で、振動波モータ10が停止:t13
周波数f0に設定、位相差の変更(−90→90度)が開始。同時にレンズ位置Waf位置でコントラストが検出:t14
位相差が90度に設定、駆動周波数を最大周波数f0より挿引が開始:t15
駆動周波数の挿引途中で、振動波モータ10が正方向に駆動開始:t16
周波数f1に設定:t17
周波数f1からf0への変更が開始:t18(t17〜t18間は、移動子15一定速度となる)
駆動周波数の挿引途中で、振動波モータ10が停止:t19
周波数f0の設定と同時にレンズ位置Wo位置でコントラストを検出:t20
以上が、ウォブリング動作の1サイクル(例t4とt21間)で、1サイクル当たり、20Hzの間隔(=約50msec)としている。
本実施形態では、駆動電圧を徐々に増加させて定格電圧にし、その状態を保持する。そして、位相差を徐々に変更することで、駆動方向を切り替え、周波数を変更して速度と位置を制御する。したがって、従来の駆動方向切り替え時に行っていた電源ON/OFF挙動がなくなり、その時に発生した音を防止することができる。
なお、本説明で用いている駆動周波数f0、f1、f2、f3は、図5の示した周波数の関係と同じである。
次に、t21以降を説明する。
t4からt21までの3点のコントラスト検出情報で、被写体の位置が焦点深度内であったことが確認された場合の挙動を説明する。
焦点深度内であったため、ウォブリング動作は一時停止される。
周波数はf0設定のまま、位相差は90度設定のまま保持:t21からt22間
この間、何回かコントラスト検出が行われ、被写体が焦点深度内であれば一時停止は保持される(最低1秒〜最長1分)。
コントラスト検出で、被写体が焦点深度から外れた情報が得られたとき、ウォブリング駆動が再開される。
従来の正弦波の駆動波形を用いた場合、ウォブリングを一時停止した状態、すなわち、周波数f0に設定し、回転速度が0状態を保持した場合、ウォブリングを再開しようと周波数を下げていっても、起動されない場合がある。
しかし、本実施形態の駆動信号波形(基本正弦波波形と2次高調波を含んだ波形)にすれば、起動性が確保できるようになる。
位相差を90度に設定、駆動周波数を最大周波数f0より挿引を開始:t22
駆動周波数の挿引途中で、振動波モータ10が正方向に駆動開始:t23
周波数f1に設定:t24
周波数f1からf0への変更開始:t25
駆動周波数の挿引途中で、振動波モータ10が停止:t26
周波数f0に設定、位相差の変更(90→−90度)を開始。それと同時にレンズ位置Wbe位置でコントラストを検出:t27
位相差を−90度に設定、駆動周波数を最大周波数f0より挿引開始:t28
駆動周波数の挿引途中で、振動波モータ10が逆方向に駆動開始:t29
周波数f2に設定:t30
周波数f2からf0へ変更開始:t31
駆動周波数の挿引途中で、振動波モータ10が停止:t32
周波数f0に設定、位相差の変更(−90→90度)が開始。それと同時にレンズ位置Waf位置でコントラストが検出:t33
位相差が90度に設定され、駆動周波数を最大周波数f0より挿引を開始:t34
駆動周波数の挿引途中で、振動波モータ10が正方向に駆動開始:t35
周波数f1に設定:t36
周波数f1からf0への変更開始:t37
駆動周波数の挿引途中で、振動波モータ10が停止:t38
周波数f0に設定され、それと同時にレンズ位置Wo位置でコントラストを検出:t39
ここで、t39において被写体が現在のレンズ位置から正方向に位置していることが判明し、レンズを正方向に移動する必要が生じたとする。
そうすると、位相差を90度に設定、駆動周波数を、最大周波数f0より挿引開始:t40
駆動周波数の挿引途中で、振動波モータ10が正方向に駆動開始:t41
周波数f3に設定:t42
