JP2014231454A - グラフェンの生成方法 - Google Patents

グラフェンの生成方法 Download PDF

Info

Publication number
JP2014231454A
JP2014231454A JP2013112927A JP2013112927A JP2014231454A JP 2014231454 A JP2014231454 A JP 2014231454A JP 2013112927 A JP2013112927 A JP 2013112927A JP 2013112927 A JP2013112927 A JP 2013112927A JP 2014231454 A JP2014231454 A JP 2014231454A
Authority
JP
Japan
Prior art keywords
metal layer
laser beam
graphene
carbon
catalyst metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013112927A
Other languages
English (en)
Inventor
貴士 松本
Takashi Matsumoto
貴士 松本
友策 井澤
Yusaku Izawa
友策 井澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2013112927A priority Critical patent/JP2014231454A/ja
Priority to PCT/JP2014/064562 priority patent/WO2014192955A1/ja
Publication of JP2014231454A publication Critical patent/JP2014231454A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】生成されるグラフェンの炭素原子層の層数を確実に制御することができるグラフェンの生成方法を提供する。
【解決手段】グラフェン生成装置10において、載置台12に載置されたウエハWの触媒金属層38へレーザ光照射部13から赤外線レーザ光Lを照射するとともに、触媒金属層38へ向けてガス供給部14から炭素含有ガスを含む混合ガスを供給し、その後、触媒金属層38への赤外線レーザ光Lの照射を停止して触媒金属層38を急冷する。
【選択図】図3

