JP2014228218A - 火力発電プラント及び火力発電プラントの運転方法。 - Google Patents

火力発電プラント及び火力発電プラントの運転方法。 Download PDF

Info

Publication number
JP2014228218A
JP2014228218A JP2013109118A JP2013109118A JP2014228218A JP 2014228218 A JP2014228218 A JP 2014228218A JP 2013109118 A JP2013109118 A JP 2013109118A JP 2013109118 A JP2013109118 A JP 2013109118A JP 2014228218 A JP2014228218 A JP 2014228218A
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
economizer
air
feed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013109118A
Other languages
English (en)
Other versions
JP5624646B1 (ja
Inventor
史朗 永野
Shiro Nagano
史朗 永野
伸介 鈴木
Shinsuke Suzuki
伸介 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Original Assignee
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013109118A priority Critical patent/JP5624646B1/ja
Application filed by Electric Power Development Co Ltd filed Critical Electric Power Development Co Ltd
Priority to US14/892,190 priority patent/US9927117B2/en
Priority to EP14801816.1A priority patent/EP3001104B1/en
Priority to PCT/JP2014/059524 priority patent/WO2014188790A1/ja
Priority to CN201480029065.7A priority patent/CN105247286A/zh
Priority to KR1020157034091A priority patent/KR101610613B1/ko
Priority to CN201910106732.1A priority patent/CN109780566A/zh
Application granted granted Critical
Publication of JP5624646B1 publication Critical patent/JP5624646B1/ja
Publication of JP2014228218A publication Critical patent/JP2014228218A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/36Water and air preheating systems
    • F22D1/38Constructional features of water and air preheating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/40Use of two or more feed-water heaters in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/02Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes, or flue ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/32Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/32Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines
    • F22D1/34Feed-water heaters, i.e. economisers or like preheaters arranged to be heated by steam, e.g. bled from turbines and returning condensate to boiler with main feed supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L11/00Arrangements of valves or dampers after the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/02Arrangements of regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/10Nitrogen; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/10Catalytic reduction devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Supply (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Chimneys And Flues (AREA)

Abstract

【課題】最適な環境基準を満たしつつ、ボイラからの排ガスの排熱を有効利用して効率化が可能な火力発電プラントを提供する。【解決手段】排ガス系統11と、給水系統4と、給水系統4に設けられる高圧給水加熱器10と、給水系統4の高圧給水加熱器10の二次側であって、ボイラ2からの燃焼ガスの余熱によって給水を昇温する主節炭器36と、排ガス系統11の主節炭器36の二次側に設けられ、所要の温度以上の排ガスが供給される触媒式の脱硝装置11と、給水系統4の高圧給水加熱器10と主節炭器36との間に設けられ、脱硝装置11の二次側の排ガスによって水を昇温する副節炭器40を備えることを特徴とする火力発電プラント1を採用する。【選択図】図1