(大きな移動量が必要なため、設定される駆動周波数をf3とした)
周波数f3からf0への変更開始:t43
駆動周波数が挿引されている途中で、振動波モータ10が停止:t44
周波数がf0に設定:t45
t45以降は、この後、ウォブリング動作を継続する。
以上、本実施形態によると、以下の効果を有する。
まず、比較形態として一般に用いられている方法を説明する。比較形態においては、動画撮影時に、AFレンズを小刻みに前後させて、適正な焦点位置を追従させる動作(ウォブリング動作)を行う時、振動波モータ10としては、1)駆動信号をONにして正方向に駆動→2)駆動信号をOFFにして一旦止めて駆動信号の位相差設定→3)駆動信号をONにして反対方向に駆動→4)駆動振動をOFFにして一旦とめて駆動信号の位相差設定→・・・・繰り返し、という動作が一般に行なわれている。
しかし、この場合、駆動信号をOFFにして一旦止めての時と、駆動信号をONにして駆動させる時に、微小の音が発生してしまう。
そこで、本実施形態では、上記2)および4)の一旦止めて駆動信号の位相差を設定するのではなく、常時駆動信号をONとする。
そして、駆動信号を速度が0になる高い周波数に設定し、その状態で、位相差を徐々に90度→−90度と変更(または−90度→90度と変更)する。
これにより、微小の音の発生無しで回転方向を切り替えることができる。
しかし、常時駆動信号をONとし、駆動信号を速度が0になる高い周波数に設定し、その状態で数十秒保持すると、振動子11の駆動面12aと移動子15の摺動面15aが過剰密着する。
このため、再度駆動させようと駆動周波数を下げて駆動状態にしても起動しない場合がある。
そこで、本実施形態では、駆動電圧を徐々に増加させ定格電圧する。そして、その状態を保持したまま、位相差を徐々に変更することで、駆動方向を切り替え、周波数を変更して速度と位置を制御する。
これにより、比較形態のように駆動方向の切り替え時に行っていた電源ON/OFF挙動がなくなり、電源ON/OFFの際に発生していた音を防止することができる。
さらに、正弦波駆動信号の場合、駆動信号を振動子11に印加継続しながら停止状態を保持しる際に発生する振動子11と移動子15との過剰な密着状態現象が生じるが、本実施形態の駆動信号波形(基本正弦波波形と2次高調波を含んだ波形)にすることで、起動性の確保が可能である。
(変形形態)
以上、説明した実施形態に限定されることなく、以下に示すような種々の変形や変更が可能であり、それらも本発明の範囲内である。
(1)本実施形態では、振動子に、駆動信号の1次基本波以外に、2次高調波の周波数、3次高調波の周波数・・・と全ての次数の高調波周波数と一致した振動モードが励起された駆動信号を入力したが、これに限定されない。例えば、駆動信号の基本周波数の他に、2次高調波の周波数だけを含む駆動信号を入力してもよい。また、基本周波数の他に入力する高調波は、2次が最も好適であるが、これに限らず他の高調波であってもよい。
(2)本実施形態では、9次の進行波形振動波モータ10を例としたが、例えば、4次、5次、・・・10次、11次、それ以上の振動モードでも、同様な課題があり、本発明の駆動信号波形を適用することで、課題が解消される。
(3)本実施形態では、カメラ本体に着脱可能なレンズ鏡筒において使用される振動波モータについて説明したが、これに限定されず、カメラ本体とレンズ鏡筒とが一体になったカメラ内部に用いられる振動波モータであってもよい。
なお、実施形態及び変形形態は、適宜組み合わせて用いることもできるが、詳細な説明は省略する。また、本発明は以上説明した実施形態によって限定されることはない。
1:電子カメラ、10:振動波モータ、11:振動子、12:弾性体、12a:駆動面、13:圧電体、15:移動子、15a:摺動面、20:レンズ鏡筒、20A:カメラ、40:駆動装置