Description

本発明は、グラフェンの生成方法、特に、配線等が微細化された半導体デバイスへ好適に用いることができるグラフェンの生成方法に関する。
従来、三次元積層メモリの配線には金属、例えば、Cuが用いられているが、Cu等の金属配線材料によって形成された極微細配線構造では、細線効果によって伝導電子が界面における非弾性散乱の影響を強く受けるため、配線が高抵抗化するという問題がある。
一方、グラフェンは極めて長い平均自由行程や高移動度を有しており、微細配線構造に適用した場合、Cuを超える低抵抗の配線の実現の可能性も示されている(例えば、非特許文献1参照。)。したがって、より微細な積層構造や配線構造を実現する必要がある次世代の三次元積層メモリでは、Cuの代わりにグラフェンを配線膜に用いることが検討されている。
グラフェンの生成方法として代表的な方法であるCVD法(例えば、熱CVD法やプラズマCVD法)では、基板表面を触媒金属層で覆い、該触媒金属層を活性化した後、原料ガスから分解された炭素原子を一度活性化された触媒金属層へ溶かし込み、該炭素原子を再結晶させる。すなわち、比較的大面積の基板上において直接グラフェンを生成することができるため、CVD法は既存の半導体デバイス形成プロセスへ容易に適合させることができる。
CVD法のうち、熱CVD法では原料ガスを熱分解するために基板を約1000℃まで加熱する必要があり、三次元積層メモリにおける他の配線や絶縁膜が変質するおそれがあるため、現状では、原料ガスをプラズマで分解することにより、基板を比較的低温、例えば、600℃以下までしか加熱する必要がないプラズマCVD法が主に用いられている。プラズマCVD法では原料ガスとして、例えば、炭化水素系ガスを用い、該炭化水素系ガスからプラズマを生成し、プラズマ中の炭素ラジカルを触媒金属層へ固溶させる(例えば、特許文献1参照。)。
また、次世代の三次元積層メモリではより微細な積層構造や配線構造を実現する必要があることから、グラフェンを配線に用いる場合、当該グラフェンの厚さの調整、すなわち、生成されるグラフェンの炭素原子層の層数を確実に制御することが重要である。
特開2010−212619号公報
A. Naeemi and J. D. Meindl, IEEE EDL, 28, p.428 (2007)
ところで、熱CVD法を用いてグラフェンを生成する場合、基板をステージに載置し、該ステージが内蔵するセラミックヒータ等によって当該基板を加熱するが、セラミックヒータによる加熱は基板に対して間接的な加熱となるため、基板、引いては触媒金属層の温度を所望の温度に維持するのが困難であり、触媒金属層へ所望量の炭素原子を固溶させるのが困難である。また、セラミックヒータへの通電を停止してセラミックヒータの放熱を中断させることによって基板の触媒金属層を冷却するが、セラミックヒータは放熱性が低いために急速に温度が低下せず、触媒金属層の冷却にも時間を要し、触媒金属層へ所望量以上の炭素原子が固溶するおそれもある。その結果、触媒金属層を冷却した際に析出する炭素結晶の量が必要以上に減少し、若しくは増加するため、生成されるグラフェンの炭素原子層の層数を確実に制御することは困難である。
プラズマCVD法を用いてグラフェンを生成する場合、基板の触媒金属層がプラズマに晒されて当該プラズマから熱を受けるが、プラズマの密度分布の精密な制御は困難であるため、触媒金属層がプラズマから受ける熱量を制御するのは困難であり、引いては触媒金属層の温度を所望の温度に維持するのが困難である。また、プラズマの消滅には時間を要するため、触媒金属層の冷却にも時間を要するおそれもある。その結果、熱CVD法を用いてグラフェンを生成する場合と同様に、触媒金属層を冷却した際に析出する炭素結晶の量が必要以上に減少し、若しくは増加するため、生成されるグラフェンの炭素原子層の層数を確実に制御することは困難である。
本発明の目的は、生成されるグラフェンの炭素原子層の層数を確実に制御することができるグラフェンの生成方法を提供することにある。
上記目的を達成するために、請求項1記載のグラフェンの生成方法は、触媒金属層へ向けて少なくとも炭素含有ガスを供給するガス供給ステップと、前記触媒金属層へレーザ光を照射するレーザ光照射ステップと、前記照射されたレーザ光によって前記触媒金属層を加熱する加熱ステップと、前記触媒金属層への前記レーザ光の照射を停止する冷却ステップとを有することを特徴とする。
請求項2記載のグラフェンの生成方法は、請求項1記載のグラフェンの生成方法において、前記レーザ光によって前記炭素含有ガスを分解することを特徴とする。
請求項3記載のグラフェンの生成方法は、請求項1又は2記載のグラフェンの生成方法において、前記加熱ステップでは、前記レーザ光によって前記触媒金属層を走査することを特徴とする。
請求項4記載のグラフェンの生成方法は、請求項1又は2記載のグラフェンの生成方法において、前記加熱ステップでは、前記レーザ光によって前記触媒金属層を走査することなく、前記触媒金属層の所定の箇所へ前記レーザ光を照射することを特徴とする。
請求項5記載のグラフェンの生成方法は、請求項1乃至4のいずれか1項に記載のグラフェンの生成方法において、前記ガス供給ステップ及び前記レーザ光照射ステップを同時に行うことを特徴とする。
上記目的を達成するために、請求項6記載のグラフェンの生成方法は、触媒金属層及び厚さが制御された炭素含有層が表面に形成された基板へレーザ光を照射する加熱ステップと、前記触媒金属層への前記レーザ光の照射を停止する冷却ステップとを有することを特徴とする。
請求項7記載のグラフェンの生成方法は、請求項6記載のグラフェンの生成方法において、前記加熱ステップでは、前記レーザ光によって前記基板の表面を走査することを特徴とする。
請求項8記載のグラフェンの生成方法は、請求項6又は7記載のグラフェンの生成方法において、前記触媒金属層の上に前記炭素含有層が形成されていることを特徴とする。
請求項9記載のグラフェンの生成方法は、請求項6又は7記載のグラフェンの生成方法において、前記炭素含有層の上に前記触媒金属層が形成されていることを特徴とする。