Description

本発明は、火力発電プラント及び火力発電プラントの運転方法に関するものである。
図3は、非特許文献1に記載されている、一般的な火力発電プラントの構成の一例を示す系統図である。
図3に示すように、一般的な火力発電プラントは、ボイラ2と、蒸気系統3と、復水系統44と、給水系統4と、を備えて概略構成されている。ボイラ2は、石炭や石油等の燃料を燃焼して燃焼ガス及び燃焼熱を発生させ、この燃焼熱により給水を加熱して蒸気を生成する。蒸気系統3は、複数の蒸気タービン5と、復水器6と、を備えている。各蒸気タービン5は、ボイラ2が生成する蒸気によって駆動される。蒸気タービン5から排出された蒸気は、復水器6に入り、復水となる。復水器6の復水は、復水系統44及び給水系統4を通じてボイラ2に戻される。この復水系統44は、復水を供給するための復水ポンプ7、複数の熱交換器で構成される低圧給水加熱器8及び脱気器9を備えている。給水系統4は、ボイラ給水ポンプ45及び複数の熱交換器で構成される高圧給水加熱器10を備えている。
また、図4は、図3中に示す領域Pの拡大図であって、一般的な火力発電プラントの一例として、従来の石炭火力発電プラントのボイラ周辺の構成の拡大図を示している。図4に示すように、従来の石炭火力発電プラント101は、ボイラ102と、蒸気系統103と、給水系統104と、排ガス系統111と、一次空気系統112と、二次空気系統113と、を備えている。
排ガス系統111は、触媒式の脱硝装置114、再生式の空気予熱器115、集塵装置116、誘引通風機117、脱硫装置118及び煙突119を備えている。この排ガス系統111は、ボイラ102から排出された燃焼ガスを排ガスとして煙突119まで導く煙道である。ボイラ102から排出された排ガスは、脱硝装置114を通過した後、再生式の空気予熱器115に送られる。この空気予熱器115に送られた排ガスは、一次空気系統112の微粉炭搬送用空気(以下「一次空気」という)及び二次空気系統113の燃焼用空気(以下「二次空気」という)と熱交換された後、集じん装置116、誘引通風機117及び脱硫装置118を通過して煙突119より大気に排出される。
一次空気系統112は、一次通風機120、熱空気ダンパ121、空気予熱器115をバイパスするバイパス経路122、このバイパス経路122に設けられた冷空気ダンパ123及び微粉炭機124を備えている。一次空気は、熱空気ダンパ121及び冷空気ダンパ123の開度をそれぞれ調整することによって、空気予熱器115においてボイラ102の排ガスとの熱交換によって加熱された熱空気と、空気予熱器115をバイパスするバイパス経路122からの冷空気とが混合される。これにより、一次空気は、微粉炭の搬送に必要な空気量と、微粉炭機124の入口において必要な温度に調整された後、微粉炭機124に導入される。微粉炭機124に導入された一次空気は、その保有熱により微粉炭中の水分を蒸発させ、乾燥した微粉炭をボイラ102に設置された微粉炭バーナまで搬送して燃焼させる。図中には記載していないが、燃料である石炭は、微粉炭機124に供給され所定の粒度にまで微粉砕される。
二次空気系統113は、二次通風機125を備える。二次空気は、空気予熱器115に導入され、ボイラ102の排ガスとの熱交換によって加熱された後、微粉炭バーナ燃焼用空気および二段燃焼用空気としてボイラ102に導入される。
給水系統104は、脱気器109、ボイラ給水ポンプ145、高圧給水加熱器110及び節炭器136を備える。中圧蒸気タービン105Iと、脱気器109及び高圧給水加熱器110との間には、中圧蒸気タービン105Iからの抽気蒸気が流れる抽気系統129,130が設けられている。また、高圧蒸気タービン105Hと、高圧給水加熱器110との間には、高圧蒸気タービン105Hからの抽気蒸気が流れる抽気系統131,132が設けられている。さらに、ドレン配管133〜135は、高圧給水加熱器からのドレンが流れる配管である。
高圧給水加熱器110は、複数の熱交換器で構成されている。ここでは便宜上、脱気器109側に位置する熱交換器から順に高圧第一給水加熱器126,高圧第二給水加熱器127,高圧第三給水加熱器128と呼ぶ。高圧給水加熱器110で加熱された給水は、ボイラ102内の節炭器136へ送られる。
高圧給水加熱器110の各熱交換器は、中圧蒸気タービン105I及び高圧蒸気タービン105Hから抽気した蒸気により給水を加熱する。抽気系統130は高圧第一給水加熱器126へ抽気蒸気を送り、抽気系統131は高圧第二熱給水加熱器127へ抽気蒸気を送り、抽気系統132は高圧第三給水加熱器128へ抽気蒸気を送る。高圧第二及び高圧第三給水加熱器127,128へ送られた抽気蒸気は給水と熱交換を行った後、ドレンになる。このドレンは、ドレン配管135,134を通して第一熱交換器126へ送られる。高圧第一給水加熱器126では、高圧第二給水加熱器127からのドレン、及び抽気系統130から抽気された抽気蒸気を使用して給水を加熱する。そして、高圧第一給水加熱器126から排出されたドレンは、ドレン配管133を通して、脱気器109へ送られる。
蒸気系統103は、蒸発器137、過熱器138、高圧蒸気タービン105H、再熱器139及び中圧蒸気タービン105Iを備えている。給水系統104からボイラ102内の節炭器136に導入された給水は、蒸発器137及び過熱器138を通過して過熱蒸気となり、高圧蒸気タービン105Hに導入される。高圧蒸気タービン105Hの排気は再びボイラ102に導入され、再熱器139にて再度加熱された後、中圧蒸気タービン105Iに導入される。
ところで、従来から、再生再熱サイクルを有する火力発電プラントの高効率化が推し進められている(特許文献1を参照)。火力発電プラントの蒸気条件の高温・高圧化は、その効率向上に寄与する非常に重要かつ基本的な要因である。一般的に、発電効率を上げるためには、蒸気タービン入口の蒸気温度を上げるのが有効な手段である。現状において、発電用火力設備の材料として規格化された材料での蒸気条件の高温化は、630℃前後が限界と考えられている。それ以上の蒸気温度に対してはFe−Ni基合金鋼やNi基合金鋼等の適用が必要である。
しかしながら、これらの材料の適用に当たっては、製造性や材料特性などに多くの課題があり、現時点では次世代の高温材料として開発途上の段階にある。また、これらの材料は、現状の規格化された材料に比べて高価であり、実際のプラント建設においては経済性も課題となる。このため、これらの高温材料に頼らない火力発電プラントの高効率化が望まれていた。
また、図4に示すように、選択接触還元方式の脱硝装置を用いる場合には、脱硝装置114の入口114aの排ガス温度が低いと、酸性硫安が析出して脱硝触媒の性能が低下するという問題がある。これを防止するために、脱硝装置114の入口114aの排ガス温度は、酸性硫安が析出しない高い温度で運用する必要があった。すなわち、ボイラ排ガス温度を低減するために、節炭器136の伝熱面積を増加させて給水を加熱することは、脱硝装置114の入口ガス温度の低下による脱硝性能の早期低下を引き起こすため、節炭器136による排ガス温度の回収が充分に行えないという課題があった。
さらに、脱硝装置114を通過した後の排ガスは、再生式の空気予熱器115において一次空気および二次空気と熱交換されるが、空気予熱器115の温度効率には限界があるため、ボイラ排ガスの保有熱を十分に回収できないまま煙突から大気中に放出されるのが実情であった。
さらにまた、図4に示すように、従来の火力発電プラント101では、一次空気が、熱空気と冷空気との混合量を調整することで、微粉炭機124の入口において必要な温度に調整されていた。しかしながら、冷空気は空気予熱器115における排ガスとの熱交換に寄与しておらず、燃焼用空気(一次空気および二次空気)とボイラ排ガスとの間の熱交換が最大限効率的に行われていないという課題があった。
特開2001−082109号公報
(社)火力原子力発電技術協会:タービン・発電機および熱交換器(p.36,図6)
本発明は、上記事情を鑑みてなされたものであり、最適な環境基準を満たしつつ、ボイラからの排ガスの排熱を有効利用して発電効率(発電端効率及び送電端効率を含む)の向上が可能な火力発電プラント及び火力発電プラントの運転方法を提供することを課題とする。
かかる課題を解決するため、本発明は以下の構成を採用した。
請求項1にかかる発明は、燃料が燃焼した熱により給水を昇温し蒸気を生成するボイラと、
前記ボイラから排出された前記燃料を燃焼した後の燃焼ガスを排ガスとして流す排ガス系統と、
前記ボイラに水を供給する給水系統と、
前記給水系統に設けられ、給水を抽気蒸気により昇温する給水加熱器と、
前記給水系統の前記給水加熱器の給水の二次側に設けられ、前記燃焼ガスの余熱によって給水を昇温する主節炭器と、
前記排ガス系統の前記主節炭器の排ガスの二次側に設けられ、所要の温度以上の前記排ガスが供給される触媒式の脱硝装置と、を備えた火力発電プラントであって、
前記給水系統の前記給水加熱器と前記主節炭器との間に設けられ、前記脱硝装置の二次側の排ガスによって給水を昇温する副節炭器を備えることを特徴とする火力発電プラントである。
請求項2にかかる発明は、前記脱硝装置の一次側の排ガスの温度が、酸性硫安が析出しない温度以上であることを特徴とする請求項1に記載の火力発電プラントである。
請求項3にかかる発明は、前記副節炭器が、当該副節炭器の二次側の排ガスの温度を調整する排ガス温度調整手段を有することを特徴とする請求項1又は2のいずれか一項に記載の火力発電プラントである。
請求項4にかかる発明は、前記排ガス温度調整手段は、前記排ガス系統の前記副節炭器の排ガスの一次側と二次側とにわたって設けられたガスダクトと、前記ガスダクトに設けられたガス量調整ダンパと、を有することを特徴とする請求項3に記載の火力発電プラントである。
請求項5にかかる発明は、前記排ガス温度調整手段が、前記給水系統の前記副節炭器の給水の一次側と二次側とにわたって設けられた給水配管と、前記給水配管に設けられた給水量調整弁と、を有することを特徴とする請求項3に記載の火力発電プラントである。
請求項6にかかる発明は、前記ボイラに空気を供給する空気系統と、
前記排ガス系統の前記副節炭器の排ガスの二次側に設けられ、当該副節炭器の二次側の排ガスによって前記空気系統の空気を昇温する空気予熱器と、
を備え、
前記空気予熱器の二次側の排ガスの温度が、所要の温度範囲であることを特徴とする請求項1乃至5のいずれか一項に記載の火力発電プラントである。