Claims (8)

  1. 電気機械変換素子により駆動面に駆動力が発生される振動子と、
    前記駆動面に加圧接触される摺動面を有し、前記駆動力によって駆動される相対運動部材と、
    を備える振動波モータの前記電気機械変換素子に対して、
    互いに位相差を有する略同一周波数の2つの駆動信号を印加して前記相対運動部材を第一方向へ駆動している状態から、前記駆動信号の周波数を上げて前記相対運動部材の運動を実質的に停止させた状態で前記2つの駆動信号の前記位相差を変更し、前記駆動信号の周波数を下げることにより、前記相対運動部材の移動方向を前記第一方向と逆の第二方向へ変更する方向転換動作を行なう振動波モータの駆動装置であって、
    前記駆動信号は、基本波と該基本波の周波数の高調波とを重ね合わせた信号であること、
    を特徴とする振動波モータの駆動装置。
  2. 請求項1記載の振動波モータの駆動装置であって、
    前記高調波は、2次の高調波であること、
    を特徴とする振動波モータの駆動装置。
  3. 請求項1又は2記載の振動波モータの駆動装置において、
    前記相対運動部材の運動が停止する際の前記基本波の周波数をf0、
    前記相対運動部材の固有振動数をfr、
    前記高調波の周波数をfhとした時、
    f0 < fr < fh
    の関係を満たすこと、
    特徴とする振動波モータの駆動装置。
  4. 電気機械変換素子により駆動面に駆動力が発生される振動子と、
    前記駆動面に加圧接触される摺動面を有し、前記駆動力によって駆動される相対運動部材と、
    を備える振動波モータの前記電気機械変換素子に対して、
    互いに位相差を有する略同一の第1の周波数の2つの駆動信号を印加して前記相対運動部材を第一方向へ駆動している状態から、
    前記第1の周波数を上げた第2の周波数の状態で前記2つの駆動信号の前記位相差を変更する動作を行なう振動波モータの駆動装置であって、
    前記駆動信号は、基本波と該基本波の周波数の高調波とを重ね合わせた信号であること、
    を特徴とする振動波モータの駆動装置。
  5. 請求項4に記載の振動波モータの駆動装置において、
    前記第1の周波数は、前記相対運動部材の運動を実質的に停止させる周波数であることを特徴とする振動波モータの駆動装置。
  6. 請求項1から5のいずれか1項記載の前記駆動装置と、
    動画撮影モードを選択可能な撮影設定部と、
    を備え、
    該撮影設定部により前記動画撮影モードが選択された場合に、前記方向転換動作により行なうこと、を特徴とする光学機器。
  7. 電気機械変換素子により駆動面に駆動力が発生される振動子と、
    前記駆動面に加圧接触される摺動面を有し、前記駆動力によって駆動される相対運動部材と、
    を備える振動波モータの前記電気機械変換素子に対して、
    互いに位相差を有する略同一周波数の2つの駆動信号を印加して前記相対運動部材を第一方向へ駆動している状態から、前記駆動信号の周波数を上げて前記相対運動部材の運動を実質的に停止させた状態で、
    前記2つの駆動信号の前記位相差を変更し、
    前記駆動信号の周波数を下げることにより、前記相対運動部材の移動方向を前記第一方向と逆の第二方向へ変更する方向転換動作を行なう振動波モータの駆動方法であって、
    前記駆動信号は、基本波と該基本波の周波数の高調波とを重ね合わせた信号であること、
    を特徴とする振動波モータの駆動方法。
  8. 電気機械変換素子により駆動面に駆動力が発生される振動子と、
    前記駆動面に加圧接触される摺動面を有し、前記駆動力によって駆動される相対運動部材と、
    を備える振動波モータの前記電気機械変換素子に対して、
    互いに位相差を有する略同一の第1の周波数の2つの駆動信号を印加して前記相対運動部材を第一方向へ駆動している状態から、
    前記第1の周波数を上げた第2の周波数の状態で前記2つの駆動信号の前記位相差を変更する動作を行なう振動波モータの駆動方法であって、
    前記駆動信号は、基本波と該基本波の周波数の高調波とを重ね合わせた信号であること、
    を特徴とする振動波モータの駆動方法。
JP2013113815A 2013-05-30 2013-05-30 振動波モータの駆動装置、光学機器及び振動波モータの駆動方法 Pending JP2014233174A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013113815A JP2014233174A (ja) 2013-05-30 2013-05-30 振動波モータの駆動装置、光学機器及び振動波モータの駆動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013113815A JP2014233174A (ja) 2013-05-30 2013-05-30 振動波モータの駆動装置、光学機器及び振動波モータの駆動方法