本発明によれば、触媒金属層へレーザ光が照射されて触媒金属層が加熱されるが、レーザ光は出力、照射時間を正確に調整することができるので、触媒金属層の温度を所望の温度へ容易に維持することができ、もって、レーザ光による加熱によって炭素含有ガスから分解された炭素原子を触媒金属層へ所望量だけ固溶させることができる。また、触媒金属層へのレーザ光の照射が停止されて触媒金属層が冷却されるが、レーザ光の照射の停止によって触媒金属層への熱の供給を直ちに停止することができ、もって、触媒金属層を急冷して触媒金属層へ所望量以上の炭素原子が固溶するのを防止することができる。すなわち、触媒金属層へ所望量の炭素原子を正確に固溶させることができ、その結果、触媒金属層から析出する炭素結晶の量を正確に制御することができ、生成されるグラフェンの炭素原子層の層数を確実に制御することができる。
また、本発明によれば、基板の表面に形成された触媒金属層及び炭素含有層へレーザ光が照射されるので、炭素含有層を溶融して触媒金属層へ炭素原子を固溶させることができるとともに、炭素含有層の厚さを制御することによって触媒金属層へ固溶する炭素原子の量を正確に制御することできる。また、レーザ光の照射の停止によって触媒金属層への熱の供給を直ちに停止することができ、もって、触媒金属層を急冷して触媒金属層へ所望量以上の炭素原子が固溶するのを防止することができる。すなわち、触媒金属層へ所望量の炭素原子を正確に固溶させることができ、その結果、触媒金属層から析出する炭素結晶の量を正確に制御することができ、生成されるグラフェンの炭素原子層の層数を確実に制御することができる。
本発明の第1の実施の形態に係るグラフェンの生成方法に用いられるグラフェン生成装置の構成を概略的に示す断面図である。 図1における制御部の構成を概略的に示すブロック図である。 図1におけるレーザ光照射部による赤外線レーザ光の照射形態を示すグラフである。 本実施の形態に係るグラフェンの生成方法を示す工程図である。 本発明の第2の実施の形態に係るグラフェンの生成方法を示す工程図である。 本発明の第3の実施の形態に係るグラフェンの生成方法を示す工程図である。
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。
まず、本発明の第1の実施の形態に係るグラフェンの生成方法について説明する。
図1は、本実施の形態に係るグラフェンの生成方法に用いられるグラフェン生成装置の構成を概略的に示す断面図である。
図1において、グラフェン生成装置10は、気密に構成された略円筒状のチャンバ11と、チャンバ11の内部に設けられ、被処理基板である半導体ウエハ(以下、単に「ウエハ」という。)Wを載置する載置台12と、載置されたウエハWの表面へ向けて赤外線レーザ光を照射するレーザ光照射部13と、チャンバ11の内部へガスを噴出するガス供給部14と、チャンバ11の内部を排気する排気部15と、グラフェン生成装置10の各構成要素を制御する制御部16とを備える。
チャンバ11の底壁11aの略中央部には円形の開口部17が形成され、底壁11aには開口部17を介してチャンバ11の内部と連通し、且つ図中下方に向けて突出する排気室18が設けられる。チャンバ11の側壁11bには、チャンバ11へウエハWを搬出入するための搬出入口19と、該搬出入口19を開閉するゲートバルブ20とが設けられる。
載置台12は、例えば、AlNのセラミックスから構成され、排気室18の底部中央から上方に延出された円筒状のセラミックス製の支柱21によって支持される。載置台12の内部にはウエハWを昇降するための昇降ピン(図示せず)が格納され、該昇降ピンは載置台12の表面から突出してウエハWを載置台12から離間させる。
レーザ光照射部13は、チャンバ11の天井壁11cに嵌め込まれたレーザ光透過窓41と、該レーザ光透過窓41を介して載置台12に載置されたウエハWの表面へ対向するようにチャンバ11の外部に配置されるレーザ光源42と、該レーザ光源42及びレーザ光透過窓41の間に配置されるレーザ光走査部43とによって構成される。レーザ光走査部43はレーザ光源42からレーザ光透過窓41を介してウエハWへ照射される赤外線レーザ光Lの照射角を変更し、赤外線レーザ光LによってウエハWの表面を走査する。
また、レーザ光照射部13は、例えば、波長が700〜11000nmの赤外線レーザ光Lを照射可能であり、赤外線レーザ光Lの照射時間をミリ秒(msec)単位で制御することができる。例えば、レーザ光照射部13は、図3に示すように、数ミリ秒だけ赤外線レーザ光Lを照射し、その後、直ちに赤外線レーザ光Lの照射を停止することにより、ウエハWへ瞬間的な熱処理(スパイクアニール)を施すことができる。
ガス供給部14は、チャンバ11の天井壁11cに配置されるガスノズル44と、チャンバ11の外部に配置されるガス供給源24とを有する。
ガス供給源24は、ガス供給管26を介してチャンバ11に設けられたガスノズル44へ接続されるとともに、水素含有ガスを供給する水素含有ガス供給源24aと、炭素含有ガスを供給する炭素含有ガス供給源24bと、不活性ガスを供給する不活性ガス供給源24cとを有する。ガス供給管26は3本の分岐路26a、26b、26cへ分岐し、分岐路26aは水素含有ガス供給源24aへ接続され、分岐路26bは炭素含有ガス供給源24bへ接続され、分岐路26cは不活性ガス供給源24cへ接続される。分岐路26a、26b、26cには、図示しないマスフローコントローラやバルブが設けられる。
ガスノズル44は、ガス供給管26を介してガス供給源24から供給される水素含有ガス、炭素含有ガスや不活性ガスの混合ガスをチャンバ11の内部に導入する。
ガス供給部14では、水素含有ガスとして、例えば、H、NHの各ガスが用いられ、炭素含有ガスとして、炭化水素ガス、例えば、エチレン(C)、メタン(CH)、エタン(C)、プロパン(C)、プロピレン(C)やアセチレン(C)、アルコール類、例えば、メタノール(CHOH)やエタノール(COH)、エタノール類、又は、芳香族炭化水素の各ガスが用いられ、不活性ガスとしては、例えば、Arガス、Heガス、Nガスが用いられる。不活性ガス供給源24cから供給される不活性ガスは、例えば、パージガスやチャンバ11内の圧力調整用ガスとして用いられる。