請求項7にかかる発明は、前記空気系統が、一次空気系統と、二次空気系統と、を有し、
前記一次空気系統には、前記空気予熱器の一次側の空気を昇温する昇温手段が設けられていることを特徴とする請求項6に記載の火力発電プラントである。
請求項8にかかる発明は、前記昇温手段が、蒸気により空気を加熱する蒸気式空気予熱器であることを特徴とする請求項7に記載の火力発電プラントである。
請求項9にかかる発明は、前記一次空気系統には、前記空気予熱器の二次側に微粉炭機が設けられていることを特徴とする請求項7又は8に記載の火力発電プラントである。
請求項10にかかる発明は、ボイラから排出された燃焼ガスを排ガスとして流す排ガス系統と、
前記ボイラに水を供給する給水系統と、
前記ボイラに空気を供給する空気系統と、
前記排ガス系統に設けられ、所要の温度以上の前記排ガスが供給される触媒式の脱硝装置と、
前記脱硝装置の一次側に設けられた主節炭器と、
前記主節炭器の給水の一次側に設けられ、前記脱硝装置の二次側の排ガスによって給水を昇温する副節炭器と、
前記副節炭器の排ガスの二次側に設けられ、当該副節炭器の二次側の排ガスによって前記空気系統の空気を昇温する空気予熱器と、を備える火力発電プラントの運転方法であって、
前記排ガス系統の前記空気予熱器の二次側の排ガス温度が、所要の温度範囲となるように調整することを特徴とする火力発電プラントの運転方法である。
請求項11にかかる発明は、前記排ガス系統の一部又は全部の前記排ガスを、前記副節炭器を通さずに前記空気予熱器に送ることを特徴とする請求項10に記載の火力発電プラントの運転方法である。
請求項12にかかる発明は、前記給水系統の一部又は全部の前記給水を、前記副節炭器を通さずに前記主節炭器に送ることを特徴とする請求項10に記載の火力発電プラントの運転方法である。
本発明の火力発電プラントは、従来の節炭器(主節炭器)に加え、給水系統の高圧給水加熱器と主節炭器との間に副節炭器を備えており、脱硝装置を通過した後の排ガスからボイラ給水へ熱を回収することができるため、発電効率を向上させることができる。
本発明を適用した第1の実施形態である石炭火力発電プラントのボイラ周辺の構成の拡大図である。 本発明を適用した第2の実施形態である石炭火力発電プラントのボイラ周辺の構成の拡大図である。 一般的な火力発電プラントの構成の一例を示す系統図である。 図3中に示す領域Pの拡大図であって、従来の石炭火力発電プラントのボイラ周辺の構成の拡大図である。
以下、本発明を適用した火力発電プラントの一実施形態である石炭火力発電プラントについて、図面を参照して詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、以下の説明において例示される構成、材料、寸法等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
<第1の実施形態>
図1は、本発明を適用した火力発電プラントの第1実施形態である石炭火力発電プラント(以下、単に「プラント」という)1のボイラ周辺を拡大した系統図である。但し、図1では、再生再熱サイクルに寄与する構成要素の配置状況を明確にするため、電気系統の各種配線等については記載を省略している。
先ず、本実施形態のプラント1の構成について説明する。図1に示すように、プラント1は、燃料を燃焼した熱により給水を昇温し蒸気を生成するボイラ2と、ボイラ2から排出された燃焼ガスを排ガスとして流す排ガス系統11と、ボイラ2が生成する蒸気によって高圧蒸気タービン5H、中圧蒸気タービン5I及び低圧蒸気タービン(図示略)を駆動し、これらの蒸気タービンを駆動した後に復水器(図3中の符号6を参照)へ蒸気を供給する蒸気系統3と、復水器によって復水された水をボイラ2に供給する給水系統4と、給水系統4に設けられ、蒸気タービン5H,5Iから抽気した蒸気によって給水を昇温する高圧給水加熱器10と、給水系統4の高圧給水加熱器10の二次側であって、ボイラ2内に設けられ、当該ボイラ2内の燃焼ガスによって給水を昇温する主節炭器36と、排ガス系統11の主節炭器36の排ガスの二次側に設けられ、所要の温度以上の排ガスが供給される触媒式の脱硝装置14と、給水系統4の高圧給水加熱器10と主節炭器36との間に設けられ、脱硝装置14の二次側の排ガスによって給水を昇温する副節炭器40を備えて、概略構成されている。
排ガス系統11は、図1に示すように、煙道11Aを有している。排ガス系統11は、煙道11A内に、触媒式の脱硝装置14及び副節炭器40を備えており、煙道11Aの出口に再生式の空気予熱器15を備えている。
また、煙道11Aは、副節炭器40の排ガスの一次側(入口側、上流側)と二次側(出口側、下流側)とにわたって設けられたガスダクト42と、このガスダクト42に設けられたガス量調整ダンパ43と、を有する。このガスダクト42により、煙道11A内を流れる排ガスの一部又は全部を副節炭器40に流すことなく空気予熱器15に送る(すなわち、副節炭器40をバイパスさせる)ことができる。また、ガス量調整ダンパ43により、ガスダクト42内にバイパスさせる排ガスの流量を制御することができる。なお、本実施形態のプラント1では、ガスダクト42とガス量調整ダンパ43とが排ガス温度調整手段を構成する。
さらに、排ガス系統11は、空気予熱器15の二次側(後段)に、集塵装置16、誘引通風機17、脱硫装置18及び煙突19を備えている。この排ガス系統11は、ボイラ2から排出された燃焼ガスを排ガスとして煙突19まで導く煙道である。
ボイラ2から排出された排ガスは、脱硝装置14を通過した後、副節炭器40に送られる。この副節炭器40に送られた排ガスは、給水系統4の高圧給水加熱器10の二次側の給水と熱交換された後、再生式の空気予熱器15に送られる。この空気予熱器15に送られた排ガスは、一次空気系統12の微粉炭搬送用空気(以下「一次空気」という)及び二次空気系統13の燃焼用空気(以下「二次空気」という)と熱交換された後、集じん装置16、脱硫装置18を通過して煙突19より大気に排出される。
一次空気系統12は、一次通風機20、蒸気式の空気予熱器41及び微粉炭機24を備えている。一次空気は、全て空気予熱器15に送られる。この空気予熱器15に送られた一次空気は、ボイラ2の排ガスとの熱交換によって加熱される。これにより、一次空気は、微粉炭機24の入口において必要な温度に調整された後、微粉炭機24に導入される。微粉炭機24に導入された一次空気は、その保有熱により微粉炭中の水分を蒸発させ、乾燥した微粉炭をボイラ2に設置された微粉炭バーナまで搬送して燃焼させる。図中に記載していないが、燃料である石炭は、微粉炭機24に供給され所定の粒度にまで微粉砕される。なお、微粉炭機24に送られる空気予熱器15を通過した後の一次空気の温度が低い場合は、一次通風機20と空気予熱器15との間の風道に設置された蒸気式の空気予熱器41によってあらかじめ一次空気を加熱する。
二次空気系統13は、二次通風機25を備える。二次空気は、全て空気予熱器15に導入され、ボイラ2の排ガスとの熱交換によって加熱された後、微粉炭バーナ燃焼用空気および二段燃焼用空気としてボイラ2に導入される。
給水系統4は、脱気器9、ボイラ給水ポンプ45、高圧給水加熱器10、副節炭器40及び主節炭器36を備える。中圧蒸気タービン5Iと、脱気器9及び高圧給水加熱器10との間には、中圧蒸気タービン5Iからの抽気蒸気が流れる抽気系統29,30が設けられている。また、高圧蒸気タービン5Hと、高圧給水加熱器10との間には、高圧蒸気タービン5Hからの抽気蒸気が流れる抽気系統31が設けられている。さらに、ドレン配管33,34は、高圧給水加熱器からのドレンが流れる配管である。
高圧給水加熱器10は、複数の熱交換器で構成されている。ここでは便宜上、脱気器9側に位置する熱交換器から順に高圧第一給水加熱器26,高圧第二給水加熱器27と呼ぶ。高圧給水加熱器10で加熱された給水は、煙道11A内の副節炭器40へ送られる。
高圧給水加熱器10の各熱交換器は、中圧蒸気タービン5I及び高圧蒸気タービン5Hから抽気した蒸気により給水を加熱する。抽気系統30は高圧第一給水加熱器26へ抽気蒸気を送り、抽気系統31は高圧第二給水加熱器27へ抽気蒸気を送る。高圧第二給水加熱器27へ送られた抽気蒸気は給水と熱交換を行った後、ドレンになる。このドレンは、ドレン配管34を通して高圧第一給水加熱器26へ送られる。高圧第一給水加熱器26では、高圧第二給水加熱器27からのドレン、及び抽気系統30から抽気された抽気蒸気を使用して給水を加熱する。そして、高圧第一給水加熱器26から排出されたドレンは、ドレン配管33を通して、脱気器9へ送られる。
蒸気系統3は、蒸発器37、過熱器38、高圧蒸気タービン5H、再熱器39及び中圧蒸気タービン5Iを備えている。給水系統4からボイラ2内の主節炭器36に導入された給水は、蒸発器37及び過熱器38を通過して過熱蒸気となり、高圧蒸気タービン5Hに導入される。高圧蒸気タービン5Hの排気は再びボイラ2に導入され、再熱器39にて再度加熱された後、中圧蒸気タービン5Iに導入される。
本実施形態のプラント1は、選択接触還元方式の脱硝装置14を用いている。ここで、脱硝装置14の入口14aの排ガス温度が低いと、酸性硫安が析出して脱硝触媒の性能が低下するという問題がある。これを防止するために、従来の石炭火力発電プラント101では、脱硝装置14の入口14aの排ガス温度は、酸性硫安が析出しない高い温度(一般的には、およそ300℃以上)で運用している。したがって、本実施形態においても、脱硝装置14の入口14aの排ガス温度(一次側の排ガスの温度)を従来の火力発電プラント101と同等の温度に維持することで、酸性硫安が析出して脱硝触媒の性能が低下することを防止することができる。
ところで、図4に示すように、従来の石炭火力発電プラント101では、脱硝装置114の入口ガス温度の低下による脱硝性能の早期低下を抑制するために入口114aの排ガス温度を酸性硫安が析出しない高い温度に維持すると、節炭器136において排ガス温度の回収が充分に行えないという課題があった。また、脱硝装置114を通過した後の排ガスは、再生式の空気予熱器115において一次空気および二次空気と熱交換されるが、空気予熱器115の温度効率には限界があるため、ボイラ排ガスの保有熱を給水に十分に回収できないまま煙突から排出していた。さらに、空気予熱器115の下流において熱回収をしようとした場合、熱交換器の伝熱面積が増加して装置が大型化してしまうという問題があった。