Publications (1)

Publication Number Publication Date
JP2014233174A true JP2014233174A (ja) 2014-12-11

Family

ID=52126270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013113815A Pending JP2014233174A (ja) 2013-05-30 2013-05-30 振動波モータの駆動装置、光学機器及び振動波モータの駆動方法

Country Status (1)

Country Link
JP (1) JP2014233174A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI656668B (zh) * 2016-12-27 2019-04-11 日商佳能股份有限公司 振動器、振動波驅動裝置、振動波馬達及電子裝置
CN112826492A (zh) * 2020-12-29 2021-05-25 上海联影医疗科技股份有限公司 振动传感器及医疗成像设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI656668B (zh) * 2016-12-27 2019-04-11 日商佳能股份有限公司 振動器、振動波驅動裝置、振動波馬達及電子裝置
CN112826492A (zh) * 2020-12-29 2021-05-25 上海联影医疗科技股份有限公司 振动传感器及医疗成像设备
CN112826492B (zh) * 2020-12-29 2023-08-08 上海联影医疗科技股份有限公司 振动传感器及医疗成像设备

Similar Documents

Publication Publication Date Title
US10871700B2 (en) Drive apparatus, drive method, and optical device
JP5927977B2 (ja) アクチュエータ装置、レンズ鏡筒およびカメラ
US9184677B2 (en) Driving device, lens barrel, and image capturing apparatus
JP2014233174A (ja) 振動波モータの駆動装置、光学機器及び振動波モータの駆動方法
JP5446448B2 (ja) レンズ鏡筒及び撮像装置
JP5910165B2 (ja) カメラ
JP5482731B2 (ja) レンズ鏡筒及び撮像装置
JP2007271990A (ja) レンズ駆動装置
WO2013125635A1 (ja) アクチュエータ装置、レンズ鏡筒およびカメラ
JP6579207B2 (ja) 振動波モータ、レンズ鏡筒及びカメラ
JP2013171239A (ja) 電子カメラおよびレンズ鏡筒
JP6314449B2 (ja) 振動波モータの駆動装置、レンズ鏡筒及びカメラ
JP2018207779A (ja) 振動アクチュエータ、レンズ鏡筒及びカメラ
JP5998971B2 (ja) レンズ鏡筒
JP6007788B2 (ja) 振動アクチュエータの駆動装置、駆動方法及び光学機器
JP2013188069A (ja) 電子カメラおよびレンズ鏡筒
JP6079126B2 (ja) 振動アクチュエータの駆動装置及び光学機器
JP6435600B2 (ja) 振動アクチュエータ、レンズ鏡筒及びカメラ
JP6406386B2 (ja) 振動アクチュエータ、レンズ鏡筒及びカメラ
WO2013054848A1 (ja) アクチュエータ制御装置、レンズ鏡筒、及び撮像装置
JP2014236578A (ja) 振動波モータの駆動装置、レンズ鏡筒、カメラ及び駆動方法
JP2016085245A (ja) 撮像装置
JP2022110185A (ja) 振動型アクチュエータの制御装置および駆動装置
JP2014027718A (ja) 振動アクチュエータ、レンズ鏡筒及びカメラ
JP2015107002A (ja) 振動アクチュエータ及び光学機器