排気部15は、排気室18と、該排気室18の側面に開口する排気管29と、該排気管29に接続された排気装置30とを有する。排気装置30はターボ分子ポンプ等の高速真空ポンプを備えている。排気部15は、排気装置30を作動させることにより、チャンバ11の内部のガスを排気室18の内部空間へ均一に流し込み、さらに該ガスを当該内部空間から排気管29を介して外部へ排気する。これにより、チャンバ11の内部を、例えば、0.133Paまで迅速に減圧することができる。
制御部16は、グラフェン生成装置10の各構成要素の動作を制御するモジュールコントローラである。制御部16は、典型的にはコンピュータであり、例えば、図2に示すように、CPUを備えたコントローラ31と、該コントローラ31に接続されたユーザーインターフェース32と、記憶部33とを備える。
コントローラ31は、グラフェン生成装置10において、温度、圧力、ガス流量、赤外線レーザ光の出力や照射時間等の各種処理条件に関係する各構成要素(例えば、レーザ光照射部13、ガス供給部14、排気装置30等)を制御する。
ユーザーインターフェース32は、操作者がグラフェン生成装置10を操作するためにコマンドの入力等を行うキーボードやタッチパネル、並びに、グラフェン生成装置10の稼働状況を可視化して表示するディスプレイ等を有する。また、記憶部33は、グラフェン生成装置10において実行される各種処理をコントローラ31の制御を通じて実現するための制御プログラム(ソフトウエア)や処理条件データ等が記録されたレシピ等を保存する。
制御部16は、ユーザーインターフェース32からの指示等に応じて任意のレシピを記憶部33から呼び出し、該レシピをコントローラ31に実行させる。このとき、グラフェン生成装置10のチャンバ11の内部では、所望の処理、例えば、後述する図4のグラフェンの生成方法に対応する処理が実行される。
なお、制御プログラムや処理条件データ等が記録されたレシピは、コンピュータ読み取り可能な記録媒体34に格納された状態のものであってもよい。記録媒体34としては、例えば、CD−ROM、ハードディスク、フレキシブルディスク、フラッシュメモリを用いることができる。さらに、レシピは、他の装置から専用回線等を介して伝送されてきたものを用いてもよい。
上述したグラフェン生成装置10では、ウエハWの表面に形成された触媒金属層へ赤外線レーザ光を照射して該触媒金属層の表面を溶融し、該触媒金属層へ炭素原子を固溶させた後、触媒金属層を冷却して炭素結晶を析出させてグラフェンを生成する。
図4は、本実施の形態に係るグラフェンの生成方法を示す工程図である。
図4において、まず、シリコン基部35の上に酸化珪素(例えば、SiO)層36、窒化膜(例えば、TiN)層37及び触媒金属層38がこの順で積層されたウエハWを準備し(図4(A))、グラフェン生成装置10のゲートバルブ20を開弁して搬出入口19からウエハWをチャンバ11の内部に搬入し、載置台12上に載置する。ウエハWの触媒金属層38を構成する金属としては、Cu、Fe、Co、Ni、Ru、Au等の遷移金属、又はこれらの遷移金属を含む合金が該当する。触媒金属層38は、スパッタリング、蒸着法、CVD法、めっき等の公知の成膜技術によって形成される。なお、ウエハWは、シリコン基板ではなく、ガラス基板やプラスチック(高分子)基板等であってもよい。
次いで、ガス供給部14のガスノズル44が触媒金属層38へ向けて炭素含有ガス、水素含有ガス及び不活性ガスの混合ガスを供給し、混合ガスの供給を継続しながら、レーザ光照射部13がウエハWの触媒金属層38へ向けて赤外線レーザ光Lを照射する(図4(B))。混合ガス中の炭素含有ガスとしては、CHガス、Cガス又はCガス等が好ましく、混合ガス中の水素含有ガスとしては、Hガス又はNHガスが好ましく、混合ガス中の不活性ガスとしては、Arガス、Heガス又はNガスが好ましい。また、混合ガスの供給及び赤外線レーザ光Lの照射は同時に開始してもよい。なお、本実施の形態では、触媒金属層38において赤外線レーザ光Lが照射する箇所を照射箇所という。
触媒金属層38へ向けて供給された混合ガス中の水素含有ガスは、赤外線レーザ光Lの照射による加熱によって触媒金属層38の表面における酸化薄膜(例えば、自然酸化膜)を還元して触媒金属層38の照射箇所における表面を活性化する。また、混合ガス中の炭素含有ガスは赤外線レーザ光Lの照射による加熱によって炭素原子や他の原子へ分解される。さらに、赤外線レーザ光Lの照射による加熱によって触媒金属層38の温度が上昇して触媒金属層38が溶融し、触媒金属層38の溶解度も向上するため、炭素含有ガスが分解されて生じた炭素原子が触媒金属層38へ固溶する。
一般に、赤外線レーザ光Lは出力、照射時間を正確に調整することができるので、触媒金属層38の温度を所望の温度に容易に維持することができる。したがって、図4のグラフェンの生成方法では、上述した赤外線レーザ光Lの特性を利用して触媒金属層38へ炭素原子を所望量だけ固溶させる。具体的には、出力が100〜10000Wの赤外線レーザ光Lの照射箇所への照射を数ミリ秒、例えば、0.001〜1000msecだけ継続することにより、照射箇所の温度を300〜900℃、好ましくは、400〜600℃へ昇温させて触媒金属層38へ炭素原子を所望量だけ固溶させる。なお、赤外線レーザ光Lの照射は触媒金属層38への炭素原子の固溶が飽和する前に停止するのが好ましい。
次いで、赤外線レーザ光Lの照射を数ミリ秒だけ継続させた後、赤外線レーザ光Lの照射を停止する。これにより、触媒金属層38が冷却されるが、赤外線レーザ光Lの照射の停止によって触媒金属層38への熱の供給を直ちに停止することができ、もって、触媒金属層38を急冷して触媒金属層38へ所望量以上の炭素原子が固溶するのを防止することができる。このとき、触媒金属層38の温度低下に伴う溶解度の低下により、触媒金属層38へ固溶した炭素原子が飽和して炭素結晶が析出し、照射箇所においてグラフェン39が生成される。