これに対して、本実施形態のプラント1によれば、図1に示すように、脱硝装置14の上流(一次側)に設置される主節炭器36に加えて、脱硝装置14と空気予熱器15との間の煙道11Aに副節炭器40を設ける構成となっている。この副節炭器40を設置することにより、脱硝装置14を通過した後の排ガスからボイラ給水に熱回収できるため、従来の石炭火力発電プラント101と比較して空気予熱器15の出口15b側(二次側)のガス温度を低減することができる。したがって、空気予熱器15の出口15b側(二次側)のガス温度低減分の熱量をボイラ給水へ回収することにより、本実施形態のプラント1の発電効率が向上する。
ところで、図4に示すように、従来の石炭火力発電プラント101では、タービンプラント(水−蒸気)効率を向上させるため、高圧給水加熱器110が3段階の熱交換器から構成されていた。そして、高圧給水加熱器110の最終段である第三熱交換器128において高圧蒸気タービン105Hの中間段抽気により、例えば、280℃〜290℃程度まで昇温された後にボイラ102内の節炭器136へ給水されていた。
これに対して、本実施形態のプラント1によれば、図1に示すように、従来の高圧給水加熱器110における最終熱交換器である高圧第三給水加熱器128及び抽気系統132を非設置とし、高圧給水加熱器10を高圧第一及び高圧第二給水加熱器26,27で構成する。これにより、第二熱交換器27において高圧蒸気タービン5Hから再熱器39への蒸気系統3からの抽気によって、例えば、250℃程度に加熱された給水は、副節炭器40へと送られる。このように、高圧給水加熱器10の二次側の給水温度を従来の火力発電プラント101の高圧給水加熱器110の最終段の二次側よりも低い温度とすることにより、排ガス側の低温端温度を低減することができるとともに、排ガスとボイラ給水との対数平均温度差を大きく取れるため、副節炭器40の伝熱面積を低減することができる。
なお、高圧給水加熱器10の最終段である高圧第二給水加熱器27の出口側(二次側)の給水温度の低下に伴い、タービンプラント効率は低下する。一方、上記給水温度の上昇に伴い、副節炭器40において排ガスからの熱の回収効率が低下し、必要伝熱面積が増大することから、機器寸法として実現困難なレベルとなる可能性がある。例えば、タービンプラント効率は、給水温度250℃程度では、最終給水加熱器の出口側(二次側)の給水温度が280〜290℃の場合と比べ0.5〜0.6%(相対値)低下となる。また、副節炭器の伝熱面積は、給水温度250℃程度では、従来の火力発電プラント101の主節炭器の伝熱面積と比べ同等以下となる。したがって、上記給水温度は、タービンプラント効率の低下を最小限に抑えつつ、副節炭器40における排ガスからの熱回収を効果的に行えるバランスを考慮して決定する必要がある。
本実施形態のプラント1によれば、図1に示すように、排ガス系統11に空気予熱器15を備えている。空気予熱器15の出口15b側の排ガス温度が低くなると、排ガス成分中の硫黄分等による空気予熱器15の低温腐食が促進されるおそれがある。したがって、空気予熱器15の出口15b側(二次側)の排ガス温度は、所要の温度範囲に維持することが好ましい。空気予熱器15の出口15b側の排ガスの温度を所定の温度範囲に維持すれば、硫黄分等の排ガス中成分による機器の低温腐食の促進を防止することができる。
ここで、所要の温度範囲とは、空気予熱器15の低温端(排ガスの二次側)の低温腐食を防止する温度を下限とする。具体的には、例えば、図1中に示す空気予熱器15がユングストローム型空気予熱器である場合、低温端エレメントの低温腐食を防止するため、低温端平均温度が技術文献(「火力原子力発電必携(第7版)」社団法人 火力原子力発電技術協会、p167中に示す図を参照)に示される推奨値以上とるように制御する。なお、低温端平均温度とは、上記技術文献中にも記載されているが、空気予熱器の排ガスの二次側温度と空気の一次側温度との算術平均である。また、低温端平均温度の推奨値は、燃料中の硫黄分により変動する。したがって、空気予熱器の排ガスの二次側温度の下限は、上記技術文献中に示される図を用い、燃料中の硫黄分に対する低温端平均温度推奨値と、空気予熱器の空気の一次側温度より算出される。
例えば、使用する燃料を、燃料中硫黄分が1.0%の石炭と仮定すると、上述の技術文献中に記される図より、低温端平均温度推奨値は66℃以上である。ここに、空気予熱器の空気の一次側温度が40℃である場合、空気予熱器の排ガスの二次側温度は、下式に示すように、92℃が下限となる。
(排ガスの二次側温度)=2×(低温端平均温度推奨値)−(空気の一次側温度)
=2×66℃−40℃
=92℃
次に、上述した本実施形態のプラント1において、排ガス系統11の空気予熱器15の二次側の排ガス温度が、所要の温度範囲となるように制御するための方法を説明する。
本実施形態のプラント1において、部分負荷運転、石炭炭種の変更、大気温度の変動等の影響により、空気予熱器15の出口15b側(二次側)の排ガス温度が低くなる場合は、先ず、副節炭器40をバイパスするガスダクト42に排ガスを導入して、一部または全部の排ガスについて副節炭器40をバイパスさせる。これにより、副節炭器40における熱交換量を減少させることができるため、空気予熱器15の入口15a及び出口15bの排ガス温度を上昇させることができる。
次に、一次空気系統12において、空気予熱器15を通過した後の一次空気の温度が、微粉炭機24内で石炭を乾燥させる温度として不足する場合、一次通風機20と空気予熱器15との間の風道に設置した蒸気式の空気予熱器41によって空気予熱器15の一次側(入口側)の一次空気を加熱して、空気予熱器15を通過した後の一次空気温度を上昇させる。
また、部分負荷運転、石炭炭種の変更、大気温度の変動等の影響により、空気予熱器15の入口15aの排ガス温度が低くなり、蒸気式の空気予熱器41による加温を行っても空気予熱器15での熱交換後の一次空気の温度が必要な温度に達しない(加温できない)場合は、上述した副節炭器40をバイパスするガスダクト42及びガス量調整ダンパ43を併用する。これにより、空気予熱器15の入口15a側の排ガス温度を上昇させることができ、一次空気系統12において空気予熱器15の出口側における一次空気温度を上昇させる。
本実施形態のプラント1の運転方法によれば、排ガス系統11の空気予熱器15の二次側の排ガス温度が、所要の温度範囲となるように制御するため、最適な環境基準を満たしつつ、ボイラからの排ガスの排熱を有効利用して効率化を図ることができる。
以上説明したように、本実施形態のプラント1によれば、脱硝装置14と空気予熱器15との間の煙道11Aに副節炭器40を設置することにより、脱硝装置14の入口14a側の排ガス温度を酸性硫安が発生しない温度に保って脱硝触媒の性能低下を抑制しつつ、脱硝装置14の二次側の高温の排ガスとボイラ給水との間の効率的な熱交換を行うことができる。
また、本実施形態のプラント1では、従来の石炭火力発電プラント101における、高圧蒸気タービン105Hの中間段の抽気により、約285℃まで加熱する高圧第三給水加熱器128(高圧給水加熱器110)を非設置とする。これにより、高圧給水加熱器10の最終段の高圧第二給水加熱器27の二次側の給水温度を約250℃に下げることができるため、排ガス側の低温端温度の低減を可能とするとともに、排ガスとボイラ給水との対数平均温度差を大きく取ることができる。したがって、副節炭器40の伝熱面積を低減して、主節炭器36と同等の伝熱面積レベルとすることが可能となる。
さらに、本実施形態のプラント1によれば、副節炭器40の設置により、ボイラからの排ガス排熱を主給水系統に回収することができるため、従来の石炭火力発電プラント101と比較して発電効率を向上することができる。
更にまた、本実施形態のプラント1によれば、従来の石炭火力発電プラント101における、高圧蒸気タービン105Hの中間段の抽気により、約285℃まで加熱する高圧第三給水加熱器128(高圧給水加熱器110)を非設置とするため、高圧蒸気タービン5Hの中間段抽気量分の主蒸気流量を低減することができる。したがって、主給水管〜主節炭器〜蒸発器〜過熱器〜主蒸気管〜高圧蒸気タービンまでの設備を小型化できるため、建設費の削減が可能となる。また、当該抽気管132および高圧第三給水加熱器128分の建設費を削減することができる。
また、本実施形態のプラント1によれば、従来の石炭火力発電プラント101と比較して、空気予熱器15の出口15b側(二次側)のガス温度が低減されるため、実ガスボリュームが収縮して誘引通風機17の動力の低減及び後流機器の小型化が可能となり、建設費を削減することができる。
さらに、本実施形態のプラント1によれば、一次空気温度を昇温する昇温手段(蒸気式の空気予熱器41)を有するため、一次空気全量について空気予熱器15を通過させることができ、ボイラ排ガスから燃焼用空気への熱交換を効率的に行うことができる。
<第2の実施形態>
次に、本発明を適用した第2の実施形態について説明する。本実施形態では、第1の実施形態のプラント1及びプラント1の運転方法とは異なる構成となっている。このため、図2を用いて本実施形態の火力発電プラント及び火力発電プラントの運転方法について説明する。したがって、本実施形態の火力発電プラント及び火力発電プラントの運転方法については、第1の実施形態と同一の構成部分については同じ符号を付すると共に説明を省略する。
本実施形態の石炭火力発電プラント51は、図2に示すように、第1実施形態のプラント1における排ガス温度調整手段を構成するガスダクト42及びガス量調整ダンパ43(図1を参照)に換えて、給水配管52と、給水量調整弁53とを排ガス温度調整手段として加えた構成となっている。
具体的には、図2に示すように、給水系統4は、副節炭器40の一次側(入口側、上流側)と二次側(出口側、下流側)とにわたって設けられた給水配管52と、この給水配管52に設けられた給水量調整弁53と、を有する。この給水配管52により、給水系統4を流れる給水の一部又は全部を副節炭器40に流すことなく主節炭器36に送る(すなわち、バイパスさせる)ことができる。また、給水量調整弁53により、給水配管52内にバイパスさせる給水の流量を制御することができる。なお、本実施形態の石炭火力発電プラント51では、給水配管52と給水量調整弁53とによって排ガス温度調整手段が構成されている。
次に、上述した本実施形態の石炭火力発電プラント51において、排ガス系統11の空気予熱器15の二次側の排ガス温度を所要の温度範囲となるように制御するための方法を説明する。
本実施形態の石炭火力発電プラント51において、部分負荷運転、石炭炭種の変更、大気温度の変動等の影響により、空気予熱器15の出口15b側(二次側)の排ガス温度が低くなる場合は、先ず、副節炭器40をバイパスする給水配管52に給水を導入して、給水量調整弁53によって一部または全部の給水について副節炭器40をバイパスさせる。これにより、副節炭器40における熱交換量を減少させることができるため、空気予熱器15の入口15a及び出口15bの排ガス温度を上昇させることができる。
また、部分負荷運転、石炭炭種の変更、大気温度の変動等の影響により、空気予熱器15の入口15aの排ガス温度が低くなり、蒸気式の空気予熱器41による加温を行っても空気予熱器15での熱交換後の一次空気の温度が必要な温度に達しない(加温できない)場合は、上述した副節炭器40をバイパスする給水配管52及び給水量調整弁53を併用する。これにより、空気予熱器15の入口15a側の排ガス温度を上昇させることができるため、一次空気系統12において空気予熱器15の出口側における一次空気温度を上昇させる。
以上説明したように、本実施形態の石炭火力発電プラント51によれば、第1実施形態のプラント1と同様の効果が得られる。
なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。上記実施形態のプラント1では、図1に示すように、高圧給水加熱器10の熱交換器を2段構成としたが、これに限定されるものではない。高圧給水加熱器10は、最終段の熱交換器の二次側の給水の温度が所要の温度となるように構成すればよい。
また、図3に示すように、低圧給水加熱器8の熱交換器の段数構成も適宜選択してもよい。
なお、上記実施形態の説明において記載された温度は、あくまでも一例であり、本発明はこれらに限定されるものではない。本発明は、プラントの構成及び運転状況が変動する場合には、適宜最適な温度を選択することができる。
以下に、具体的な実施例を示す。
60万kWの石炭火力発電プラントを想定したシミュレーションを行い、送電端効率の向上効果を確認した。
(比較例1)
先ず、比較例として、図4に示す従来の石炭火力発電プラント101について、運転条件を示す。
従来の石炭火力発電プラント101では、高圧蒸気タービン105Hに供給される主蒸気流量は、定格出力運転時において約1,560t/hであった。
また、高圧蒸気タービン105Hの中間段に設けられた抽気系統132から高圧第三給水加熱器128への抽気量は、約110t/hであった。
上記抽気により、給水系統104の高圧第三給水加熱器128の出口側(二次側)での給水温度は、約285℃であった。高圧第三給水加熱器128によって加熱された給水は、節炭器136に供給された。
排ガス系統111の脱硝装置114の一次側114a(入口側)の排ガス温度は、約360℃であった。
一方、排ガス系統111の空気予熱器115の二次側(出口側)の排ガス温度は、約140℃であった。
さらに、排ガス系統111の誘引通風機117の動力は、約7,200kWであった。
(実施例1)
次に、本発明の実施例として、図1に示す石炭火力発電プラント1について、運転条件を示す。なお、石炭火力発電プラント1は、従来の石炭火力発電プラント101における高圧第三給水加熱器128及び抽気系統132を非設置とし、従来の石炭火力発電プラント101の構成にはない副節炭器40を備えている。
本発明の石炭火力発電プラント1では、高圧蒸気タービン5Hに供給される主蒸気量が、定格出力運転時において約1,450t/hであった。これは、高圧蒸気タービン105Hの中間段に設けられた抽気系統132から高圧第三給水加熱器128への抽気量である約110t/hの蒸気量を低減したことによる。
また、給水系統3の高圧給水加熱器10の最終段である高圧第二給水加熱器27の出口側(二次側)での給水温度は、約250℃であり、上述の比較例1と比較して約35℃減少した。高圧第二給水加熱器27によって加熱された給水は、副節炭器40に供給された。
排ガス系統11における脱硝装置14の一次側14a(入口側)の排ガス温度は、上述の比較例1と同様に約360℃であった。
一方、排ガス系統11における空気予熱器15の二次側(出口側)の排ガス温度は、約110℃であり、上述の比較例1と比較して約30℃減少した。
さらに、排ガス系統11の誘引通風機17の動力は、約6,700kWであり、上述の比較例1と比較して約500kW減少した。これは、排ガス系統11に流れる排ガス温度の低下により、体積が減少したことによる。
(検証結果1)
上記比較例1及び上記実施例1の石炭火力発電プラントの効率のシミュレーション結果を、下表1に示す。
Figure 2014228218
表1に示すように、実施例1の石炭火力発電プラント1において、空気予熱器15の二次側(出口側)の排ガス温度を110℃に下げる(すなわち、副節炭器40を設置することによって排ガスの熱を給水側に回収する)ことにより、ボイラ効率が89.0%(比較例1)から90.4%(実施例1)に、約1.4%向上することを確認した。
これに対して、実施例1の石炭火力発電プラント1において、第三熱交換器128及び抽気系統132を非設置とし、高圧給水加熱器10の最終段の熱交換器27の出口側の給水温度を約250℃に低下させたため、タービンプラント効率(水−蒸気効率)は、49.0%(比較例1)から48.7%(実施例1)に低下することを確認した。
ここで、発電端効率は、[ボイラ効率×タービンプラント効率×(100−プラントロス)÷10000]で算出する。したがって、発電端効率は、43.0%(比較例1)から43.4%(実施例1)に、全体で約0.4%向上できることを確認した。
また、所内率は、空気予熱器15の二次側(出口側)の排ガス温度を110℃に下げることによって排ガスの体積が減少するため、5.5%(比較例1)から5.4%(実施例1)に、約0.1%改善されることを確認した。
以上より、送電端効率は、40.6%(比較例1)から41.1%(実施例1)に、絶対値で約0.5%、相対値で約1.1%も向上することを確認した。
ここで、送電端効率は、[発電端効率×(100−所内率)÷100]で算出する。
(効果比較2)
上記実施例1の石炭火力発電プラント1は、上記比較例1の石炭火力発電プラント101と比較して発電端効率及び送電端効率が向上することに加え、プラント建設の際のコスト低減の効果も得られる。
先ず、想定している60万KWの石炭火力発電プラント設備の場合、定格出力運転時において必要な蒸気量を1560t/h(比較例1)から1450t/h(実施例1)に減らすことができる。具体的には、比較例1の石炭火力発電プラント101では、高圧蒸気タービン105Hから高圧第三給水加熱器128に110t/h抽気していたが、その分の蒸気量が低減可能である。
したがって、従来の石炭火力発電プラント101と比較して、約7%の蒸気量が低減される為、主給水管〜副節炭器〜主節炭器〜蒸発器〜過熱器〜主蒸気管〜高圧蒸気タービン入口までの配管の材料費を低減することが可能となる。
特に、ボイラ2内の過熱器38及び過熱器38と高圧蒸気タービン5Hの間の蒸気系統3には、高価な合金鋼を使用しているが、その使用量も低減することができる。一方で、実施例1の石炭火力発電プラント1では副節炭器40を追加することになるが、副節炭器40の伝熱部分は高い温度ではないため、設置コストの上昇分は限定的である。したがって、本発明によれば、特に高級な材料部分の使用量を低減できるため、プラント建設コストを効果的に低減することができる。
また、実施例1の石炭火力発電プラント1によれば、排ガス系統11の空気予熱器15の二次側(出口側)の排ガス温度を約110℃に下げるため、上述の比較例1と比較して排ガスの体積が減少する。このため、誘引通風機17の動力低減が可能であるとともに、排ガス系統11に設置する機器の小型化が可能であるため、プラント建設コストを低減することができる。
以上説明したように、従来の火力発電プラントでは、現状の規格化された材料での蒸気条件の向上は限界に近い状況にある。蒸気温度600℃級のプラントにおいては、蒸気温度を10℃上げたとしても、発電効率の向上値は相対値で0.2%程度に留まるが、高温化に伴う材料強度の低下を補う為、厚肉化等の対応を要し、プラント建設コストの上昇を招いてしまうのが実情であった。
これに対して、実施例1の石炭火力発電プラント1によれば、脱硝装置14の二次側に新たに排ガスの熱を給水に回収するための副熱交換器40を設けることにより、蒸気温度を上げることなく全体の発電効率の向上が可能であるとともに、発電プラントの建設コストを低減することができることが確認された。
1,51 石炭火力発電プラント(火力発電プラント、プラント)
2 ボイラ
3 蒸気系統
4 給水系統
5 蒸気タービン
5H 高圧蒸気タービン
5I 中圧蒸気タービン
6 復水器
7 復水ポンプ
8 低圧給水加熱器
9 脱気器
10 高圧給水加熱器
11 排ガス系統
11A 煙道
12 一次空気系統(空気系統)
13 二次空気系統(空気系統)
14 脱硝装置
15 空気予熱器
18 脱硫装置
24 微粉炭機
26 高圧第一給水加熱器
27 高圧第二給水加熱器
36 主節炭器
40 副節炭器
41 蒸気式空気予熱器(昇温手段)
42 ガスダクト(排ガス温度調整手段)
43 ガス量調整ダンパ(排ガス温度調整手段)
52 給水配管(排ガス温度調整手段)
53 給水量調整弁(排ガス温度調整手段)
128 第三熱交換器
132 抽気系統
請求項10にかかる発明は、ボイラから排出された燃焼ガスを排ガスとして流す排ガス系統と、
前記ボイラに水を供給する給水系統と、
前記給水系統に設けられ、給水を抽気蒸気により昇温する給水加熱器と、
前記ボイラに空気を供給する空気系統と、
前記給水系統の前記給水加熱器の給水の二次側に設けられ、前記燃焼ガスの余熱によって給水を昇温する主節炭器と、
前記排ガス系統の前記主節炭器の排ガスの二次側に設けられ、所要の温度以上の前記排ガスが供給される触媒式の脱硝装置と、
前記給水系統の前記給水加熱器と前記主節炭器との間に設けられ、前記脱硝装置の二次側の排ガスによって給水を昇温する副節炭器と、
前記副節炭器の排ガスの二次側に設けられ、当該副節炭器の二次側の排ガスによって前記空気系統の空気を昇温する空気予熱器と、を備える火力発電プラントの運転方法であって、
前記排ガス系統の前記空気予熱器の二次側の排ガス温度が、所要の温度範囲となるように調整することを特徴とする火力発電プラントの運転方法である。