以上、図4のグラフェンの生成方法によれば、触媒金属層38へは所望量の炭素原子のみが固溶するので、析出する炭素結晶の量は所望量に対応した量となり、もって、生成されるグラフェン39の炭素原子層40の層数も所望量に対応した数となる。すなわち、図4のグラフェンの生成方法では、触媒金属層38へ所望量の炭素原子を正確に固溶させることができ、その結果、触媒金属層38から析出する炭素結晶の量を正確に制御することができ、もって、生成されるグラフェン39の炭素原子層40の層数を確実に制御することができる。
また、図4のグラフェンの生成方法では、グラフェン39を生成する際、炭素結晶を析出させるため、アモルファスカーボンが発生するのを抑制することができ、もって、グラフェン39の抵抗率が高まるのを防止することができる。
さらに、図4のグラフェンの生成方法では、赤外線レーザ光Lの照射を数ミリ秒だけしか継続しないので、触媒金属層38が過剰に加熱されて当該触媒金属層38の表面形状が崩れることがない。その結果、触媒金属層38の表面において炭素結晶を均一に析出させることができ、もって、均一な厚さのグラフェン39を得ることができる。
ところで、触媒金属層38のおける照射箇所は赤外線レーザ光Lのスポットに対応するため、上述した赤外線レーザ光Lの照射及び照射の停止を行うと、触媒金属層38において赤外線レーザ光Lのスポットに対応する面積だけグラフェン39が生成される。
これに対応して、本実施の形態では、一の照射箇所においてグラフェン39が生成された後、赤外線レーザ光Lを赤外線レーザ光Lのスポット径分だけウエハWの表面と平行(図4(B)中の黒矢印方向)に移動させて図4のグラフェンの生成方法の実行を繰り返す。すなわち、赤外線レーザ光Lによって触媒金属層38を走査するので、触媒金属層38の広範囲において当該触媒金属層38へ所望量の炭素原子を正確に固溶させることができ、もって、広範囲に亘ってグラフェン39が生成される際、炭素原子層40の層数を確実に制御することができる。
チャンバ11の内部の圧力は、炭素含有ガスの分圧を上昇させて炭素原子の固溶を促進する観点から、例えば、13〜1333Paとすることが好ましく、66〜666Paがより好ましい。
また、混合ガス中の炭素含有ガスの流量は、炭素原子を多く供給していち早く触媒金属層38へ炭素原子を固溶させる観点から、例えば、1〜100mL/分(sccm)とすることが好ましく、5〜50mL/分(sccm)がより好ましい。
次に、本発明の第2の実施の形態に係るグラフェンの生成方法について説明する。
本実施の形態は、その構成や作用が上述した第1の実施の形態と基本的に同じであり、炭素含有ガスを供給する代わりに炭素含有層を形成する点で上述した第1の実施の形態と異なる。したがって、重複した構成、作用については説明を省略し、以下に異なる構成、作用についての説明を行う。
図5は、本実施の形態に係るグラフェンの生成方法を示す工程図である。
図5において、第1の実施の形態におけるウエハと同様の膜構成を有するウエハWを準備し(図5(A))、触媒金属層38の上に厚さが所定値に制御された炭素含有層41を形成する(図5(B))。炭素含有層41は、蒸着法、CVD法、スクリーン法、塗布等の公知の成膜技術によって形成される。
次いで、グラフェン生成装置10のゲートバルブ20を開弁して搬出入口19からウエハWをチャンバ11の内部に搬入し、載置台12上に載置し、レーザ光照射部13がウエハWの触媒金属層38及び炭素含有層41へ向けて赤外線レーザ光Lを照射するとともに、ガス供給部14のガスノズル44が触媒金属層38へ向けて不活性ガスを供給する。
このとき、赤外線レーザ光Lの照射による加熱によって触媒金属層38及び炭素含有層41の温度が上昇して炭素含有層41が溶融し、且つ触媒金属層38の溶解度も向上するため、炭素原子が触媒金属層38へ固溶して炭素固溶体層42が形成される(図5(C))。
触媒金属層38へ固溶される炭素原子は炭素含有層41から供給されるが、炭素含有層41の厚さは所定値に制御されているため、触媒金属層38へ固溶される炭素原子の量は所定値の厚さに対応したものとなり、触媒金属層38へ所望量以上の炭素原子が固溶することがない。
本実施の形態においても、赤外線レーザ光Lの出力、照射時間を調整することによって触媒金属層38の温度を所望の温度に維持して触媒金属層38へ炭素原子を所望量だけ固溶させる。具体的には、出力が100〜10000Wの赤外線レーザ光Lの照射箇所への照射を数ミリ秒、例えば、0.001〜1000msecだけ継続することにより、照射箇所の温度を300〜900℃、好ましくは、400〜600℃へ昇温させる。
次いで、赤外線レーザ光Lの照射を数ミリ秒だけ継続させた後、赤外線レーザ光Lの照射を停止して触媒金属層38への熱の供給を直ちに停止することにより、触媒金属層38を急冷して触媒金属層38へ所望量以上の炭素原子が固溶するのを防止することができる。このときも、触媒金属層38へ固溶した炭素原子が飽和して炭素結晶が析出し、照射箇所においてグラフェン39が生成される。
以上、図5のグラフェンの生成方法によれば、触媒金属層38へは所望量の炭素原子のみが固溶する。すなわち、図5のグラフェンの生成方法においても、図4のグラフェン方法と同様に、触媒金属層38へ所望量の炭素原子を正確に固溶させることができ、もって、生成されるグラフェン39の炭素原子層40の層数を確実に制御することができる。
また、本実施の形態でも、第1の実施の形態と同様に、赤外線レーザ光Lによって触媒金属層38の全面を走査して各照射箇所において赤外線レーザ光Lを数ミリ秒に亘って照射させる。これにより、触媒金属層38の広範囲において当該触媒金属層38へ所望量の炭素原子を正確に固溶させることができる。
本実施の形態では、ウエハWにおいて触媒金属層38の上に炭素含有層41を形成したが、触媒金属層38よりも炭素含有層41を先に形成することによって炭素含有層41の上に触媒金属層38を形成してもよい。