Claims (12)

  1. 燃料が燃焼した熱により給水を昇温し蒸気を生成するボイラと、
    前記ボイラから排出された前記燃料を燃焼した後の燃焼ガスを排ガスとして流す排ガス系統と、
    前記ボイラに水を供給する給水系統と、
    前記給水系統に設けられ、給水を抽気蒸気により昇温する給水加熱器と、
    前記給水系統の前記給水加熱器の給水の二次側に設けられ、前記燃焼ガスの余熱によって給水を昇温する主節炭器と、
    前記排ガス系統の前記主節炭器の排ガスの二次側に設けられ、所要の温度以上の前記排ガスが供給される触媒式の脱硝装置と、を備えた火力発電プラントであって、
    前記給水系統の前記給水加熱器と前記主節炭器との間に設けられ、前記脱硝装置の二次側の排ガスによって給水を昇温する副節炭器を備えることを特徴とする火力発電プラント。
  2. 前記脱硝装置の一次側の排ガスの温度が、酸性硫安が析出しない温度以上であることを特徴とする請求項1に記載の火力発電プラント。
  3. 前記副節炭器が、当該副節炭器の二次側の排ガスの温度を調整する排ガス温度調整手段を有することを特徴とする請求項1又は2のいずれか一項に記載の火力発電プラント。
  4. 前記排ガス温度調整手段は、前記排ガス系統の前記副節炭器の排ガスの一次側と二次側とにわたって設けられたガスダクトと、前記ガスダクトに設けられたガス量調整ダンパと、を有することを特徴とする請求項3に記載の火力発電プラント。
  5. 前記排ガス温度調整手段が、前記給水系統の前記副節炭器の給水の一次側と二次側とにわたって設けられた給水配管と、前記給水配管に設けられた給水量調整弁と、を有することを特徴とする請求項3に記載の火力発電プラント。
  6. 前記ボイラに空気を供給する空気系統と、
    前記排ガス系統の前記副節炭器の排ガスの二次側に設けられ、当該副節炭器の二次側の排ガスによって前記空気系統の空気を昇温する空気予熱器と、
    を備え、
    前記空気予熱器の二次側の排ガスの温度が、所要の温度範囲であることを特徴とする請求項1乃至5のいずれか一項に記載の火力発電プラント。
  7. 前記空気系統が、一次空気系統と、二次空気系統と、を有し、
    前記一次空気系統には、前記空気予熱器の一次側の空気を昇温する昇温手段が設けられていることを特徴とする請求項6に記載の火力発電プラント。
  8. 前記昇温手段が、蒸気により空気を加熱する蒸気式空気予熱器であることを特徴とする請求項7に記載の火力発電プラント。
  9. 前記一次空気系統には、前記空気予熱器の二次側に微粉炭機が設けられていることを特徴とする請求項7又は8に記載の火力発電プラント。
  10. ボイラから排出された燃焼ガスを排ガスとして流す排ガス系統と、
    前記ボイラに水を供給する給水系統と、
    前記ボイラに空気を供給する空気系統と、
    前記排ガス系統に設けられ、所要の温度以上の前記排ガスが供給される触媒式の脱硝装置と、
    前記脱硝装置の一次側に設けられた主節炭器と、
    前記主節炭器の給水の一次側に設けられ、前記脱硝装置の二次側の排ガスによって給水を昇温する副節炭器と、
    前記副節炭器の排ガスの二次側に設けられ、当該副節炭器の二次側の排ガスによって前記空気系統の空気を昇温する空気予熱器と、を備える火力発電プラントの運転方法であって、
    前記排ガス系統の前記空気予熱器の二次側の排ガス温度が、所要の温度範囲となるように調整することを特徴とする火力発電プラントの運転方法。
  11. 前記排ガス系統の一部又は全部の前記排ガスを、前記副節炭器を通さずに前記空気予熱器に送ることを特徴とする請求項10に記載の火力発電プラントの運転方法。
  12. 前記給水系統の一部又は全部の前記給水を、前記副節炭器を通さずに前記主節炭器に送ることを特徴とする請求項10に記載の火力発電プラントの運転方法。
JP2013109118A 2013-05-23 2013-05-23 火力発電プラント及び火力発電プラントの運転方法。 Active JP5624646B1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013109118A JP5624646B1 (ja) 2013-05-23 2013-05-23 火力発電プラント及び火力発電プラントの運転方法。
EP14801816.1A EP3001104B1 (en) 2013-05-23 2014-03-31 Fossil-fuel power plant and fossil-fuel power plant operation method
PCT/JP2014/059524 WO2014188790A1 (ja) 2013-05-23 2014-03-31 火力発電プラント及び火力発電プラントの運転方法
CN201480029065.7A CN105247286A (zh) 2013-05-23 2014-03-31 火力发电设备及火力发电设备的运转方法
US14/892,190 US9927117B2 (en) 2013-05-23 2014-03-31 Fossil-fuel power plant and fossil-fuel power plant operation method
KR1020157034091A KR101610613B1 (ko) 2013-05-23 2014-03-31 화력 발전 플랜트 및 화력 발전 플랜트의 운전 방법
CN201910106732.1A CN109780566A (zh) 2013-05-23 2014-03-31 火力发电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013109118A JP5624646B1 (ja) 2013-05-23 2013-05-23 火力発電プラント及び火力発電プラントの運転方法。

Publications (2)

Publication Number Publication Date
JP5624646B1 JP5624646B1 (ja) 2014-11-12
JP2014228218A true JP2014228218A (ja) 2014-12-08

Family

ID=51933356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013109118A Active JP5624646B1 (ja) 2013-05-23 2013-05-23 火力発電プラント及び火力発電プラントの運転方法。

Country Status (6)

Country Link
US (1) US9927117B2 (ja)
EP (1) EP3001104B1 (ja)
JP (1) JP5624646B1 (ja)
KR (1) KR101610613B1 (ja)
CN (2) CN109780566A (ja)
WO (1) WO2014188790A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114076303A (zh) * 2021-10-20 2022-02-22 华电电力科学研究院有限公司 利用工业供热外供蒸汽凝结水余热加热主机凝结水的系统及方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6737611B2 (ja) * 2016-03-25 2020-08-12 三菱日立パワーシステムズ株式会社 火力発電システム及び火力発電システムの制御方法
KR101816212B1 (ko) * 2016-09-12 2018-01-08 두산중공업 주식회사 연소물의 특성 요소의 영향도 분석 장치
JP6224858B1 (ja) * 2017-03-17 2017-11-01 三菱日立パワーシステムズ株式会社 発電プラント及びその運転方法
CN107238071A (zh) * 2017-07-20 2017-10-10 合肥裕朗机电科技有限公司 一种电站锅炉蒸发循环装置
US11079108B2 (en) * 2017-07-27 2021-08-03 Sumitomo SHI FW Energia Oy Fluidized bed boiler plant and a method of preheating combustion gas in a fluidized bed boiler plant
CN108643980B (zh) * 2018-04-17 2022-09-13 章礼道 超高压缸和高中压缸均带有附加回热级的二次再热机组
KR102590497B1 (ko) * 2021-10-18 2023-10-17 한국전력공사 석탄 화력 발전소용 버너 및 이를 포함한 석탄 화력 발전소 재활용 발전 시스템
BE1030715B1 (nl) * 2022-07-13 2024-02-12 Keppel Seghers Belgium Nv Werkwijze voor het opwekken van stoom in combinatie met een energieopwekkingsproces alsook installatie hiervoor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315639A (en) * 1976-07-27 1978-02-13 Hitachi Zosen Corp Boiler has denitration device built-in
JPH0712306A (ja) * 1993-06-22 1995-01-17 Mitsubishi Heavy Ind Ltd 節炭器装置
JPH0926105A (ja) * 1995-07-12 1997-01-28 Mitsubishi Heavy Ind Ltd ボイラ
JP2002206702A (ja) * 2001-11-15 2002-07-26 Hitachi Ltd コンバインドサイクルプラントの給水系装置および排熱回収ボイラ
WO2008078721A1 (ja) * 2006-12-27 2008-07-03 Babcock-Hitachi Kabushiki Kaisha 排ガス処理方法と装置
JP2011247553A (ja) * 2010-05-31 2011-12-08 Hitachi Ltd 酸素燃焼ボイラ