なお、本実施の形態では、赤外線レーザ光Lによって炭素含有層41を溶融させたが、炭素含有層41をプラズマによって溶融してもよい。この場合、触媒金属層38の温度を制御するために、ウエハWにバイアス電圧を印加し、且つ該バイアス電圧を制御することによって触媒金属層38へ引きこまれるプラズマの量を制御するのが好ましい。
次に、本発明の第3の実施の形態に係るグラフェンの生成方法について説明する。
本実施の形態は、その構成や作用が上述した第1の実施の形態と基本的に同じであり、赤外線レーザ光Lによって触媒金属層38を走査しない点で上述した第1の実施の形態と異なる。したがって、重複した構成、作用については説明を省略し、以下に異なる構成、作用についての説明を行う。
図6は、本実施の形態に係るグラフェンの生成方法を示す工程図である。
図6において、第1の実施の形態におけるウエハと同様の膜構成を有するウエハWを準備し(図6(A))、グラフェン生成装置10のゲートバルブ20を開弁して搬出入口19からウエハWをチャンバ11の内部に搬入し、載置台12上に載置する。
次いで、赤外線レーザ光Lによって触媒金属層38の全域を走査することなく、レーザ光照射部13からウエハWの触媒金属層38の所定の箇所のみへ向けて赤外線レーザ光Lを照射する。これにより、所定の箇所において加熱に因るマイグレーションが発生し、触媒金属層38を構成している金属原子の凝集が生じて突起状のステップ43が生じる(図6(B))。なお、ステップ43の突出量は赤外線レーザ光Lの照射時間に応じて変化するため、本実施の形態では、赤外線レーザ光Lの照射時間を調整してステップ43の突出量を所望値へ調整する。
このとき、ガス供給部14のガスノズル44が触媒金属層38へ向けて炭素含有ガス、水素含有ガス及び不活性ガスの混合ガスを供給する。供給された混合ガス中の水素含有ガスは、赤外線レーザ光Lの照射による加熱によってステップ43の表面を還元して活性化する。また、混合ガス中の炭素含有ガスは赤外線レーザ光Lの照射による加熱によって炭素原子や他の原子へ分解される。ここで、ステップ43も赤外線レーザ光Lの照射による加熱によって温度が上昇し、溶解度が向上しているため、炭素原子がステップ43へ固溶する。なお、赤外線レーザ光Lはステップ43の形成、及び混合ガスの供給にかけて連続して照射されてもよく、ステップ43が形成された後、一旦、赤外線レーザ光Lの照射を停止し、混合ガスの供給が開始された後に、再度、赤外線レーザ光Lの照射を行ってもよい。
炭素原子をステップ43へ固溶させる際、本実施の形態でも、第1の実施の形態と同様に、赤外線レーザ光Lの照射時間を調整して触媒金属層38へ炭素原子を所望量だけ固溶させる。具体的には、出力が100〜10000Wの赤外線レーザ光Lのステップ43への照射を数ミリ秒、例えば、0.001〜1000msecだけ継続することにより、ステップ43の温度を300〜900℃、好ましくは、400〜600℃へ昇温させてステップ43へ炭素原子を所望量だけ固溶させる。なお、赤外線レーザ光Lの照射はステップ43への炭素原子の固溶が飽和する前に停止するのが好ましい。
次いで、赤外線レーザ光Lの照射を数ミリ秒だけ継続させた後、赤外線レーザ光Lの照射を停止する。このとき、赤外線レーザ光Lの照射の停止によってステップ43への熱の供給を直ちに停止することができ、もって、ステップ43を急冷してステップ43へ所望量以上の炭素原子が固溶するのを防止することができる。その後、ステップ43の温度低下に伴う溶解度の低下により、ステップ43へ固溶した炭素原子が飽和してステップ43の表面から炭素結晶が析出し、ステップ43からグラフェン39が成長する。
以上、図6のグラフェンの生成方法によれば、ステップ43には所望量の炭素原子のみが固溶するので、析出する炭素結晶の量は所望量に対応した量となり、もって、成長するグラフェン39の炭素原子層40の層数を確実に制御することができる。
また、ステップ43からグラフェン39が成長する場合、グラフェン39は触媒金属層38の表面に沿って成長するため、グラフェン39の炭素原子層40の層数はステップ43の突出量に比例する。したがって、図6のグラフェンの生成方法において、赤外線レーザ光Lの照射時間を調整してステップ43の突出量を所望値へ調整することによっても、グラフェン39の炭素原子層40の層数を確実に制御することができる。
さらに、図6のグラフェンの生成方法では、赤外線レーザ光Lによって触媒金属層38を走査しないため、ステップ43以外の触媒金属層38の温度は上昇することがなく、ステップ43において炭素原子が触媒金属層38へ固溶することがない。これにより、ステップ43以外からグラフェン39が成長するのを防止することができる。したがって、ステップ43を生じさせる箇所を選択することにより、グラフェン39が成長する箇所を調整することができる。
なお、チャンバ11の内部の圧力は、炭素含有ガスの分圧を上昇させて炭素原子の固溶を促進する観点から、例えば、13〜1333Paとすることが好ましく、66〜666Paがより好ましい。
また、混合ガス中の炭素含有ガスの流量は、炭素原子を多く供給していち早くステップ43へ炭素原子を固溶させる観点から、例えば、1〜100mL/分(sccm)とすることが好ましく、5〜50mL/分(sccm)がより好ましい。
図6のグラフェンの生成方法では、ウエハWの表面を触媒金属層38が全面的に覆うが、ステップ43を生じさせる箇所にのみ触媒金属層38を形成してもよい。また、ステップ43の表面から炭素結晶が析出させる際、赤外線レーザ光Lの照射を停止させてステップ43を急冷したが、赤外線レーザ光Lの照射を停止することなく、混合ガスの供給を継続してステップ43において固溶する炭素原子を飽和させて炭素結晶を析出させてもよい。
以上、本発明について、上述した各実施の形態を用いて説明したが、本発明は上述した各実施の形態に限定されるものではない。
L 赤外線レーザ光
W ウエハ
10 グラフェン生成装置
13 レーザ光照射部
14 ガス供給部
38 触媒金属層
39 グラフェン
40 炭素原子層
41 炭素含有層
43 ステップ