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3485048A (en) * 1968-06-28 1969-12-23 Emmanuel Stephen Miliaras Increased vapor generator output feature
US3818872A (en) * 1973-06-29 1974-06-25 Combustion Eng Economizer bypass for increased furnace wall protection
CA1092910A (en) * 1976-07-27 1981-01-06 Ko'hei Hamabe Boiler apparatus containing denitrator
US4442795A (en) * 1982-04-26 1984-04-17 Electrodyne Research Corporation Recirculating fluidized bed combustion system for a steam generator
US5423272A (en) * 1994-04-11 1995-06-13 Combustion Engineering, Inc. Method for optimizing the operating efficiency of a fossil fuel-fired power generation system
US5554350A (en) * 1994-12-15 1996-09-10 Combustion Engineering, Inc. Air pollution control and heat recovery system and process for coal fired power plant
JP3095745B1 (ja) 1999-09-09 2000-10-10 三菱重工業株式会社 超高温発電システム
DE10001997A1 (de) * 2000-01-19 2001-07-26 Alstom Power Schweiz Ag Baden Verbund-Kraftwerk sowie Verfahren zum Betrieb eines solchen Verbund-Kraftwerkes
JP3716188B2 (ja) * 2001-04-10 2005-11-16 三菱重工業株式会社 ガスタービンコンバインドプラント
EP1402153B1 (en) * 2001-05-29 2013-07-17 Andritz Oy Method and arrangement for producing electrical energy at a pulp mill
US7599750B2 (en) * 2005-12-21 2009-10-06 Pegasus Technologies, Inc. Model based sequential optimization of a single or multiple power generating units
CN101140062B (zh) * 2007-10-19 2011-05-18 冼泰来 多功能真空循环水仓
CN101260815B (zh) * 2008-04-24 2010-06-02 华北电力大学 抛物面槽式太阳能集热器辅助燃煤锅炉的混合热发电系统
CN101261002B (zh) * 2008-04-30 2011-02-09 华北电力大学 超或超超临界燃煤发电热力系统的改进方法
JP5302597B2 (ja) 2008-08-21 2013-10-02 株式会社タクマ 排ガス処理装置及び排ガス処理方法
US20110094228A1 (en) * 2009-10-22 2011-04-28 Foster Wheeler Energy Corporation Method of Increasing the Performance of a Carbonaceous Fuel Combusting Boiler System
CN201715492U (zh) * 2010-05-28 2011-01-19 济南市琦泉热电有限责任公司 一种用不同压力等级蒸汽的机组回热系统
US9459005B2 (en) * 2010-09-01 2016-10-04 The Babcock & Wilcox Company Steam cycle efficiency improvement with pre-economizer
CN102031999A (zh) * 2010-11-23 2011-04-27 江苏丰泰冷却塔有限公司 具有高效循环系统的火力发电机组
CN102175021B (zh) * 2011-01-27 2013-04-03 章礼道 能全面回收工质和热量的无泵直流炉启动系统
US20120222591A1 (en) * 2011-03-04 2012-09-06 Foster Wheeler North America Corp. Method of and Apparatus for Selective Catalytic NOx Reduction in a Power Boiler
KR20130028537A (ko) 2011-09-09 2013-03-19 한국전력공사 발전 시스템
CN102537933B (zh) * 2011-12-30 2014-11-05 冯伟忠 一种用于汽轮发电机组的可调式给水回热系统
CN202709159U (zh) * 2012-07-05 2013-01-30 东方电气集团东方锅炉股份有限公司 一种可满足scr脱硝装置全负荷运行低排烟温度的锅炉
CN102937297B (zh) * 2012-11-20 2015-04-08 上海锅炉厂有限公司 适用于在脱硝设备所有负荷下投运的锅炉省煤器
CN102937295B (zh) * 2012-11-20 2015-02-18 上海锅炉厂有限公司 一种适用脱硝设备负全程负荷投运的锅炉省煤器布置方式

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315639A (en) * 1976-07-27 1978-02-13 Hitachi Zosen Corp Boiler has denitration device built-in
JPH0712306A (ja) * 1993-06-22 1995-01-17 Mitsubishi Heavy Ind Ltd 節炭器装置
JPH0926105A (ja) * 1995-07-12 1997-01-28 Mitsubishi Heavy Ind Ltd ボイラ
JP2002206702A (ja) * 2001-11-15 2002-07-26 Hitachi Ltd コンバインドサイクルプラントの給水系装置および排熱回収ボイラ
WO2008078721A1 (ja) * 2006-12-27 2008-07-03 Babcock-Hitachi Kabushiki Kaisha 排ガス処理方法と装置
JP2011247553A (ja) * 2010-05-31 2011-12-08 Hitachi Ltd 酸素燃焼ボイラ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114076303A (zh) * 2021-10-20 2022-02-22 华电电力科学研究院有限公司 利用工业供热外供蒸汽凝结水余热加热主机凝结水的系统及方法

Also Published As

Publication number Publication date
KR20150144808A (ko) 2015-12-28
CN109780566A (zh) 2019-05-21
US9927117B2 (en) 2018-03-27
US20160091197A1 (en) 2016-03-31
EP3001104A1 (en) 2016-03-30
JP5624646B1 (ja) 2014-11-12
EP3001104B1 (en) 2018-07-04
KR101610613B1 (ko) 2016-04-08
WO2014188790A1 (ja) 2014-11-27
EP3001104A4 (en) 2017-03-08
CN105247286A (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5624646B1 (ja) 火力発電プラント及び火力発電プラントの運転方法。
US8186142B2 (en) Systems and method for controlling stack temperature
RU2688078C2 (ru) Работающая на угле электростанция с оксисжиганием с интеграцией тепла
CN102016411B (zh) 高效给水加热器
AU2014323409B2 (en) Flue gas heat recovery integration
EP2698507A1 (en) System and method for temperature control of reheated steam
JP2018155448A (ja) 発電プラント及びその運転方法
US9151185B2 (en) Steam power plant with steam turbine extraction control
CN107388230A (zh) 一种联合回热系统
Chauhan et al. Energy integration in boiler section of thermal power plant
CN105401987A (zh) 加热锅炉二次风的二次再热汽轮机抽汽过热度利用系统
WO2018198836A1 (ja) 発電プラント及びその運転方法
JP4718333B2 (ja) 貫流式排熱回収ボイラ
JP4842007B2 (ja) 排熱回収ボイラ
CN214303970U (zh) 能够提升低负荷运行能力和运行经济性的系统
JP2014190195A (ja) ガスタービンプラント、及びガスタービンプラントの運転方法
JP2766687B2 (ja) 複合発電プラント
Samanta et al. A techno-economic analysis of partial repowering of a 210 MW coal fired power plant
JP5690954B1 (ja) コンベンショナル火力発電所及びコンベンショナル火力発電方法
CN218409878U (zh) 亚临界煤气发电系统
Skiles Improve the performance of your boiler system
Tawney et al. Economic and performance evaluation of combined cycle repowering options
Ramshaw et al. Waste heat recovery & heat transfer experience in cement
JP2020204318A (ja) ごみ発電システム及びその運転方法
JP2017155613A (ja) ごみ発電システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140811

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140926

R150 Certificate of patent or registration of utility model

Ref document number: 5624646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250