Claims (9)

  1. 触媒金属層へ向けて少なくとも炭素含有ガスを供給するガス供給ステップと、
    前記触媒金属層へレーザ光を照射するレーザ光照射ステップと、
    前記照射されたレーザ光によって前記触媒金属層を加熱する加熱ステップと、
    前記触媒金属層への前記レーザ光の照射を停止する冷却ステップとを有することを特徴とするグラフェンの生成方法。
  2. 前記レーザ光によって前記炭素含有ガスを分解することを特徴とする請求項1記載のグラフェンの生成方法。
  3. 前記加熱ステップでは、前記レーザ光によって前記触媒金属層を走査することを特徴とする請求項1又は2記載のグラフェンの生成方法。
  4. 前記加熱ステップでは、前記レーザ光によって前記触媒金属層を走査することなく、前記触媒金属層の所定の箇所へ前記レーザ光を照射することを特徴とする請求項1又は2記載のグラフェンの生成方法。
  5. 前記ガス供給ステップ及び前記レーザ光照射ステップを同時に行うことを特徴とする請求項1乃至4のいずれか1項に記載のグラフェンの生成方法。
  6. 触媒金属層及び厚さが制御された炭素含有層が表面に形成された基板へレーザ光を照射する加熱ステップと、
    前記触媒金属層への前記レーザ光の照射を停止する冷却ステップとを有することを特徴とするグラフェンの生成方法。
  7. 前記加熱ステップでは、前記レーザ光によって前記基板の表面を走査することを特徴とする請求項6記載のグラフェンの生成方法。
  8. 前記触媒金属層の上に前記炭素含有層が形成されていることを特徴とする請求項6又は7記載のグラフェンの生成方法。
  9. 前記炭素含有層の上に前記触媒金属層が形成されていることを特徴とする請求項6又は7記載のグラフェンの生成方法。
JP2013112927A 2013-05-29 2013-05-29 グラフェンの生成方法 Pending JP2014231454A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013112927A JP2014231454A (ja) 2013-05-29 2013-05-29 グラフェンの生成方法
PCT/JP2014/064562 WO2014192955A1 (ja) 2013-05-29 2014-05-27 グラフェンの生成方法及びカーボンナノチューブの成長方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013112927A JP2014231454A (ja) 2013-05-29 2013-05-29 グラフェンの生成方法

Publications (1)

Publication Number Publication Date
JP2014231454A true JP2014231454A (ja) 2014-12-11

Family

ID=52125092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013112927A Pending JP2014231454A (ja) 2013-05-29 2013-05-29 グラフェンの生成方法

Country Status (1)

Country Link
JP (1) JP2014231454A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216277A (ja) * 2015-05-15 2016-12-22 住友電気工業株式会社 カーボンナノ構造体の製造方法
JP2017024926A (ja) * 2015-07-16 2017-02-02 東京エレクトロン株式会社 グラフェン製造方法、グラフェン製造装置及びグラフェン製造システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011025045A1 (ja) * 2009-08-31 2011-03-03 独立行政法人科学技術振興機構 グラフェン薄膜とその製造方法
US20120068161A1 (en) * 2010-09-16 2012-03-22 Lee Keon-Jae Method for forming graphene using laser beam, graphene semiconductor manufactured by the same, and graphene transistor having graphene semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011025045A1 (ja) * 2009-08-31 2011-03-03 独立行政法人科学技術振興機構 グラフェン薄膜とその製造方法
US20120068161A1 (en) * 2010-09-16 2012-03-22 Lee Keon-Jae Method for forming graphene using laser beam, graphene semiconductor manufactured by the same, and graphene transistor having graphene semiconductor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014034643; 越田啓介他: 'レーザ照射により位置制御されたグラフェンの絶縁基板への直接合成' 第73回応用物理学会学術講演会講演予稿集 , 20120827, p.13a-C1-11 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216277A (ja) * 2015-05-15 2016-12-22 住友電気工業株式会社 カーボンナノ構造体の製造方法
JP2017024926A (ja) * 2015-07-16 2017-02-02 東京エレクトロン株式会社 グラフェン製造方法、グラフェン製造装置及びグラフェン製造システム

Similar Documents

Publication Publication Date Title
JP6002087B2 (ja) グラフェンの生成方法
JP5851804B2 (ja) 前処理方法、グラフェンの形成方法及びグラフェン製造装置
JP5660804B2 (ja) カーボンナノチューブの形成方法及びカーボンナノチューブ成膜装置
US8728917B2 (en) Carbon nanotube forming method and pre-treatment method therefor
JP6039616B2 (ja) グラフェンの下地膜の生成方法、グラフェンの生成方法及びグラフェンの下地膜生成装置
KR20180025819A (ko) 그래핀의 생성 방법
US9650252B2 (en) Pretreatment method and carbon nanotube formation method
JP2014231454A (ja) グラフェンの生成方法
JP5788627B2 (ja) カーボンナノチューブ成長方法
JP2014237557A (ja) カーボンナノチューブ成長方法
WO2014192955A1 (ja) グラフェンの生成方法及びカーボンナノチューブの成長方法
JP5792438B2 (ja) 成膜装置及び成膜方法
US10378104B2 (en) Process for producing carbon nanotubes and method for forming wiring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160913